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Abstract

In the recent ten years, the Global Navigation Satellite System (GNSS) processing has

experienced a fast development in many areas including the increasing number of fre-

quencies, the higher quality of positioning instruments, e.g. the receiver clocks and the

satellite clocks, and more integrated modeling and calculation strategies. This thesis in-

cludes investigations of different modeling and parameterization methods in modern GNSS

positioning with the focus on three important positioning error sources: the receiver clock

errors, the phase ambiguities and the ionospheric delays.

The thesis shows that making use of the high-quality receiver clocks and applying appro-

priate receiver clock modeling can help to improve the kinematic height estimates, which

are highly correlated with the receiver clock parameters. An efficient pre-elimination and

back-substitution strategy of epoch parameters with relative clock constraints between

subsequent and near-subsequent epochs has been developed to enable processing of, e.g.,

high-rate data. A detailed analysis of the relationship between the clock quality and

the improvement of kinematic heights has been performed. Studies were also conducted

to decorrelate the receiver clock parameters, the kinematic heights and the troposphere

parameters. Experiments with real data have shown that appropriate deterministic and

stochastic clock models can also be helpful to increase the resolution of the estimated

Zenith Path Delay (ZPD) parameters without obvious degradation of the stability of the

kinematic heights.

The second aspect of the thesis focuses on the resolution of triple-frequency phase

ambiguities with different linear combinations. A complete analytical investigation of

Geometry-Free (GF) and Ionosphere-Free (IF) triple-frequency phase ambiguity resolu-

tion with minimized noise level has been performed for different frequency triplets. The

analysis was done separately for the best two linear combinations and the third one. Ex-

periments have shown that the fractional parts and the formal errors of the combined

ambiguities of the best two linear combinations are relatively small for Galileo E1, E5b

and E5a and GPS L1, L2 and L5 triplets, while the third linear combination remains

a challenge. Further analysis with the geostationary satellites of the Beidou Navigation

Satellite System (BDS) elaborated in the framework of this thesis has also confirmed that

the combined ambiguities from the best two GF and IF linear combinations can be fixed

by rounding, while the estimated ambiguities on L1 have relatively large deviations from

the values obtained from the traditional dual-frequency double-difference ambiguity res-

olution. Apart from the triple-frequency ambiguity resolution on the double-difference
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level, the so-called track-to-track ambiguities between different tracks of the same receiver

and the same satellite have also been investigated for the best two triple-frequency linear

combinations using GPS L1, L2 and L5 as well as Galileo E1, E5b and E5a observa-

tions. The outcome demonstrates that elevation-dependent influences on the observations

like Phase Center Variations (PCVs), Phase Center Offsets (PCOs) and multipath are

important for the fixing of the track-to-track ambiguities. The combined track-to-track

ambiguities using the best two linear combinations are also effective in detecting problems

in the observation data.

The third aspect of the thesis includes the investigation of the differential ionospheric

delays and gradients in the region of Switzerland from 1999 to 2013. In differential Global

Positioning System (GPS) positioning, the ionospheric delays for short baselines are in

most cases small enough to be ignored, except under extreme conditions, e.g., during

ionospheric stormy days, and for applications with high integrity requirements, e.g., during

approach and landing of aircrafts. This thesis introduces an algorithm using double-

difference phase measurements with resolved phase ambiguities and global ionosphere maps

provided by the Center for Orbit Determination in Europe (CODE) to extract the single-

difference ionospheric delays, and enabling an automatic and robust processing of the

data over 15 years. The results show that the daily maximum slant ionospheric gradients

calculated from the differential slant ionopheric delays and the baseline lengths from 1999

to 2013 are below the slant ionosphere gradient boundary of the Conterminous United

States (CONUS) ionospheric anomaly threat model.
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Zusammenfassung

In den letzten zehn Jahren hat sich die Prozessierung der Daten der globalen Naviga-

tionssatellitensysteme (GNSS) in vielen Bereichen sehr schnell entwickelt. Dazu gehören

auch die zunehmende Anzahl der Frequenzen, die erhöhte Qualität der Positionierungsin-

strumente, z.B. der Empfängeruhren und der Satellitenuhren, und stärker integrierte

Modellierungs- und Berechnungsstrategien. Diese Arbeit enthält Untersuchungen zu ver-

schiedenen Methoden der Modellierung und Parametrisierung in der modernen GNSS-

Positionierung mit dem Schwerpunkt auf drei wichtigen Fehlerquellen: die Empfängeruhr-

fehler, die Phasenmehrdeutigkeiten und die Ionosphärenverzögerungen.

Die Arbeit zeigt, dass die Nutzung von hochwertigen Empfängeruhren und die An-

wendung geeigneter Modelle für diese Empfängeruhren die Schätzung von kinematis-

chen Höhen, die stark mit den Empfängeruhrenparametern korreliert werden, verbessern

können. Eine effiziente Strategie für die Pre-Elimination und Rück-Substitution von

Epochen-Parametern mit relativen Zwängen für die Uhrenparameter zwischen aufeinan-

derfolgenden oder mehreren aufeinanderfolgenden Epochen ist entwickelt worden, um die

Verarbeitung von Daten mit, z.B. hoher Aufzeichnungsrate zu ermöglichen. Eine detail-

lierte Analyse für den Zusammenhang zwischen der Qualität der Empfängeruhren und der

Verbesserung der kinematischen Höhen wurde ausgeführt. Es wurde auch untersucht, wie

die Empfängeruhrenparameter, die kinematischen Höhen und die Troposphärenparameter

dekorreliert werden können. Experimente mit realen Daten haben gezeigt, dass geeignete

deterministische und stochastische Uhrenmodelle auch hilfreich sein können, die Auflösung

der geschätzten Zenith Path Delay (ZPD) Parameter zu versteigern, ohne die Stabilität

der kinematischen Höhen offensichtlich zu verschlechtern.

Der zweite Aspekt der Arbeit konzentriert sich auf die Auflösung der Tripel-Frequenz-

Phasenmehrdeutigkeiten mit verschiedenen Linearkombinationen. Eine vollständige ana-

lytische Untersuchung für die Auflösung der geometriefreien (GF) und ionosphärenfreien

(IF) Tripel-Frequenz-Phasenmehrdeutigkeiten mit minimiertem Rauschen ist für verschie-

dene Frequenz-Tripletts durchgeführt worden. Die Analyse wurde getrennt für die besten

zwei Linearkombinationen und die dritte Linearkombination durchgeführt. Die Experi-

mente haben gezeigt, dass die Bruchteile und die formalen Fehler der kombinierten Phasen-

mehrdeutigkeiten der besten zwei Linearkombinationen für Galileo E1, E5b und E5a

und GPS L1, L2 und L5 Tripletts relativ klein sind, während die dritte Linearkombi-

nation eine Herausforderung bleibt. Eine weitere Analyse der geostationären Satelliten

des Beidou-Navigationssatellitensystems (BDS), die im Rahmen dieser Arbeit ausgear-
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beitet wurde, hat bestätigt, dass die kombinierten Mehrdeutigkeiten von den besten

zwei GF und IF Linearkombinationen mit Runden auf die nächste ganze Zahl fixiert

werden können, während die geschätzten Mehrdeutigkeiten auf L1 relativ große Abwe-

ichungen zu den Werten haben, die mit der traditionellen Zweifrequenz-Doppeldifferenz-

Phasenmehrdeutigkeitslösung berechnet wurden. Neben der Auflösung der Tripel-Frequenz

-Phasenmehrdeutigkeiten auf der Doppeldifferenz-Ebene sind auch die sogenannten “track-

to-track” Mehrdeutigkeiten zwischen verschiedenen Bahnbögen des gleichen Empfängers

und des gleichen Satelliten für die besten zwei Tripel-Frequenz-Linearkombinationen mit

Hilfe von GPS L1, L2 und L5 sowie Galileo E1, E5b und E5a Beobachtungen unter-

sucht worden. Das Ergebnis zeigt, dass elevationsabhängige Einflüsse wie Phasenzen-

trumsvariationen (PZV), Phasenzentrumsoffsets (PZO) und Mehrwegeffekte wichtig für

die Fixierung der track-to-track Mehrdeutigkeiten sind. Die kombinierten track-to-track

Mehrdeutigkeiten der besten zwei Linearkombinationen sind ebenfalls geeignet, um Prob-

leme in den Beobachtungsdaten zu detektieren.

Der dritte Aspekt der Arbeit beinhaltet die Untersuchung der differentiellen Ionosphä-

renverzögerungen und -gradienten in der Region der Schweiz von 1999 bis 2013. In der

differentiellen Positionierung mit dem Globalen Positionsbestimmungssystem (GPS) sind

die Ionosphärenverzögerungen für kurze Basislinien in meisten Fällen so klein, dass man sie

ignorieren kann. Ausnahmen gibe es jedoch unter extremen Bedingungen, z.B., während

ionosphärischer Stürme für Anwendungen mit hohen Integritätsanforderungen, z.B. beim

Anflug und der Landung von Flugzeugen. Diese Arbeit stellt einen Algorithmus vor,

der die Doppeldifferenz-Phasenmessungen mit gelösten Phasenmehrdeutigkeiten und die

globalen Ionosphärenkarten, die vom Center for Orbit Determination in Europe (CODE)

bereitgestellt werden, benutzt, um die Einfachdifferenz-Ionosphärenverzögerungen zu ex-

trahieren, und eine automatische und robuste Prozessierung der Daten über 15 Jahren zu

ermöglichen. Die Ergebnisse zeigen, dass sich die täglichen maximalen Ionosphärengradien-

ten in Satellitenrichtung von 1999 bis 2013, die aus den differenziellen Ionosphärenverzöge-

rungen in Satellitenrichtung und den Basislinienlängen berechnet wurden, unterhalb der

Grenze für die Ionosphärengradienten vom Conterminous United States (CONUS) Bedro-

hungsmodell für ionosphärische Anomalien befinden.
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Glaser S., Fritsche M., Sośnica K., Rodŕıguez-Solano C.J., Wang K., Dach R., Hugentobler

U., Rothacher M., Dietrich R. (2015): A consistent combination of GNSS and SLR with

minimum constraints, Journal of Geodesy 89(12): 1165-1180. doi:10.1007/s00190-015-

0842-0.

The final publication is available at http://link.springer.com.
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1 Introduction

During the last ten years, more and more countries got involved into the development of

GNSS. Apart from the GPS developed by the United States (US) and the Russian Glob-

alnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), the European Union (EU)

is engaged with ESA in developing its own civilian GNSS called Galileo, and China, at

the same time, is building its BDS. This does not only increase the number of available

satellites and improve the global cooperation in the multi-GNSS area, but also delivers

possibilities to improve the positioning accuracy and to obtain a better assessment of the

positioning errors, e.g., by making use of the increasing number of the frequencies and

more stable receiver and satellite clocks.

This thesis presents the results of the investigations making use of these advantages of

modern GNSS. It contains three different but important areas in GNSS positioning:

1. Kinematic Precise Point Positioning (PPP) and receiver clock modeling

2. Triple-frequency ambiguity resolution

3. Assessment of differential ionospheric delays and gradients

In Chapter 2, the thesis firstly makes a general introduction of the new GNSS and data

analysis, and states the theoretical foundations in the three areas mentioned above. The

algorithms used for clock modeling, triple-frequency ambiguity resolution and assessment

of the differential ionospheric delays, which are relevant to Papers A to D, are then ex-

plained in detail with experimental results in Chapter 3. In the end, Chapters 4 and 5

summarize the main procedures and results of Paper A to D and conclude the thesis,

respectively.

In kinematic PPP, the receiver clock corrections and troposphere parameters are nor-

mally estimated together and considered to be disturbing factors due to their high correla-

tion with the height estimates, which are less accurate than the horizontal coordinates and

thus considered to be a key point of investigations. Because of the continuously improved

stability and quality of the receiver clocks, the modeling instead of epoch-wise estimation

of these high-quality receiver clocks could be helpful for stabilizing the adjustment and

decorrelating the clocks and kinematic heights. The same should also apply for the radial

component of kinematically determined GNSS orbits and the high-quality GNSS satellite

clocks. In Chapter 2 (see Section 2.2), different types of receiver and satellite clocks that

are available nowadays are introduced and analyzed. Chapter 3 (see Section 3.1) includes

the algorithm of the pre-elimination and back-substitution scheme of epoch parameters

11
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with clock constraints between subsequent and near-subsequent epochs, and Chapter 4

(see Section 4.1) summarizes the results of Paper A, which is about the improvement of

kinematic height estimates through a stochastic modeling of high-quality receiver clocks.

Error sources like clock errors, ionospheric delays can of course be eliminated by forming

different linear combinations. On the double-difference level, for example, the IF linear

combination eliminates the first-order term of the ionospheric delays, and the GF linear

combination, on the other hand, eliminates all the geometry-related terms like receiver co-

ordinates, satellite orbits and clock errors and allows to investigate the ionospheric delays.

However, both of them increase the noise level of the observations after generating the

linear combinations. The increasing number of frequencies in new GNSS provides us more

possibilities to compromise between eliminating errors and minimizing the combined noise

level. The thesis mainly states the results of the investigations concerning triple-frequency

GF and IF linear combinations. Chapter 2 (see Section 2.3) introduces the commonly used

dual-frequency linear combinations, their purpose, advantages, disadvantages and the dif-

ferent types of ambiguities involved. The investigation of the triple-frequency GF and IF

linear combinations and the corresponding ambiguity resolution is introduced in Chapter 3

(see Section 3.2). The main results are published in Paper B and summarized in Chapter 4

(see Section 4.2). Apart from the double-difference triple-frequency ambiguity resolution,

Paper C also shows the investigations and results obtained with real data for the track-

to-track ambiguities using the best two GF and IF triple-frequency linear combinations.

Their main problems and benefits are summarized in Chapter 4 (see Section 4.3).

The ionospheric delay is also an error source in GNSS processing that cannot be ne-

glected. Using the GF linear combination, all the geometry-related terms including the re-

ceiver coordinates are eliminated and only the ionospheric delays remain for investigations.

Since the ionosphere is ranging from about 50 km to 1000 km above the Earth surface

(Groves, 2013), the ionospheric delays on the single-difference level (between receivers)

are normally considered to be significantly reduced, especially for short baselines. The

assessment of the differential ionospheric delays is, however, still important for the appli-

cations with high integrity requirements, e.g., during landing and approach of the aircraft.

Chapter 2 (see Section 2.4) introduces firstly the general definition of the ionospheric delay

used in GNSS processing. Chapter 3 (see Section 3.3) then provides an algorithm to ex-

tract single-difference ionospheric delays from double-difference observations with resolved

ambiguities and states the advantages and disadvantages of this algorithm. The results of

the processing of the Swiss AGNES network from 1999 to 2013 using this algorithm are

discussed and assessed in Paper D and summarized in Chapter 4 (see Section 4.4).

The thesis also mentions two papers which are relevant to the reprocessing of global

network solutions combining GPS, GLONASS and Satellite Laser Ranging (SLR) obser-

vations. The results of these papers are not included in this thesis, but they provide an

overview of the multi-GNSS data processing, which is highly related to the topic of this

thesis. The author of this thesis was involved in the processing of the network solutions

12



and the analysis of the 1-day and 3-day orbit and Earth rotation parameters.
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2 Theoretical fundations

2.1 New GNSS and data analysis

In the recent ten years, the GNSS consist of more family members. Apart from the GPS

from the US and GLONASS from Russia, the EU and China are also developing their own

satellite navigation systems. The Indian Regional Navigation Satellite System (IRNSS)

and the Quasi-Zenith Satellite System (QZSS) in Japan, which have a regional coverage

of the Earth, operate at the same time as regional navigation satellite systems. In this

section, the basic constellation of the GNSS and new developments in recent years are

introduced with the focus on GPS and the EU satellite navigation system Galileo.

As we know, the GPS is a satellite navigation system built and maintained by the US

and is nowadays used for both, civilian and military purpose. The GPS satellites are

distributed in 6 orbital planes with a radius of about 26580 km and are inclined by about

55◦ with respect to the Earth equatorial plane (Groves, 2013). As of October 14, 2015,

there were 31 operational GPS satellites including 2 from the block-type IIA, 12 from

the block-type IIR, 7 from the block-type IIR-M and 10 from the new block-type IIF

(Navigation Center, 2015). Table 2.1 summarizes the status of the GPS constellation on

October 14, 2015, with a detailed description of the Block IIF satellites (NASA, 2015;

Navigation Center, 2015).

Apart from the carrier frequencies L1 (1575.42 MHz) and L2 (1227.6 MHz), the first

Block IIF GPS satellite SVN62 launched in 2010 began to broadcast signals on L5 (1176.45

MHz). Dupuis et al. (2010) have shown that the rubidium clocks onboard of the Block

IIF GPS satellites are improved compared to the earlier generations. In the planned phase

of GPS Block III, the availability of which might be delayed to 2017 (Gruss, 2015), the

new L1C signal, increased signal power and availability, better accuracy of the navigation

signals and longer Space Vehicle (SV) lifetime can be expected (Gruss, 2015; Marquis and

Shaw, 2011).

In recent years, EU and ESA were also engaged in developing their own GNSS called

Galileo mainly for civilian usage. The Galileo satellites are planned to be sent into Medium

Earth Orbit (MEO) with an orbital height of about 23222 km above the Earth’s surface and

an inclination of about 56◦ w.r.t. the Earth equatorial plane (ESA, 2014a) with the avail-

able frequency set consisting of E1 (1575.42 MHz), E6 (1278.75 MHz), E5b (1207.14 MHz),

E5 (1191.795 MHz) and E5a (1176.45 MHz) (RINEX, 2013). In December 28, 2005, and

April 26, 2008 (UTC), the first two experimental Galileo satellites of the Galileo In-Orbit
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Table 2.1: GPS Constellation.

Block-Type Status Number of satellites PRN (SVN) Launch date

IIA Operational 2

IIR Operational 12

IIR-M Operational 7

IIF Operational 10 G25 (SVN62) May 28, 2010

G01 (SVN63) July 16, 2011

G24 (SVN65) October 4, 2012

G27 (SVN66) May 15, 2013

G30 (SVN64) February 21, 2014

G06 (SVN67) May 17, 2014

G09 (SVN68) August 2, 2014

G03 (SVN69) October 29, 2014

G26 (SVN71) March 25, 2015

G08 (SVN72) July 15, 2015

Validation Element (GIOVE), GIOVE-A and GIOVE-B were launched (ESA, 2005, 2008)

for test and validation purposes. Different from the GPS satellites and the GIOVE-A

satellite, GIOVE-B carries two highly precise Passive Hydrogen Masers (PHMs) on board

as primary satellite clocks and two rubidium clocks as back-up clocks (ESA, 2008). In June

and July 2012, both of the GIOVE satellites retired after the successful accomplishment

of their missions (ESA, 2012a,b).

Following the GIOVE satellites, two Galileo In-Orbit Validation (IOV) satellites Proto-

Flight Model (PFM) and Flight Model 2 (FM2) were launched in October 2011, and the

other two IOV, FM3 and FM4, one year afterwards (ESA, 2013; Steigenberger et al., 2013).

On March 12, 2013, a first position was fixed at the Navigation Laboratory at the European

Space Research and Technology Centre (ESTEC) in Noordwijk, the Netherlands, using

the four IOV satellites (ESA, 2013). The accuracy was between 10 m and 15 m.

On August 22, 2014, the first two Galileo Full Operational Capability (FOC) satellites

were launched in French Guiana and, unfortunately, did not reach their foreseen orbits

(Arianespace Service & Solutions, 2014). However, they have entered their corrected

target orbits in November 2014 and March 2015 and have been recovered from the orbital

injection anomaly (ESA 2014b, 2015). In March 2015 and September 2015, another four

FOC satellites FM3, FM4, FM5 and FM6 were successfully launched. The details of all

the launched Galileo satellites are summarized in Table 2.2 (Galileo Constellation, 2015;

Gunter, 2015).

With 24 operational satellites (GLONASS constellation status, 2015), the Russian
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2.1. New GNSS and data analysis

Table 2.2: Information of the launched Galileo satellites.

Satellite Status PRN Launch date

GIOVE-A Retired E51 December 28, 2005

GIOVE-B Retired E52 April 26, 2008

IOV PFM Operational E11 October 21, 2011

IOV FM2 Operational E12 October 21, 2011

IOV FM3 Operational E19 October 12, 2012

IOV FM4 Unavailable E20 October 12, 2012

FOC FM1 Recovered August 22, 2014

FOC FM2 Recovered August 22, 2014

FOC FM3 Under commissioning E26 March 27, 2015

FOC FM4 Under commissioning E22 March 27, 2015

FOC FM5 Under commissioning E24 September 11, 2015

FOC FM6 Under commissioning E30 September 11, 2015

GLONASS is the only positioning system besides GPS which is fully operational and

delivers global coverage. Different from the other GNSS, GLONASS broadcasts signals on

different frequencies for different satellites. On the L1 and L2 band, the frequencies are

defined by

L1 = 1602 + 0.5625 · k (2.1)

L2 = 1246 + 0.4375 · k (2.2)

in MHz, where k represents the channel number and varies from -7 to +6. The same

channel is shared by the satellites on the opposite side of the same orbital plane (Groves,

2013). The new generation of GLONASS satellites, i.e., the GLONASS-K1 satellites,

are sending an additional Code Division Multiple Access (CDMA) signal on L3OC at

1202.025 MHz (Testoyedov, 2015; Urlichich et al., 2011).

The development of the official BDS, or the second generation of the Beidou system

(Beidou-2) is also progressing. The planned full constellation of BDS consists of 5 Geosta-

tionary Earth Orbit (GEO) satellites, 27 MEO satellites and 3 Inclined Geosynchronous

Orbit (IGSO) satellites. Since the first launch of a Beidou-2 satellite on April 14, 2007,

BDS has accomplished the first phase with 5 GEO satellites, 5 IGSO satellites and 4

MEO satellites by the end of 2012 (Liu et al., 2014) and opened the service for commercial

use across the Asia-Pacific region (BBC News, 2012). It is planned that BDS will com-

plete its full constellation with its second phase in 2020 and will thereafter provide global

navigation services (Liu et al., 2014).

The increasing number of GNSS has, at the one side, generated more opportunities

for global cooperation in the navigation area and stimulated fast developments in both,
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technologies and applications. On the other side, higher requirements and challenges to

bridge the differences and conflicts among the different systems are the consequence. With

more available satellites in view and more carrier frequencies in use, a lower Dilution of

Precision (DOP) and more diversity to form linear combinations can be expected. Differ-

ent time systems and data structures require, however, more compatible data exchange

formats and software for multi-GNSS analysis. The Receiver Independent Exchange For-

mat (RINEX) (RINEX, 2013) is now able to merge observation data of different systems

(GPS, GLONASS, GALILEO, QZSS from Japan, BDS and Satellite Based Augmentation

System (SBAS) payload), different data types, frequencies and tracking channels into one

observation file. The RINEX navigation file is also able to deliver mixed orbit information

from different systems. In order to systematically track and analyze all the available GNSS

data, the IGS has initiated the so-called Multi-GNSS Experiment (MGEX), which pro-

cesses multi-GNSS data and continuously provides products like clocks and orbits (MGEX,

2014). Fritsche et al. (2014) have published a good example for the issues encountered

in a combined processing of GPS and GLONASS data. The differences of the combined

results and the GPS/GLONASS-only results were compared and analyzed in this paper.

2.2 Receiver and satellite clocks

Receiver and satellite clock errors are important and non-negligible error sources in GNSS

positioning. The receiver clocks are usually estimated together with the receiver positions

on the zero-difference level, and the satellite clocks mostly estimated within a global

network. Equations 2.3 and 2.4 show the simplified zero-difference observation equations

for the carrier phase observations L1 and L2 on frequencies f1 and f2:

L1 = ρ+ cl ·∆tr − cl ·∆ts +∆trop − I1 + λ1 ·N1, (2.3)

L2 = ρ+ cl ·∆tr − cl ·∆ts +∆trop −
f2
1

f2
2

· I1 + λ2 ·N2, (2.4)

where ρ, ∆trop and I1 represent the geometric distance between satellite and receiver, the

tropospheric delay and the ionospheric delay on L1, respectively. ∆tr and ∆ts stand for

the receiver and satellite clock error. λ1, λ2, N1 and N2 represent the wavelengths and

phase ambiguities on L1 and L2, respectively. cl denotes the speed of light.

It is not difficult to see that the synchronization of receiver and satellite clocks is nothing

else but fixing the differences between the receiver and satellite clock errors. In order to

avoid singularities, it is necessary to select a reference clock while estimating the clock

errors. CODE selects, e.g., a stable receiver clock as the reference clock on a daily basis

and assumes that it can be well represented by a linear polynomial. The IGS clock products

use the IGS Time Scale (IGST) instead, which is more stable than GPS Time (GPST) for

short term, but still loosely steered to GPST on the longer term (Senior et al., 2003).

The GNSS receivers and satellites are connected to different types of clocks (atomic
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2.2. Receiver and satellite clocks

clocks, quartz clocks, etc.). Since the clock behavior is not only dependent on the clock

type, but is also influenced by the measurement environment and hardware delays (Wein-

bach and Schön, 2009), the evaluation of the clock stability for specific receivers or satellites

is usually performed with the help of the frequency data or the phase data. Thereby, the

so-called fractional frequency y(t) corresponds to the time derivative of the phase clock

data x(t) according to Riley (2008):

y(t) =
v(t)− v0

v0
=

dx

dt
, (2.5)

where v(t) and v0 represent the instantaneous frequency and the nominal frequency, re-

spectively.

The phase clock data is typically described by a deterministic part and a stochastic part

ǫ(t). The deterministic part usually consists of a time offset a, a frequency offset b and a

frequency drift D (Allan, 1987):

x(t) = a+ b · (t− t0) +
1

2
D · (t− t0)

2 + ǫ(t), (2.6)

where t0 represents the starting time. The stochastic process consists of different kinds

of noise, which can be characterized using different kinds of Allan Deviations (ADEVs).

Table 2.3 summarizes the behavior of the different stochastic processes according to Riley

(2008). It shows that the Modified Allan Deviation (MDEV) is able to distinguish between

White Phase Noise (WPN) and Flicker Phase Noise (FPN). The different slopes of the

stochastic processes can also be seen in Figure 2.1 (Riley, 2008), where the scales in the

figure are only shown as an example.

In Section 2.2.1 and Section 2.2.2 different clocks types connected to GNSS receivers

and satellites are introduced with their characterization and behavior.

2.2.1 Receiver clocks

In the last ten years, more and more stable oscillators have been available that are con-

nected to GNSS receivers. Figure 2.2 shows the global distribution of H-Masers, cesium

Table 2.3: Stochastic noise and its characteristics.

Type of noise Slope of ADEV Slope of MDEV

White Phase Noise (WPN) -1 -1.5

Flicker Phase Noise (FPN) -1 -1

White Frequency Noise (WFN) -0.5 -0.5

Flicker Frequency Noise (FFN) 0 0

Random Walk Frequency Noise (RWFN) 0.5 0.5

Frequency Drift (FD) 1 1
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Figure 2.1: Slopes of the ADEV and MDEV.

clocks, rubidium clocks and quartz clocks connected to IGS stations on August 1, 2004,

and August 1, 2014. Data were collected from the daily-updated summary file of the IGS

site logs (IGS site log, 2014) in September 2014. The frequency standards that were only

documented as ”internal” and the former IGS stations, which have been closed down, are

not contained in the figures.

Figure 2.2 shows a clear increase in the number of the high-precision Hydrogen-Masers

(H-Maser) from 2004 to 2014. This increase can also be observed in Figure 2.3 showing

the development of the number of the clocks available at IGS sites. Apart from the H-

Masers, the number of atomic clocks (H-Masers, cesium clocks and rubidium clocks) has

also increased during these ten years, especially before 2013. This indicates an even higher

quality of the frequency standards available at IGS stations.
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Figure 2.2: Global distribution of the IGS stations connected to atomic clocks and quartz clocks

on (a) August 1, 2004 and (b) August 1, 2014.
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Figure 2.3: Number of (a) different atomic clocks and quartz clocks, and (b) all the atomic clocks

from January 1, 2004, to August 1, 2014.

Figure 2.4 shows, e.g., the stochastic part of a quartz clock CAS1, a rubidium clock

DUBO, a cesium clock HARB and a H-Maser ONSA after removing a linear polynomial

and the MDEVs of these clocks on March 1, 2014. The standard deviations of the same

clocks after removing a linear polynomial σSTD1 and a quadratic polynomial σSTD2 are

listed in Table 2.4. The so-called empirical relative sigma σemp is defined with the help of

the epoch-to-epoch clock changes and is a good indicator for clock constraints (see Paper

A):

σemp =

√
√
√
√
√

n−1∑

i=1
(clkti+1

− clkti)
2

n− 1
, (2.7)

where clkti indicates the clock residual after removing the deterministic part (here a linear

or quadratic polynomial) at ti, and n represents the number of the clock estimates. The

phase clock data used have been extracted from the CODE final clock RINEX file from a

3-day solution with a sampling interval of 300 s for the receiver clocks (CODE products,

2014). It should be noticed that the clock estimates in the clock RINEX file are the

estimated “apparent” clocks, which may absorb other errors during the adjustment due

to the high correlations or insufficient parameter modeling.

After removing the deterministic model, the standard deviation of the rubidium clock

DUBO and the cesium clock HARB is generally in the range of a nanosecond, while the

quartz clock CAS1 behaves worse than the three atomic clocks in both, the standard

deviation and the empirical relative sigma. As mentioned before, the apparent clock

behavior may be influenced by a lot of factors. Clocks belonging to the same type may also

behave very differently under various measurement environments. However, an obviously

better behavior of the H-Masers has been observed. Figure 2.5 shows, e.g., the standard

deviations of some H-Masers after removing a linear polynomial and the MDEVs of these
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Figure 2.4: (a) Clock residuals of different types of receiver clocks after removing a linear polyno-

mial and (b) the corresponding MDEVs on March 1, 2014.

Table 2.4: Standard deviations σSTD and the empirical relative sigmas σemp for different clock

types after removing a linear or a quadratic polynomial on March 1, 2014.

Clock σSTD1 [ns] σSTD2 [ns] σemp1 [ns] σemp2 [ns]

ONSA (H-Maser) 0.0202 0.0201 0.0139 0.0139

HARB (Cesium) 1.1791 1.0616 0.2035 0.2024

DUBO (Rubidium) 7.3121 6.3894 0.6461 0.6305

CAS1 (Quartz) 9.3413 9.1981 1.5194 1.5181

H-Masers on March 1, 2014.

It is not difficult to see that the residuals of the H-Masers are generally in the range of

tens of picoseconds. Their MDEVs are mostly reaching 10−15 after 8 hours.

2.2.2 Satellite clocks

The GPS II and IIA satellites carry two rubidium and two cesium clocks on board, while

the GPS IIR and IIR-M satellites are equipped with three spaceborne rubidium clocks

(Mallette et al., 2006). The new GPS IIF satellites have two rubidium and one cesium

frequency standards on board (Jewell, 2014) and the planned GPS block III satellites will

change the number of rubidium frequency standards again to three (Lollock, 2013). The

behavior of the operational frequency standards onboard the GPS satellites of different

generations are illustrated in Figure 2.6 with the MDEVs using the CODE final GPS

clocks from 3-day solutions on August 1, 2014 (resampled to 300 s).
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Figure 2.5: (a) Clock residuals of some H-Masers after removing a linear polynomial and (b) the

corresponding MDEVs on March 1, 2014.

10
2

10
3

10
4

10
5

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

Averaging time [s]

M
D
E
V

GPS−IIA

GPS−IIR

GPS−IIRM

GPS−IIF

Figure 2.6: MDEVs of the GPS satellite clocks from different GPS generations on August 1, 2014.

It is not difficult to observe the general improvement from the old generation GPS

IIA to the new GPS generation Block IIF. Except for the relatively bad behavior of

the clock on G24 (see the highest green line), the clocks on block IIF satellites show a

significantly smaller short-term noise level. However, their long-term stability is influenced

by systematic effects which might be a result of the estimation of the satellite orbits.

Figure 2.7 explains this with more details.

Figure 2.7 shows the MDEVs of the clock estimates and residuals of the clock estimates

after removing a linear polynomial for GPS Block IIR satellite G19 and GPS Block IIF

satellite G01 on August 1, 2014. We see that the MDEV of G01 is getting larger than

that of G19 after an averaging time of about 2 hours and 10 minutes. This is in agreement

with the high level of high-frequency noise in G19 and the large low-frequency variations
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Figure 2.7: (a) MDEVs of the clock estimates and (b) residuals of the clock estimates after removing

a linear polynomial for GPS Block IIR satellite G19 and GPS Block IIF satellite G01

on August 1, 2014.

in G01.

Similar systematic effects can also be observed in Figure 2.8, which shows the behavior

of the clock estimates of the Galileo IOV satellites E11 and E12 with H-Masers running on

board after removing a linear polynomial on October 21, 2012 (Galileo Overview, 2015).

The CODE MGEX clock data is used for the plots, and the plots of the MDEV starts at

3:00 GPST for E11 and at 0:30 GPST for E12, respectively, to avoid data gaps.

Looking at Figure 2.8 we see that the MDEV of both H-Masers are approaching 3 ·10−15

after an averaging time of about 7 to 8 hours even with the disturbance from systematic
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Figure 2.8: (a) MDEVs of the clock estimates and (b) residuals of the clock estimates after removing

a linear polynomial for Galileo IOV satellites E11 and E12 on October 21, 2012.
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2.3. Phase ambiguities and linear combinations

effects. Their long-term stability is considerably better than that of the rubidium clock on

GPS Block IIF satellite G01 on August 1, 2014. The short-term stability of the H-Masers

on E11 and E12 and the on-board clock on G01 at the averaging time of 300 s is similar,

namely around 7 · 10−14 to 8 · 10−14.

2.3 Phase ambiguities and linear combinations

When resolving the phase ambiguities to integer numbers, a lot of error sources, e.g., re-

ceiver and clock errors, tropospheric delays, ionospheric delays, multipath effects, hardware

delays and measurment noise, which have a significant impact on ambiguity parameters,

may disturb and influence the results (Dach et al., 2007). This section focuses on the pur-

pose, advantages and disadvantags of different linear combinations and their importance

for ambiguity resolution.

2.3.1 Dual-frequency linear combinations

Equation 2.8 shows the general form of the dual-frequency linear combination of the phase

measurements:

Lx = A · L1 +B · L2, (2.8)

where Lx, L1 and L2 represent the combined phase measurement and the phase measure-

ments on the frequencies f1 and f2. A and B denote the coefficients of the phase linear

combination.

The mostly used linear combination in PPP applications is the so-called IF linear com-

bination (here called L3). Based on the fact that the ionospheric delay accelerates the

phase measurements and is frequency-dependent (see Equations 2.3 and 2.4), we obtain:

Ii =
f2
1

f2
i

· I1, (2.9)

where Ii represents the ionospheric delay on frequency fi. Appropriate factors A and B

are able to eliminate the first-order term of the ionospheric delay and leave the geometry-

related terms unchanged in the combined phase measurement (see Equations 2.10 and

2.11).

A+
f2
1

f2
2

·B = 0 (2.10)

A+B = 1. (2.11)

The factors A and B can easily be solved for:

A =
f2
1

f2
1 − f2

2

, B =
f2
2

f2
2 − f2

1

. (2.12)
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Assuming that the phase noise σL1 and σL2 in meters on both frequencies is the same and

is equal to σL, the combined noise σLx can be calculated with the coefficients A and B:

σLx =
√

A2 · σ2
L1 +B2 · σ2

L2 (2.13)

=
√

A2 +B2 · σL.

The combined ambiguity nx is represented by Equation 2.14:

nx = A · n1 · λ1 +B · n2 · λ2 (2.14)

= −Bλ2(n1 − n2) + n1(Aλ1 +Bλ2).

The term Aλ1 +Bλ2 can be denoted by λ3 (Dach et al., 2007).

The GF linear combination (here called L4) is, in contrast to the IF linear combina-

tion, eliminating all the geometry-related terms like the receiver and satellite clock error,

the tropospheric delay and the geometric distance between the receiver and the satellite.

Except for the antenna-related PCOs and PCVs, multipath effects and the measurement

noise, only the ionospheric delay and the phase ambiguities are left in the observation

equation. The coefficients A and B have to fulfill the following condition:

A+B = 0. (2.15)

To simplify the case, A and B are defined as 1 and -1. The combined noise equals to√
2σL. According to Equations 2.3 and 2.4, the ionospheric delay I1 on L1 can easily be

calculated as:

I1 =
L1 − L2

f2
1

f2
2

− 1
. (2.16)

The dual-frequency GF and IF linear combination, the so-called Melbourne-Wübbena

(MW) linear combination (Melbourne, 1985; Wübbena, 1985), removes both, the geometry-

related terms and the first-order term of the ionospheric delay. Different from the GF or

IF linear combination introduced above, the MW linear combination uses phase and code

observations at the same time:

Lx = A · L1 +B · L2 + C · P1 +D · P2, (2.17)

where P1 and P2 represent the code measurements on L1 and L2, respectively, and C and

D stand for the factors before the code measurements. In order to fulfill the requirement

of a GF and IF linear combination, the following equations are required:

A+B + C +D = 0 (2.18)

−A− f2
1

f2
2

·B + C +
f2
1

f2
2

·D = 0 (2.19)

The resulting four parameters are:

A =
f1

f1 − f2
, B =

f2
f2 − f1

, C = − f1
f1 + f2

, D = − f2
f1 + f2

. (2.20)
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They have been chosen in such a way that the criteria in Equations 2.18 and 2.19 are

fulfilled, and the product of the wide-lane ambiguity n5 = n1 −n2 and a large wavelength

λ5 =
cl

f1−f2
(about 86.2 cm for GPS L1 and L2) remain in the observation equation:

Lx =
cl

f1 − f2
· (n1 − n2) (2.21)

= λ5 · n5.

Since the code noise σC is dominant in the observation equation, the combined noise of

the MW linear combination is highly dependent on the size of σC . Assuming that the

phase noise σL1 and σL2 and the code noise σC1 and σC2 is the same on both frequencies

and is equal to σL and σC , respectively, the combined noise can be formulated as:

σx =
√

A2 · σ2
L1 +B2 · σ2

L2 +
√

C2 · σ2
C1 +D2 · σ2

C2 (2.22)

=
√

A2 +B2 · σL +
√

C2 +D2 · σC .

With the frequencies of the different GNSS, the combined noise and the wavelength

of the combined ambiguities (i.e. λ3 and λ5) can be calculated. The frequencies of the

different GNSS (see Table 2.5) are extracted from RINEX (RINEX, 2013), and the abbre-

viations for different frequency pairs are listed in Table 2.6.

Assuming that the phase noise σL and the code noise σC is equal to 2 mm and 0.5 m,

respectively, the combined noise of the IF phase-only linear combination and the MW

linear combination for different frequency pairs are illustrated in Figure 2.9.

We see that the combined noise of the IF linear combination for GPS L1 and L2 is

about 6 mm, whereas a relatively large combined noise of about 5.5 cm can be observed

for Galileo E5a and E5b because of the small difference in the wavelengths between E5a

and E5b. The minimal combined noise of the IF linear combination is generated by GPS

L1 and L5, namely about 5.2 mm. The combined noise of the MW linear combination

is relatively large because of the dominant code noise. However, it is not difficult to see

that the values for the combined noise are all around 0.36 m and do not vary much with

respect to different choices of the frequency pairs.

Table 2.5: Available frequencies for different GNSS.

GPS [MHz] Galileo [MHz] BDS [MHz]

L1=1575.42 E1=1575.42 B1=1561.098

L2=1227.6 E5a=1176.45 B2=1207.14

L5=1176.45 E5=1191.795 B3=1268.52

E5b=1207.14

E6=1278.75
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Table 2.6: Abbreviations of the frequency pairs for different GNSS.

GPS Galileo BDS

LG12: L1/L2 LE15: E1/E5 LB12: B1/B2

LG15: L1/L5 LE16: E1/E6 LB13: B1/B3

LG25: L2/L5 LE56: E5/E6 LB23: B2/B3

LE5ab: E5a/E5b

LG12 LG15 LG25 LE15 LE16 LE56 LE5abLB12 LB13 LB23
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Figure 2.9: Combined noise of (a) IF phase-only and (b) MW linear combinations of different

frequency pairs assuming that the phase and code noise is equal to 2 mm and 0.5 m,

respectively.

Figure 2.10 shows the wavelength λ3 and the wavelength of the wide-lane ambiguity

λ5 when selecting different frequency pairs. We see that the values of λ3 of the IF linear

combination are all around 11 to 12 cm, whereas the value of λ5 is highly dependent on

the differences between the two frequencies involved. For GPS L2 and L5 and Galileo E5a

and E5b, λ5 has reached 5.9 m and 9.8 m, respectively. This should be very helpful for

ambiguity resolution.

2.3.2 Multi-frequency linear combinations

The new GNSS (GPS, Galileo and BDS) all provide signals on more than two frequencies.

The new CDMA signal L3OC centered at 1202.025 MHz is also introduced for the two

GLONASS-K1 satellites that are under flight tests (Testoyedov, 2015; Urlichich et al.,

2011). The European Galileo system can broadcast data on even more than three fre-

quencies. As a result, we describe linear combinations of multi-frequency signals by the

following equation:

Lx =
n∑

i=1

γLi · Li +
n∑

i=1

γPi · Pi, (2.23)
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Figure 2.10: (a) λ3 and (b) λ5 for different frequency pairs assuming that the phase and code noise

is equal to 2 mm and 0.5 m, respectively.

where Li and Pi stand for the phase and code measurements on frequency fi, and γLi and

γPi represent the coefficients before the phase and code measurements. If only the phase

or only the code measurements are used, the corresponding coefficients γLi or γPi are set

to zero.

In order to easily resolve the phase ambiguities, it is always our goal to keep possible

error sources small compared to the wavelength contained in the linear combination. If

the ionospheric delays or the geometry-related terms are eliminated by forming the linear

combination, or if a priori information of good quality (e.g., accurate orbits and clock

corrections) is available, the goal turns into reducing the combined noise with respect

to the combined wavelength, or in other words, in reducing the noise level of the linear

combination expressed in cycles.

The multi-frequency GNSS data gives us more redundancy to optimize between the

purpose of the linear combination and the noise level of the linear combination. However, it

is also to be noticed that the number of linearly independent linear combinations required

in order to resolve the ambiguities on all the frequencies increases with the number of

frequencies available. In the last ten years, a large amount of studies has been performed to

investigate triple-frequency (and multi-frequency) ambiguity resolution (Feng et al., 2007;

Feng, 2008; Hatch, 2006; Henkel and Günther, 2012; Li et al., 2012). In this thesis, the

focus is put on triple-frequency GF and IF linear combinations, which will be introduced

in Section 3.2.

2.4 Ionospheric Refraction

Ionospheric refraction is one of the major error sources in zero-difference GNSS processing.

The delays caused can vary from less than one meter to more than 100 meters in extreme

cases (Dach et al., 2007; Gao and Liu, 2002). According to Dach et al. (2007), neglecting
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the higher-order terms of the ionospheric refraction on carrier phase measurements, the

ionospheric delay ∆Ii on frequency fi can be written as:

∆Ii =

∫

s
(nI − 1)ds (2.24)

with

nI = 1− a · ne

f2
i

, (2.25)

where nI represents the ionospheric refraction coefficient, and a is a constant with the

value 4.03 · 1017ms−2TECU−1. TECU is called the Total Electron Content Unit (TECU)

and is defined as 1016 electrons per square meter, and ne denotes the electron content

along the path of the signal propagation.

With Equations 2.24 and 2.25, it is not hard to see that the ionospheric refraction is

dispersive. Inserting Equation 2.25 into Equation 2.24, we obtain:

∆Ii = − a

f2
i

∫

s
neds (2.26)

= −a · E
f2
i

,

where E is the so-called Total Electron Content (TEC). For code measurements, the sign

before a·E
f2
i

has to be changed to plus.

The vertical ionospheric delay is calculated with the help of a mapping function Fmap

based on the assumption that the electrons are concentrated on a single layer (Single-Layer

Model). The slant and vertical TEC E and Ev then fulfill the following relationship:

Ev =
E

Fmap
. (2.27)

The vertical ionospheric refraction on frequency fi for phase measurements can thus be

described as:

∆Ivi = −a · Ev

f2
i

(2.28)

= − a · E
f2
i · Fmap

=
∆Ii
Fmap

.

The state of the ionosphere is strongly influenced by the geomagnetic and solar activities

(Dach et al., 2007). Figure 2.11 shows the mean global TEC values (spherical harmonics

coefficient of degree 0 and order 0) extracted from the CODE global ionosphere maps

between 12:00 and 14:00 UT (see Figure 4 in Paper D) from 1999 to 2013. The 11-year

solar cycle can easily be seen in the figure.
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Figure 2.11: Global TEC values between 12:00 and 14:00 UT from 1999 to 2013.

For differential GNSS, the ionospheric delays are significantly reduced, especially for

short baselines and under quiet ionospheric conditions. Figure 2.12 shows the slant iono-

spheric gradients for (a) the baseline AIGE and ARDE, which has a length of 318.3 km

and is oriented in west-east direction and (b) the baseline SCHA and STA2, which has

a length of 210.3 km and is oriented in north-south direction in Switzerland on June 16,

2013, with a global mean TEC value of 18.4 TECU between 12:00 and 14:00 UT. The

slant ionospheric gradients are calculated based on the differential slant ionospheric delays

and the baseline length with the help of the GF linear combination. The elevation cut-off

angle is 10 degrees.

We see that the remaining ionospheric gradients are in the range of a few mm/km. For

baselines shorter than 1 km, the remaining differential ionospheric residuals are normally
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Figure 2.12: Slant ionospheric gradients for (a) the baseline AIGE and ARDE and (b) the baseline

SCHA and STA2 on June 16, 2013, in Switzerland.
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considered to be in the range of the phase noise level under normal ionosphere conditions.

However, the ionosphere gradients could become critical for differential GNSS under ex-

treme ionosphere conditions. A detailed evaluation using the swisstopo’s AGNES data is

shown in Paper D and the algorithms used are contained in Section 3.3.
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3.1 Clock constraints

In traditional kinematic PPP applications, the receiver coordinates are usually estimated

together with the receiver clock and troposphere parameters. The strong correlation be-

tween the height estimates of the receiver, the receiver clock estimates and the tropospheric

delays (see Figure 3.1 based on (Rothacher, 2015; Rothacher and Beutler, 1998)) leads to

considerably reduced stability and accuracy of these parameters. Assuming that ∆h, ∆tr

and ∆trop(0) represent the corrections for receiver height, the receiver clock parameter

and the troposphere zenith delay parameter with all other parameters assumed to be

known, the Observed-Minus-Computed (O-C) term l̃ = l − l0 of the observation equation

can be described as (Rothacher and Beutler, 1998):

l̃ = − cosz ·∆h
︸ ︷︷ ︸

∆h(z)

+
1

cosz
·∆trop(0)

︸ ︷︷ ︸

∆trop(z)

+cl ·∆tr, (3.1)

where z denotes the zenith angle of the signal, and ∆h(z) and ∆trop(z) represent the

height correction and tropospheric delay in the signal direction, respectively. The partial

derivatives of l̃ with respect to ∆h, ∆trop(0) and ∆tr are thus:

A =
(

−cosz 1
cosz cl

)

(3.2)

Assuming an uniform satellite distribution, the correlation between the receiver clock

corrections and the height estimates reaches values from 0.949 to 0.990 at the Equator

and values from 0.967 to 0.996 at the Pole depending on the elevation cut-off angle (Dach

et al., 2003).

A similar correlation as between the height component of the receiver and the receiver

Zenith

∆h(z)

∆h

z

Zenith

z

∆trop(0) ∆trop(z)

Zenith

z

∆tr

Figure 3.1: Correlation between the receiver heights and the receiver clock corrections.
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clock estimates also exists between the radial component of a satellite orbit determined

kinematically and the satellite clock estimates.

One method to decorrelate the receiver clock and the height estimate is to make use of

appropriate clock models (see Section 2.2). Since the behavior of high-performance atomic

clocks like H-Masers is usually very stable (standard deviation in tens of picosecond level

w.r.t. a low-degree polynomial), these high-performance ground clocks can be described

with a simple deterministic model and a stochastic model (see Section 2.2).

3.1.1 Clock modeling

To benefit from the high-performance of H-Masers at a station, a model for the clock cor-

rection ∆tr with a linear polynomial and relative constraints between the clock parameters

of subsequent epochs is setup:

∆tr = a0 + a1 · (ti − t0) + ri (3.3)

with

ri − ri+1 = 0, Pi,i+1 =
σ2
0

σ2
r

, (3.4)

where a0 and a1 represent the clock offset and drift. ti and ri stand for the time and

stochastic clock parameter at epoch i. Pi,i+1 denotes the weight for the relative clock

constraint between epoch i and i+1 with the a priori Root Mean Square (RMS, here sigma)

of the measurement σ0 and the relative sigma σr for the constraint between subsequent

clock parameters.

In order to avoid the singularities between the clock offset a0, the clock drift a1 and

the stochastic clock parameter ri, a weak absolute constraint on the stochastic clock

parameters ri is needed every epoch or every several epochs:

ri = 0, Pi =
σ2
0

σ2
abs

, (3.5)

where σabs and Pi represent the absolute sigma and the weight, respectively, of the absolute

constraint.

The relative sigma σr is an indicator for the weight of the relative clock constraint and

should correspond to the stability and ADEV of the clock used. The effect of using different

weights for the relative clock constraints can easily be seen by applying different relative

sigmas. Figure 3.2 shows the estimated receiver clock corrections ∆tr of station ALGO

on October 1, 2013, using different relative constraints. For the analysis, dual-frequency

phase observations and down-weighted code observations for 24 h have been used to form

the IF linear combination for kinematic PPP solutions. CODE orbits and satellite clocks

were used as input information and were assumed known. The dry part of the Vienna

Mapping functions (VMF1) (Boehm et al., 2006) was used as a priori troposphere model.

The receiver clock parameter and the kinematic coordinates were estimated for each epoch.
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The troposphere ZPD parameters and the troposphere horizontal gradients were estimated

with a 2-h and 24-h interval, respectively.

In Figure 3.2, the blue line represents the estimated clock corrections without any

constraint, while the red, green, black and magenta lines represent the clock corrections

with stronger and stronger relative constraints. Using a relative sigma of σr = 0.1 mm,

the clock corrections are almost constrained to the deterministic model, i.e., a straight

line.

Since the receiver clock connected to the station ALGO on October 1, 2013, is a H-

Maser with a standard deviation of σSTD = 69.7 ps and an empirical relative sigma

(see Equation 2.7) σemp = 10.9 ps as derived from the CODE RINEX clock file after

removing a linear polynomial, the relative constraint with appropriate weight can stabilize

the estimated kinematic height estimates. Figure 3.3a shows the standard deviation of

the kinematic height estimates STDU with respect to different relative sigmas σr for the

H-Masers at station ALGO and WSRT on October 1, 2013. We see that the standard

deviation STDU decreases with decreasing relative sigma σr, i.e. with increasing weight of

the relative clock constraint. However, constraining the clocks too strongly, e.g., stronger

than σr = 1.9 mm for the H-Maser at ALGO, might also degrade the kinematic heights.

The H-Maser at WSRT has been used as the reference clock (clock corrections fixed to

a perfect straight line) on October 1, 2013, when estimating all the satellite clocks. As

a result, the degradation does not happen for WSRT even when applying a very strong

relative constraint (σr = 0.1 mm). It should be noted that the errors of the selected

reference clock w.r.t. a linear polynomial are absorbed by the satellite clock estimates

and, as a result, transfered to the other receiver clock estimates.

For receiver clocks with lower quality, e.g., the rubidium clocks at station CHUR and
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Figure 3.2: Estimated receiver clocks of station ALGO on October 1, 2013, with different relative

constraints between subsequent receiver clock corrections.
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Figure 3.3: Standard deviation of the kinematic height estimates STDU applying different rela-

tive clock constraints for (a) the H-Masers at station WSRT and ALGO and (b) the

rubidium clocks at station CHUR and THU3, on October 1, 2013.

THU3 on October 1, 2013 with a σSTD of 13.2 ns and 7.7 ns and a σemp of 0.58 ns

and 4.98 ns after removing a linear polynomial, respectively, constraining the clocks with

the same weights (σr from 0.1 mm to 20 mm) may easily lead to degradations (see Fig-

ure 3.3b). This shows again that the appropriate weight of the relative constraints and

the improvement of the kinematic heights are heavily depending on the clock quality. The

appropriate σr can, e.g., be derived from the MDEV, σemp or σSTD after removing a

low-degree polynomial of the phase clock data.

3.1.2 Pre-elimination and back-substitution of epoch parameters with

constraints between subsequent epochs

Estimating the epoch-wise receiver clock corrections and kinematic coordinates at the

same time usually generates a large number of parameters, especially for observations with

high sampling rates. In this section, a pre-elimination and back-substitution algorithm

for the epoch-wise estimation of clock parameters on Normal Equation (NEQ) level is

introduced for the kinematic PPP solutions using the IF linear combination and relative

clock constraints.

Pre-elimination

Assuming that the NEQ matrix of all the non-epoch parameters, including the troposphere

parameters, the float ambiguities and the coefficients of the deterministic clock model (here

offset and drift), is represented by the f × f matrix Nf , and the NEQ parts of the epoch

parameters are represented by Nii (i = 1, · · · , n with n defined as the number of epochs)

for the diagonal elements and Ni(i+1) and N(i+1)i (i = 1, · · · , n − 1) for the subdiagonal
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elements, the whole NEQ matrix N can be described by Equation 3.6 with the NEQ

matrices between the non-epoch parameters and the epoch parameters denoted by Nfi

and Nif (i = 1, · · · , n):

N =











Nf Nf1 Nf2 · · · Nfn

N1f N11 N12 · · · 0

N2f N21 N22 · · · 0

...
...

...
. . .

...

Nnf 0 0 · · · Nnn











, (3.6)

where Nii is a 4×4 matrix containing the NEQ matrices of the receiver clock parameter

and the kinematic coordinates in all the three directions.

The pre-elimination for the epoch parameters of the first epoch (see red elements in

Equation 3.6) is performed at the moment, when the parts of the relative clock constraint

N rel
1,2 and the weak absolute constraints Nabs

1,2 are considered for the first two epochs:

(

N⋆
11 N⋆

12

N⋆
21 N⋆

22

)

=

(

N11 N12

N21 N22

)

+N rel
1,2 +Nabs

1,2 , (3.7)

with

N rel
1,2 =

(

0 0 0 1 0 0 0 −1
)T

· σ
2
0

σ2
r

·
(

0 0 0 1 0 0 0 −1
)

(3.8)

Nabs
1,2 =

(

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

)T

·





σ2
0

σ2
abs

0

0
σ2
0

σ2
abs



 · (3.9)

(

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

)

,

assuming that the absolute constraints are applied at each epoch. The three zero elements

before 1 and -1 occupy the positions for the 3 kinematic coordinates at each epoch.

As a result, we obtain

N rel
1,2 ([4 8], [4 8]) +Nabs

1,2 ([4 8], [4 8]) =





σ2
0

σ2
r
+

σ2
0

σ2
abs

−σ2
0

σ2
r

−σ2
0

σ2
r

σ2
0

σ2
r
+

σ2
0

σ2
abs



 , (3.10)

where all other elements of N rel
1,2 +Nabs

1,2 are zero.

The pre-elimination of the first epoch is performed at the one hand for the NEQ matrix,

and on the other hand for B = ATP l̃, where A, P and l̃ represent the design matrix, the

weight matrix and the O-C term in the least-squares adjustment:

B =
(

Bf B1 B2 · · · Bn

)T
, (3.11)

where Bf and Bi (i = 1, · · · , n) represent the parts for the non-epoch parameters and for

the epoch parameters at epoch i (i = 1, · · · , n).
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The pre-elimination of the first epoch (red elements in Equation 3.6) has an impact only

on the non-epoch parameters and the second epoch (see the blue elements in Equations 3.6

and 3.11):

(

Npre,1
f Npre

f2

Npre
2f Npre

22

)

=

(

Nf Nf2

N2f N⋆
22

)

−
(

Nf1

N⋆
21

)

· (N⋆
11)

−1 ·
(

N1f N⋆
12

)

, (3.12)

(

Bpre,1
f

Bpre
2

)

=

(

Bf

B2

)

−
(

Nf1

N⋆
21

)

· (N⋆
11)

−1 ·B1. (3.13)

The NEQ matrix and the B matrix after pre-elimination of the first epoch are given by:

Npre,1 =











Npre,1
f Npre

f2 Nf3 · · · Nfn

Npre
2f Npre

22 N23 · · · 0

N3f N32 N33 · · · 0

...
...

...
. . .

...

Nnf 0 0 · · · Nnn











, (3.14)

Bpre,1 =
(

Bpre,1
f Bpre

2 B3 · · · Bn

)T
. (3.15)

In order to perform the pre-elimination of the second epoch, the relative constraint

between the second and third epoch, as well as the absolute constraint of the third epoch

have to be considered:
(

N⋆pre
22 N⋆

23

N⋆
32 N⋆

33

)

=

(

Npre
22 N23

N32 N33

)

+N rel
2,3 +Nabs

3 , (3.16)

with

N rel
2,3 ([4 8], [4 8]) +Nabs

3 ([4 8], [4 8]) =





σ2
0

σ2
r

−σ2
0

σ2
r

−σ2
0

σ2
r

σ2
0

σ2
r
+

σ2
0

σ2
abs



 , (3.17)

The pre-elimination of the second epoch (red elements in Equation 3.14) of the NEQ

matrix and the B matrix is similar to that of the first epoch:

(

Npre,2
f Npre

f3

Npre
3f Npre

33

)

=

(

Npre,1
f Nf3

N3f N⋆
33

)

−
(

Npre
f2

N⋆
32

)

· (N⋆pre
22 )

−1 ·
(

Npre
2f N⋆

23

)

, (3.18)

(

Bpre,2
f

Bpre
3

)

=

(

Bpre,1
f

B3

)

−
(

Npre
f2

N⋆
32

)

· (N⋆pre
22 )

−1 ·Bpre
2 . (3.19)

The pre-elimination is performed in this way sequentially until the (n − 1)-th epoch

is reached, when only the last epoch and the non-epoch parameters are left in the NEQ

matrix and the B matrix:

Npre,n−1 =

(

Npre,n−1
f Npre

fn

Npre
nf Npre

nn

)

, Bpre,n−1 =
(

Bpre,n−1
f Bpre

n

)T
. (3.20)

38



3.1. Clock constraints

The pre-elimination process finishes with the elimination of the last epoch:

Npre,n
f = Npre,n−1

f −Npre
fn · (Npre

nn )−1 ·Npre
nf , (3.21)

Bpre,n
f = Bpre,n−1

f −Npre
fn · (Npre

nn )−1 ·Bpre
n , (3.22)

and the final non-epoch parameters ∆x̂f can be calculated with

∆x̂f = (Npre,n
f )

−1 ·Bpre,n
f . (3.23)

Before the pre-elimination of each epoch i (i = 1, · · · , n−1), the NEQ matrices of epoch

i and i+ 1, as well as the NEQ matrix between the non-epoch parameters and the epoch

parameters of these two epochs, described with
(

Npre
if N⋆pre

ii N⋆
i(i+1)

N(i+1)f N⋆
(i+1)i N⋆

(i+1)(i+1)

)

, (3.24)

are saved for the back-substitution (no upper index pre for the first epoch). For the last

epoch, only the NEQ matrices related to the last epoch
(

Npre
nf Npre

nn

)

(3.25)

are saved for the back-substitution.

Back-substitution

Before the back-substitution step, the term b (see Equation 3.27) goes through a simi-

lar pre-elimination step as B, as a preparation for the back-substitution. For the pre-

elimination of the first epoch of b (see Equation 3.13), we have

bpre2 = b2 −N⋆
21 · (N⋆

11)
−1 · b1, (3.26)

with

bi = Bi −Nif ·∆x̂f , i = 1, · · · , n. (3.27)

For the pre-elimination of the second epoch, bpre3 is calculated with (see Equation 3.19)

bpre3 = b3 −N⋆
32 · (N⋆pre

22 )
−1 · bpre2 . (3.28)

The algorithm goes on like this until the (n − 1)-th epoch is reached, when the last

epoch of b remains as:

bpren = bn −N⋆
n(n−1) · (N

⋆pre
(n−1)(n−1))

−1 · bpren−1. (3.29)

Before the pre-elimination of the term b for each epoch i (i = 1, · · · , n−1), the matrices
(

bprei

bi+1

)

(3.30)
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are saved for the back-substitution (no upper index pre for the first epoch). For the last

epoch, the matrix bpren is saved for the back-substitution.

As opposed to the pre-elimination, the back-substitution begins from the last epoch

and ends with the first epoch. For the last epoch, the algorithm requires the NEQ matrix

and the term b of the last epoch just before their pre-elimination (see Equations 3.20 and

3.29):

∆x̂n = (Npre
nn )−1 · bpren , (3.31)

where ∆x̂i represents the estimated epoch parameters at epoch i.

Before the pre-elimination of the second but last epoch, the NEQ matrix and the term

b can be described as:

Npre,n−2 =






Npre,n−2
f Npre

f(n−1) Nfn

Npre
(n−1)f N⋆pre

(n−1)(n−1) N⋆
(n−1)n

Nnf N⋆
n(n−1) N⋆

nn




 , bpre,n−2 =

(

bpren−1

bn

)

. (3.32)

The terms N⋆pre
(n−1)(n−1) and bpren−1, which we need for the back-substitution of the epoch

n− 1, contain, however, only the information from the first to the second but last epoch.

In order to estimate the epoch parameters of epoch n − 1, the information of epoch n

should thus be gathered:

(

N back,n
f N back,n

f(n−1)

N back,n
(n−1)f N back,n

(n−1)(n−1)

)

=

(

Npre,n−2
f Npre

f(n−1)

Npre
(n−1)f N⋆pre

(n−1)(n−1)

)

(3.33)

−
(

N save,n
f N save,n

f(n−1)

N save,n
(n−1)f N save,n

(n−1)(n−1)

)

︸ ︷︷ ︸

Nsave,n

bback,nn−1 = bpren−1 − bsave,nn−1 , (3.34)

with (see Equation 3.24)

N save,n =

(

Nfn

N⋆
(n−1)n

)

· (N⋆
nn)

−1 ·
(

Nnf N⋆
n(n−1)

)

, (3.35)

bsave,nn−1 = N⋆
(n−1)n · (N⋆

nn)
−1 · bn. (3.36)

The epoch parameters of the second but last epoch are then calculated with:

∆x̂n−1 = (N back,n
(n−1)(n−1))

−1 · bback,nn−1 . (3.37)

For epoch n− 2, the NEQ matrix and the term b in the state as they were before pre-

elimination of the (n− 2)-th epoch are firstly corrected for contribution of the last epoch,

and the relative constraint between the (n − 1)-th and the n-th epoch at the position of
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the (n− 1, n− 1)-th element has to be added to the NEQ matrix, since it is not included

in N save,n
n−1,n−1:

Nmod,n−3 =






Nmod,n−3
f Nmod

f(n−2) Nmod
f(n−1)

Nmod
(n−2)f Nmod

(n−2)(n−2) Nmod
(n−2)(n−1)

Nmod
(n−1)f Nmod

(n−1)(n−2) Nmod
(n−1)(n−1)




 (3.38)

= Npre,n−3 −






N save,n
f 0 N save,n

f(n−1)

0 0 0

N save,n
(n−1)f 0 N save,n

(n−1)(n−1)




+






0 0 0

0 0 0

0 0 N rel
n−1






bmod,n−3 =

(

bmod
n−2

bmod
n−1

)

=

(

bpren−2

bn−1

)

−
(

0

bsave,nn−1

)

, (3.39)

where

N rel
n−1(4, 4) =

σ2
0

σ2
r

. (3.40)

In this way, Nmod,n−3 and bmod,n−3 replace Npre,n−3 and bpre,n−3. The elimination of

the (n− 2)-th epoch is performed for Nmod,n−3 and bmod,n−3:
(

N back,n−1
f N back,n−1

f(n−2)

N back,n−1
(n−2)f N back,n−1

(n−2)(n−2)

)

=

(

Nmod,n−3
f Nmod

f(n−2)

Nmod
(n−2)f Nmod

(n−2)(n−2)

)

−N save,n−1 (3.41)

bback,n−1
n−2 = bmod

n−2 − bsave,n−1
n−2 , (3.42)

with

N save,n−1 =

(

Nmod
f(n−1)

Nmod
(n−2)(n−1)

)

·Nmod
(n−1)(n−1)

−1 ·
(

Nmod
(n−1)f Nmod

(n−1)(n−2)

)

, (3.43)

bsave,n−1
n−2 = Nmod

(n−2)(n−1) · (Nmod
(n−1)(n−1))

−1 · bmod
n−1. (3.44)

The back-substitution goes on sequentially like this from the last epoch to the first

epoch, while the NEQ matrix Npre,i−1 and the term bpre,i−1 before the pre-elimination of

epoch i are used. The information from the (i + 2)-th to the last epoch is sequentially

saved in the matrix N save,i+2 and the term bsave,i+2
i+1 as defined in Equations 3.43 and 3.44

and is then corrected with N rel
i+1 at the (i+1)-th epoch (see Equation 3.38). The modified

matrix Nmod,i−1 and bmod,i−1 are then ready for the elimination of the (i+ 1)-th epoch.

After that, the back-substitution of the epoch parameter at epoch i can be estimated

with

∆x̂i = (N back,i+1
ii )

−1 · bback,i+1
i . (3.45)

3.1.3 Pre-elimination and back-substitution of epoch parameters with

constraints between near-subsequent epochs

The relative constraints can also be applied to near-subsequent epochs (e.g., among three

epochs or even more). Figure 3.4 illustrates constraints between subsequent and near-

41



Chapter 3. Advanced modeling and algorithms

subsequent (here three) epochs:

Pre-elimination

Assuming that the relative clock constraints are considered within three epochs, the NEQ

matrix N can be described similarly to Equation 3.6:

N =














Nf Nf1 Nf2 Nf3 · · · Nfn

N1f N11 N12 N13 · · · 0

N2f N21 N22 N23 · · · 0

N3f N31 N32 N33 · · · 0

...
...

...
...

. . .
...

Nnf 0 0 0 · · · Nnn














. (3.46)

The relative sigma between the first and second epoch and between the second and

third epoch is denoted by σr1, and the relative sigma between the first and third epoch is

denoted by σr2. The absolute sigma σabs is assumed to be applied to each epoch. Then

we can manipulate the epoch parameters of the first three epochs as following:






N⋆
11 N⋆

12 N⋆
13

N⋆
21 N⋆

22 N⋆
23

N⋆
31 N⋆

32 N⋆
33




 =






N11 N12 N13

N21 N22 N23

N31 N32 N33




+N rel

1,2,3 +Nabs
1,2,3 (3.47)

with

N rel
1,2,3([4 8 12]) +Nabs

1,2,3([4 8 12]) =








σ2
0

σ2
r1

+
σ2
0

σ2
r2

+
σ2
0

σ2
abs

− σ2
0

σ2
r1

− σ2
0

σ2
r2

− σ2
0

σ2
r1

2
σ2
0

σ2
r1

+
σ2
0

σ2
abs

− σ2
0

σ2
r1

− σ2
0

σ2
r2

− σ2
0

σ2
r1

σ2
0

σ2
r1

+
σ2
0

σ2
r2

+
σ2
0

σ2
abs








.

(3.48)

The O-C term B is represented by Equation 3.49:

B =
(

Bf B1 B2 B3 · · · Bn

)T
. (3.49)

...t
1

t
2

t
3

t
4

t
5

t
6

t
n−2

t
n−1

t
n

subsequent epochs

near−subsequent epochs

Figure 3.4: Constraints between subsequent and near-subsequent epochs.
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3.1. Clock constraints

The pre-elimination of the first epoch has an impact on the non-epoch parameters

and the epoch parameters of the second and the third epoch (see the blue elements in

Equations 3.46 and 3.49):






Npre,1
f Npre

f2 Npre
f3

Npre
2f Npre

22 Npre
23

Npre
3f Npre

32 Npre
33




 =






Nf Nf2 Nf3

N2f N⋆
22 N⋆

23

N3f N⋆
32 N⋆

33




 (3.50)

−






Nf1

N⋆
21

N⋆
31




 · (N⋆

11)
−1 ·

(

N1f N⋆
12 N⋆

13

)

,






Bpre,1
f

Bpre
2

Bpre
3




 =






Bf

B2

B3




−






Nf1

N⋆
21

N⋆
31




 · (N⋆

11)
−1 ·B1. (3.51)

As a result, the NEQ matrix and the B matrix after the pre-elimination of the first

epoch are given by:

Npre,1 =














Npre,1
f Npre

f2 Npre
f3 Nf4 · · · Nfn

Npre
2f Npre

22 Npre
23 N24 · · · 0

Npre
3f Npre

32 Npre
33 N34 · · · 0

N4f N42 N43 N44 · · · 0

...
...

...
...

. . .
...

Nnf 0 0 0 · · · Nnn














, (3.52)

Bpre,1 =
(

Bpre,1
f Bpre

2 Bpre
3 B4 · · · Bn

)T
. (3.53)

Since the relative constraint between the second and the third epoch, and the absolute

constraints on the second and third epoch have already been considered in Equation 3.48,

we only need to add the relative and absolute constraints related to the fourth epoch,

when pre-eliminating the second epoch:






N⋆pre
22 N⋆pre

23 N⋆
24

N⋆pre
32 N⋆pre

33 N⋆
34

N⋆
42 N⋆

43 N⋆
44




 =






Npre
22 Npre

23 N24

Npre
32 Npre

33 N34

N42 N43 N44




+N rel

(2,3),4 +Nabs
4 , (3.54)

with

N rel
(2,3),4([4 8 12]) +Nabs

4 ([4 8 12]) =








σ2
0

σ2
r2

0 − σ2
0

σ2
r2

0
σ2
0

σ2
r1

− σ2
0

σ2
r1

− σ2
0

σ2
r2

− σ2
0

σ2
r1

σ2
0

σ2
r1

+
σ2
0

σ2
r2

+
σ2
0

σ2
abs








. (3.55)

The pre-elimination is then performed for the second until the (n−2)-th epoch similarly

to the first epoch. After the pre-elimination of the (n − 2)-th epoch, only the last two
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epochs are remaining:

Npre,n−2 =






Npre,n−2
f Npre

f(n−1) Npre
fn

Npre
(n−1)f Npre

(n−1)(n−1) Npre
(n−1)n

Npre
nf Npre

n(n−1) Npre
nn




 , (3.56)

Bpre,n−2 =
(

Bpre,n−2
f Bpre

n−1 Bpre
n

)T
. (3.57)

Since the relative constraint between the last two epochs and the absolute constraint

of the last two epochs have already been considered before the pre-elimination of the

(n− 2)-th epoch, the pre-elimination of the last two epochs can be performed together:

Npre,n−1 = Npre,n−2
f −

(

Npre
f(n−1) Npre

fn

)

·
(

Npre
(n−1)(n−1) Npre

(n−1)n

Npre
n(n−1) Npre

nn

)
−1

(3.58)

·
(

Npre
(n−1)f

Npre
nf ,

)

,

Bpre,n−1 = Bpre,n−2
f −

(

Npre
f(n−1) Npre

fn

)

·
(

Npre
(n−1)(n−1) Npre

(n−1)n

Npre
n(n−1) Npre

nn

)
−1

(3.59)

·
(

Bpre
n−1

Bpre
n

)

.

The non-epoch parameters are estimated with the formula

∆x̂f = (Npre,n−1)
−1 ·Bpre,n−1. (3.60)

Before the pre-elimination of each epoch i (i = 1, · · · , n−2), the NEQ matrices of epoch

i, i+ 1 and i+ 2, as well as the NEQ matrix between the non-epoch parameters and the

epoch parameters of these three epochs, described with






Npre
if N⋆pre

ii N⋆pre
i(i+1) N⋆

i(i+2)

Npre
(i+1)f N⋆pre

(i+1)i N⋆pre
(i+1)(i+1) N⋆

(i+1)(i+2)

N(i+2)f N⋆
(i+2)i N⋆

(i+2)(i+1) N⋆
(i+2)(i+2)




 , (3.61)

are saved for the back-substitution (no upper index pre for the first epoch). For the seond

but last epoch, only the NEQ matrices related to the last two epochs

(

Npre
(n−1)f Npre

(n−1)(n−1) Npre
(n−1)n

Npre
nf Npre

n(n−1) Npre
nn

)

(3.62)

are saved for the back-substitution.
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Back-substitution

Similar to the procedure for the back-substitution in Section 3.1.2, firstly the term b (see

Equation 3.27) is pre-eliminated from the first to the (n−2)-th epoch. The last two epochs

of b remain as:
(

bpren−1

bpren

)

=

(

bpren−1

bn

)

−
(

N⋆pre
(n−1)(n−2)

N⋆
n(n−2)

)

· (N⋆pre
(n−2)(n−2))

−1 · bpren−2, (3.63)

where bpren−1 and N⋆pre
(n−1)(n−2) on the right-hand side of the equation are influenced by the

pre-elimination of the (n− 3)-th epoch. Before the pre-elimination of the term b for each

epoch i (i = 1, · · · , n− 2), the matrices





bprei

bprei+1

bi+2




 (3.64)

are saved for the back-substitution (no upper index pre for the first epoch). For the second

but last epoch, the matrices (

bpren−1

bpren

)

(3.65)

are saved for the back-substitution.

Different from the back-substitution for relative constraints between subsequent epochs,

the back-substitution of the last two epochs can be calculated here together (see Equa-

tions 3.56 and 3.63):

(

∆x̂n−1

∆x̂n

)

=

(

Npre
(n−1)(n−1) Npre

(n−1)n

Npre
n(n−1) Npre

nn

)
−1

·
(

bpren−1

bpren

)

. (3.66)

Before the pre-elimination of the (n−2)-th epoch, the NEQ matrix and the correspond-

ing term b can be described as:

Npre,n−3 =









Npre,n−3
f Npre

f(n−2) Npre
f(n−1) Nfn

Npre
(n−2)f N⋆pre

(n−2)(n−2) N⋆pre
(n−2)(n−1) N⋆

(n−2)n

Npre
(n−1)f N⋆pre

(n−1)(n−2) N⋆pre
(n−1)(n−1) N⋆

(n−1)n

Nnf N⋆
n(n−2) N⋆

n(n−1) N⋆
nn









, (3.67)

bpre,n−3 =
(

bpre,n−3
f bpren−2 bpren−1 bn

)T
. (3.68)

The back-substitution of the (n− 2)-th epoch also needs the information of the last two

epochs. This is realized by the elimination of these two epochs:
(

N
back,(n−1)n
f N

back,(n−1)n
f(n−2)

N
back,(n−1)n
(n−2)f N

back,(n−1)n
(n−2)(n−2)

)

=

(

Npre,n−3
f Npre

f(n−2)

Npre
(n−2)f N⋆pre

(n−2)(n−2)

)

−N save,(n−1)n, (3.69)

b
back,(n−1)n
n−2 = bpren−2 − b

save,(n−1)n
n−2 , (3.70)
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with (see Equation 3.61)

N save,(n−1)n =

(

Npre
f(n−1) Nfn

N⋆pre
(n−2)(n−1) N⋆

(n−2)n

)

·
(

N⋆pre
(n−1)(n−1) N⋆

(n−1)n

N⋆
n(n−1) N⋆

nn

)
−1

(3.71)

·
(

Npre
(n−1)f N⋆pre

(n−1)(n−2)

Nnf N⋆
n(n−2)

)

,

b
save,(n−1)n
n−2 =

(

N⋆pre
(n−2)(n−1) N⋆

(n−2)n

)

·
(

N⋆pre
(n−1)(n−1) N⋆

(n−1)n

N⋆
n(n−1) N⋆

nn

)
−1

(3.72)

·
(

bpren−1

bn

)

.

The epoch parameters of epoch n− 2 are then calculated with:

∆x̂n−2 = (N
back,(n−1)n
(n−2)(n−2) )

−1
· bback,(n−1)n

n−2 . (3.73)

For the (n − 3)-th epoch, not only the information stored in N save,n, but also the

relative constraints related to the n-th epoch, which are not included in Npre,n−4, have to

be corrected:

Nmod,n−4 =









Nmod,n−4
f Nmod

f(n−3) Nmod
f(n−2) Nmod

f(n−1)

Nmod
(n−3)f Nmod

(n−3)(n−3) Nmod
(n−3)(n−2) Nmod

(n−3)(n−1)

Nmod
(n−2)f Nmod

(n−2)(n−3) Nmod
(n−2)(n−2) Nmod

(n−2)(n−1)

Nmod
(n−1)f Nmod

(n−1)(n−3) Nmod
(n−1)(n−2) Nmod

(n−1)(n−1)









(3.74)

= Npre,n−4 −









N save,n
f 0 N save,n

f(n−2) N save,n
f(n−1)

0 0 0 0

N save,n
(n−2)f 0 N save,n

(n−2)(n−2) N save,n
(n−2)(n−1)

N save,n
(n−1)f 0 N save,n

(n−1)(n−2) N save,n
(n−1)(n−1)









︸ ︷︷ ︸

Nsave,n

+








0 0 0 0

0 0 0 0

0 0 N rel,n
n−2 0

0 0 0 N rel,n
n−1








,

bmod,n−4 =






bmod
n−3

bmod
n−2

bmod
n−1




 =






bpren−3

bpren−2

bn−1




−






0

bsave,nn−2

bsave,nn−1






︸ ︷︷ ︸

bsave,n

, (3.75)
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with

N save,n =






Nfn

N⋆
(n−2)n

N⋆
(n−1)n




 · (N⋆

nn)
−1 ·

(

Nnf N⋆
n(n−2) N⋆

n(n−1)

)

, (3.76)

bsave,n =






Nfn

N⋆
(n−2)n

N⋆
(n−1)n




 · (N⋆

nn)
−1 · bn. (3.77)

N rel,n
n−2 ([4 4]) and N rel,n

n−1 ([4 4]) represent the influences of the constraints between the

(n− 2)-th and the last epoch as well as between the (n− 1)-th epoch and the last epoch

on the NEQ matrix, and are equal to
σ2
0

σ2
r2

and
σ2
0

σ2
r1

, respectively.

The pre-elimination of the (n− 2)-th and the (n− 1)-th epoch is performed then based

on Nmod,n−4 and bmod,n−4 (see Equations 3.74 and 3.75):

(

N
back,(n−2)(n−1)
f N

back,(n−2)(n−1)
f(n−3)

N
back,(n−2)(n−1)
(n−3)f N

back,(n−2)(n−1)
(n−3)(n−3)

)

=

(

Nmod,n−4
f Nmod

f(n−3)

Nmod
(n−3)f Nmod

(n−3)(n−3)

)

(3.78)

−N save,(n−2)(n−1),

b
back,(n−2)(n−1)
n−3 = bmod,n−3

n−3 − bsave,(n−2)(n−1), (3.79)

with

N save,(n−2)(n−1) =

(

Nmod
f(n−2) Nmod

f(n−1)

Nmod
(n−3)(n−2) Nmod

(n−3)(n−1)

)

·
(

Nmod
(n−2)(n−2) Nmod

(n−2)(n−1)

Nmod
(n−1)(n−2) Nmod

(n−1)(n−1)

)
−1

(3.80)

·
(

Nmod
(n−2)f Nmod

(n−2)(n−3)

Nmod
(n−1)f Nmod

(n−1)(n−3)

)

,

bsave,(n−2)(n−1) =
(

Nmod
(n−3)(n−2) Nmod

(n−3)(n−1)

)

·
(

Nmod
(n−2)(n−2) Nmod

(n−2)(n−1)

Nmod
(n−1)(n−2) Nmod

(n−1)(n−1)

)
−1

(3.81)

·
(

bmod
n−2

bmod
n−1

)

.

The epoch parameters of the (n− 3)-th epoch is calculated similarly to Equation 3.73:

∆x̂n−3 = (N
back,(n−2)(n−1)
(n−3)(n−3) )

−1
· bback,(n−2)(n−1)

n−3 . (3.82)

The information of the (n − 1)-th epoch (in Nmod,n−4 and bmod,n−4) is then saved

in N save,n−1 and bsave,n−1 and used for correcting the Nmod,n−5 and bmod,n−5 by back-

substitution of the (n − 4)-th epoch. However, it should be noticed that the influence of

the last epoch is only partially contained in N save,n−1 and bsave,n−1. Its influence on the

(n − 2)-th epoch should again be corrected (see N save,n
(n−2)(n−2) in Equation 3.74 and bsave,nn−2
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in Equation 3.75):

Nmod,n−5 = Npre,n−5 −N save,n−1 −








0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 N save,n
(n−2)(n−2)








︸ ︷︷ ︸

Nsave,n
n−2

(3.83)

+








0 0 0 0

0 0 0 0

0 0 N rel,n−1
n−3 0

0 0 0 N rel,n−1
n−2 +N rel,n

n−2








,

bmod,n−5 =






bpren−4

bpren−3

bn−2




− bsave,n−1 −






0

0

bsave,nn−2




 , (3.84)

whereN rel,n−1
n−3 ([4 4]) andN rel,n−1

n−2 ([4 4]) represent the influences of the constraints between

the (n − 3)-th and the second but last epoch as well as between the (n − 2)-th and the

second but last epoch on the NEQ matrix, and are equal to
σ2
0

σ2
r2

and
σ2
0

σ2
r1

, respectively.

N rel,n
n−2 ([4 4]) represents the influence of the constraint between the (n − 2)-th epoch and

the last epoch on the NEQ matrix, and is equal to
σ2
0

σ2
r2

. It should also be noticed that in

Equation 3.83 the influence of the last epoch on the (n− 2)-th epoch is neglected on the

variance and covariance elements of the non-epoch parameters (see the zeros in N save,n
n−2 in

Equation 3.83 at the position of N save,n
(n−2)f , N

save,n
f(n−2) and N save,n

f in N save,n in Equation 3.74).

The reason is that for the back-substitution of epoch i only the element N
back,(i+1)(i+2)
ii is

used (see Equations 3.73 and 3.82). The elements N save,n
(n−2)f , N

save,n
f(n−2) and N save,n

f are thus

not required.

For the estimation of the epoch parameters of epoch i, the (i+ 1)-th and the (i+ 2)-th

epoch of matrix Nmod,i−1 and bmod,i−1 have been pre-eliminated considering not only the

information of the (i+ 3)-th, but also the information of the (i+ 4)-th epoch. The epoch

parameters are then calculated with the matrix N back,(i+1)(i+2) and bback,(i+1)(i+2) after

the pre-elimination:

∆x̂i = (N
back,(i+1)(i+2)
ii )

−1
· bback,(i+1)(i+2)

i . (3.85)

The algorithm can also further be extended to relative constraints among m relevant

epochs. For the estimation of the epoch parameters at epoch i, the (i + 1)-th to the

(i+m− 1)-th epoch of matrix Nmod,i−1 and bmod,i−1 are eliminated considering not only

the information of the (i + m)-th epoch, which is saved in N save,i+m and bsave,i+m, but

also the information from the (i + m + 1)-th to the (i + 2m − 2)-th epoch, which are

still relevant to the Nmod,i−1 and bmod,i−1 and are cumulatively saved in N save,i+m+1 and

bsave,i+m+1. After back-substitution of the i-th epoch, N save,i+m+1 and bsave,i+m+1 get rid
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3.1. Clock constraints

of their last epoch that will not be used for the back-substitution anymore, namely the

epoch i+2m− 2, and newly include the information of the (i+m)-th epoch. In this way,

they turn out to be N save,i+m and bsave,i+m, which are useful for the back-substitution

of the (i − 1)-th epoch and always contain information of m − 2 epochs in total (for

i ≤ n−2m+2). The epoch parameters are calculated with the matrix N back,(i+1)···(i+m−1)

and bback,(i+1)···(i+m−1) after the elimination of the (i+ 1)-th to the (i+m− 1)-th epoch:

∆x̂i = (N
back,(i+1)···(i+m−1)
ii )

−1
· bback,(i+1)···(i+m−1)

i . (3.86)

Figure 3.5 shows two examples of the standard deviations of the estimated kinematic

heights of station ALGO and WSRT using different relative sigmas σr1 and σr2 between

subsequent and near-subsequent epochs on October 1, 2013. These two stations were

connected to H-Masers.

Compared with the relative constraint between subsequent epochs of the same clocks

(see Figure 3.3), the capability of stabilizing the kinematic heights using constraints among

three epochs has increased a little bit (see Table 3.1). The relative sigmas start from

0.1 mm and end at 20 mm. It should be noted that σr for relative constaints between

subsequent epochs has a resolution of 0.1 mm, and the resolution of σr1 and σr2 for relative

constraints among three epochs is 0.1 mm before 3 mm, 1 mm between 3 mm and 10 mm,

and 2 mm between 10 mm and 20 mm. The relative sigmas σr1, σr2, · · · could in principle

be taken from the ADEV or MDEV of the phase clock biases.
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Figure 3.5: Standard deviations of the kinematic height estimates STDU by applying different

relative clock constraints between subsequent and near-subsequent epochs for the H-

Masers at (a) station ALGO and (b) station WSRT on October 1, 2013.
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Table 3.1: Capability of stabilizing the kinematic heights by applying clock constraints between

subsequent epochs and among three epochs.

Station STDU2 [cm] STDU3 [cm] σr [mm] σr1 [mm] σr2 [mm]

ALGO 1.6513 1.6506 1.9 3.0 5.0

WSRT 0.8301 0.8191 0.1 0.1 0.1

3.2 Triple-frequency ambiguity resolution

The availability of signals on more than two frequencies has given us more possibilities

and flexibility to form different types of linear combinations. This section is a summary

based on Paper B and focuses on the GF and IF linear combination using both, the code

and phase measurements on three frequencies.

3.2.1 The best two linear combinations

The linear combination Lx of triple-frequency code and phase measurements Li and Pi

(i = 1, · · · , 3) can generally be described by the following equation (see Section 2.3.2):

Lx = γ1L1 + γ2L2 + γ3L3 + γ4P1 + γ5P2 + γ6P3 (3.87)

=
6∑

i=1

γi ·∆ρ+ (γ4 +
f2
1

f2
2

γ5 +
f2
1

f2
3

γ6 − γ1 −
f2
1

f2
2

γ2 −
f2
1

f2
3

γ3) · I1

+
3∑

i=1

γiλini

︸ ︷︷ ︸

λxnx

+ǫ,

where γi (i = 1, · · · , 6) represent the coefficients in front of the phase and code measure-

ments Li and Pi. ∆ρ and I1 stand for the geometry-related terms and the first-order

ionospheric delay on L1, respectively. ni and λi are the phase ambiguities and the wave-

lengths of the phase measurements on frequency fi. ǫ represents the noise of the linear

combination, i.e., the so-called combined noise. nx and λx stand for the phase ambiguity

and the wavelength of the linear combination Lx, respectively.

The coefficients γi (i = 1, · · · , 3) of the phase measurements have to fulfill the following

relationship in order to guarantee the integer nature of the combined ambiguity nx (Paper
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3.2. Triple-frequency ambiguity resolution

B; Henkel and Günther, 2010):

γ1 =
axf1
fx

, (3.88)

γ2 =
bxf2
fx

, (3.89)

γ3 =
cxf3
fx

, (3.90)

where ax, bx and cx are integers, and fx represents the combined frequency. fx is defined

here as fx = cl
λx
.

For given ax, bx and cx, the coefficients γ4 and γ5 can be uniquely derived from γ6 and

fx for the IF and GF linear combination, since for three unknowns (γi with i = 4, 5, 6)

two conditions (IF and GF) leave still one free parameter (γ6) in the solution:

γ4 =
m1

fx
+m2γ6, (3.91)

γ5 =
m3

fx
+m4γ6, (3.92)

where m1 and m3 are functions of ax, bx, cx and fi (i = 1, · · · , 3), and m2 and m4 are

purely functions of fi (i = 1, · · · , 3) (see Paper B).

Since the code noise is dominant in the combined measurement Lx, we set the goal to

minimize the combined code noise in cycles. Assuming that the code noise is equal to σP

in meters for all the three frequencies, the combined code noise can be formulated as

σC
Code

2
=

σ2
P

λ2
x

(
6∑

i=4

C2
i γ

2
i ) (3.93)

=
σ2
P

c2l
(f2

x · F1(m2,m4, C4, C5, C6)(γ6 + F2(m1,m2,m3,m4, C4, C5, C6, fx))
2

+F3(m1,m2,m3,m4, C4, C5, C6)),

where Ci (i = 4, · · · , 6) are scaling factors of the code noise on frequency fi (i = 1, · · · , 3),
and Fi(xj) represents functions of the listed parameters xj (more details in Paper B).

It is not difficult to see that the minimal code noise in cycles is equal to σP

cl

√
F3, when

γ6 equals −F2. Assuming that the phase noise is equal to σC
L in cycles for all the three

frequencies, the combined phase noise σC
Phase in cycles can be described by (see Paper B):

σC
Phase = σC

L ·
√

a2x + b2x + c2x. (3.94)

As a result, we can see that, even if the six coefficients γi (i = 1, · · · , 6) are all dependent
on fx, the combined phase and the minimized combined code noise in cycles are not

depending on fx, or λx. The relative relationship of the six coefficients and the combined

noise in cycles are fixed for given integer coefficients ax, bx and cx and given scaling factors

Ci (i = 4, · · · , 6) for the code noise under the given assumptions above.
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Using the three frequencies which are currently available for BDS (B1=1561.098 MHz,

B3=1268.52 MHz and B2=1207.14 MHz), the coefficients and the minimized noise on the

zero-difference level for the best two linear combinations Lx and Ly are summarized in

Table 3.2 under the assumption that the code noise is equal to 0.5 m and the phase noise is

equal to 0.01 cycles on all the three frequencies. The corresponding combined wavelengths

λx and λy are assumed to be 1 m for the calculation of the coefficients γi (i = 1, · · · , 6).
Figure 3.6 (Wang and Rothacher, 2015) shows the linear combinations Lx and Ly in

cycles eliminating their mean values using the data of the station pair CUT2 and CUTA

in Australia and the satellite pair C01 and C03 of BDS on March 21, 2014 (Raziq et al.,

2012). The satellites C01, C02, C03 and C04 are geostationary satellites (see Section 2.1)

and can thus be observed during the entire day. The two stations were using the same

receiver type (TRIMBLE NETR9) and antenna type (TRM59800.00 SCIS). The tracking

channels for both satellites on all three frequencies are Channel I. It should be noted that

the phase and code measurements have gone through the pre-processing of the Bernese

GNSS Software, which means that the code measurements were smoothed and show a

reduced noise level.

We see that Ly and Lx follow similar patterns with different amplification factors, which

could indicate that systematic effects are differently enlarged for these two linear combi-

nations. The noise level of Ly is slightly larger than that of Lx. With the smoothed code

measurements, the standard deviations of both measurements are smaller than 0.04 cycles.

Instead of just estimating the fractional parts of the combined ambiguities nx and ny, we

are also able to compare them with the “true” ambiguities based on a modified version of

the Bernese GNSS Software which is able to process the triple-frequency data of BDS. The

estimated combined ambiguities nx and ny of the best two linear combinations Lx and Ly

are compared with their “true” values obtained with the traditional algorithms of double-

difference ambiguity resolution on L1 and L2, as well as with the Extra-Widelane (EWL)

ambiguity n2 − n3 (Feng et al., 2007). The modification of the Bernese GNSS Software,

the pre-processing of the measurements, and the resolution of the “true” ambiguities have

been performed by Dr. Baoqi Sun (see Acknowledgement).

Using the data of station pair CUT2-CUTA and CUT2-CUTB and satellites C01, C02,

C03 and C04 on March 21 and March 22, 2014, with a sampling interval of 30 s, the

Table 3.2: Integer coefficients ax, bx, cx of the ambiguities, coefficients of the measurements γi and

the minimized combined noise σC of the best two linear combinations of BDS.

a, b, c γi (i = 1, · · · , 6) σC [cycles]

0, -1, 1 0.0000 -4.2313 4.0266 0.0041 0.0875 0.1131 0.0729

1, -3, 2 5.2073 -12.6940 8.0532 -0.5748 -0.0729 0.0812 0.2949
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Figure 3.6: Best two linear combinations Lx and Ly (after eliminating the mean values) for the

station pair CUT2-CUTA and the satellite pair C01-C03 on March 21, 2014 (Wang

and Rothacher, 2015).

combined ambiguities nx and ny after rounding the float estimates are all equal to the

“true” values. The differences between the float solutions and the integer “true” values

are shown in Figure 3.7.

We see that all the differences for nx are smaller than 0.05 cycles, about 75% of the

differences for ny are smaller than 0.12 cycles, whereas all the ny, which show relatively
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Figure 3.7: Differences between the estimated float ambiguities nx and ny and the “true” values

obtained from the traditional and reliable dual-frequency double-difference ambiguity

resolution on L1 and L2 as well as the resolved EWL ambiguities n2 − n3, using the

station pairs CUT2-CUTA and CUT2-CUTB and the satellites C01, C02, C03 and C04

on March 21 and March 22, 2014.
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big deviations to the true values (see green dots in Figure 3.7), are related to the station

CUTA and satellite C02. Possible reason might be systematic effects like multipath for

this station and satellite pair.

3.2.2 The third linear combination

In order to resolve all three ambiguities n1, n2, n3 in the triple-frequency case, three

linearly independent linear combinations are needed. Since it’s difficult to find a third

linear combination, which is linearly independent from the best two linear combinations

and has, at the same time, a relatively low noise level, we have considered to use only the

triple-frequency phase observations and the ambiguity-corrected phase observations using

the resolved combined ambiguities nx and ny (Li et al., 2010). According to Equation 18

and Equation 24 in Paper B, the combined measurements of the third linear combination

Lz can be formulated as:

Lz =
3∑

i=1

(γzi + q1γxi + q2γyi)Li − q1nxλx − q2nyλy (3.95)

= (azn1 + bzn2 + czn3)λz

= (Qxnx +Qyny +Q1n1)λz,

where γxi, γyi and γzi represent the coefficients of the three phase measurements on fre-

quency fi, and az, bz and cz represent the integer coefficients of the phase ambiguities of the

third linear combination. q1 and q2 are functions of the three integer coefficients for each

of the three linear combinations Lx, Ly, Lz, the three carrier frequencies fi (i = 1, 2, 3)

and the three combined frequencies fx, fy and fz. Qx, Qy and Q1 are functions of the

integer coefficients of the three linear combinations (more details see Paper B).

From Equation 3.95 it is not difficult to obtain n1:

n1 =

∑3
i=1(γzi + q1γxi + q2γyi)Li − q1nxλx − q2nyλy − (Qxnx +Qyny)λz

λzQ1
. (3.96)

After simplification, the factors before the three phase measurements can be represented

by the three carrier frequencies and the speed of light:

n1 = − f2
1 (f2 + f3)

cl(f1 − f2)(f1 − f3)
L1 +

f2
2 (f1 + f3)

cl(f1 − f2)(f2 − f3)
L2 (3.97)

− f2
3 (f1 + f2)

cl(f1 − f3)(f2 − f3)
L3 +

f2(ay + by)(f
2
1 − f2

3 )− f3by(f
2
1 − f2

2 )

(f1 − f2)(f1 − f3)(f2 − f3)(axby − aybx)
︸ ︷︷ ︸

coenx

nx

− f2(ax + bx)(f
2
1 − f2

3 )− f3bx(f
2
1 − f2

2 )

(f1 − f2)(f1 − f3)(f2 − f3)(axby − aybx)
︸ ︷︷ ︸

coeny

ny.

(3.98)
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Inserting the three frequencies of BDS (see Section 3.2.1) with f1, f2 and f3 correspond-

ing to B1, B3 and B2, n1 can be expressed as

n1 = −194.3288 · L1 + 827.3872 · L2 − 633.0584 · L3 + coenx · nx (3.99)

−coeny · ny

= −37.3188 · LC
1 + 195.5385 · LC

2 − 157.2197 · LC
3 + coenx · nx − coeny · ny,

where Li and LC
i represent the phase measurements on frequency fi in meters and in

cycles, respectively.

With Equation 3.99 we can get the noise amplification factors of 1059.8 m−1 and 253.7

for the noise of n1 in meters and in cycles, respectively. Assuming the noise is equal to

0.01 cycles for all the three carrier frequencies, the resulting noise for n1 would amount to

2.537 cycles on the zero-difference level.

The formal error of n1 decreases inversely proportional to
√
n, if the combined phase

noise is white noise, where n represents of number of observation epochs in the correspond-

ing validity interval of the ambiguity n1. However, if other systematic effects or biases like

multipath exist in Li (i = 1, 2, 3), n1 will be easily influenced because of the large factors

before L1, L2 and L3. In this case, the biases cannot simply be reduced by increasing the

number of observation epochs as in the case of white noise.

Assuming that biases δ1, δ2 and δ3 (in meters) exist in the triple-frequency phase mea-

surements, we can get a total bias δC (in cycles) in n1 of

δC = −194.3288 · δ1 + 827.3872 · δ2 − 633.0584 · δ3. (3.100)

This indicates that biases at the centimeter level in the original phase measurements

can easily generate a total bias of several cycles or even more in n1.

Figure 3.8 shows the reduced measurements, which have been used for the estimation of

n1 (see Equation 3.96), for the station pair CUT2-CUTB and the satellite pair C02-C04 on

March 21, 2014. Clearly, systematic effects can be observed during the day. Phase biases

are enlarged differently for each of the three frequencies and have a considerable impact

on the differences ∆n1 between the estimated and the “true” values of n1 (see Table 3.3).

From Table 3.3 we see considerable problems for the resolution of the n1 ambiguities

using the third linear combination. Only looking at the fractional parts of the estimated

n1 in Paper B, these large deviations could not be seen even if they are present. The

detection and reduction of systematic effects existing in the phase measurements are crucial

for fixing n1 because of the large amplification factors in Equation 3.97 even for long

tracks of geostationary satellites. However, since the amplification factors before the phase

measurements L1, L2 and L3 are only depending on the three frequencies themselves and

the speed of light, they are kind of fixed for a specific frequency triplet under given

assumptions. This indicates that the three amplification factors cannot be reduced by

changing the integer coefficients or the combined frequencies fx, fy and fz. In order to
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Figure 3.8: Reduced measurements for the estimation of n1 with the station pair CUT2-CUTB

and the satellite pair C02-C04 on March 21, 2014.

Table 3.3: Differences between the estimated and the “true” n1 for the station pairs CUT2-CUTA

and CUT2-CUTB on March 21 and March 22, 2014.

Station pair Satellite pair ∆n1 [cycles] (March 21) ∆n1 [cycles] (March 22)

CUT2-CUTA C01-C02 0.3322 0.2769

CUT2-CUTA C01-C03 -0.4936 -0.4870

CUT2-CUTA C01-C04 -0.5382 -0.4695

CUT2-CUTA C02-C03 -0.8510 -0.7876

CUT2-CUTA C02-C04 -0.8895 -0.7658

CUT2-CUTA C03-C04 -0.0464 0.0161

CUT2-CUTB C01-C02 -3.6986 -3.6594

CUT2-CUTB C01-C03 -1.2518 -1.2580

CUT2-CUTB C01-C04 -1.3994 -1.3287

CUT2-CUTB C02-C03 2.4447 2.3988

CUT2-CUTB C02-C04 2.3123 2.3446

CUT2-CUTB C03-C04 -0.1472 -0.0698

improve the success rate of the ambiguity resolution, we should either consider reducing the

systematic effects influencing the linear combination, or think of other possible methods

for the third GF and IF linear combination. For baselines that are not very long, or if

relatively precise information is available for, e.g., orbits, it might be more effective to use

a IF and Geometry-Based (GB) phase linear combination as the third linear combination.
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3.3 Ionospheric delay

As mentioned in Section 2.4, single-difference ionospheric delays and spatial gradients are

normally small enough to be considered as negligible for most applications with short

baselines. However, they could get critical under extreme ionosphere conditions for appli-

cations in, e.g., a GBAS network. Apart from that, ionospheric delays are also crucial for

single-frequency VLBI observations in GNSS co-locations (Männel et al., 2016). Analysis

and assessment of the ionospheric delays on the single-difference level are thus becoming

important.

To calculate the single-difference ionospheric delays, the carrier-phase ionospheric cor-

rections calculated using the geometry-free linear combination can firstly be leveled with

the help of the code-based ionospheric corrections. The satellite and receiver inter-

frequency biases are then solved and removed from the leveled ionospheric corrections

to estimate high-precise TEC values (Lee et al., 2006b).

This section introduces an alternative processing strategy to estimate single-difference

ionospheric delays and gradients using double-difference phase measurements with resolved

ambiguities. The code measurements are only used to obtain the a priori receiver clocks.

The estimated single-difference ionospheric delays are thus free from code-related biases

like Differential Code Biases (DCBs) of the receivers and satellites (for the cases that

signals from different tracking channels are used for the receiver pair and the satellite

DCBs cannot be canceled by forming single differences) and artificial biases and jumps

caused, e.g., by code smoothing.

Equation 3.101 shows the GF linear combination of phase measurements Lkj
4rv on the

double-difference level:

Lkj
4rv = Lkj

1rv − Lkj
2rv = (

f2
1

f2
2

− 1) · Ikj1rv + λ1N
ki
1rv − λ2N

ki
2rv + PCV kj

4rv + δkj4rv, (3.101)

where Lkj
1rv and Lkj

2rv represent the double-difference phase measurements between two

receivers r, v and two satellites k, j on frequency f1 and f2. Ikj1rv represents the positive

ionospheric delay of code measurements on f1, which results in a −Ikj1rv ionospheric delay

on L1 phase measurements. Nkj
irv represents the double-difference ambiguity on frequency

fi. PCV kj
4rv represents the double-difference PCVs in the GF linear combination, and δkj4rv

at the end of the equation stands for the non-ionospheric biases and measurement noise

remaining in the GF linear combination.

After introducing the resolved double-difference ambiguities on L1 and L2 and the corre-

sponding PCVs into Equation 3.101, only the term of the ionospheric delay remains in the

observation equation when ignoring δkj4rv. Assuming that there are n satellites observed at

time t(i) for the baseline rv, n− 1 linearly independent L4 double-difference observations

can be formed. In order to estimate the single-difference ionospheric delay Ik1rv on L1, a

condition equation, e.g. a zero-mean condition over all the single-difference ionospheric de-
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lays for this baseline at the corresponding epoch, is needed to avoid the singularity. In this

study, we derived the ionospheric delay on L1 at the Ionosphere Pierce-Point (IPP) assum-

ing a height of 450 km for the ionosphere single-layer from the CODE global ionosphere

map (CODE products, 2014) for each station-satellite pair and each epoch, and computed

the mean value of the single-difference ionospheric delays for each epoch and baseline

using the map values. This mean value is then added to the estimated single-difference

ionospheric delays Ik1rv for a specific baseline and epoch, so that the zero-mean condition

is corrected with the absolute information supplied by the CODE global ionosphere map.

The vertical single-difference ionospheric delay Ivk1rv on L1 is calculated starting from

the slant single-difference ionospheric delay and using the mean mapping function:

Ivk1rv =
Ik1rv

Fr+Fv
2

, (3.102)

where Fr and Fv represent the mapping functions calculated with the elevation angles

between station r and satellite k, and between station v and satellite k, respectively. Ivk1rv
is, in this case, different from Ivk1r − Ivk1v, where the zero-difference vertical ionospheric

delays Ivk1r and Ivk1v are calculated seperately with their individual mapping functions

according to

Ivk1r =
Ik1r
Fr

, Ivk1v =
Ik1v
Fv

. (3.103)

Since we do not calculate the zero-difference slant ionospheric delays Ik1r and Ik1v, Equa-

tion 3.102 has to be corrected by the term

Ivcor =
Ik1r
Fr

− Ik1v
Fv

− Ik1rv
Fr+Fv

2

(3.104)

=
Fv − Fr

Fr(Fr + Fv)
Ik1rv +

Fv − Fr

FrFv
Ik1v
︸︷︷︸

≈Ik,model
1v

,

where the real value of Ik1v is assumed to be approximately equal to the value Ik,model
1v

derived from the CODE global ionosphere map.

The slant and vertical ionospheric gradients can then be computed by dividing the

differential slant and vertical ionospheric delays by either the IPP distance or the base-

line length. It should be noted that the IPP distance for a specific baseline is always

shorter than the baseline length, which indicates that the gradients calculated with the

IPP distances are always larger.

3.3.1 Variation of the IPP distance

When calculating the ionospheric gradients, the IPP distance is typically used to eval-

uate the spatial change of the ionosphere on the single-layer. Under similar ionosphere

conditions, not only the baseline length, but also the relative position of the station pair
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and the satellite may affect the IPP distance, and thus affect the ionsopheric gradients

significantly. In order to assess the variation of the IPP distance with the change of the

relative geometry between the station pair (Sta1 and Sta2), the IPP pair (I1 and I2)

as well as the satellite (Sat) (see Figure 3.9), a simplified model is generated with the

assumption that the Earth is a symmetrical sphere with radius RE , the satellite orbit is

a circle with radius RS and the IPPs are located on a single layer with radius RI . The

center of the Earth is represented by O.

In order to fix the relative geometry between one station pair and a satellite, we need

the elevation angle E and the azimuth angle AS from station 1 (Sta1) to the satellite

(Sat) to get the position of the satellite, and the baseline length lb and the the azimuth

angle AR from station 1 to station 2 (Sta2) to fix the second station. Figure 3.10 shows

the relative geometry between station 1 and the satellite in the topocentric coordinate

system of station 1. With the law of sines in trigonometry we can easily get:

sin (90◦ + E)

RS
=

sinα

RE
=

sin (90◦ − E − α)

l
, (3.105)

where α represents the angle “Sta1−Sat−O”, and l is the distance between the satellite

and station 1.

Based on Equation 3.105, α and l can be calculated according to

α = arcsin
RE cosE

RS
, (3.106)

l =
cos (E + α)RS

cosE
. (3.107)

Since the IPP between station 1 and the satellite (represented by I1) is on the connection

RE

O

RI

RS

Sat

Sta1

Sta2

I1

I2

Ionosphere single-layer

Earth Surface

Figure 3.9: Relative geometry between the station pair, the IPP pair and the satellite (figure with

changed scales).
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Sat

North

E

l
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α

Figure 3.10: Relative geometry between station 1 and the satellite (figure with changed scales).

line “Sta1− Sat”, αI1 and lI1 can be similarly calculated with

αI1 = arcsin
RE cosE

RI
, (3.108)

lI1 =
cos (E + α)RI

cosE
. (3.109)

The North, East and Up (NEU) coordinates of the satellite and I1 can thus be obtained

with the formulas





NSat

ESat

USat




 = l






cosE cosAS

cosE sinAS

sinE




 ,






NI1

EI1

UI1




 = lI1






cosE cosAS

cosE sinAS

sinE




 . (3.110)

Figure 3.11a shows the relative geometry between the station pair. The NEU coordinates

of station 2 can be calculated with





NSta2

ESta2

USta2




 = RE






sin θ cosAR

sin θ sinAR

cos θ − 1




 , (3.111)

where θ is the angle “Sta1−O − Sta2” and can be calculated with

θ = 2 · arcsin ( lb
2RE

). (3.112)

Since the IPP between station 2 and the satellite (represented by I2) is on the connection

line “Sta2 − Sat” (see Figure 3.11b), we can define the NEU coordinates of I2 with the

variable u: 




NI2

EI2

UI2




 =






NSta2

ESta2

USta2




+






NSat −NSta2

ESat − ESta2

USat − USta2




 · u. (3.113)
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Figure 3.11: Relative geometry between station 2 and (a) station 1, and (b) the satellite (figures

with changed scales).

In order to estimate u, we use the information that the radius of the IPP layer is RI ,

which is equal to the distance between O and I2:

∣
∣
∣
∣
∣
∣
∣






NI2

EI2

UI2




−






0

0

−RE






∣
∣
∣
∣
∣
∣
∣

= RI . (3.114)

Inserting Equation 3.113 into Equation 3.114, we get a quadratic equation for u:

au2 + bu+ c = 0, (3.115)

with

a = (NSat −NSta2)
2 + (ESat − ESta2)

2 + (USat − USta2)
2 > 0, (3.116)

b = 2(NSta2(NSat −NSta2) + ESta2(ESat − ESta2) (3.117)

+(USta2 +RE)(USat − USta2)) > 0,

c = N2
Sta2 + E2

Sta2 + (USta2 +RE)
2 −R2

I = R2
E −R2

I < 0. (3.118)

b
2 represents the scalar product of vector “O − Sta2” and vector “Sta2 − Sat”. Since

the observed satellite is always above the horizontal plane of station 2, the angle between

these two vectors is smaller than 90◦ and b is positive.

It is not difficult to see that there are two I2 points that fulfill this criterion, one as

shown in Figure 3.11b, the other one on the extension line of “Sat − Sta2”. In order to

get the first I2, the variable u should be positive and can be estimated with

u =
−b+

√
b2 − 4ac

2a
(3.119)

according to the quadratic formula (Rich and Schmidt, 2004).
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Figure 3.12 shows the variation of the IPP distance with the elevation angle E and

the azimuth angle AS to the satellite from station 1. The baseline length between the

station pair is fixed to 300 km. The plots are generated using the simplified model in-

troduced above with the assumptions that RE =6371 km, RS = RE+20200 km and

RI = RE+450 km. The four subfigures show the results for different azimuth angles AR

from station 1 to station 2, where the magenta point in each subfigure represents the

azimuth direction of station 2 with respect to station 1. We see that the IPP distance

decreases significantly at low elevations when AS = ±AR. The range of the IPP distances

varies from 4.6 km to 293.3 km.

In Figure 3.13 the azimuth angle AS from station 1 to the satellite is fixed to 0◦, and the

elevation angles E are 10◦, 30◦, 60◦ and 89◦ in the four subfigures. The relative position

between station 2 and station 1 changes in each subfigure with the baseline length from

10 km to 1000 km and the azimuth angle AR from -180◦ to 180◦. The magenta points

represent the azimuth direction of the satellite with respect to station 1. It is not difficult

to see that the IPP distance generally increases with increasing baseline length. For high

elevation angles of the satellite, the change of the azimuth angle for station 2 (w.r.t. station

1) does not strongly affect the IPP distances. For low elevation angles, however, the IPP

distance decreases significantly when AR = ±AS , especially when station 2 is located in

exactly the opposite azimuth direction compared to the satellite, namely when AR = −AS .

This can be further verified with Figure 3.14. The IPP distance varies with the changing

baseline length and the azimuth angle from station 1 to station 2 as in Figure 3.13. The

elevation angle E from station 1 to the satellite is fixed to 10◦, while the azimuth angles

from station 1 to the satellite are 0◦, 90◦, 180◦ and 270◦ in the four subfigures. We see
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Figure 3.12: Variation of the IPP distance between I1 and I2 with respect to the elevation angle

E and the azimuth angle AS from station 1 to the satellite.
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Figure 3.13: Variation of the IPP distance between I1 and I2 with respect to the baseline length

lb and the azimuth angle AR from station 1 to station 2 at an azimuth angle of 0◦

from station 1 to the satellite.

that the significant decrease in the IPP distances always happens at AR = −AS , namely

when the azimuth directions to station 2 and to the satellite differ by 180◦.
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Figure 3.14: Variation of the IPP distance between I1 and I2 with respect to the baseline length

lb and the azimuth angle AR from station 1 to station 2 at an elevation angle of 10◦

from station 1 to the satellite.
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3.3.2 Non-ionosheric biases

The analysis of the estimated single-difference ionospheric delays and gradients is shown

in Paper D in detail. Using the AGNES data from 1999 to 2013 in Switzerland, we ob-

served a maximum differential slant and vertical ionospheric delay of 6.2 m and 2.4 m,

respectively, on November 24, 2001, keeping in mind that the days with a stormy iono-

sphere were excluded from the vertical delays. The maximum (absolute value) slant and

vertical ionospheric gradients (calculated with the IPP distance) amount to 81.2 mm/km

and 33.8 mm/km, respectively, in October 2001, and over 98% of the slant and vertical

gradients are within ±50 mm/km and ±20 mm/km. Calculated with the baseline length,

the maximum slant gradient amounts to 42.6 mm/km on November 24, 2001.

Apart from the smoothing effect caused by using the CODE global ionosphere model

and the approximated correction term in Equation 3.104, it is also worthwhile to notice

that there are still non-ionospheric biases remaining in the estimated single-difference

ionospheric delays. After analyzing some very short baselines (with baseline lengths shorter

than 25 m) on June 16, 2013, we still observed biases remaining in the differential slant

ionospheric delays at the centimeter to decimeter level. A maximal differential slant delay

on this day of 12.7 cm was found for the station pair ETH2-ETHZ with a baseline length

of about 13.7 m and satellite G23 (see Paper D).

Figure 3.15 (Geiger et al., 2015) shows the single-difference slant and vertical ionospheric

delays for the station pair ETH2-ETHZ and satellite G23 on June 16, 2013, and the

corresponding skyplot using the mean elevation and azimuth angles from the station pair

to the satellite. A and B in Figure 3.15b denote the start and end points of the longer

satellite arc, and the magenta point illustrates the time point, when the smallest vertical

delay (see red points in Figure 3.15a) occurred. We see that the elevation-dependent

variations are somewhat reduced by the mapping function when calculating the vertical

delays, but the remaining patterns of both, the slant and vertical delays are still strongly

elevation-dependent. Since the mean model values for this short baseline and G23 are very

small (absolute value below 0.02 mm) indicating that the differential ionospheric delays of

such a short baseline can almost be neglected, the patterns we see in Figure 3.15a cannot

be ionospheric biases.

Figure 3.16 (Geiger et al., 2015) shows the differential slant ionospheric delays and the

mean elevation angles for the station pair ETH2-ETHZ and 5 other GPS satellites. We see

that elevation-dependent systematic effects can be observed in the long arcs. Multipath

and remaining PCO/PCV errors might be the cause of these non-ionospheric biases.

The differential slant ionospheric delays for the station pair HOH2-HOHT with a base-

line length of about 4.5 m also show a clear elevation-dependency (see Figure 3.17 from

Geiger et al. (2015)). However, we see that the systematic effects of this baseline are not so

obvious as those of the baseline ETH2-ETHZ. Assuming that the phase noise σL is equal

to 0.01 cycles on L1 and L2, the noise level of the double-difference ionospheric delay on
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Figure 3.15: (a) Single-difference ionospheric delays and (b) mean elevation angles for the station

pair ETH2-ETHZ and satellite G23 on June 16, 2013.
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Figure 3.16: (a) Single-difference slant ionospheric delays and (b) mean elevation angles for the

station pair ETH2-ETHZ and 5 GPS satellites on June 16, 2013.

L1, σI1, which is calculated with the GF linear combination (see Equation 3.101), can be

described as (Geiger et al., 2015):

σI1 =
2(
√

( clf1σL)
2 + ( clf2σL)

2

f2
1

f2
2

− 1
= 9.6 mm (3.120)

The biases in Figure 3.17 are thus more likely to be explained by a superposition of

noise and multipath effects.
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Figure 3.17: (a) Single-difference slant ionospheric delays and (b) mean elevation angles for the

station pair HOH2-HOHT and 5 GPS satellites on June 16, 2013.
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4 Summary of important results

4.1 Summary of Paper A

Paper A tries to make use of the the high stability of H-Masers that are connected to GPS

receivers, and generate appropriate stochastic clock models to decooralate the receiver

clock parameters and the kinematic height estimates, which are usually less accurate than

the horizontal coordinates. A simple deterministic model (a linear polynomial) and relative

clock constraints between subsequent (and also near-subsequent epochs) with different

weights are applied to the H-Maser clock corrections with diverse stabilities. The stability

of the kinematic height estimates obtained from a kinematic PPP phase solution for static

receivers is taken as criterion for the improvement of the kinematic heights.

The study shows that an appropriate relative constraint for high-stability H-Masers can

improve the stability of the kinematic height estimates by a factor of up to three. The best

suitable relative constraint for the clocks and the corresponding improvement factor of the

kinematic heights are influenced by a lot of factors such as the antenna environment, the

measurement noise and the satellite geometry. However, the correlation between the clock

quality and the improvement factors can also be observed. Constraining clocks with bad

quality lead easily to a degradation in the kinematic height estimates. Both, experiments

with real data and simulations have shown that a larger potential for improvement of the

kinematic heights exists for modeling receiver clocks with better quality.

Investigations were also performed with respect to the effects of relative clock constraints

on the troposphere parameters. Tests with real data have shown that an appropriate

relative clock constraint for a high-stability H-Maser (z.B. σrel = 2 mm for the H-Maser

at station ONSA on February 1, 2011) allows for a higher resolution of the estimated

troposphere ZPD parameters (e.g. 15 minutes) and, as a result, improves the MDEV of

the kinematic height estimates, while no obvious degradation of the kinematic heights

is observed even when the resolution of the ZPD parameters is increased to 15 minutes.

Without any clock model, in contrast, a degradation of the kinematic heights can easily

be observed when estimating the ZPD parameters with a 15-minute sampling interval. As

tropospheric delays may change very fast, appropriate clock constraints for high-stability

receiver clocks will help to increase the resolution of the estimated troposphere parameters

without degradating the kinematic heights significantly.

In order to improve the calculation efficiencies, a pre-elimination and back-substitution

algorithm for epoch parameters with constraints between subsequent and near-subsequent
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epochs has been developed for the least-square adjustment. This algorithm is introduced in

Section 3.1 of this thesis. Investigations of the effect of relative clock constraints on other

parameters in global GNSS solutions were also performed within the project ”Satellite

and Station Clock modelling for GNSS” funded by ESA. Paper A has only concentrated

on the kinematic PPP results.

4.2 Summary of Paper B

The fast development of the GNSS in recent years has made the broadcasting signals

available on more frequencies available. This gives us also more possibilities to form linear

combinations with different purposes and a low noise level. Paper B concentrates on the

triple-frequency GF and IF linear combinations using both, code and phase observations.

With the assumption that the code measurement noise is equal to Ci · 0.5 m (Ci as the

scaling factors of the code noise for different frequencies fi) and that the phase noise is the

same for all three frequencies (in cycles or in meters), the measurement coefficients of the

linear combination with minimized code noise were formulated analytically as functions of

the three carrier frequencies, the integer coefficients of the ambiguities, the scaling factors

Ci and the combined frequency fx. The minimized code noise and the relationship between

the six coefficients of the linear combination are independent of the combined frequency

fx. After searching from -10 to 10 for the integer coefficients of the ambiguities, the

measurement coefficients, the total combined noise (code and phase) and the theoretical

success rates of the best two linear combinations were listed for different frequency triplets

and scaling factors Ci.

The third GF and IF linear combination required to resolve the ambiguities on all

three frequencies is a challenge, since it is difficult to find a third linear combiantion,

which is linearly independent of the first two and has, at the same time, a relatively

low combined noise. Therefore, we used the phase observations on the three frequencies

and the ambiguity-corrected phase observations from the frist two linear combinations (Li

et al. 2010). The combined noise (in cycles) was analytically formulated as a function of

the carrier frequencies and the phase noise under the assumption that the phase noise on

the three frequencies is the same (in cycles or in meters). For each frequency triplet, the

combined noise of the third linear combination is thus not dependent of the choices of the

integer coefficients anymore. However, relatively large noise amplification factors result

for all the investigated frequency triplets. Biases and systematic effects, which are not

considered in the model, can easily lead to huge biases in the combined measurements due

to the large coefficients before the phase measurements (see Section 3.2.2).

Real data from two baselines receiving signals from the GPS Block IIF satellites and

Galileo GIOVE and IOV satellites were used to test the model. Clear differences in the

noise level for estimating the combined ambiguities nx and ny from the best two linear

combinations and n1 (resulting from the third GF and IF linear combination) can be
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observed. The formal errors of the combined ambiguities nx and ny are mostly below

the expectations, and their fractional parts are mostly within ±0.2 cycles, while some

outliers were most probably caused by the different tracking channels of the frequency

triplet between two receivers. The fractional parts of the n1 ambiguities from the third

linear combination show, however, a relatively random pattern, especially for the baseline

with different tracking channels.

In this thesis, the ambiguities were also estimated for geostationary BDS satellites and

two very short baselines in Australia equipped with the same receiver and antenna types.

The signals were observed in the same tracking channels. Compared with the “true”

ambiguities obtained from the traditional dual-frequency double-difference ambiguity res-

olution on L1 and L2 and the resolved EWL ambiguities n2−n3, we see that the combined

ambiguities of the best two linear combinations can be resolved by rounding, while the

third linear combination remains a challenge. The estimated n1 ambiguities using the

third linear combination show relatively large deviations from the “true” values, e.g., 2 to

3 cycles in some cases. These are suspected to result from the large frequency-dependent

coefficients before the phase measurements, which can significantly enlarge systematic ef-

fects and biases that cannot be reduced, as in the case of white noise by increasing the

number of observations.

4.3 Summary of Paper C

Paper C is an extension of the investigations introduced in Paper B. Instead of resolving

the triple-frequency GF and IF ambiguities on the double-difference level, this paper tries

to discuss the possibility to estimate the so-called track-to-track (different close-in-time

tracks of the same receiver and the same satellite) ambiguities using the best two linear

combinations for different frequency triplets. Since most of the errors, like DCBs that do

not vary strongly within a certain time period (e.g. one day), are significantly reduced

by forming differences between tracks for the same receiver and the same satellite, the

track-to-track ambiguities are considered to be mainly influenced by the errors that lead

to elevation-dependent variations in the results, like PCVs and multipath.

In the paper, tests with real data using GPS L1, L2 and L5 signals as well as Galileo

E1, E5b and E5a signals are described. By comparing the fractional track-to-track am-

biguities and the formal errors of these two frequency triplets, we can observe obvious

differences between GPS and Galileo that are mainly caused by elevation-dependent sys-

tematic effects. In order to exclude the influences of diverse code biases, we also compared

the observations differencing two phase-only IF linear combinations for each of these two

frequency triplets. The elevation-dependent systematic variations are more obvious in the

GPS frequency triplet. This might be caused by differences in the PCVs and PCOs for

these two frequency triplets.

Although we cannot solve the track-to-track ambiguities easily on each of the three
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frequencies, the combined track-to-track ambiguities of the best two triple-frequency GF

and IF linear combinations are still very effective in detecting station-specific problems or

problems in the observation data. Analyzing the track-to-track ambiguities using the best

linear combination with Galileo E1, E5b and E5a observations, we detect that a constant

offset of about 0.35-0.36 cycles in the absolute fractional parts is caused by code jumps

in the raw observations of a specific type of receiver to satellite E12 in that time period.

Apart from that, other station-specific problems can also be detected due to the good

behaviors of the track-to-track ambiguities using the best linear combination with E1,

E5b and E5a observations.

4.4 Summary of Paper D

Since the remaining ionospheric delays after forming single-differences can still be critical

for a GBAS network, especially for days with extreme ionosphere conditions, the iono-

spheric delays and the resulting spatial gradients on the single-difference level need to be

estimated and assessed for different ionosphere conditions.

Paper D introduces an algorithm to estimate single-difference ionospheric delays and

gradients using double-difference phase measurements with resolved ambiguities. The

estimated differential ionospheric delays are in this way free from code-related biases like

DCBs and the artificial biases generated by code-smoothing. In order to extract the single-

difference ionospheric delays on the double-difference level, a zero-mean condition for all

the single-difference slant ionospheric delays was applied for each baseline and at each

epoch. The zero-mean condition was further corrected using CODE global ionosphere

maps to supply the absolute information of the ionosphere.

The differential vertical ionospheric delays were calculated using a mapping function.

A correction term was calculated to reduce the deviation between the vertical delays

calculated with the individual elevation angles and with the mean elevation angle. The

slant and vertical ionospheric gradients were calculated by dividing the corresponding

single-difference ionospheric delays by both, the baseline lengths and the IPP distances.

The estimation was performed for Switzerland using the AGNES stations from 1999

to 2013 except for several days without RINEX data. The correlations between the esti-

mated differential slant ionospheric delays and the geomagnetic indices KP , DST , as well

as the daily mean TEC values derived from the global CODE ionosphere maps were evalu-

ated and compared. A stronger correlation between the single-difference slant ionospheric

residuals and the TEC values was observed compared to those between the differential

slant ionospheric delays and the geomagnetic indices. By analyzing several very short

baselines, for which the differential ionospheric delays are considered to be almost zero,

we found that there are still non-ionospheric biases remaining in the estimates at the

centimeter to decimeter level. Since an elevation-dependency can be observed in the non-

ionospheric biases, they are suspected to be systematic effects caused by multipath or
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remaining PCO/PCV errors.

The slant ionospheric gradients calculated using the baseline lengths were compared with

the slant ionosphere gradient bounds of the CONUS model, which is based on the largest

ionospheric gradients obtained during the analysis of the data from the U.S. Wide Area

Augmentation System (WAAS) and the network of Continuously Operating Reference

Stations (CORS) (Pullen et al., 2009). It should be noted that the bounds of the CONUS

model also exist on the ionosphere front speed and front width that were not included

in this study. In the allowed range of the CONUS model and with all possible aircraft-

satellite ionosphere geometries, a vertical position error of 41 m in the worst case has

occurred in the simulation and exceeds the allowed safe error limit (Pullen et al., 2009).

The maximal slant gradient we observed, appeared on November 24, 2001 and amounts

to 42.6 mm/km. It is below the slant ionosphere gradient bound of the CONUS model.

Based on the work of Lee et al. (2006b), the overbounding vertical gradient σoverbound
vig

was calculated. The vertical ionospheric gradients were distributed into distance bins and

normalized with the bin standard deviation and the bin mean. An inflating factor f was

then calculated to bound all the non-Gaussian tails and outliers for the corresponding day

and used to calculate the σoverbound
vig together with the bin mean and bin standard deviation.

The daily maximum overbounding vertical gradients were analyzed with different bin

starts. Ignoring the gradients in the first two bins (with an IPP distance shorter than

20 km), where the non-ionospheric biases still have relatively big effects and the number

of IPP pairs is relatively low, about 96.9% of the σoverbound
vig are smaller than 4 mm/km.

In Paper D the processing of the double-difference phase measurements and the ex-

traction of the single-difference ionospheric delays from the double-difference level using

a zero-mean condition have been performed by Michael Meindl (see Acknowledgement)

with the help of the Bernese GNSS Software (Version 5.2).
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The fast development of the GNSS technologies in the last ten years including updates

in signal structures and development of equipments has inspired a lot of new studies

in the advanced modeling and the algorithms for high-precision GNSS analyses. This

thesis includes investigations in a rather wide range of topics, i.e., it focuses on three

important aspects of the GNSS positioning, namely receiver clocks, ambiguity resolution

and ionospheric delays.

Connecting high-precision clocks with decreasing volumes, energy consumption and

prices to receivers and satellite is becoming a trend in modern GNSS. With the increas-

ing number of ground stations equipped with H-Masers and new generations of GNSS

satellites, modeling the clock with meaningful deterministic and stochastic models instead

of the traditional estimation of the clocks as independent epoch parameters is of great

interest for many applications. This thesis includes a study of modeling the high-stability

H-Maser with a simple deterministic model and relative constraints between subsequent

and near-subsequent epochs, as well as the impact of such a modeling on the height esti-

mates of kinematic PPP solutions. By changing the weights of the relative constraints, we

see that the improvement of the kinematic heights differs depending on the clock quality.

Although it is difficult to describe the relationship between the improvement factor, the

clock quality and the relative sigmas of the clock constraints mathematically, we see that

constraining the high-stability H-Masers with a relative sigma of e.g. 2 mm is generally

helpful to improve the stability of the kinematic height estimates in the PPP phase solu-

tions. In contrast, for receiver clocks with a relatively low quality, constraining the clocks

may easily lead to degradations of the kinematic heights.

Apart from the kinematic heights of the receivers, station-specific and satellite-specific

parameters with high temporal resolution, e.g., the radial component of the kinematic orbit

solutions, may also be improved by modeling high-quality receiver or satellite clocks. With

more and more ground stations and GNSS satellites equipped with H-Masers, benefit of the

clock modeling for further parameters with low temporal resolution, e.g., the static receiver

coordinates and the Earth rotation parameters, may also be seen in the future. In analogy

to the phase measurements, modeling clocks with a lower quality should also improve

the kinematic pseudorange solutions, especially under bad measurement conditions or

geometries (Krawinkel and Schön, 2015; Wang et al., 2015). Compared to the high-stability

H-Masers, these clocks are easier to find applications for because of their lower costs,

smaller size and better mobility (Krawinkel and Schön, 2015; Wang and Rothacher, 2014).

73



Chapter 5. Conclusions and outlook

Investigations in this area are ongoing work.

In the processing of double-difference phase measurements, ambiguity resolution is al-

ways an important part to guarantee high-precision results. The second part of this thesis

introduces investigations concerning ambiguity resolution with GF and IF linear combina-

tions using triple-frequency code and phase measurements. With the goal of minimizing

the combined noise, the best two linear combinations with a relatively low combined noise

level were given for different frequency triplets. The coefficients of the linear combinations

and the combined noise of code and phase measurements were formulated analytically as

functions of the integer coefficients of the ambiguities, the three carrier frequencies, the

scaling factors of the code noise on three frequencies and the combined frequency. It was

found that the relationship of the 6 coefficients for the measurements and the combined

noise in cycles are independent of the combined frequency fx under the given assumptions.

In order to find a third GF and IF linear combination, which is linearly independent

of the first two linear combinations and has, at the same time, an acceptable noise level,

we used only the triple-frequency phase measurements and the ambiguity-corrected phase

measurements (Li et al., 2010) from the first two linear combinations. With the help of

the resolved combined ambiguities nx and ny, the ambiguity n1 can be estimated with a

relatively large noise amplification factor in the third linear combination for each investi-

gated frequency triplet, which is analytically formulated as functions of the three carrier

frequencies. Systematic effects will also be enlarged significantly by forming the linear

combination and will have a huge impact on ambiguity resolution (see Section 3.2.2).

Real data were used to test the theoretical derivations. We see acceptable fractional

parts for the combined ambiguities nx and ny from the best two linear combinations and

relatively random fractional parts n1 from the third linear combination. Comparison of

the estimated ambiguities with the “true” values from double-difference phase ambiguity

resolution on L1 and L2 and the resolved EWL ambiguities n2 − n3 (see Section 3.2.1

and Section 3.2.2) using BDS satellites has further shown that the combined ambiguities

nx and ny can successfully be resolved by rounding, while the third linear combination

remains critical. Since the coefficients of the third linear combination are fixed for a certain

frequency triplet based on the assumption that the phase noise on the three frequencies is

the same (in cycles or in meters), the combined noise using the third linear combination

that was introduced in Paper D cannot be reduced further. Alternative methods might

be to reduce the systematic effects and biases before forming the linear combination or

considering other algorithm to find a third GF and IF linear combination. Apart from

that, phase-only IF linear combinations could be an alternative way, if the geometry part

of the linear combination can be modeled with sufficient accuracy.

As an extension to the investigation of the GF and IF triple-frequency ambiguities, the

triple-frequency track-to-track ambiguities are also analyzed with real data. Although

unmodeled elevation-dependent errors influence the results, we still observed the benefits

of this method in detecting observation problems using, e.g., the best linear combination
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of the Galileo E1, E5b and E5a frequency triplet. With better knowledge of e.g. the

multi-frequency PCOs and PCVs for GPS and Galileo, we may expect smaller fractional

parts for the estimated track-to-track ambiguities using the best two triple-frequency linear

combinations, which should deliver helpful constraint information on the observation level.

The third part of the thesis includes the investigation of the single-difference ionospheric

delays and gradients for Switzerland from 1999 to 2013. Although the single-difference

ionospheric delays are significantly reduced compared to the zero-difference delays, espe-

cially for short baselines, the remaining differential ionospheric delays are still of great

interest for applications with high safety requirements like landing and the approach pro-

cess of aircrafts, especially for ionosphere stormy days. As a result, we have analyzed

the slant and vertical differential ionospheric delays and gradients using available AGNES

data from 1999 to 2013 under diverse ionosphere conditions. It was found that the max-

imal slant ionospheric gradient (calculated with baseline length) during these 15 years in

Switzerland is about 42.6 mm/km.

During the processing we have also found that there are still non-ionospheric biases

remaining in the estimates. On June 16, 2013, we detected remaining biases for very short

baselines (shorter than 25 m) of up to 12.7 cm. Because of the strong elevation-dependency

of these biases, they are suspected to be caused by multipath or remaining PCO/PCV

errors.

The algorithm using double-difference phase measurements with resolved ambiguities to

extract single-difference ionospheric delays is free from the code-related biases like DCBs

and brings us to a high measurement stability without artificial biases generated by code-

smoothing. A fully automated processing over 15 years, which generated a huge amount

of sample data and statistics, was performed with the help of the Bernese GNSS Software

and Matlab. However, it should also be noticed that the absolute information of the

mean slant differential ionospheric delays for each baseline per epoch relies on the global

CODE ionosphere maps, which are temporally and spatially smoothed. This means that

ionosphere anomalies happening during short time periods and very small areas might not

be correctly considered in the epoch-wise mean values of the differential ionospheric delays.

Although the ignored anomalies are reduced when dividing by the number of satellites in

the corresponding epoch by generating the mean values, the influence of these unknown

anomalies is still difficult to be evaluated.

In summary, a huge study potentials in all these three aspects is yet to be exploited.

Further investigations using larger datasets may be performed to find the best suitable

relative sigma as a function of the clock quality and the a posteriori sigma of the mea-

surements, which reflects the measurement noise and part of the unmodelled systematic

effects. Apart from that, clock constraints between near-subsequent epochs may be more

deeply investigated to increase the improvement in the kinematic heights with more than

one best suitable relative sigma (see Table 3.1). Furthermore, more complicated stochastic

models can be considered to better model the clock noise. With the ever higher quality,
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lower price and better mobility of the frequency standards connected to GNSS receivers

and satellites, clocks with a higher level of stability and accuracy, e.g., optical clocks, will

in future become important for many different kinds of the GNSS applications. Simplified

clock models of these high-stability clocks, e.g., a linear polynomial, may then already be

enough for phase-based kinematic positioning.

The triple-frequency GF and IF ambiguity resolution in this study encounters the prob-

lem of the big noise amplification factors in the third linear combination. If the GF and

IF characteristic of the linear combinations are still expected to be kept, we might have

to find other solutions for the third linear combination, e.g. considering more than three

frequencies if available. However, phase-only IF and GB linear combinations are always a

method for short baselines. Apart from that, the resolved combined ambiguity nx and ny

may be used to constrain the relationship of the ambiguities n1, n2 and n3 on the NEQ

level and detect cycle slips as well as equipment problems. In the future, with the new

frequency plans of different GNSS, multi-frequency linear combinations and their noise

amplification factors may be dramatically changed when, e.g., C-Band signals, are sent by

the GNSS satellites. In addition to that, with the increasing number of satellites sending

signals with higher accuracy for the pseudorange measurements, e.g., the Galileo’s E5 sig-

nal with the Alternative Binary Offset Carrier (AltBOC) modulation, code-based precise

positioning will also be of great interest in the future.

The algorithm introduced in this thesis, which was used to estimate the single-difference

ionospheric delays and gradients, has both advantages and disadvantages. Since the re-

maining non-ionospheric biases are highly elevation-dependent and are still relatively big,

further studies to access these biases will certainly be addressed in the future. Apart from

that, the smoothing effect of the usage of the global CODE ionosphere maps should be

evaluated in more details. Extracting absolute information of the ionosphere from other

sources, which can avoid the code-related biases and at the same time deliver absolute

ionosphere information with higher resolution, is of high interest. Furthermore, the algo-

rithm still awaits improvement to compromise between the elimination of low-quality data

in the phase pre-processing with, e.g., data gaps or multipath at low elevation angles, and

the retaining of the data with possible huge epoch-to-epoch ionospheric jumps.
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Abstract

In current global positioning system (GPS) applications, receiver clocks are typically

estimated epoch-wise in the data analyses even for clocks with high performance like

Hydrogen-masers (H-maser). Applying an appropriate clock model for high-stability re-

ceiver clocks should, in view of the strong correlation between the station height and the

clock parameters, significantly improve the positioning results. Recent experiments have

shown that modeling the deterministic behavior of high-quality receiver clocks can improve

the kinematic precise point positioning considerably. In this paper, well-behaving ground

clocks are studied in detail applying constraints between subsequent and near-subsequent

clock parameters. The influence of different weights for these relative clock constraints

on the positioning quality, especially on the height, is investigated. For excellent clocks,

an improvement of up to a factor of 3 can be obtained for the repeatability of the kine-

matic height estimates. This may be essential to detect small but sudden changes in the

vertical component (e.g., caused by earthquakes). Troposphere zenith path delays (ZPD)

are also heavily correlated with the receiver clock estimates and station heights. All these

parameters are usually estimated simultaneously. We show that the use of relative clock

constraints allows for a higher time resolution of the ZPD estimates (smaller than 2 h)

without compromising the quality of the kinematic height estimates.

Keywords: Stochastic clock model; GPS Kinematic PPP; High-performance atomic

clock; Troposphere

Introduction

In the present-day analyses of global navigation satellite system (GNSS) data, the receiver

clocks and satellite clocks are typically estimated as independent parameters for each
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measurement epoch in the least-squares adjustment. The resulting large number of clock

parameters are strongly correlated with troposphere Zenith Path Delays (ZPD) parameters

and the station height (Dach et al., 2003; Rothacher and Beutler, 1998). It can be expected

that, if the quality of the high-performance receiver clocks could be fully exploited with

an appropriate deterministic and stochastic model, the solutions of other parameters,

especially the kinematic station height estimates, should become more stable and more

accurate because of the strong correlation between the clock parameters and the station

height.

The idea of a detailed stochastic modeling of receiver and satellite clocks is not really

new. During the 1980s, colleagues at Jet Propulsion Laboratory (JPL) modeled clock and

troposphere parameters using different stochastic processes in order to improve GNSS-

relevant parameters like orbits (Lichten and Border, 1987). At that time, however, the

impact of a sophisticated clock model was marginal due to the fact that the large major-

ity of the ground-based and space-borne clocks was not sufficiently accurate and stable

compared to the phase measurement noise of 1 – 2 mm (3.3 – 6.7 ps) to allow for such

approaches.

In the last 20 years, more and more stable atomic clocks are connected to GNSS re-

ceivers in the International GNSS Service (IGS) (Dow et al., 2009) network and used for

time and frequency transfer accompanied with the stronger connections between different

timing labs and the IGS stations (Ray and Senior, 2003). Such a development also takes

place in space, where satellites are equipped with better and better clocks. Examples are

the Hydrogen-maser (H-maser) on GIOVE-B (Galileo In-Orbit Validation Element), see

Montenbruck et al. (2012), and the modified rubidium clock on GPS-IIF SVN62 (Dupuis

et al., 2010). In recent years, investigations concerning clock modeling came to into focus

again. Weinbach and Schön (2011) have shown that an improvement in the vertical com-

ponent of kinematic Precise Point Positioning (PPP) (Zumberge et al., 1997) by up to 70

% can be expected by applying a simple deterministic clock model. They demonstrated

that loose relative constraints on clock parameters may improve the vertical component

in the case of pseudo-range kinematic solutions as well (Weinbach and Schön, 2009).

Because of the high quality of the H-masers available nowadays, the constraints between

subsequent and near-subsequent clock epochs (the so-called relative constraints) can also

be applied for phase positioning. An appropriate weighting of these relative constraints de-

pending on the individual clock performance is very important to obtain optimal kinematic

positions. Constraining the clocks too strongly (e.g. neglecting environmental influences

and hardware delay variations) may lead to a degradation of the kinematic positioning

results. In this study here, detailed investigations concerning the weight of the relative

constraints on subsequent and near-subsequent (between every three epochs) clock pa-

rameters are performed and the benefit in kinematic positioning results using phase (and

heavily down weighted code) observations is assessed.

In addition, the global positioning system (GPS) data were analyzed to study whether
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the temporal resolution of troposphere parameters can be increased when constraining

clocks to further improve the kinematic height estimates.

Deterministic and stochastic modeling of the receiver clock

In our approach we assume that the receiver clock can be described by a simple determin-

istic model (e.g., low-order polynomial) and a stochastic model:

clk(ti) = am · (ti − t0)
m + · · ·+ a1 · (ti − t0) + a0 + p(ti),

clk(ti+1) = am · (ti+1 − t0)
m + · · ·+ a1 · (ti+1 − t0) + a0 + p(ti+1), (A.1)

where clk(ti) represents the receiver clock correction for measurement epoch i, am,...,

a1, a0 are the coefficients of the low-degree polynomial, and p(ti) is the stochastic clock

parameter for measurement epoch i.

The deviations of a clock can be divided into two categories, namely, the systematic

effects such as the time offset, the frequency offset and the frequency drift, as well as the

non-deterministic random errors such as white noise, flicker noise and random-walk noise

(Allan, 1987). A study concerning the deterministic models of high-precision clocks and

of their impact on other GPS-related parameters was done parallel to this study. The

results have shown that the simplest deterministic model, namely, a linear polynomial,

works the best for stabilizing the kinematic height estimates (Orliac et al., 2012). In this

study, therefore, a linear polynomial is used. The clock parameters to be estimated from

the GPS data are the coefficients a1, a0 and the stochastic clock parameters p(ti). The

stochastic clock parameters p(ti) represent the deviations of the real clock from the linear

polynomial given by the coefficients a1 and a0 in Equation A.1. The size of these deviations

p(ti) depends on the clock quality. The stochastic clock parameters of subsequent epochs

ti and ti+1 can be constrained using a pseudo-observation with the weight Pi,i+1:

p(ti)− p(ti+1) = 0, Pi,i+1 =
σ2
0

σ2
rel

, (A.2)

where σ0 and σrel represent the a priori standard deviation of unit weight, i.e., the stan-

dard deviation of the GPS phase observations, and the standard deviation of the relative

constraint between the two subsequent epochs, respectively. The weight of the relative

constraints is the most important quantity in the stochastic model. In order to be consis-

tent with the unit of σ0, σrel is expressed in millimeter in this paper

Similar constraints can also be added for near-subsequent epochs. In general, the

stochastic behavior between the ith and the (i+n)th epoch is then constrained according

to:

p(ti)− p(ti+n) = 0, Pi,i+n =
σ2
0

σ2
rel,n

, (A.3)
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where σrel,n stands for the standard deviation of the relative constraint between near-

subsequent epochs ti and ti+n. The weight Pi.i+n can thereby be derived from, e.g.,

the Modified Allan Deviation (MDEV) of the clock records from the Center for Orbit

Determination in Europe (CODE). The MDEV is, like the traditional Allan deviation

(ADEV), a measure of the frequency stability and is able to distinguish between the white

phase noise and the flicker phase noise (Allan and Barnes, 1981). σrel,n here is the product

of the MDEV value at the corresponding averaging time (σMDEV,n), the speed of light (c)

and the averaging time (τn) itself:

σrel,n = σMDEV,n · c · τn. (A.4)

Since the drift a1 and the offset a0 of the linear polynomial are estimated as non-epoch

parameters simultaneously with the stochastic quantities p(ti), weak absolute constraints

with a small weight Pi have to be put on the stochastic parameters p(ti) to avoid the

singularities between the offset, the drift and the stochastic parameters. These absolute

constraints have the form

p(ti) = 0, Pi =
σ2
0

σ2
abs

, (A.5)

where σabs represents the RMS of the absolute constraints.

For network solutions involving a huge number of parameters, the epoch-parameters are

usually pre-eliminated for increasing the computation efficiency (Jäggi et al., 2011). Ge

et al. (2006) has introduced a procedure to pre-eliminate the ambiguity parameters for

both real-valued and ambiguity-fixed solutions and accelerated the computation for huge

network solutions significantly. To limit the required computer resources, clock parameters

are efficiently eliminated at every epoch. If relative constraints are applied, a rather com-

plex pre-elimination and back-substitution scheme has to be used (and was implemented)

for the least-squares adjustment that also works for near-subsequent epoch parameters.

The stochastic clock parameters are efficiently pre-eliminated at every epoch in order to

limit the computation time. Before pre-eliminating a specific epoch, the stochastic clock

parameters of the subsequent and near-subsequent epochs to be constrained have to be

considered. After determination of all the non-epoch parameters, a back-substitution is

performed starting backwards from the last epoch. All the relevant information required

for this back-substitution has to be stored step-by-step during the pre-elimination pro-

cess. In this way, relative clock constraints can also be applied for relatively big regional

network or even global solutions.

Identification of good H-masers

At present there are over 130 IGS stations equipped with high-performance atomic clocks.

Figure A.1 shows the global distribution of these clocks on April 1st, 2012 including 68

H-masers, 43 cesium and 26 rubidium clocks (CLKLOG, 2012).
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Figure A.1: Global distribution of IGS stations with high-performance atomic clocks

We can expect that the application of relative constraints on clock parameters is most

beneficial for stations with very stable H-masers compared to cesium and rubidium clocks

(Allan, 1987). The clock values of H-masers with jumps, equipment changes or other

problems can only be estimated epoch-wise as it has been done so far. A rough character-

ization of these H-masers can be obtained from the analysis of the clock estimates, which

are freely available in the IGS, the CODE or the European Space Agency (ESA) stored

in clock RINEX files (Ray and Gurtner, 2010). In order to make sure that the clock esti-

mates used for the clock characterization represent the actual clock behavior as precisely

as possible, all clock estimates were referenced to the IGS time scale (IGST) (Wang and

Rothacher, 2011; Senior et al., 2003). One way to characterize the H-masers is the em-

pirical RMS of epoch-to-epoch differences σemprel (the so-called empirical relative sigma),

that can be calculated based on the clock records in these clock RINEX files according to

σemprel =

√
∑n−1

i=1 (clk(ti+1)− clk(ti))2

n− 1
, (A.6)

where n represents the number of processed epochs. It should be noticed that the detected

clock jumps or problems here are mainly concerning the GPS receiver, the installation and

clock adjustments rather than the H-Maser itself. For such bad behaviors, the clock values

usually exceed the GPS measurement noise and allow thus the identification and exclusion

of the misbehaving H-Masers.

As an example, Figure A.2 shows the daily empirical relative sigma σemprel of the H-

maser located at station CEDU (CEDUNA, Ceduna, Australia) in February 2011 and,

for February 15, 2011, the clock residuals after removing a linear polynomial. The values

of σemprel amount to around 60 – 70 ps for most of the days in February 2011, but may

sometimes reach more than 150 ps. The big clock jumps on February 15, 2011 is, e.g., the
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cause of the relatively big empirical relative sigma of about 200 ps.

The values σemprel are a good measure of the clock quality, especially for detecting

clock jumps. In our analyses of a specific H-maser clock, the days with an empirical

relative sigma σemprel bigger than 100 ps were excluded. Figure A.3 shows the mean

values of σemprel for some well-behaving H-masers in February 2011, excluding the days

with data gaps and the days with bad σemprel values. It can be seen that most H-masers

are performing very well with a mean σemprel smaller than 30 ps (9 mm).

Estimation of kinematic station coordinates with real data

In order to assess the effect of relative clock constraints, experiments with PPP were

performed using a modified version of the Bernese GPS Software (Dach et al., 2007). The

kinematic (i.e. epochwise) coordinates of a static station equipped with a well-behaving

H-maser were estimated together with the receiver clock parameters with a sampling rate

of 300 s over a time span of 24 h. The wet part of the troposphere ZPD was estimated as

a piece-wise linear function with a 2 h resolution and the wet Vienna Mapping functions

1 (VMF1) (Boehm et al., 2006). In addition, troposphere gradients were estimated with

a resolution of 24 h. The satellite clocks were fixed to high-rate precise clocks from

CODE (Bock et al., 2009; Dach et al., 2009; Hugentobler, 2004). Since the investigated

stations are static, the standard deviations of the estimated kinematic coordinates are

considered as a measure for the appropriateness of different clock constraints. Clocks with

adjustments or huge jumps were excluded based on the empirical relative sigmas σemprel
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Figure A.2: Empirical relative sigma σemprel for the H-maser clock at station CEDU in February

2011 (top) and the residuals for this clock after removing a linear polynomial on

February 15, 2011 (bottom).The CODE clock RINEX files were used for the plots
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Figure A.3: Mean empirical relative sigma σemprel for some H-masers in February 2011. The

IGS/CODE/ESA clock RINEX files were used for the plot

(see Equation A.6) derived from the epoch-to-epoch differences of the GPS clock estimates.

Figure A.4 shows the effect of relative constraints of different strengths on the H-maser

clock estimates at station ONSA (ONSALA, Onsala, Sweden) on February 1st, 2011.

The clock estimates without any constraints are shown in blue, while the red, green and

magenta lines represent the clock estimates with increasing relative constraints. Finally,

applying very strong constraints results in an almost straight line (black). We thus see

that, as expected, increasing the relative constraints forces the clock estimates to converge

towards a straight line.

Figure A.5 shows the corresponding kinematic height estimates for station ONSA on

February 1st, 2011. As in Figure A.4, the blue line indicates the kinematic solution without

any clock constraints, while the red, green and magenta lines represent the kinematic

height estimates with increasing relative constraints. It can be observed that the kinematic

height estimates of the static station ONSA are significantly improved by applying relative

clock constraints, e.g., up to a factor of 2. This improvement of the height repeatability

(see standard deviations σH in the legend of Figure A.5) is a consequence of relative

constraints together with the high correlations between the clock parameters and the

height estimates. This is especially important, since the height estimates from GPS are

typically much less precise than the horizontal components. The black line using very

strong relative constraints shows, however, a degradation of the positioning results in the

vertical direction.
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Figure A.5: Kinematic height estimates for station ONSA on February 1st, 2011 using different

relative constraints between subsequent clock epochs

To study the impact of the relative constraints in more detail, a large series of kinematic

solutions were produced decreasing σrel in steps of 0.1 mm from 20 mm down to 0.1 mm.

Figure A.6 shows these results, i.e., the direct relationship between the weights of the

relative constraints between subsequent clock parameters and the standard deviation of

the kinematic coordinates for station ONSA on February 1st, 2011, in all three directions

(North, East, Up). Starting with very weak constraints, the standard deviation of the

kinematic height estimates (red line) decreases with increasing relative constraint (i.e.,

decreasing relative sigma), and shows a minimum at a relative constraint of about 1.2 mm

(4 ps). With stronger relative constraints the estimated clock values cannot represent the
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clock variations anymore and the results are degraded. As opposed to the height estimates,

the horizontal coordinates are not improved by constraining the clock parameters. A

significant degradation can be observed especially for a relative sigma smaller than 2 mm

(6.7 ps). The relative sigma σrel of about 1.2 mm (4 ps), which leads to the best kinematic

height estimates, degrades at the same time the horizontal coordinates and is, thus, not

the optimal choice. The reason for the degradation of the kinematic horizontal coordinates

with relative constraints stronger than 1.2 mm is not clear.

Figure A.7a shows the improvements in the kinematic height estimates for some well-

behaving H-masers on February 1st, 2011. The solid lines represent the standard de-

viations of the kinematic height estimates using different relative constraints between

subsequent epochs. These epoch-to-epoch relative constraints can improve the stability

of kinematic height estimates reaching an optimum for a very small relative sigma σrel

between 0 and 2 mm (0 and 6.7 ps). The improvement reaches a factor of about 2 to

3. However, this conclusion only holds for very stable H-masers (e.g. clock with σemprel

smaller than 15 ps). For H-masers that are not that stable, the standard deviations of the

kinematic height estimates grow rapidly after reaching a relative sigma σrel smaller than

2 mm (see Figure A.7b). Only very weak relative constraints may be considered for such

clocks (for KOKV 8.5 mm and for IRKJ 14.2 mm).

The asterisks in Figure A.7a represent the standard deviations using not only relative

constraints between subsequent epochs (called σrel,1), but also between near-subsequent

epochs (every third subsequent epoch, called σrel,2). The relative sigma values σrel,1 and

σrel,2 have been derived from the MDEV of the CODE clock records, and the x-coordinate

of the asterisks in Figure A.7a is set to be the relative sigma σrel,1, i.e. the product of the

MDEV value at 300 s derived from the clock records, the speed of light and the averaging

time of 300 s. The three-epoch constraints cannot be directly compared with the optimal
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Figure A.6: Standard deviation of the kinematic coordinates for station ONSA with different rel-

ative constraints on February 1st, 2011
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standard deviation of the epoch-to-epoch constraints because the CODE clock records

used for MDEV comprise the measurement noise, but they also improve the stability of

the kinematic height estimates significantly.

Table A.1 summarizes the improvements obtained in the kinematic height estimates

for some H-maser clocks on February 1st, 2011. The clocks are sorted by their quality.

The quality is based on the standard deviations σSTD computed after removing a linear

polynomial from the corresponding clock records (column 2). The empirical relative sigma

σemprel is listed in the third column. The data from different institutes (IGS/CODE/ESA)

were used to give a complete list of the evaluation for the given clocks. The corresponding

agency is indicated with the first letter (see column 2). The fourth column and the

fifth column document the standard deviation of the kinematic height estimates without

constraints (STD0) and with the optimal constraints (STDmin), which generates the most

stable kinematic height estimates. The sixth column contains the standard deviation of

the kinematic height estimates using relative constraints between three consecutive epochs.

The seventh column lists the values σrel, which lead to the minimal standard deviation of

the kinematic height estimates for the corresponding station (see Figure A.7). It should

be noted that the range of σrel values tested started with a value of 0.1 mm. Even stronger

relative constraints have not been studied. The improvement factor f of the kinematic

height estimates (column 8) has been calculated based on

f =
STD0

STDmin
. (A.7)

From Table A.1 we see that for very stable H-masers the kinematic height estimates

could be improved by up to a factor of 2 to 3 by applying relative constraints between 0

and 2 mm (0 and 6.7 ps). If the best relative sigma to be used is not known, an epoch-to-

epoch relative constraint of 2 mm or a near-subsequent constraint derived from a MDEV
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Figure A.7: Stability improvements of kinematic height estimates for some (a) stable and (b) un-

stable H-masers on February 1st, 2011, using different relative constraints
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Table A.1: Improvements of kinematic height estimates for some H-masers using relative con-

straints between subsequent and near-subsequent clock parameters on February 1, 2011

Clock estimates Kinematic height estimates

Station σSTD σemprel STD0 STDmin STDCovar σrel f

[ps] [ps] [m] [m] [m] [mm]

WSRT 12.9(I) 6.2 0.0153 0.0082 0.0090 0.5 1.87

ONSA 22.1(I) 10.9 0.0132 0.0066 0.0066 1.2 2.00

USNO 22.9(I) 10.6 0.0232 0.0082 0.0085 0.6 2.84

USN3 23.3(I) 10.0 0.0196 0.0056 0.0078 0.1 3.50

YELL 23.5(C) 22.0 0.0687 0.0227 0.0243 0.8 3.03

CRO1 32.8(I) 23.2 0.0356 0.0158 — 0.1 2.25

AMC2 33.7(I) 7.9 0.0192 0.0159 0.0165 2.2 1.21

HRAO 39.1(I) 12.0 0.0225 0.0114 — 0.6 1.98

HOB2 40.5(I) 15.5 0.0240 0.0098 0.0139 1.2 2.44

TWTF 44.6(I) 9.8 0.0179 0.0108 0.0109 1.2 1.66

ALGO 45.3(I) 6.5 0.0108 0.0057 0.0058 1.0 1.89

BREW 55.3(I) 23.5 0.0153 0.0094 — 1.8 1.63

KOUR 241.1(I) 20.0 0.0266 0.0159 0.0159 2.5 1.67

MEDI 342.2(I) 18.0 0.0177 0.0092 — 4.6 1.90

IRKJ 416.2(I) 55.1 0.0178 0.0152 — 14.2 1.17

KOKV 982.7(E) 33.9 0.0198 0.0173 — 8.5 1.14

The IGS/CODE/ESA clock RINEX files were used for generating the σSTD and σemprel

plot may be a safe way to stabilize the kinematic solutions in the vertical direction. The

improvement that can be reached depends heavily on the clock quality. Clocks with an

unstable or unknown behavior are not suitable for clock modeling. Constraining such

clocks may lead to much worse results. It should be mentioned that very strong and

unrealistic weights for relative constraints (σrel ≪ 2 mm) may also make things worse

even for very stable H-masers (see Figure A.7). The reason for this may be related to the

noise level of the observations and the simultaneous estimation of other parameters (e.g.,

troposphere parameters). Apart from that, real clock variations may not be adequately

modeled with too strong clock constraints. Looking carefully at Table A.1 we can see

that the improvement factor f that can be achieved in the repeatability of the kinematic

height estimates is not a simple function of the clock quality given by the deviations from

a straight line (σSTD) or the size of the epoch-to-epoch clock differences as defined by

σemprel. Besides σSTD and σemprel other factors like multipath, antenna environment seem

to play a major role, too. A bad observation geometry or a limited number of the phase

observations may strongly degrade the kinematic estimates in the case no clock constraint
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is applied (e.g. YELL in Table A.1). The relative sigma between subsequent and near-

subsequent epochs σrel,n (see Equation A.4) derived from the CODE clock records and the

optimal relative clock constraints that we obtained here (see Table A.1) do not necessarily

correspond to the real clock behavior. They are also influenced by the measurement noise,

the antenna environment, multipath and troposphere variations.

Let us have a look now at the optimal values for the relative constraints over a longer

time period. Figure A.8a shows these optimal values for five very stable H-masers for all

days in February 2011. The variations for an individual clock strongly depend on the clock

behavior on the corresponding day. For most of the days in February 2011 the best σrel

values are smaller than 2 mm (6.7 ps), while some outliers can also be observed. Taking the

H-maser clock at station YELL (YELL CACS-GSD, Yellowknife, Canada), for example,

two outliers on February 6, 2011 and February 25, 2011 can be observed in Figure A.8a,

indicating an unstable clock behavior. For comparison, Figure A.8b shows σemprel (see

Equation A.6) based on the CODE clock RINEX files for the H-maser at station YELL

in February 2011. We see that the days with a high value of σemprel correspond to the

outliers in Figure A.8a. Very strong constraints on clock parameters on these 2 days would

lead to a degradation of the positioning results.

Figure A.9 shows the relationship between the clock quality (σemprel and σSTD) and the

improvement factor f of the kinematic height estimates with a relative clock constraint of

2 mm. The IGS/CODE/ESA clock records of the H-Masers listed in Table A.1 in February

2011 were used for the plots. We see that the number of improvement factors below 1

increases with an increasing σemprel and σSTD. For the clocks with σemprel < 15 ps and

σSTD < 50 ps, the improvement factors are in 98% of the time above 1, thereof 49% above

1.5.
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Figure A.8: The optimal relative sigma σrel for (a) five very stable H-masers in February 2011

and (b) the empirical relative sigma σemprel for the H-maser at station YELL during

February 2011
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Figure A.9: Relationship between the improvement factors f with a relative clock constraint of

2 mm and (a) the empirical relative sigma σemprel and (b) the standard deviation from

a linear polynomial σSTD using the IGS/CODE/ESA clock records of 16 H-Masers in

February 2011

In order to analyze the variations in kinematic heights over various time intervals, the

MDEV of the kinematic height estimates for station ONSA on February 1st, 2011 using

different stochastic clock models were computed (see Figure A.10). The black line indi-

cates the MDEV of the kinematic height estimates obtained without any relative clock

constraints. The magenta and the blue line corresponding to epoch-to-epoch relative

constraints of 1.2 mm (4 ps) and the three-epoch constraints, respectively, show huge im-

provements in precision of the kinematic height estimates ranging from 5 min to about

3 h. It can also be seen that the quality of the kinematic height estimates is somewhat

degraded for time intervals between approximately 30 min and 3 h compared to the slope

of -1 for typical flicker noise (blue dashed line). Since the ZPDs were estimated with a

time resolution of 2 h, this limited time resolution might be the cause of this degradation.

To verify this, different sampling intervals for the ZPD parameters were tested. The re-

sulting MDEV of kinematic height estimates for ONSA are shown in Figure A.11 applying

(a) no clock constraints or (b) relative constraints of 2 mm (6.7 ps) between subsequent

clock parameters. Compared to the slope of -1 for typical flicker noise in the MDEV

(see blue dashed line in Figure A.11b), obvious deviations can be observed for long time

intervals. By decreasing the sampling intervals of the ZPD parameters, these deviations

are considerably reduced, showing that the modeling deficiencies due to the insufficient

time resolution of the troposphere parameters deteriorate the kinematic height estimates

for large averaging times. The cases with a ZPD time resolution higher than 60 min are

overwritten by the 60 min case. This means that no degradation of the kinematic heights

takes place even if a 15 min time resolution for the ZPDs is used. the relative clock con-

straints thus allow for a higher temporal resolution of the troposphere parameters, which
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Figure A.10: MDEV of kinematic height estimates for station ONSA using different relative con-

straints on February 1st, 2011

may be advantageous in the case of fast changing weather conditions. In contrast, in the

case without applying relative clock constraints (see Figure A.11a), the increase in the

number of ZPDs eventually (15 min ZPD resolution) leads to a degradation of the kine-

matic height estimates at averaging intervals below about 1 h. An offset can generally be

observed between Figure A.11a, b. It shows the positive effect of an appropriate relative

clock constraint on the kinematic height estimates.

Experiments have also been performed with respect to even stronger relative constraints,

e.g., 1.2 mm (4 ps), which corresponds to the optimal σrel for the H-maser at ONSA

(see Figure A.10). However, the benefits from changing the sampling interval of ZPD

parameters are not obvious any more. The improvements are very similar to the case

using a constraint of 2 mm (6.7 ps) and a 60 min ZPD interval.

Estimation of kinematic station coordinates with simulated data

In order to verify the results obtained with real data, GPS code and phase observations

on both frequencies were simulated with a pre-defined receiver clock behavior, a phase

observation noise of 2 mm and a code observation noise of 20 cm using a modified version

of Bernese GPS Software 5.0 (Dach et al., 2007). The simulated receiver clocks were

generated with an offset, a drift and the deviations of the H-masers at WSRT (Westerbork

Synthesis Radio Telescope, Westerbork, Netherlands), ONSA and HOB2 (Hobart AU016,

Hobart, Australia) from a linear clock behavior amounting to an RMS of 14.7, 35.3 and

44.3 ps, respectively, on February 1st, 2011. After multiplication with the speed of light,

the RMS of the epoch-to-epoch difference σemprel of these three real clocks amount to

1.9 mm (6.3 ps), 2.9 mm (9.7 ps) and 5.2 mm (17.3 ps), respectively.

106



Stochastic modeling of high-stability ground clocks in GPS analysis

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

10
−5

10
−4

Averaging time, τ [s]

M
D
E
V
σ
(τ
)
[m
/s
]

sampZPD:15min

sampZPD:30min

sampZPD:45min

sampZPD:60min

sampZPD:90min

sampZPD:120min

(a) without σrel

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

10
−5

10
−4

Averaging time, τ [s]

M
D
E
V
σ
(τ
)
[m
/s
]

sampZPD:15min

sampZPD:30min

sampZPD:45min

sampZPD:60min

sampZPD:90min

sampZPD:120min

Slope of −1

(b) with σrel=2mm

Figure A.11: MDEV of kinematic height estimates for ONSA using (a) no relative constraints and

(b) relative constraints of 2 mm between subsequent clock epochs on February 1st,

2011. The troposphere ZPD parameters were set up with different sampling intervals

In Figure A.12 we see the results of the simulations using different relative constraints

for the receiver clocks. Different colors represent different clock qualities. We see that in

this simulated case the stability of the height estimates as a function of the relative clock

constraints behaves very similar to the real data case (see Figure A.7). We also see that

the better the clock quality, the smaller the optimal σrel. The optimal σrel is below 2 mm

(6.7 ps) for stable clocks (with σsimrel = 1.9 mm (6.3 ps) and σsimrel = 2.9 mm (9.7 ps))

and above 2 mm (6.7 ps) for the clock with σsimrel = 5.2 mm (17.3 ps). The blue line

represents the clock with a perfect behavior, i.e., without any stochastic component. For

the perfect clock, the stronger the relative constraints are, the better performance we can

get for the kinematic height estimates, even for very strong constraints.

Summary and conclusions

The kinematic coordinates derived from an PPP solution using phase measurements typ-

ically show an accuracy at cm-level in horizontal and at sub-decimeter level in vertical

direction (Geng et al., 2010). This means that it is more difficult to detect real motions

of a receiver in height than in horizontal positions. This situation can considerably be

changed, if high-stability H-masers are connected to the receiver. Using a simple deter-

ministic model (e.g., a linear polynomial) and relative constraints with an appropriate

weight between subsequent epochs (e.g., 2 mm or 6.7 ps) for such a clock, the kinematic

solutions can be significantly improved in the less accurate vertical direction, namely, by

up to a factor of 2 to 3. The optimal weight for the relative constraints between subse-

quent clock epochs, which leads to the best kinematic solution, depends heavily on the

quality of the clock considered. For very stable H-masers, i.e., for H-masers with a stan-
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Figure A.12: Standard deviation of the kinematic height estimates derived from simulated GPS

data with realistic receiver clock behavior using different relative constraints on sub-

sequent clock parameters. The CODE clock RINEX files were used for simulation of

the receiver clocks

dard deviation lower than 50 ps after removing a linear polynomial and an RMS σemprel

of the epoch-to-epoch clock differences smaller than 15 ps, the optimal relative constraint

typically lies between 0 and 2 mm (0 and 6.7 ps). Taking the 16 investigated H-Masers (see

Table A.1) in February 2011 for example, for all the clocks that have passed the criteria

that are mentioned above (σemprel < 15 ps and σSTD < 50 ps), 98% of the improvement

factors are above 1, 49% thereof above 1.5. It should be noticed that the σemprel derived

from the GPS estimates is noisier than the real clock. It can only be considered as a

measure for the clock quality, but is not directly related to the optimal relative sigma.

Relative constraints between subsequent and near-subsequent epochs using weights de-

rived from the MDEV of clock records available from IGS, CODE or ESA is also a good

and safe choice for stabilizing the kinematic solutions in the vertical direction. In this way,

the stability of the kinematic height estimates can also be improved by up to a factor of

approximately 2 to 3. Taking the 16 investigated H-Masers (see Table A.1) in February

2011 for example, for all the clocks that have passed the criteria that are mentioned above

(σemprel < 15 ps and σSTD < 50 ps), 99% of the improvement factors are above 1, 44%

thereof above 1.5.

It is clear that the improvement in the repeatability of the kinematic heights (i.e. in

changes of the kinematic heights) is roughly limited to time intervals, during which the

receiver clock does not deviate by more than about 50 ps from a linear behavior.

Most benefit from the methods presented here are therefore to be expected in the quan-

tification and detection of small height changes at cm-level over short time intervals (a few

hours to one day). Prominent and important examples are certainly earthquake ground
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motions and displacements, tsunami GPS buoys and land slides, provided that H-Masers

or other clocks of similar performance are getting cheaper and less sensible to the envi-

ronment in the future.

Because of the high correlation of the troposphere zenith delays with the station height

estimates, the sampling intervals used for the ZPD estimation is always a critical issue in

kinematic positioning. Experiments have shown that with an appropriate relative clock

constraint increasing the sampling resolution of the ZPD parameters from 2 h to one or

even half an hour clearly improves the stability of kinematic height estimates. Therefore,

we may expect that clock constraints allow it to estimate troposphere parameters with

a much higher temporal resolution without suffering from the high correlation between

troposphere and heights, an important aspect for the determination of water vapor on

ships or buoys to cover ocean areas.

It should be mentioned that no significant improvements can be obtained in the PPP

solutions applying different clock models, if only one set of coordinates is estimated per day

(Orliac et al., 2012). Tests have also shown that the modeling of the receiver clocks on the

ground does not have a significant impact on GPS orbits and Earth rotation parameters

(ERPs).

In the future, with the progress made in the field of high-performance frequency stan-

dards, more and more stable and cheap clocks will become available and the use of clock

modeling will become more and more important. With the completion of the Galileo con-

stellation in the near future, it will be possible to also make use of very stable satellite

clocks. The stability of such clocks was studied by, e.g., Montenbruck et al. (2012), for

the case of the GIOVE-B satellite carrying a H-Maser. Since receiver clock modeling, as

mentioned above, does not have much effect on global parameters, one can conclude that

making use of the very good receiver clocks improves the receiver-specific parameters (like

heights and ZPDs), whereas global or satellite-specific parameters (like Earth rotation

parameters and satellite orbits) show no or only very small improvements. It is to be ex-

pected in analogy, therefore, that the constraining of the high-performance satellite clocks

will mainly lead to improvement in satellitespecific parameters (e.g. orbital parameters,

decorrelation of orbital parameters and satellite clock corrections). Improved separation

of the highly correlated satellite orbits and satellite clock parameters may help in future

to better assess the deficiencies in the orbit modeling, especially in the solar radiation

pressure models.

In the far future, as the clocks developed for receivers and satellites are getting more and

more stable as described in this paper, the stochastic modeling of clocks over longer and

longer time spans will become an integral task of high-precision GNSS analyses, leading

to improvements in both, receiver- and satellite-specific parameters.
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Abstract

The recent GPS Block IIF satellites SVN62 and SVN63 and the Galileo satellites GIOVE-

A, GIOVE-B, PFM and FM2 already send signals on more than two frequencies, and

more GNSS satellites will provide tracking data on at least three frequencies in the near

future. In this paper, a simplified general method for ambiguity resolution minimizing

the noise level for the triple-frequency geometry-free (GF) and ionosphere-free (IF) linear

combinations is presented, where differently scaled code noise on the three frequencies

was introduced. For the third of three required linear combinations, the most demanding

one in triple-frequency ambiguity resolution, we developed a general method using the

ambiguity-corrected phase observations without any constraints to search for the optimal

GF and IF linear combination. We analytically demonstrate that the noise level of this

third linear combination only depends on the three frequencies. The investigation concern-

ing this frequency-dependent noise factor was performed for GPS, Galileo and Compass

frequency triplets. We verified the theoretical derivations with real triple-frequency GPS

and Galileo data from the Multi-GNSS Experiment (M–GEX) of the International GNSS

Service (IGS). The data of about 30 M–GEX stations around the world over 11 days from

29 April 2012 to 9 May 2012 were used for the test. For the third linear combinaton

using Galileo E1, E5b and E5a, which is expected to have the worst performance among

all the GNSS frequency triplets in our investigation, the formal errors of the estimated

ambiguities are in most cases below 0.2 cycles after 400 observation epochs. If more GPS

satellites sending signals on three frequencies or more stations tracking Galileo E6 signal

are available in the future, an improvement by a factor of two to three can be expected.

Keywords: Triple-frequency ambiguity resolution; Geometry-free and ionosphere-free;

Linear combination; GNSS
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Introduction

Nowadays, different GNSS already provide or will provide their tracking data on three or

even four frequencies. It is, thus, interesting to exploit the advantages of the increasing

number of frequencies and search for geometry-free (GF) and ionosphere-free (IF) linear

combinations with minimized noise. Hatch (2006) introduced a method for obtaining

triple-frequency GF, refraction-corrected, ambiguity-resolved carrier-phase measurements.

Feng et al. (2007) provided a model using the differences between geometry-based (GB),

i.e. the geometry-related terms were preserved, triple-frequency code observations and

GB triple-frequency phase observations to form geometry-free linear combinations, and

their differences were investigated with respect to their ionospheric refractions and noise

levels. Recently, Henkel and Günther (2012) introduced a more general method that uses

simultaneously multi-frequency code and phase observations allowing an arbitrary scaling

of the geometry, the ionospheric delay and the minimized noise level. The code noise on the

three frequencies was assumed to be scaled according to the Cramer Rao bounds (CRB)

(Henkel and Günther, 2012). In this paper here, we present a simplified method for GF and

IF linear combinations using simultaneously triple-frequency code and phase observations

with different sets of scaling factors for the code noise. For given integer coefficients of the

three ambiguities, the optimized combination with the minimized combined noise can be

expressed as a function of the three frequencies and the scaling factors of the code noise on

the three frequencies. Different sets of scaling factors were tested with real triple-frequency

Galileo data.

The GF and IF linear combination is useful especially for the case of long baselines (e.g.

a global network), where the first-order term of the ionospheric delays cannot be fully

eliminated, and for the case of Wide Area Real Time Kinematics (WARTK) measurements,

where the geometry-related information such as the orbits, the clocks and the troposphere

parameters are not available precisely enough and sometimes need to be estimated. In the

case of Precise Point Positioning (PPP), the method can only be used when the satellite-

and receiver-related biases are stable enough and can be estimated before the ambiguity

resolution.

In order to solve the ambiguities, three linearly independent combinations are necessary.

Various studies have been done in recent years to find the third GF and IF linear combina-

tion with acceptable noise. The ambiguity-corrected phase observations were used instead

of the code observations to significantly reduce the noise level of the combination, and

three sets of GB phase linear combinations were proposed to form a geometry-free linear

combination (Li et al., 2010). Apart from that, Li et al. (2012) established a GF and IF

approach for narrow-lane ambiguity resolution. In this study here, a more general method

using ambiguity-corrected phase observations is used to form the third linear combination.

It is analytically demonstrated that the noise level after combination is only a function of

the three frequencies. This frequency-dependent factor is investigated for different GNSS.
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The Galileo combination using E1, E6 and E5a has the smallest frequency-dependent

factor and the best behavior among all the systems.

The theoretical derivations were verified with real data. The data were processed for 11

days in 2012 and the fractional parts and formal errors of the estimated ambiguities for

all the three linear combinations were investigated.

GF and IF triple-frequency linear combinations

Ignoring hardware delays, multipath errors and higher-order terms of the ionospheric

refraction, the code and phase observation equations of a specific carrier frequency on the

zero-difference level can be described as follows:

Pi = ρ+ I1 ·
f2
1

f2
i

+ δtro + c · δr − c · δs + ǫP ,

Li = ρ− I1 ·
f2
1

f2
i

+ δtro + c · δr − c · δs + λi · ni + ǫL, (B.1)

where Pi and Li represent the code and phase observation on frequency fi, respectively.

The symbol ρ is the distance from the satellite at the epoch of transmission to the receiver

at the epoch of reception. δtro, δr and δs stand for the tropospheric delay, receiver clock

correction and satellite clock correction, respectively. I1 is the first-order term of the

ionospheric refraction on carrier L1 and c is the speed of light. ǫP and ǫL stand for the

code and phase observation errors, respectively. λi represents the wavelength of the signal

on frequency fi and ni represents the ambiguity on frequency fi.

If the phase and code observations are available on three frequencies, it is possible to

generate linear combinations that are both, GF and IF, i.e. they eliminate all geometry-

related terms and the first-order ionospheric refraction. With the help of Equation B.1, the

most general linear combination that can be formed using the code and phase observations

on three carrier frequencies is given by:

Lx = γ1L1 + γ2L2 + γ3L3 + γ4P1 + γ5P2 + γ6P3

= (γ1 + γ2 + γ3 + γ4 + γ5 + γ6)(ρ+ δtro + cδr − cδs)

+(γ4 +
f2
1

f2
2

γ5 +
f2
1

f2
3

γ6 − γ1 −
f2
1

f2
2

γ2 −
f2
1

f2
3

γ3)I1

+(γ1λ1n1 + γ2λ2n2 + γ3λ3n3) + ǫ, (B.2)

where Lx is the combined observation. γi (i = 1, · · · , 6) represent the weighting coefficients

of the three phase and the three code observations. ǫ stands for the observation error after

combination.
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The combined ambiguity nx, which is a linear combination of the ambiguities n1, n2

and n3, has to be an integer for ambiguity resolution purposes:

λxnx = γ1λ1n1 + γ2λ2n2 + γ3λ3n3 = λx(ax · n1 + bx · n2 + cx · n3), (B.3)

where λx represents the wavelength after combination. ax, bx and cx are integer coefficients

of the phase combinations on three frequencies.

As a result of Equation B.3, we obtain the following relationships between the weighting

coefficients γ1, γ2 and γ3 and the integer coefficients ax, bx and cx (Henkel and Günther,

2010):

γ1 =
axf1
fx

, γ2 =
bxf2
fx

, γ3 =
cxf3
fx

. (B.4)

Compared to the method, where a GB code combination is subtracted from a GB phase

combination (Feng et al., 2007), the general combination described above has the advan-

tage of being more general and not losing any degrees of freedom. Apart from that, the

weighting coefficients γ4, γ5 and γ6 of the code observations do not have to follow the same

relationship as those of the phase observations (see Equation B.4).

In order to generate a GF linear combination, the factor appearing before the geometry-

related terms (see Equation B.2) has to be zero. Using Equation B.4, the following equa-

tion for the weighting coefficients γ4, γ5 and γ6 of the code observations can be derived:

axf1 + bxf2 + cxf3
fx

+ γ4 + γ5 + γ6 = 0. (B.5)

An IF linear combination requires the factor before I1 (see Equation B.2) to be zero. With

the help of Equation B.4, the following equation can be derived:

γ4 +
f2
1

f2
2

γ5 +
f2
1

f2
3

γ6 =
f1
fx

(ax + bx
f1
f2

+ cx
f1
f3

). (B.6)

With Equations B.5 and B.6, the code weighting coefficients γ4 and γ5 can be expressed

as functions of γ6:

γ4 =
m1

fx
+m2γ6, γ5 =

m3

fx
+m4γ6, (B.7)

with

m1 =
f1((f

2
1 + f2

2 )f3ax + 2f1f2f3bx + (f2
2 + f2

3 )f1cx)

f3(f2
2 − f2

1 )
,

m2 = −f2
1 (f

2
2 − f2

3 )

f2
3 (f

2
2 − f2

1 )
,

m3 =
f2((f

2
1 + f2

2 )f3bx + 2f1f2f3ax + (f2
1 + f2

3 )f2cx)

f3(f2
1 − f2

2 )
,

m4 = −f2
2 (f

2
1 − f2

3 )

f2
3 (f

2
1 − f2

2 )
,

where m1 and m3 are functions of the three frequencies and the integer coefficients ax, bx

and cx with the characteristicsm1(−ax,−bx,−cx) = −m1(ax, bx, cx) andm3(−ax,−bx,−cx)

= −m3(ax, bx, cx). m2 and m4 are just functions of the three carrier frequencies f1, f2

and f3.
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Minimizing the noise level of the GF and IF triple-frequency linear

combinations

Henkel and Günther (2012) has introduced a general method to minimize the noise level

of the multi-frequency code carrier linear combinations. In this section, an algorithm

limited to triple-frequency GF and IF linear combinations is discussed. The results of

this algorithm for different frequency triplets using different scaling factors for the code

noise are shown in Section “The best GF and IF triple-frequency linear combinations for

different GNSS frequency triplets”.

Since the code observation noise is dominant in the combined noise, the minimal code

observation noise after combination is of great interest. Assuming that the code noise on

the three carrier frequencies σP1, σP2 and σP3 can be formulated with three scaling factors

C4, C5 and C6 and an unscaled code observation noise σP in meters:

σP1 = C4σP , σP2 = C5σP , σP3 = C6σP , (B.8)

the so-called code noise amplification factor NCode can be formulated as follows:

NCode =
√

C2
4γ

2
4 + C2

5γ
2
5 + C2

6γ
2
6 =

√

C2
4 (

m1

fx
+m2γ6)2 + C2

5 (
m3

fx
+m4γ6)2 + C2

6γ
2
6

=

√

(m2
2C

2
4 +m2

4C
2
5 + C2

6 )(γ6 +
m1m2C2

4 +m3m4C2
5

fx(m2
2C

2
4 +m2

4C
2
5 + C2

6 )
)2 +

1

f2
x

NMIN , (B.9)

with

NMIN = m2
1C

2
4 +m2

3C
2
5 − (m1m2C

2
4 +m3m4C

2
5 )

2

m2
2C

2
4 +m2

4C
2
5 + C2

6

=
(m1m4 −m2m3)

2C2
4C

2
5 +m2

1C
2
4C

2
6 +m2

3C
2
5C

2
6

m2
2C

2
4 +m2

4C
2
5 + C2

6

≥ 0,

and the combined code noise σC
Code expressed in cycles of λx can be formulated as:

σC
Code = NCode

σP
λx

= NCode
σP fx
c

(B.10)

=
σP
c

√

(m2
2C

2
4 +m2

4C
2
5 + C2

6 )f
2
x(γ6 +

m1m2C2
4 +m3m4C2

5

fx(m2
2C

2
4 +m2

4C
2
5 + C2

6 )
)2 +NMIN .

Equation B.10 shows that both, the code noise amplification factor NCode and the

combined code noise σC
Code, are the square root of a quadratic polynomial in γ6, and are

minimal, if

γ6 = − m1m2C
2
4 +m3m4C

2
5

(m2
2C

2
4 +m2

4C
2
5 + C2

6 )fx
. (B.11)

In this case, we have

σC
Code =

σP
c

√

NMIN , (B.12)
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where the value NMIN is independent of the combined frequency fx. Expressed in another

way, the minimal σC
Code can be determined, when the integer coefficients ax, bx and cx for

the phase observations and the scaling factors C4, C5 and C6 are given. At the same time,

all six weighting coefficients γi (i = 1, · · · , 6) are given up to a common factor fx (see

Equations B.4, 7 and 11), that does not affect NMIN .

The phase noise plays only a secondary role compared to the code noise, but it still

needs to be considered. Assuming that the phase observation noise is identical in either

meters or cycles for all the three frequencies, it turns out that the combined phase noise

σC
Phase in cycles is also independent of the combined frequency fx:

σC
Phase =

√

γ21 + γ22 + γ23 · σL
λx

=

√

a2xf
2
1 + b2xf

2
2 + c2xf

2
3 · σL

c
, or

σC
Phase =

√

γ21λ
2
1 + γ22λ

2
2 + γ23λ

2
3 · σC

L

λx
= σC

L

√

a2x + b2x + c2x, (B.13)

where σL and σC
L represent the phase observation noise of the three carrier frequencies in

meters and in cycles, respectively.

The entire combined noise σC in cycles is, thus, also independent of the combined

frequency fx and can be formulated as:

σC =
√

(σC
Code)

2 + (σC
Phase)

2. (B.14)

To eliminate receiver and satellite electronic delays, typically double differences are

formed for ambiguity resolution. Assuming that the linearly combined measurements

have a white noise, the formal errors σCD
Amb (in cycles) of the ambiguity estimates on the

double-difference level decrease inversely proportional to the square root of the number of

observation epochs n:

σCD
Amb =

2
√

(σC)2 + (σC
MP )

2

√
n

, (B.15)

where σC
MP represents the multipath errors in cycles for each station. In Equation B.15

it is assumed that both stations have uncorrelated code and phase noise and multipath

errors. The factor of two in Equation B.15 results from forming of double-differences.

With the assumption that the observation noise has a normal (Gaussian) distribution,

the probability for correct ambiguity-fixing, namely the success rate, can be calculated

according to Wang et al. (2004):

PD
correct = P (|x| < 1

2
) = P (|z| < 1

2σCD
Amb

), (B.16)

where PD
correct represents the probabilities for a correct ambiguity-fixing on the double-

difference level, and x and z stand for the unnormalized and normalized fractional parts

of the ambiguity estimates in cycles, respectively.
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The probability of correctly fixing the ambiguity is then calculated with the cumulative

distribution function of the standardized normal distribution Φ(m):

P (|z| < m) = Φ(m)− (1− Φ(m)) = 2Φ(m)− 1, (B.17)

with

Φ(m) =
1

2
(1 + erf(

m√
2
)),

where erf is the error function, and m stands for 1
2(σCD

Amb
)
in our case.

The best GF and IF triple-frequency linear combinations for different GNSS

frequency triplets

To find the IF and GF triple-frequency combinations for GPS signals at L1 (f1 = 1575.42

MHz), L2 (f2 = 1227.6 MHz) and L5 (f3 = 1176.45 MHz) with the lowest σC in cycles,

the integer coefficients ax, bx and cx were varied in the range of -10 to +10. A phase

observation noise of σL = 0.01 cycles was assumed. For the code observation noise, two

different sets of scaling factors C4, C5 and C6 were tested. The first set assumes an

identical noise level of σP = 0.5 m for all three frequencies (C4 = C5 = C6 = 1). The

best four combinations resulting in this case are listed in the top part of Table B.1. The

second set uses scaling factors according to the CRB (Henkel and Günther, 2012) with

σP = 2 m, C4 = C5 = 0.2592 and C6 = 0.0783 leading to the four combinations given in

the bottom part of Table B.1. The entire combined noise values σC and σC
CRB in cycles for

these two cases are shown in the sixth column of Table B.1. The six weighting coefficients

γi(i = 1, · · · , 6) are listed in the third, fourth and fifth column. The wavelength of the

linear combinations was set to 1 m. The success rates on the double-difference level with

1 and 10 observation epochs for these two cases are documented in the last two columns.

The combinations with opposite signs for ax, bx and cx, which deliver the same σC and

σC
CRB, are not listed in Table B.1.

The triple-frequency combinations using code and phase observations simultaneously

are not only eliminating the first-order term of the ionospheric refraction and all the

geometry-related terms, but they are also reducing the code noise significantly. Compared

to the Melbourne-Wübbena combination for double frequencies, which leads to a noise of

σC = 0.4136 cycles with the assumption that the code and phase noise equals 0.5 m and

0.01 cycles, respectively, we can benefit more from the triple-frequency linear combinations

such as (0,-1,1) with σC = 0.0615 cycles and (1,-4,3) with σC = 0.3517 cycles. We can

also see that σC
CRB for the linear combination (0,-1,1) is much smaller than σC , because

the observation noise assumed for L5 is much smaller. However, for the other linear

combinations, σC
CRB does not seem to benefit a lot from this smaller noise on L5.

Apart from GPS, the Galileo system will provide signals at E1 (1575.42 MHz), E6

(1278.75 MHz), E5b (1207.14 MHz), E5 (1191.795 Hz) and E5a (1176.45 MHz), and the
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Table B.1: IF and GF triple-frequency combinations for GPS with small combined noise

ax, bx, cx γi(i = 1, · · · , 6) σC&σC
CRB PD

correct [%]

[cycles] n=1 n=10

C4 = C5 = C6 = 1

0, -1, 1 γ1,2,3 0.0000 -4.0948 3.9242 0.0615 100.0 100.0

γ4,5,6 0.0021 0.0759 0.0926

1, -4, 3 γ1,2,3 5.2550 -16.3793 11.7726 0.3517 52.28 97.54

γ4,5,6 -0.6880 -0.0521 0.0917

1, -3, 2 γ1,2,3 5.2550 -12.2845 7.8484 0.3529 52.13 97.49

γ4,5,6 -0.6901 -0.1280 -0.0009

1, -5, 4 γ1,2,3 5.2550 -20.4742 15.6969 0.3612 51.12 97.14

γ4,5,6 -0.6859 0.0238 0.1844

C4 = C5 = 0.2592 C6 = 0.0783

0, -1, 1 γ1,2,3 0.0000 -4.0948 3.9242 0.0284 100.0 100.0

γ4,5,6 0.0136 0.0132 0.1438

1, -6, 5 γ1,2,3 5.2550 -24.5690 19.6211 0.3551 51.86 97.40

γ4,5,6 -0.6493 -0.0878 0.4299

1, -7, 6 γ1,2,3 5.2550 -28.6638 23.5453 0.3560 51.75 97.36

γ4,5,6 -0.6356 -0.0746 0.5737

1, -5, 4 γ1,2,3 5.2550 -20.4742 15.6969 0.3564 51.69 97.34

γ4,5,6 -0.6629 -0.1010 0.2862

Chinese Compass system will also transmit multi-frequency signals. The combinations for

Galileo, named GalileoA (E1, E6 and E5b), GalileoB (E1, E6 and E5), GalileoC (E1, E6

and E5a) and GalileoD (E1, E5b and E5a), as well as the triple-frequency combination for

Compass-III (B1 at 1575.42 MHz, B3 at 1268.52 MHz and B2 at 1191.795 MHz) (Li et al.,

2012) were investigated with respect to their noise values. The phase observation noise is

set to be 0.01 cycles, while the code observation noise is set to be σP = 0.5 m with scaling

factors C4 = C5 = C6 = 1 for the first case and σP = 2 m with scaling factors proportional

to the CRB for the second case. The CRB for the Galileo signals are 11.14 cm for E1,

1.95 cm for E5, 7.83 cm for E5a and E5b and 11.36 cm for E6 (Henkel and Günther, 2012).

For each system, the two linear combinations with the lowest combined noise are listed in

Table B.2.

We see that for all investigated GNSS, the combined ambiguities can be rounded to the

nearest integers with high success rates after only about 10 observation epochs. Looking

at the second best linear combination, Compass-III and most of the Galileo combinations

show a better performance than GPS. The σC
CRB is generally much smaller than σC ,

because the code observation noise assumed in the case of CRB is much smaller than
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Table B.2: IF and GF triple-frequency linear combinations for different GNSS with small combined

noise

ax, bx, cx σC PD
correct [%] ax, bx, cx σC

CRB PD
correct,CRB [%]

[cycle] n=1 n=10 (CRB) [cycle] n=1 n=10

GalileoA (E1, E6 and E5b)

0, -1, 1 0.0844 99.70 100.0 0, -1, 1 0.0323 100.0 100.0

1, -3, 2 0.3023 59.17 99.11 1, -3, 2 0.1370 93.19 100.0

GalileoB (E1, E6 and E5)

0, -1, 1 0.1014 98.63 100.0 0, -1, 1 0.0195 100.0 100.0

1, -2, 1 0.3061 58.58 99.02 1, -5, 4 0.1279 94.94 100.0

GalileoC (E1, E6 and E5a)

0, -1, 1 0.1182 96.56 100.0 0, -1, 1 0.0431 100.0 100.0

1, -2, 1 0.3068 58.49 99.00 1, -2, 1 0.1379 93.02 99.64

GalileoD (E1, E5b and E5a)

0, -1, 1 0.0388 100.0 100.0 0, -1, 1 0.0181 100.0 100.0

1, -5, 4 0.3697 50.12 96.75 1, -3, 2 0.1686 86.18 100.0

Compass-III (B1, B3 and B2)

0, -1, 1 0.0901 99.45 100.0

1, -3, 2 0.3148 57.29 98.80

σP = 0.5 m. As long as we do not know the real noise level of the triple-frequency

observations, it is hard to decide which of the two selections of scaling factors is more

suitable for minimizing the combined noise level of the linear combinations. Therefore,

both selections were tested with real data (see Section “Verification with real data”).

Resolving ambiguities on the three carrier frequencies

In order to resolve all three ambiguities n1, n2 and n3, three linearly independent linear

combinations are required. It is hard, however, to find a third linear combination, be-

cause all the combinations with relatively low noise are linearly dependent on the first

two combinations given in Tables B.1 and B.2. For this reason, significant research has

been performed in recent years to form a third linear combination with relatively low

noise. In this section, the results of such an investigation are shown using a general linear

combination of the phase observations on three carrier frequencies.

The resolved combined ambiguities from the first two linear combinations, nx and ny,
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are introduced as known into the third linear combination with the ambiguity named nz:

nx = axn1 + bxn2 + cxn3, ny = ayn1 + byn2 + cyn3,

nz = azn1 + bzn2 + czn3

=
bzcy − czby
bxcy − cxby

nx +
bzcx − czbx
bycx − cybx

ny +Q(az, bz, cz)n1, (B.18)

with

Q(az, bz, cz) = az − ax
bzcy − czby
bxcy − cxby

− ay
bzcx − czbx
cxby − bxcy

.

This means that the integer coefficients az, bz and cz of the third linear combination

do not necessarily have to be integers; only a linear combination of az, bz and cz, here

called Q(az, bz, cz), has to be integer. Because the third linear combination is linearly

independent of the first two, the integer Q(az, bz, cz) is not allowed to be zero.

If the integer coefficients of the first two linear combinations have the pattern (u, v,−(u+

v)) as listed in Tables B.1 and B.2 (see also the pattern found by Cocard et al. (2008)

for the promising triple-frequency GF carrier phase linear combinations), the function

Q(az, bz, cz) always equals az + bz + cz, which means az + bz + cz has to be an integer. Let

us call this integer I:

I = az + bz + cz. (B.19)

In order to further reduce the noise, the so-called ambiguity-corrected phase observations

from the first two linear combinations can be used instead of the code observations (Li

et al., 2010). The phase observations on the three carriers f1, f2 and f3, and both of the

ambiguity-corrected combined phase observations L̃x and L̃y are again combined linearly:

Lz = γz1L1 + γz2L2 + γz3L3 + q1L̃x + q2L̃y, (B.20)

with

L̃x = γx1L1 + γx2L2 + γx3L3 − nxλx, and

L̃y = γy1L1 + γy2L2 + γy3L3 − nyλy,

where γxi, γyi and γzi (i=1,2,3) represent the phase weighting coefficients for the three

linear combinations, respectively. q1 and q2 stand for the weighting coefficients of the

ambiguity-corrected phase observations from the first two linear combinations. It should

be noted that the ambiguity-corrected phase observations L̃x and L̃y are neither GF nor

IF.

In order to generate an IF and GF combination according to Equation B.20, the following

two criteria must be fulfilled (see Equations B.4, B.5 and B.6):

gz
fz

+ q1
gx
fx

+ q2
gy
fy

= 0, (B.21)

with

gi = aif1 + bif2 + cif3, i = x, y, z,
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and
hz
fz

+ q1
hx
fx

+ q2
hy
fy

= 0, (B.22)

with

hi = ai + bi
f1
f2

+ ci
f1
f3

, i = x, y, z.

The parameters q1 and q2 can be calculated as

q1 =
fx(gyhz − gzhy)

fz(gxhy − gyhx)
, q2 = −fy(gxhz − gzhx)

fz(gxhy − gyhx)
. (B.23)

In order to calculate the entire combined noise, Equation B.20 can then be expressed

based only on the phase observations on the three frequencies:

Lz = (γz1 + q1γx1 + q2γy1)L1 + (γz2 + q1γx2 + q2γy2)L2

+(γz3 + q1γx3 + q2γy3)L3 − q1nxλx − q2nyλy. (B.24)

Assuming that the phase observation noise on the three carriers is identical and amounts

to σL in meters or σC
L in cycles, the entire combined noise σC

z in cycles of λ1 (see Equa-

tions B.18, B.19 and B.24) for the third linear combination can then be calculated as:

σC
z =

fz · σL
√

saf2
1 + sbf

2
2 + scf2

3

|I| · c , or

σC
z =

fz · σC
L

√
sa + sb + sc
|I| , (B.25)

with

sa = (
az
fz

+ q1
ax
fx

+ q2
ay
fy

)2,

sb = (
bz
fz

+ q1
bx
fx

+ q2
by
fy

)2,

sc = (
cz
fz

+ q1
cx
fx

+ q2
cy
fy

)2.

Inserting Equation B.23 into B.25 we obtain the equations

sa =
pa
f2
z

, sb =
pb
f2
z

, sc =
pc
f2
z

, (B.26)

with

pa = (az + ax
gyhz − gzhy
gxhy − gyhx

− ay
gxhz − gzhx
gxhy − gyhx

)2,

pb = (bz + bx
gyhz − gzhy
gxhy − gyhx

− by
gxhz − gzhx
gxhy − gyhx

)2,

pc = (cz + cx
gyhz − gzhy
gxhy − gyhx

− cy
gxhz − gzhx
gxhy − gyhx

)2,
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where pa, pb and pc are functions of the three carrier frequencies f1, f2 and f3 and the

integer coefficients ai, bi and ci (i = x, y, z). They are independent of the three combined

frequencies fx, fy and fz.

Inserting Equation B.26 into B.25, we obtain:

σC
z =

σL
√

paf2
1 + pbf

2
2 + pcf2

3

|I| · c , or

σC
z =

σC
L

√
pa + pb + pc

|I| . (B.27)

We see that σC
z (in cycles of λ1) is independent of the combined frequencies fx, fy and

fz. From Equations B.18, B.19 and B.23, it is not hard to get:

gi(−ai,−bi,−ci) = −gi(ai, bi, ci), hi(−ai,−bi,−ci) = −hi(ai, bi, ci),

pa(−ai,−bi,−ci) = pa(ai, bi, ci),

pb(−ai,−bi,−ci) = pb(ai, bi, ci),

pc(−ai,−bi,−ci) = pc(ai, bi, ci), i = x, y, z. (B.28)

As a result, σC
z will not be affected, if all the signs of the integer coefficients ai, bi and

ci are changed simultaneously:

σC
z (−ai,−bi,−ci) = σC

z (ai, bi, ci). (B.29)

Equation B.27 can also be formulated with the phase observation noise and a noise

factor µ or µC :

σC
z = σL · µ = σC

L · µC , (B.30)

with

µ :=

√

paf2
1 + pbf

2
2 + pcf2

3

|I| · c , µC :=

√
pa + pb + pc

|I| .

If the integer coefficients (ax, bx, cx) and (ay, by, cy) of the first two linear combinations

follow the pattern (u, v, −(u+ v)) as in Table B.1 and B.2, the noise factors µ and µC are

independent of the integer coefficients ai, bi and ci (i = x, y, z). This conclusion agrees

with the results of Li et al. (2010). We get

µ =

√

f4
1 (f

2
2 − f2

3 )
2 + f4

2 (f
2
1 − f2

3 )
2 + f4

3 (f
2
1 − f2

2 )
2

|(f1 − f2)(f1 − f3)(f2 − f3)| · c
,

µC =

√

f2
1 (f

2
2 − f2

3 )
2 + f2

2 (f
2
1 − f2

3 )
2 + f2

3 (f
2
1 − f2

2 )
2

|(f1 − f2)(f1 − f3)(f2 − f3)|
. (B.31)

σC
z (in cycles of λ1) was calculated for different GNSS frequency triplets with a pre-

defined phase observation noise σL = 5 mm or σC
L = 0.01 cycles. The results are shown

in Table B.3. The second and the fourth column list σC
z with σL = 5 mm and σC

L =
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0.01 cycles, while the third and fifth column document the corresponding noise factors µ

and µC . We see that the third linear combinations of Compass-III, GalileoA, GalileoB and

GalileoC reach a lower noise factor than GPS. The noise factors µ and µC for GalileoC

with E1, E6 and E5a are about 40% smaller than those for GPS.

The formal errors of the n1 ambiguity estimates decrease with an increasing number of

observation epochs (see Equation B.15). Figure B.1 (top) shows the formal errors σCD
Amb

of the n1 ambiguity estimates on the double-difference level for different GNSS frequency

triplets ignoring the multipath errors because of the low weighting coefficients of the

code observations (see Table B.1). The noise level of the phase observations is set to be

σC
L = 0.01 cycles. We immediately see that the combinations GalileoA, GalileoB, GalileoC

and Compass-III show an even better behavior than GPS. For GalileoC (black line) σCD
Amb is

lower than 0.2 cycles after 213 epochs and reaches about 0.13 cycles after 500 epochs. The

formal errors of the n1 ambiguity estimates are also directly related to the success rates

(see Equation B.16) of the ambiguity resolution, which are shown in Figure B.1 (bottom)

with σL = 0.01 cycles. We conclude that under the assumptions made, the success rates

for GalileoB (green line), GalileoC (black line) and Compass-III (yellow line) are above

90% after 200 epochs.

The best linear combination after resolving all three ambiguities

After resolving n1 according to Section “Resolving ambiguities on the three carrier fre-

quencies”, the other two ambiguities n2 and n3 can easily be computed using the resolved

combined ambiguities nx and ny (see Equation B.18). Making use of our knowledge of all

three integers n1, n2 and n3, we are now looking for the best IF and GB linear combination

with minimized noise in meters.

With the help of Equation B.1, the triple-frequency phase linear combination can be

Table B.3: Combined noise and the noise factors of the third linear combination for different GNSS

frequency triplets

σL=5 mm σL=0.01 cycles

σC
z [cycles] µ σC

z [cycles] µC

GPS (L1,L2,L5) 5.0676 1013.5 2.5082 250.8

GalileoA (E1,E6,E5b) 4.5348 907.0 2.1542 215.4

GalileoB (E1,E6,E5) 3.6707 734.1 1.7431 174.3

GalileoC (E1,E6,E5a) 3.0754 615.1 1.4588 145.9

GalileoD (E1,E5b,E5a) 7.9361 1587.2 3.9813 398.1

Compass-III (B1,B3,B2) 3.9918 798.4 1.9123 191.2
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Figure B.1: Formal errors of the n1 ambiguity estimates (top) and the success rates (bottom) as a

function of the number n of observation epochs

formulated as:

LP = γ1L1 + γ2L2 + γ3L3 − (γ1λ1n1 + γ2λ2n2 + γ3λ3n3) (B.32)

= (γ1 + γ2 + γ3)(ρ+ δtro + cδr − cδs)− (γ1 +
f2
1

f2
2

γ2 +
f2
1

f2
3

γ3)I1,

where LP represents the triple-frequency phase linear combination.

Li et al. (2012) have shown that the coefficients γ1, γ2 and γ3 are just functions of

the three frequencies. The minimal combined noise values σMD
min in meters for different

GNSS frequency triplets on the double-difference level are listed in Table B.4 with the

assumption that the phase observation noise is 0.01 cycles on each of the three frequencies.

After resolving the three ambiguities, the minimized noise of the phase GB and IF linear

combination is then about 1 cm for all the investigated GNSS frequency triplets.

Table B.4: Minimized combined noise of the GB and IF linear combination after solving the three

ambiguities in meters on the double-difference level for different GNSS

γ1 γ2 γ3 σMD
min [m]

GPS (L1,L2,L5) 2.3522 -0.4964 -0.8557 0.0102

GalileoA (E1,E6,E5b) 2.5422 -0.4559 -1.0863 0.0113

GalileoB (E1,E6,E5) 2.4510 -0.3679 -1.0831 0.0109

GalileoC (E1,E6,E5a) 2.3604 -0.2875 -1.0729 0.0106

GalileoD (E1,E5b,E5a) 2.3241 -0.5591 -0.7649 0.0101

Compass-III (B1,B3,B2) 2.4521 -0.4159 -1.0362 0.0109
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Verification with real data

The theoretical derivations of the GF and IF triple-frequency linear combinations were

verified with real GPS and Galileo data. The two GPS–IIF satellites PRN01 (SVN63)

and PRN25 (SVN62) are sending signals on the three frequencies f1, f2 and f5 (USNO,

2012). Both of the GIOVE (Galileo In-Orbit Validation Element) satellites, GIOVE–

A and GIOVE–B, and the two Galileo In-Orbit Validation (IOV) satellites (PFM and

FM2), which were launched in October 2011, are also providing signals on more than two

frequencies (NAVSAS Group, 2012). The 24-h Multi-GNSS Experiment (M–GEX) data

(Weber, 2012) with a sampling rate of 30 s were collected for the period 29 April 2012 to

9 May 2012 from the IGS website ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign

/mgex/daily/rinex3/2012 (Noll et al., 2009) in the format RINEX 3.00 (Gurtner, 2007;

Januszewski, 2011). About 30 M–GEX stations were available in this time period (see

Figure B.2).

Fractional parts and formal errors of nx and ny

In order to form double-differenced triple-frequency linear combinations, at least two satel-

lites of each system providing more than two frequencies have to be available. The two

GPS–IIF satellites PRN01 and PRN25 can only be observed simultaneously from two

stations during a short time interval at low elevation angles, while a relatively long over-

lapping time can be found for E11 (Galileo–IOV satellite PFM), E12 (Galileo–IOV satellite

FM2) and E52 (GIOVE–B satellite) in the available M–GEX dataset. Because no signal

on frequency E6 was recorded simultaneously for two stations with a baseline shorter than

1,000 km, the frequency combination GalileoD (E1, E5b, E5a) (see Figure B.1; Tables B.2,

B.3) was used for the processing of Galileo baselines. An elevation mask of 6◦ was set for

all satellites. The observations were weighted with the elevation angle βE according to
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Figure B.2: Multi-GNSS experiment (M–GEX) stations on 29 April 2012
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PZs
r

= sin(βE)
2,

PD =
1

1
P
Z1
1

+ 1
P
Z2
1

+ 1
P
Z1
2

+ 1
P
Z2
2

, (B.33)

where PZs
r
and PD represent the weight of the observations on the zero-difference and

double-difference level.

Figure B.3 shows the fractional parts and the formal errors of the estimated nx and ny

for two Galileo baselines, namely ons1 (Onsala, Sweden) – mar7 (Gavle, Sweden) with a

baseline length of 470 km and brux (Brussels, Belgium) – grab (Graz, Austria) with a

baseline length of 913 km (see Figure B.3a, b) as well as for two GPS baselines ons1–mar7

and kir8 (Kiruna, Sweden) – mar7 with a baseline length of 832 km (see Figure B.3c,

d). Generally speaking, the estimated nx and ny from the first two GF and IF linear

combinations mostly have an absolute fractional part below 0.2 cycles with a formal error

smaller than 0.1 cycles. We see that the formal errors decrease with increasing number of

observation epochs and are mostly below or around the expected values (red line and blue

line; according to Equation B.15) except for some outliers generated by the Galileo baseline

brux–grab. It is not hard to see that for the Galileo linear combinations, the results

generated from baseline brux–grab are generally worse than the results of the baseline

ons1–mar7. The reason certainly is that different tracking modes or channels for the same

frequency (Gurtner, 2007) exhibit biases that do not cancel by double-differencing. In

addition, since different antenna types are part of the baseline brux–grab, Phase Center

Variations (PCVs) may also lead to deviations from integers. It should be noted that

signals were received on the same channels for the Galileo baseline ons1–mar7 (E1X,

E5bX, E5aX), but at different channels for the baseline brux–grab with E1C, E5bQ and

E5aQ for station brux and E1X, E5bX, E5aX for station grab. For the GPS baselines,

the results using the channels (L1C, L2W, L5X) are plotted.

Impact of receiver tracking modes on nx and ny

To have a closer look at the differences in the results caused by using different tracking

channels, the fractional parts and the formal errors of the estimated nx and ny ambiguities

were compared using different tracking channels for both of the GPS baselines. Only

identical ambiguities (same baseline, same day and same number of observation epochs)

were compared and the standard deviations of the absolute fractional parts (see column

2 and 3) and the standard deviations of the formal errors (column 4 and 5) for each

tracking channel combination are listed in Table B.5. We see that the fractional nx of the

combination L1C, L2W and L5X for one station and L1C, L2X and L5X for the other

station are the smallest for the case of 45 epochs, while using channels L1C, L2W and L5X

for both stations seems to be the best choice for 160 epochs. Among different choices of

tracking channels, we did not observe big differences for the formal errors. As expected,
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Figure B.3: Fractional parts (a), (c) and formal errors (b), (d) of the estimated nx and ny for the

Galileo baselines ons1–mar7 and brux–grab and for the GPS baselines ons1–mar7 and

kir8–mar7 from 30 April 2012 to 9 May 2012

the formal errors of the linear combinations with about 160 epochs are generally smaller

than those with only 45 epochs. The scaling factors of the formal errors between the

two cases are bigger than the expected scaling factors
√

160/45 because of the elevation

dependency. For the case of 160 epochs, the elevation angles are generally larger than for

the 45 epoch case. We also see that the real errors (column 2 and 3) are slightly smaller

than the formal errors (column 4 and 5) for the case of 45 epochs and bigger than the

formal errors for the case of 160 epochs. The systematic effects (such as multipath errors)

play a more and more important role as the time interval considered is increasing. A

more concrete investigation concerning the channel combinations will be possible, if more

M–GEX data is available in the future.
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Table B.5: Standard deviations of the absolute values of the fractional parts nx and ny and stan-

dard deviations of their formal errors for different channel combinations with different

numbers of observation epoches

∆nx ∆ny σnx σny

[cycles] [cycles] [cycles] [cycles]

Number of observation epochs: ca. 45

L1C,L2W,L5X - L1C, L2W, L5X 0.0254 0.0932 0.0255 0.1169

L1C,L2X,L5X - L1C, L2X, L5X 0.0190 0.0902 0.0232 0.1180

L1C,L2W,L5X - L1C, L2X, L5X 0.0178 0.0974 0.0247 0.1181

L1C,L2X,L5X - L1C, L2W, L5X 0.0433 0.0866 0.0243 0.1168

Number of observation epochs: ca. 160

L1C,L2W,L5X - L1C, L2W, L5X 0.0082 0.0782 0.0095 0.0425

L1C,L2X,L5X - L1C, L2X, L5X 0.0126 0.0606 0.0087 0.0431

L1C,L2W,L5X - L1C, L2X, L5X 0.0357 0.0541 0.0093 0.0431

L1C,L2X,L5X - L1C, L2W, L5X 0.0198 0.0847 0.0090 0.0425

Scaling factors for the code noise

As discussed in Section “GF and IF triple-frequency linear combinations”, two different

sets of scaling factors for the code observation noise on the three frequencies, namely the

identical scaling factors C4 = C5 = C6 = 1 and the scaling factors according to CRB,

were tested with real data. Since the overlapping time interval for the observation of

the two GPS satellites PRN01 and PRN25 is very short for most of the baselines, only

real data of the Galileo satellites from 29 April 2012 to 9 May 2012 was used for this

analysis. The differences in the formal errors using the two sets of scaling factors (CRB

scaling factors minus identical scaling factors) are shown in Figure B.4. We see that in

most of the cases, using identical scaling factors generates smaller formal errors for the

combined ambiguity ny of the second linear combination, especially for ambiguities ny

with short observation intervals. For the first linear combination, the case using identical

scaling factors is also slightly better than using the CRB scaling factors. This gives a hint

that the actual measurement noise levels of the code observations on different frequencies

should be studied more carefully. In view of the better performance, the ambiguities nx

and ny based on C4 = C5 = C6 = 1 were thus introduced for the analysis of the third

linear combination.
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Figure B.4: Differences of the formal errors for the first two linear combinations using the CRB

and identical scaling factors for Galileo baselines ons1–mar7 and brux–grab from 29

April 2012 to 9 May 2012.

The third linear combination

The linear combinations of the real observation data which were used to fix nx, ny and n1

for the baseline ons1–mar7 and satellites E11 and E52 between 1:09 and 5:08 am on 29

April 2012 are shown in Figure B.5 as an example. The third linear combination LCD
z was

corrected by
bzcy−czby
bxcy−cxby

nx+
bzcx−czbx
bycx−cybx

ny and divided by the integer I (see Equation B.18). We

see that the core problem of triple-frequency ambiguity resolution is fixing the ambiguities

n1 with the third linear combination.

The triple-frequency combinations for the baselines ons1–mar7 and brux–grab on 29

April 2012 are listed in Table B.6. The frequencies on L1, L2 and L5 and on E1, E5b

and E5a were available and used when forming triple-frequency linear combinations. In

Table B.6, the channels which generate the lowest formal error for n1 on 29 April 2012

were selected for each baseline. The second and fourth column document the fractional

parts of the estimated combined ambiguities nx and ny, and the third and fifth column

list their corresponding formal errors. The estimated n1 from the third linear combination

and its formal error are listed in the sixth and seventh column, and the last column lists

the expected formal errors σE
n1 of n1 calculated with the theoretical derivations (see Equa-

tions B.15, B.30) based on the assumption that the phase observation noise is 0.01 cycles

and independent of the elevation angle.

We see that for the third combined ambiguity, the formal error is sometimes bigger

than expected and sometimes smaller. The relatively big formal error of n1 is very likely
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Figure B.5: The three linear combinations used for fixing nx, ny and n1 for baseline ons1–mar7

and satellites E11 and E52 between 1:09 am and 5:08 am on April 29, 2012

Table B.6: The estimated ambiguities and their formal errors for three linearly independent com-

binations on the double-difference level using M–GEX data on 29 April 2012

Number nx σnx ny σny n1 σn1 σE
n1

of epochs [cycles] [cycles] [cycles] [cycles] [cycles] [cycles] [cycles]

ons1–mar7 (470 km) G01, G25 (L1C, L2X, L5X – L1C, L2W, L5X)

127 -0.0234 0.0110 0.0891 0.0588 -0.2511 0.5938 0.4451

kir8–mar7 (832 km) G01, G25 (L1C, L2X, L5X – L1C, L2W, L5X)

159 -0.0186 0.0093 0.0790 0.0412 -0.3252 0.5109 0.3978

47 -0.0387 0.0251 -0.0745 0.1106 0.3466 1.3730 0.7317

ons1–mar7 (470 km) E11, E52 (E1X, E5bX, E5aX – E1X, E5bX, E5aX)

478 -0.0005 0.0018 -0.0103 0.0144 0.1667 0.1864 0.3642

168 0.0026 0.0072 -0.0326 0.0568 -0.1184 0.7364 0.6143

brux–grab (913 km) E11, E12 (E1C, E5bQ, E5aQ – E1X, E5bX, E5aX)

466 -0.0032 0.0018 -0.0123 0.0334 -0.3812 0.1594 0.3689

121 0.0153 0.0147 0.3171 0.2771 0.0640 1.3219 0.7239

caused by the real observation noise, which is bigger than expected, or the effects that

are included in the observation noise such as, e.g. multipath errors. To have a closer

look, Figure B.6a, b shows the third combined observation LCD
z in cycles on the double-

difference level divided by the factor µC for different pairs of stations and satellites. An
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offset was subtracted for each pair and each time interval. The elevation angles for the

two Galileo baselines are shown in Figure B.6c, d. We see an obvious correlation between

the elevation angles, the observation noise and the formal errors of the estimated n1.

The standard deviation σCD
L of the combined phase observations LCD

z

µC in Figure B.6a,

b and the mean values of the elevation-dependent weights of the double-differenced ob-

servations are given in Table B.7. The expected phase observation noise σECD
L on the

double-difference level is 0.02 cycles.

It is not hard to see that the real noise for short observation intervals is in some cases

bigger than 0.02 cycles due to the low elevation angles (small weights), which results in

relatively big formal errors in Table B.6.
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Figure B.6: The third combined observation LCD
z in cycles on the double-difference level divided

by factor µC for baseline (a) ons1–mar7 and (b) kir8–mar7 and brux–grab and the

corresponding elevation angles for the two Galileo baselines (c) ons1–mar7 and (d)

brux–grab on 29 April 2012. The green dots represent the observations with an eleva-

tion angle lower than 6◦

133



Ambiguity resolution for triple-frequency geometry-free and ionosphere-free combination

tested with real data

Table B.7: Real phase observation noise for some double-differenced observations on 29 April 2012

Baseline Satellites Number σCD
L PD σECD

L

of epochs [cycles] (Equation B.33) [cycles]

ons1–mar7 (470 km) G01, G25 127 0.0269 0.0128 0.0200

E11, E52 478 0.0133 0.1042 0.0200

168 0.0259 0.0190 0.0200

kir8–mar7 (832 km) G01, G25 159 0.0265 0.0197 0.0200

47 0.0323 0.0092 0.0200

brux–grab (913 km) E11, E12 466 0.0102 0.1393 0.0200

121 0.0291 0.0078 0.0200

Figure B.7 shows the formal errors of the estimated nx, ny and n1 for (a) the two Galileo

baselines and (b) the two GPS baselines for the time period from 29 April 2012 to 9 May

2012. The red, blue and black dots represent the formal errors of the estimated nx, ny

and n1, respectively. The magenta lines stand for the expected formal errors of n1 with

the assumption that the phase observation noise equals 0.01 cycles on the zero-difference

level. They correspond to the magenta line (Galileo) and the blue line (GPS) in Figure B.1

(top). The green line marks the boundary of 0.2 cycles for the formal errors. We see that

the formal errors decrease with an increasing number of observation epochs. nx and ny,

which are determined from the first two linear combinations, are generally much easier to

be fixed than n1 from the third linear combination. Most of the formal errors for n1 are

below or around the expected values, which suggests a phase observation noise around or

lower than the assumed 0.01 cycles, except for some cases with short observation intervals

and low elevation angles. The formal errors for n1 are mostly below 0.2 cycles, if the

number of observation epochs is larger than 400 epochs.

Table B.8 lists the real errors, i.e. the absolute fractional parts, and the formal errors of

the estimated nx, ny and n1 for the cases with more than 400 observation epochs for both

of the Galileo baselines. We see that the real errors are mostly smaller than 0.01 cycles

for nx and 0.15 cycles for ny. The real errors for the first two linear combinations are

sometimes bigger than the formal errors, but do not affect the fixing of nx and ny. For the

third linear combination, the real errors are about 67% bigger than the formal errors and

are sometimes bigger than 0.3 cycles. The systematic effects, such as multipath errors, that

are present in the phase-only observations, result in difficulties for the ambiguity resolution

of n1. We also see that the behavior of the baseline ons1–mar7 is much better than the

baseline brux–grab for both, the second and the third linear combination. The biases

caused by different tracking channels (see Section “Impact of receiver tracking modes on

nx and ny”) and, possibly, PCVs caused by different antenna types play an important role

in ambiguity resolution.
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Figure B.7: Formal errors of estimated nx, ny and n1 for Galileo baselines ons1–mar7 and brux–

grab and GPS baselines ons1–mar7 and kir8–mar7 from Am 29 April 2012 to 9 May

2012

Table B.8: Real and formal errors of the estimated nx, ny and n1 for both of the Galileo baselines

with more than 400 observation epochs

Number |δnx| σnx |δny| σny |δn1| σn1

of epochs [cycles] [cycles] [cycles] [cycles] [cycles] [cycles]

ons1–mar7

418 0.0008 0.0020 0.0327 0.0153 0.1152 0.1443

421 0.0028 0.0018 0.0026 0.0168 0.2949 0.1418

466 0.0020 0.0020 0.0469 0.0168 0.3854 0.2210

478 0.0005 0.0018 0.0103 0.0144 0.1667 0.1864

500 0.0017 0.0020 0.0342 0.0154 0.1872 0.2132

546 0.0026 0.0015 0.0058 0.0140 0.2781 0.1451

598 0.0026 0.0016 0.0436 0.0150 0.1367 0.1792

brux–grab

408 0.0028 0.0031 0.2499 0.0558 0.3949 0.2758

424 0.0156 0.0031 0.1600 0.0537 0.3015 0.2522

466 0.0032 0.0018 0.0123 0.0334 0.3812 0.1594

508 0.0031 0.0018 0.0825 0.0404 0.3839 0.1595

512 0.0009 0.0023 0.0802 0.0393 0.1572 0.1847

521 0.0003 0.0021 0.2056 0.0381 0.4465 0.1882

606 0.0000 0.0019 0.1483 0.0326 0.3810 0.1897

687 0.0003 0.0018 0.0436 0.0295 0.2971 0.1594
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However, with more and more Galileo and GPS satellites providing three frequencies

in the near future, longer observation times including also higher elevation angles can be

expected. It will, thus, be possible to obtain a higher success rate for fixing n1 in the third

linear combination, i.e. more n1 ambiguities with a formal error lower than 0.2 cycles

will result. To achieve better results, it will also be necessary to calibrate the PCVs as

well as the differential code biases (DCBs) between channels. Furthermore, if the signals

on E6 from the Galileo satellites and the signals on B1, B3 and B2 from the Compass-

III satellites can be received by more stations in the future, the linear combinations of

GalileoA, GalileoB, GalileoC and Compass-III (see Table B.3) will be able to generate

much better results for n1, namely better by a factor of two to three.

Summary and conclusions

In this work, we presented a simplified method for ambiguity resolution using triple-

frequency GF and IF linear combinations. The code and phase observations on the three

frequencies were simultaneously used to identify the two GF and IF linear combinations

with the lowest noise level. It has been demonstrated that the noise level after forming

the linear combinations is independent of the combined wavelength. The third linear

combination with a low noise level is much more difficult to be found and poses the core

problem in triple-frequency ambiguity resolution. A general method using the ambiguity-

corrected phase observations without any constraints was used to search for the optimal

GF and IF linear combination. We analytically demonstrated that the combined noise

level is only a function of the three frequencies and not depending on the details of the

linear combination. The resulting frequency-dependent factor was investigated for different

GNSS frequency triplets. The Galileo combination using E1, E6 and E5a shows the best

behavior among all the systems.

The theoretical derivations were verified with real data. Different scaling factors for the

code noise on the three frequencies were set and tested. Using identical scaling factors has

been shown to be better than using scaling factors derived from the CRB of the signals,

especially for the second linear combination. The formal errors of the estimated ambi-

guities using E1, E5b and E5a, which is expected to show the worst performance among

different GNSS triple-frequency combinations in our investigation, are mostly better than

expected and below 0.2 cycles, if the observation span is longer than 400 epochs. The

ambiguities with big formal errors have usually short observation times and low elevation

angles. Because the number of the available triple-frequency satellites is very limited at

the moment, the observation time for each ambiguity on the double-difference level is in

most of the cases relatively short. With more and more triple-frequency satellites and bet-

ter calibrations of PCVs and DCBs between channels in the near future, we can expect a

more reliable ambiguity resolution. Furthermore, if the Galileo E6 signal of more stations

will become available, an improvement factor of two to three in total can be expected.

136



Ambiguity resolution for triple-frequency geometry-free and ionosphere-free combination

tested with real data

Acknowledgments

This work was funded by ESA as part of the project (Satellite and Station Clock Modeling

for GNSS, Reference: AO/1-6231/09/D/SR). We would like to thank M. Müller from the

Institute of Geodesy and Photogrammetry, ETH Zürich for processing the Galileo Two
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Abstract

During the last few years, more and more GNSS satellites have become available sending

signals on three or even more frequencies. Examples are the GPS Block IIF and the Galileo

In-Orbit-Validation (IOV) satellites. Various investigations have been performed to make

use of the increasing number of frequencies to find a compromise between eliminating

different error sources and minimizing the noise level, including the investigations in the

triple-frequency geometry-free (GF) and ionosphere-free (IF) linear combinations, which

eliminate all the geometry-related errors and the first-order term of the ionospheric delays.

In contrast to the double-difference GF and IF ambiguity resolution, the resolution of the

so-called track-to-track GF and IF ambiguities between two tracks of a satellite observed

by the same station only requires one receiver and one satellite. Most of the remaining

errors like receiver and satellite delays (electronics, cables, etc.) are eliminated, if they

are not changing rapidly in time, and the noise level is reduced theoretically by a factor

of square root of two compared to double-differences. This paper presents first results

concerning track-to-track ambiguity resolution using triple-frequency GF and IF linear

combinations based on data from the Multi-GNSS Experiment (MGEX) from April 29 to

May 9, 2012 and from December 23 to December 29, 2012. This includes triple-frequency

phase and code observations with different combinations of receiver tracking modes. The

results show that it is possible to resolve the combined track-to-track ambiguities of the

best two triple-frequency GF and IF linear combinations for the Galileo frequency triplet

E1, E5b and E5a with more than 99.6% of the fractional ambiguities for the best linear

combination being located within ±0.03 cycles and more than 98.8% of the fractional

ambiguities for the second best linear combination within ±0.2 cycles, while the fractional

parts of the ambiguities for the GPS frequency triplet L1, L2 and L5 are more disturbed by

errors as e.g. the uncalibrated Phase Center Offsets (PCOs) and Phase Center Variations

(PCVs), that have not been considered. The best two GF and IF linear combinations
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between tracks are helpful to detect problems in data and receivers. Furthermore, resolving

the track-to-track ambiguities is helpful to connect the single-receiver ambiguities on the

normal equation level and to improve ambiguity resolution.

Keywords: GNSS; Triple-frequency ambiguity resolution; Track-to-track; Geometry-free

and ionosphere-free linear combination

Introduction

With the fast development of the Global Navigation Satellite Systems (GNSS) in the last

few years, many GNSS satellites transmitting signals at three or even more frequencies

have become available. Examples are the GPS Block IIF satellites (GPS.gov, 2014) and

the Galileo In-Orbit-Validation (IOV) satellites (RINEX, 2013). These new satellites allow

the forming of triple-frequency linear combinations. During the last 10 years, significant

investigations haven been performed in this area in order to cope with different levels of

reduction (or elimination) of the major error sources (Hatch, 2006; Henkel and Günther,

2012; Li et al., 2010). Henkel and Günther (2012) used multi-frequency phase and code

measurements to form linear combinations with different scaling of the ionospheric de-

lays and geometry with minimized noise level. In 2013, Geng and Bock (2013) achieved

rapid ambiguity resolution in triple-frequency GPS Precise Point Positioning (PPP) so-

lutions with IF linear combination formed in the wide-lane ambiguity resolution. The

availability and precision of the triple-frequency GNSS solutions are demonstrated to be

improved compared with the dual-frequency navigation solutions using semi-simulated

data (Li et al., 2013).

The geometry-free (GF) and ionosphere-free (IF) linear combination is especially useful

in the case of long baselines (e.g. a global network), where accurate knowledge of geometry

and ionospheric delays is critical, and for Wide Area Real–Time Kinematics (WARTK)

measurements (Hernández-Pajares et al., 2008), if the geometry-related information such

as orbits and tropospheric delays are not available precisely enough and may have to be

estimated. The best two triple-frequency GF and IF linear combinations using the phase

and code observations on all three frequencies with a minimized noise level were found

for different frequency triplets under the assumptions of equal code noise in meters and

equal phase noise in cycles for all three frequencies and verified with real data of the

Multi-GNSS Experiment (MGEX) by Wang and Rothacher (2013). Since a considerable

part of the remaining errors, e.g., most of the Differential Code Biases (DCBs), do not

change much within short time (Choi et al., 2011), the difference of the ambiguities from

two close-in-time tracks of the same satellite, the so-called track-to-track ambiguities, will

mainly be affected by errors in the Phase Center Variations (PCVs) (Rothacher, 2001),

multipath effects and the changes in the DCBs that change during and between tracks.

The estimation of track-to-track ambiguities on the zero-difference level not only benefits

from formal errors reduced by a factor of square root of two compared to those of the
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double-difference ambiguities, but also allows the usage of more MGEX stations, more

triple-frequency satellites and signals from more receiver tracking modes.

The estimation and resolution of track-to-track ambiguities is not a new idea. Svehla

et al. (2010) has shown that the undifferenced carrier-phase track-to-track ambiguities can

be fixed based on improved estimation of the clock parameters. In this paper here we will

present first results concerning the resolution of undifferenced track-to-track ambiguities

using the best two triple-frequency GF and IF linear combinations for GPS L1, L2 and

L5 (with the integer coefficients ax = 0, bx = −1, cx = 1 for the best linear combination

and ay = 1, by = −4, cy = 3 for the second best linear combination) and for Galileo E1,

E5b and E5a (with the integer coefficients ax = 0, bx = −1, cx = 1 for the best linear

combination and ay = 1, by = −5, cy = 4 for the second best linear combination) using

both code and phase measurements (Wang and Rothacher, 2013) based on the MGEX

data of one week in December 2012 and 11 days in April and May 2012. The fractional

parts and the formal errors of the estimated track-to-track ambiguities are analyzed and

their dependence on the satellite type, receiver type and receiver tracking mode is studied.

Triple-frequency GF and IF track-to-track ambiguities

For one specific satellite–receiver pair, the code and phase observations on frequency fi

can be described as follows:

Pi = ρ+ I1 ·
f2
1

f2
i

+ δtro + cl · δr − cl · δs + ǫPi
, (C.1)

Li = ρ− I1 ·
f2
1

f2
i

+ δtro + cl · δr − cl · δs + PCOi + PCVi + λi · ni + ǫLi
,

where Pi and Li represent the code and phase observations on frequency fi, and ρ rep-

resents the geometric distance between the satellite and the receiver, respectively. I1

stands for the first-order term of the ionospheric delay on L1, and δtro, δr and δs are

three geometry-related terms, i.e. the tropospheric delay, the receiver clock error and the

satellite clock error. The terms PCOi and PCVi represent the Phase Center Offset (PCO)

and PCV of the corresponding antenna on frequency fi. λi and ni denote the wavelength

and ambiguity of the signal on frequency fi. The code and phase noise on frequency fi

are described by ǫPi
and ǫLi

, respectively. The speed of light is denoted by the symbol

cl. Multipath has been ignored. The differences of the hardware delays between tracks

for the same station and the same satellite are considered to be significantly reduced by

forming track-to-track ambiguities and are thus not listed here.

After forming the GF and IF linear combination Lx using the code and phase obser-

vations on all three frequencies, all the geometry-related terms and the first-order term

of the ionospheric refraction are eliminated. What remains in the equation are only the
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terms of the combined ambiguity nx, the elevation-dependent PCOs and PCVs, and the

DCBs (DCBx) that are generated by forming the linear combination of the individual

DCBs of the different frequencies and receiver tracking modes:

Lx = γ1L1 + γ2L2 + γ3L3 + γ4P1 + γ5P2 + γ6P3

= λxnx + (γ1PCC1 + γ2PCC2 + γ3PCC3) +DCBx + ǫx, (C.2)

with

PCCi = PCOi + PCVi, i = 1, 2, 3

nx = ax · n1 + bx · n2 + cx · n3,

where PCCi represents the Phase Center Correction (PCC) on frequency fi. The weight-

ing coefficients of the observations γi (i = 1, ..., 6) are functions of the three integer multi-

pliers ax, bx and cx of the ambiguities (γ1, γ2 and γ3 see Equation C.8, γ4, γ5 and γ6 see

Wang and Rothacher, 2013), the three frequencies and the frequency fx of the linear com-

bination achieving the minimized combined noise σC of the linear combination, ignoring

the PCCi and DCBx and assuming that the phase noise in cycles and the code noise in

meters is the same for the three frequencies, respectively (Wang and Rothacher, 2013). ǫx

stands for the combined observation error.

The minimized combined observation noise σC on the zero-difference level can be cal-

culated for different frequency-triplets, each of them defined by a specific set of ax, bx

and cx that were varied from -10 to 10 each in Wang and Rothacher (2013). Ignoring the

errors that still remain, e.g. PCCi and multipath, the formal error of the track-to-track

ambiguity σtt can be described as:

σtt =

√
2 · σC

√
n

, (C.3)

where n represents the number of observation epochs and the observation noise is assumed

to be uncorrelated Gaussian noise.

The theoretical formal errors of the track-to-track ambiguities for one observation epoch

using the best two triple-frequency GF and IF linear combinations (Lx and Ly) for different

frequency triplets with the GPS signals on L1 (1575.42 MHz), L2 (1227.6 MHz) and

L5 (1176.45 MHz) and the Galileo signals on E1 (1575.42 MHz), E6 (1278.75 MHz),

E5b (1207.14 MHz), E5 (1191.795 Hz) and E5a (1176.45 MHz) are shown in Table C.1

and Figure C.1. The phase and code noise is assumed to be 0.01 cycles and 0.5 m,

respectively. For comparison, the corresponding formal errors of the Melbourne-Wübbena

linear combinations using L1 and L2 or E1 and E6 are also listed in Table C.1 and displayed

in Figure C.1. The integer coefficients ax, bx, cx and ay, by, cy for the best and the

second best linear combination, and the formal errors of the corresponding track-to-track

ambiguities for one epoch (σtt
x,1 and σtt

y,1) and 100 epochs (σtt
x,100 and σtt

y,100) are listed in

Table C.1 (integer coefficients also see Wang and Rothacher, 2013).
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Table C.1: Formal errors of the track-to-track ambiguities using the best two triple-frequency GF

and IF linear combinations for different frequency triplets as well as the Melbourne-

Wübbena linear combinations using L1 and L2 or E1 and E6.

ax, bx, cx σtt
x,1 σtt

x,100 ay, by, cy σtt
y,1 σtt

y,100

[cycles] [cycles] [cycles] [cycles]

GPS (L1,L2,L5) 0, -1, 1 0.0870 0.0087 1, -4, 3 0.4974 0.0497

GalileoA (E1,E6,E5b) 0, -1, 1 0.1193 0.0119 1, -3, 2 0.4275 0.0428

GalileoB (E1,E6,E5) 0, -1, 1 0.1434 0.0143 1, -2, 1 0.4330 0.0433

GalileoC (E1,E6,E5a) 0, -1, 1 0.1671 0.0167 1, -2, 1 0.4339 0.0434

GalileoD (E1,E5b,E5a) 0, -1, 1 0.0548 0.0055 1, -5, 4 0.5228 0.0523

MW (L1,L2) 0.5849 0.0585

MW (E1,E6) 0.4979 0.0498

Lx Ly
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Figure C.1: Formal errors of the track-to-track ambiguities for one epoch using the best two

triple-frequency GF and IF linear combinations for different frequency triplets and

the Melbourne-Wübbena linear combinations using L1 and L2 or E1 and E6.

We see that the ambiguities of the best linear combinations of all the investigated

frequency triplets have much smaller formal errors than those of the traditional dual-

frequency Melbourne-Wübbena linear combinations using L1 and L2 or E1 and E6 (see

Figure C.1 and Table C.1). The smallest formal track-to-track ambiguity error for the

best linear combination Lx is generated by the frequency triplet E1, E5b and E5a. Accu-

mulating for 100 epochs, the formal errors of all frequency triplets are reduced to below

0.02 cycles for the best linear combination Lx and to below 0.06 cycles for the second best

linear combination Ly.
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Tests with real data

In order to verify the theoretical derivations, the real MGEX data from December 23,

2012 to December 29, 2012 collected from the IGS website (Noll et al., 2009) was used to

generate the undifferenced triple-frequency GF and IF linear combinations and to estimate

the track-to-track ambiguities. During the selected week, about 45 MGEX stations (see

Figure C.2) with signals from the GPS Block IIF satellites PRN25 (SVN62), PRN01

(SVN63), PRN24 (SVN65) and the Galileo IOV satellites E11 (PFM), E12 (FM2), E19

(FM3) and E20 (FM4) were available for the tests.

Since the number of triple-frequency tracks containing the E6 signal during the test

interval was still very low, the tests were only performed for the GPS frequency triplet L1,

L2, L5 and the Galileo frequency triplet E1, E5b and E5a. RINEX observation files with

version 3.00 (or above) allow for receiving observations of the same carrier with different

receiver tracking modes (Gurtner and Estey, 2009). In our tests, the tracking modes listed

in Table C.2 were available for the triple-frequency linear combinations.

In order to get rid of the observations with large noise originating from, e.g., multipath

effects on the zero-difference level, a relatively high elevation mask of 15 degrees was

set for forming the linear combinations and the least-square adjustment. The GPS and

Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) with

a sampling interval of 15 min (Final GNSS products, 2013; CODE MGEX orbit solution,

2013; Noll et al., 2009) were resampled to 30 s with the help of the Bernese GPS Software

(Dach et al., 2007) in order to correspond with the sampling interval of the observations.
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Figure C.2: The MGEX stations on December 23, 2012.
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Table C.2: Receiver tracking modes for the GPS frequency triplet L1, L2, L5 and the Galileo

frequency triplet E1, E5b and E5a (see Gurtner and Estey, 2009).

Receiver tracking modes

L1,L2,L5 CDX, CLQ, CXX, CWQ, CWX, WXX, WWX

E1,E5b,E5a CQQ, XXX

Fractional parts and formal errors of the track-to-track ambiguities

After generating the best and the second best triplefrequency GF and IF linear combina-

tion for both frequency triplets (for GPS and Galileo) mentioned above, the ambiguities

on the zero-difference level were estimated using a least-square adjustment, and the track-

to-track ambiguities ntt were calculated by forming the difference of two ambiguities nt1

and nt2 belonging to the same receiver, the same satellite, but to two different tracks on

the considered day.

ntt = nt1 − nt2 (C.4)

The formal error of the track-to-track ambiguity σtt was calculated with the formal

errors of the uncorrelated ambiguities on both tracks σt1 and σt2.

σtt =
√

(σt1)2 + (σt2)2 (C.5)

Tracks shorter than 50 observation epochs (25 min) were eliminated. Data separated by

gaps longer than 10 epochs (5 min) were considered to be discontinuous (i.e. as separate

tracks). In addition, some tracks were eliminated because of incorrect cycle slip detection

or unexplained jumps of a fraction of a cycle. Stations with a lot of these problems were

also eliminated.

Figure C.3 shows the fractional parts and the formal errors of the estimated track-to-

track ambiguities using the best and the second best linear combination for the corre-

sponding GPS and Galileo frequency triplets. The x-axis represents the combined track

length l defined by:

l =
2

1
l1
+ 1

l2

, (C.6)

where l1 and l2 stand for the length of the two tracks. Assuming that the formal error of

each track σti decreases with
√
li (i = 1, 2), according to error propagation the combined

track length l is then equal to 1
1

l1
+ 1

l2

. The factor 2 is set in order to generate a track length

l that is equal to l1 (or l2), if l1 equals l2. In this way l is more sensitive to the shorter

track.

From Figure C.3 we can see that for the frequency triplet E1, E5b and E5a, all the

fractional ntt
x from the best linear combination Lx are within ±0.03 cycles except one

outlier for satellite E20, and most (98.8%) of the fractional ntt
y from the second best linear
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Figure C.3: Fractional parts (a), (b) and formal errors (c), (d) of the estimated track-to-track am-

biguities using the best and the second best linear combinations for the GPS frequency

triplet L1, L2, L5 and the Galileo frequency triplet E1, E5b and E5a as a function of

the combined track length.

combination Ly are within ±0.2 cycles. The corresponding formal errors σtt
x and σtt

y are

mostly lower than the expectations (see the magenta lines and Table C.1), which means

smaller than 0.01 and 0.06 cycles, respectively, after 100 epochs. Compared with E1, E5b

and E5a, the GPS frequency triplet L1, L2 and L5 shows a relatively big scatter in both,

the fractional parts and the formal errors of the estimated track-to-track ambiguities. The

ntt
y ambiguities using L1, L2 and L5 cannot easily be resolved because their fractional

parts are more or less randomly distributed. Furthermore, the fractional parts and the

formal errors are not found to depend on the receiver tracking mode.

When estimating the track-to-track ambiguities, errors that are frequency- or elevation-

dependent still remain in the linear combinations. Figure C.4 shows, e.g., the best linear

combination Lx in cycles for station USN4 on December 23, 2012, using L1C, L2L and

L5Q from the GPS satellite G24 and for station MYVA on December 23, 2012, using L1C,
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L2W and L5X from the GPS satellite G25. The elevation angles for the corresponding

periods are shown in the lower part of the figure. We see very obvious elevation-dependent

variations and an increase of the noise at low elevations in the linear combination. The

variation in the time interval from the 2357th to the 2880th epoch in Figure C.4a and

from the 7th to the 599th epoch in Figure C.4b may be generated by PCOs and PCVs.

The influence of the PCOs and PCVs on the undifferenced observation δL in cycles can

be formulated as follows (see Equation C.2):

δL = (γ1 · PCC1 + γ2 · PCC2 + γ3 · PCC3)/λx (C.7)

=
ax · f1
cl

PCC1 +
bx · f2
cl

PCC2 +
cx · f3
cl

PCC3,

where (see Henkel and Günther, 2012; Wang and Rothacher, 2013)

γ1 =
ax · f1
fx

, γ2 =
bx · f2
fx

, γ3 =
cx · f3
fx

. (C.8)

For the best two linear combinations of the frequency triplet L1, L2 and L5 we get,

based on Table C.1:

δLx = −4.0948 PCC2 + 3.9242 PCC3,

δLy = 5.2550 PCC1 − 16.3793 PCC2 + 11.7726 PCC3, (C.9)

where δLx and δLy represent the influence of the PCCi (i = 1, 2, 3) on the combined

observations Lx and Ly in cycles. Similarly, for the frequency triplet E1, E5b and E5a we

get

δLx = −4.0266 PCC2 + 3.9242 PCC3,

δLy = 5.2550 PCC1 − 20.1329 PCC2 + 15.6969 PCC3. (C.10)
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Figure C.4: The best triple-frequency GF and IF linear combination in cycles for (a) station USN4

on December 23, 2012, using signals on L1C, L2L and L5Q from the GPS satellite G24

and (b) station MYVA on December 23, 2012, using signals on L1C, L2W and L5X

from the GPS satellite G25 and their elevation angles.
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In order to get rid of the disturbances generated by the code-related biases and test

only the behavior of the PCOs and PCVs on the triple-frequency level, we formed the

phase-only GF and IF linear combination as the difference of two IF linear combinations

for the frequency triplet L1, L2 and L5:

LIFIF =
f2
1L1 − f2

2L2

f2
1 − f2

2

− f2
1L1 − f2

3L5

f2
1 − f2

3

,

δLIFIF
= (

f2
1

f2
1 − f2

2

− f2
1

f2
1 − f2

3

) PCC1 −
f2
2

f2
1 − f2

2

PCC2 +
f2
3

f2
1 − f2

3

PCC3

= 0.2851 PCC1 − 1.5457 PCC2 + 1.2606 PCC3, (C.11)

where LIFIF represents the difference of the two IF linear combinations in meters, and

δLIFIF
stands for the influence of the PCCs on LIFIF in meters. LIFIF for the longer

tracks of the two data sets used in Figure C.4 are plotted in Figure C.5. We see that the

elevation-dependency exists also in the phase-only GF and IF linear combinations with a

range of about 10 cm.

Figure C.6 shows two relatively long tracks for the same stations on the same day as

plotted in Figure C.5. The frequency triplet E1, E5b and E5a for the Galileo satellites

E11 and E20 is used instead. We see that the elevation-dependency is almost uniquely

seen in the noise level, but there are no obvious systematic variations visible in the LIFIF

observations.

This shows that PCOs and PCVs, which are different for the frequency triplet L1, L2, L5

and E1, E5b and E5a, may well be responsible for the different behavior of the fractional

ambiguities we see for GPS and Galileo, and demonstrates that PCOs and PCVs have to

be known and should be taken into account in the processing.
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Figure C.5: The phase-only GF and IF linear combinations in meters for (a) station USN4 on

December 23, 2012, using signals on L1C, L2L and L5Q from the GPS satellite G24

and (b) station MYVA on December 23, 2012, using signals on L1C, L2W and L5X

from the GPS satellite G25.
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Figure C.6: The phase-only GF and IF linear combinations in meters for (a) station USN4 on

December 23, 2012, using signals on E1C, E5bQ and E5aQ from the Galileo satellite

E20 and (b) station MYVA on December 23, 2012, using signals on E1X, E5bX and

E5aX from the Galileo satellite E11.

Detection of problems

Since the triple-frequency GF and IF linear combinations already eliminate all the geometry-

related errors and the first-order term of the ionospheric delay, they are well-suited to

detect systematic errors due to antenna- or receiver-specific problems and inconsistencies.

Figure C.7 shows the formal errors σtt
y using the second best linear combination for the

frequency triplet L1, L2, L5 and E1, E5b and E5a categorized by the stations with dif-

ferent colors and symbols. The magenta lines represent the expected formal errors of the

second best linear combination for the two frequency triplets. We can see that the same

station represented by the purple stars in Figure C.7 (top), and (bottom) delivers large

formal errors for both frequency triplets.

Figure C.8 shows another example. The MGEX data from April 29, 2012, to May 9,

2012, was used for the processing, and the fractional parts of the track-to-track ambi-

guities ntt
x using the best linear combination for the frequency triplet E1, E5b and E5a

are categorized by the satellite and the receiver type (abbreviated by Ri). We can see a

relatively constant offset of about ±0.35− 0.36 cycles, which is generated by the receiver

type R4 and the Galileo IOV satellite E12 (except for two outliers). The stations with

station-specific problems (see Figure C.11) were not included in this figure.

The reason of this offset is found to be caused by unusual code jumps of about 33554431 m

generated by the R4 receivers for E12 in the test time interval. Figure C.9a shows the code

jumps on E1, E5b and E5a for the satellite E12 and station GRAC, which is equipped

with a R4 receiver, on May 1, 2012. The E1 and E5b code measurements are visually

overwritten by the E5a measurements. No phase jump could be detected at the same

epochs. Figure C.9b shows the code jumps on E1, E5b and E5a for the outliers of about
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Figure C.7: Formal errors of the estimated track-to-track ambiguities using the second best linear

combination for the GPS frequency triplet L1, L2, L5 and the Galileo frequency triplet

E1, E5b and E5a categorized by the stations.
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Figure C.8: Fractional part ntt
x of the estimated track-to-track ambiguities using the best linear

combination for the Galileo frequency triplet E1, E5b and E5a categorized by (a) the

satellite and (b) the receiver type. The MGEX data from April 29, 2012, to May 9,

2012, was processed for the plots.

±0.35 − 0.36 cycles (see Figure C.8) which were related to the R4 receivers and to E12.

The code jump between two subsequent epochs can be calculated with

δPf (ti,i+1) = |(Pf (ti+1)− Pf (ti))− (Lf (ti+1)− Lf (ti))|, (C.12)

where δPf (ti,i+1) represents the absolute code jump on frequency f between the i-th and

the (i+1)-th epoch, and Pf (ti) and Lf (ti) stand for the code and phase measurements,
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respectively, on frequency f at epoch ti in meters. An offset of 33554431 m was subtracted

for all the three frequencies in Figure C.9b. The relationship between this offset and the

offset of ±0.35− 0.36 cycles in the fractional ntt using the best linear combination for the

frequency triplet E1, E5b and E5a can be explained by Equations C.13 and C.14

∆E1,E5b,E5a =
(γ4 + γ5 + γ6) · 33554431 m

1 m
, (C.13)

∆offset = |∆E1,E5b,E5a − [∆E1,E5b,E5a]| = 0.357 cycles (C.14)

where γ4, γ5 and γ6 represent the coefficients of the code observations on frequency E1,

E5b and E5a using the best linear combination and amount to 0.0004, 0.0479 and 0.0540,

respectively, with the assumption that the code and phase noise are equal to 0.5 m and

0.01 cycles, respectively, on all three frequencies and the combined wavelength is set to be

1 m (Wang and Rothacher, 2013). ∆E1,E5b,E5a and [∆E1,E5b,E5a] represent the resulting

deviation of the track-to-track ambiguity in cycles and its nearest integer. ∆offset indicates

the absolute offset of the fractional track-to-track ambiguity.

Some other problems may also be detected by estimating the track-to-track ambiguities

using the triple-frequency GF and IF linear combinations. One outlier in Figure C.8 of

about -0.36 cycles (see the red point in Figure C.8b) is, e.g., caused by the code differ-

ences between E1 and E5a/E5b for station GRAB and satellite E11 on May 6, 2012 (see

Figure C.10), where the E5b code observations are visually overwritten by the E5a code

observations. Station-specific problems for, e.g., MYVA and OHIX can also easily be de-

tected by the large scatter of the fractional ntt
x using the best linear combination of the

frequency triplet E1, E5b and E5a (see Figure C.11).
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Figure C.9: Code jumps of the signals on E1, E5b and E5a for (a) station GRAC and satellite E12

on May 1st, 2012 and (b) all the outliers of about ±0.35 − 0.36 cycles generated by

the R4 receivers and E12.
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Figure C.10: Code differences between E1 and E5b/E5a for station GRAB and satellite E11 on

May 6, 2012. The E5b code observations (red points) are visually overwritten by the

E5a code observations (green points).
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Figure C.11: Station-specific problems detected in the fractional ntt
x ambiguities using the best

linear combination for the frequency triplet E1, E5b and E5a.

Summary and conclusions

Using the triple-frequency GF and IF linear combination to estimate the track-to-track

ambiguities does not only eliminate all the geometry-related errors and the first-order term

of the ionospheric delay, but also receiver- and satellite-specific biases that do not change in

time. Compared with the dual-frequency Melbourne-Wübbena linear combination using,

e.g., L1 and L2 or E1 and E6, or the double-differenced ambiguities using the same triple-
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frequency linear combination, the track-to-track ambiguities benefit from a lower noise

level. According to our investigations for the test interval from December 23, 2012, to

December 29, 2012, it is possible to resolve the combined track-to-track ambiguities ntt
x

and ntt
y using the best two linear combinations for the Galileo frequency triplet E1, E5b

and E5a with more than 99.6% of the fractional ntt
x being located within ±0.03 cycles and

more than 98.8% of the ntt
y within ±0.2 cycles. Most of the formal errors (99.6% for σtt

x

and 97.6% for σtt
y ) are lower than 0.01 and 0.06 cycles, for ntt

x and ntt
y , respectively, after

100 epochs.

The track-to-track ambiguities for the GPS frequency triplet L1, L2 and L5 have, how-

ever, a much bigger scatter. This may be explained by the PCOs and PCVs between

different frequencies, which have not been considered in the data processing. A better

calibration of the PCOs and PCVs for all three frequencies is thus required for resolving

the GPS track-to-track GF and IF ambiguities.

Resolving the combined track-to-track ambiguities ntt
x and ntt

y gives us important infor-

mation about the zero-difference ambiguities between tracks, and may contribute to the

general triple-frequency ambiguity resolution by constraining the resolved track-to-track

ambiguities (e.g., on the normal equation level). The estimated track-to-track ambiguities

can also be used for the detection of problems in the data, since they are already free of

most of the error sources in GNSS data processing. Furthermore, the best two linear com-

binations Lx and Ly can be used for cycle slip detection in all the three carrier frequencies

on the zero-difference level, provided that the measurement at the three frequencies do

not jump at the same time by the same number of cycles.

In this paper we focused on the best two GF and IF linear combinations. It is difficult,

however, to find a third GF and IF linear combination with a relatively low combined noise,

which is linearly independent of the best two linear combinations of the frequency triplet.

The track-to-track ambiguities can thus not be resolved on each carrier using only the best

two GF and IF linear combinations. The best two GF and IF linear combinations might be

combined, however, with another linear combination, e.g., an IF linear combination using

only the phase measurements to complete the set of three independent linear combinations

for the three original ambiguities and to resolve the track-to-track ambiguities and connect

the tracks directly for each carrier. Studies on this topic are yet to be performed.
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Abstract

During approach and landing of airplanes, the Ground Based Augmentation System

(GBAS) is used to augment the Global Positioning System (GPS) positioning by de-

livering differential corrections. The ionospheric delays are typically considered to be

removed by generating differential observations if the baseline between the GBAS station

and airplane is relatively short. However, the situation may change in case of strong or

stormy ionospheric activities. The remaining differential ionospheric residuals that are not

eliminated might cause large slant pseudorange errors and degrade the positioning results

significantly, especially in the vertical direction.

In this work the Global Positioning System (GPS) data of the swisstopos Automated

GNSS Network for Switzerland (AGNES) were processed over 15 years from 1999 to 2013.

We used the double-difference phase observations with reliably resolved ambiguities to

establish the station-pair single-difference ionosphere residuals in the slant and vertical

direction. An epoch-wise zero-mean condition over all satellites and per baseline was ap-

plied to avoid singularities and the estimated single-difference slant ionospheric residual

was corrected with the 2-hour global ionosphere maps provided by the Center of Orbit

Determination in Europe (CODE). The spatial gradients were calculated using the Iono-

sphere Pierce-Point (IPP) distances or the baseline length depending on the concrete case.

It was found that the absolute maximum slant ionosphere gradients calculated from the

slant differential ionospheric residuals and the baseline length during these 15 years are

below the slant ionosphere gradient bound of the Conterminous United States (CONUS)

ionospheric anomaly threat model.

At last, the so-called overbounding vertical ionosphere gradients σoverbound
vig , which con-

fine all the non-Gaussian tails on a daily basis, were calculated for all days from 1999 to
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2013 except the days with very stormy ionosphere activities. Ignoring the gradients with

an IPP distance shorter than 20 km, over 96% of the σoverbound
vig values are smaller than

4 mm/km.

Introduction

The ionospheric delays are always considered to be an important influence factor for the

GNSS positioning error on the zero-difference level. Depending on the activity of the

ionosphere and the location of the investigated area, the ionospheric delays for a single-

frequency receiver usually vary from several meters to more than 100 meters (Gao and

Liu, 2002). For differential GNSS positioning between the GBAS stations and the airborne

user during the approach and landing phase of the airplanes, the ionosphere effects are

mostly considered to be sufficiently low. However, in certain cases the remaining part of

the differential ionospheric delays could reach a high value, e.g. 412 mm/km in northern

Ohio in the U.S. on November 20, 2003 (Pullen et al., 2009), and thus generate huge

position errors in the vertical direction.

In practice, an overbounding vertical ionosphere gradient σoverbound
vig is broadcast in

the Type 2 message from the ground system to the airplane to describe the one-sigma

ionosphere overbounding value for the nominal conditions (Lee et al., 2006b). Under

stormy ionosphere conditions, however, the ionosphere gradients can only be calculated

in the slant direction because of the breakdown of the thin-shell model (Pullen et al.,

2009). Various studies have been performed in the last ten years to assess the impact

of huge anomalous ionosphere gradients on positioning results, to establish and validate

the threat model, to adapt the geometry screening functionality of the GBAS station and

to compromise between the safety and the availability (Ene et al., 2005; Kim, 2013; Lee

et al., 2006a, 2011; Mayer et al., 2008, 2009; Pullen and Enge, 2007). In this work here,

the slant and vertical differential ionospheric residuals were estimated and analyzed on

the single-difference level using the stable AGNES network from 1999 to 2013 (AGNES

data, 2014; Villiger, 2014). The range of the possible non-ionospheric biases remaining in

the residuals are analyzed using several very short baselines. The correlations between the

slant ionospheric residuals and different indices, including the geomagnetic index KP and

DST and the mean global Total Electron Content (TEC) value between 12:00 and 14:00 UT

derived from the CODE global ionosphere maps, are studied and discussed. Afterwards,

the σoverbound
vig are calculated for different distance bins and for all days except the very

stormy days. The maximum slant gradients are also calculated for all days, analyzed and

compared with the CONUS threat model.
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Data Selection

The processing was based on the GPS observations of the AGNES network from January

1, 1999, to December 31, 2013. The AGNES stations are relatively uniformly distributed

within Switzerland (see Figure D.1). The number of stations available has increased from

6 at the beginning of 1999 to about 40 in 2013 as shown in Figure D.2. This has led to a

significant increase in the number of possible baselines from about 15 to 780.

Figure D.3 shows the histogram of the baseline lengths within the AGNES network on

June 16, 2013. We see that most of the station pairs are separated by 30 km to 190 km. It

should be mentioned that 11 very short baselines, i.e. with a length smaller than 25 m, are

available on this day. These baselines are important for estimating the non-ionospheric

biases that remain in the single-difference ionosphere residuals.

Storm Classes

The geomagnetic indices KP and DST are good indicators for the Earth magnetic per-

turbation and are useful for defining the ionosphere storm classes (Lee et al., 2006b). In

this work, we only use them to distinguish between the stormy ionosphere days and all

days that are under quiet, moderate and active ionosphere conditions, which are defined

as “nominal” in this paper. We assume that the ionosphere condition is considered as

stormy, if the daily peak KP index (Kp Index, 2014) is not smaller than 9 or if the daily

minimal DST index (Dst Index, 2014) is lower than -350 nT. Using this criterion, 6 days

listed in Table D.1 between 2000 and 2004 turned out to be stormy.

Figure D.4 shows the daily peak KP index, daily minimal DST index and the global

mean TEC values (the degree 0 and order 0 coefficient) between 12:00 and 14:00 UT given
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Figure D.1: The AGNES network on June 16, 2013.
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Figure D.2: Number of the available AGNES stations and baselines from 1999 to 2013.
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Figure D.3: Histogram of the baseline lengths within the AGNES network on June 16, 2013.

in the 2-hour CODE global ionosphere maps (CODE products, 2014). We see that the

absolute values of the KP and DST indices are generally larger before 2005 and after 2011.

However, the 11-year solar cycle with the peaks in 2000 and 2011 in the last 15 years (Lee

et al., 2006b; Klobuchar, 1996) is more obvious in the global mean TEC values.

A detailed study of the correlation between these indices and the slant differential iono-

spheric residuals is given in Section “Correlation with the Indices” below.

Processing Strategy

In the processing we used the GPS double-difference phase observations on both, L1

(1575.42 MHz) and L2 (1227.6 MHz). The ionospheric delays were extracted on the single-

difference level. The double-difference observation equations for phase measurements on
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Table D.1: Geomagnetic indices of the stormy ionosphere days from 1999 to 2013.

Datum Peak KP Minimal DST [nT]

Jul. 15, 2000 9 -289

Mar. 31, 2001 8.7 -387

Oct. 29, 2003 9 -350

Oct. 30, 2003 9 -383

Nov 20, 2003 8.7 -422

Nov 8, 2004 8.7 -374
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Figure D.4: The daily maximum KP index, the daily minimum DST index and the global mean

TEC values from 1999 to 2013.

L1 and L2 can be written as

L1 = ρ+∆trop− I ijab + λ1 ·N1 (D.1)

L2 = ρ+∆trop− I ijab ·
f2
1

f2
2

+ λ2 ·N2 (D.2)

where Li (i =1,2) represents the phase measurements on frequency fi (i =1,2), and ρ

and ∆trop indicate the geometric distances and the tropospheric delays on the double-

difference level, respectively. Iijab stands for the double-difference ionospheric delay between

receivers a and b and satellites i and j on L1. λi and Ni (i =1,2) represent the wavelength

and the double-difference ambiguity on frequency fi (i =1,2), respectively.
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Slant Differential Ionospheric Delay and its Gradient

With the help of the Bernese GPS Software (Dach et al., 2007), the phase ambiguities N1

and N2 were reliably resolved and the double-difference ionospheric delay Iijab on L1 could

be accurately estimated using the geometry-free linear combination. In order to extract

the ionospheric delays on single-difference level, a zero-mean condition was applied for each

epoch and all the single-difference ionospheric delays Iiab (i = 1, · · · , n) for each station

pair a and b to avoid singularities:

∑n

i=1
Iiab = 0 (D.3)

The single-difference ionospheric residual is then again corrected with a mean model value

Imodel
ab derived from the 2-hour CODE global ionosphere map for each baseline per epoch:

Ii model
ab = Ii model

a − I i model
b (D.4)

Imodel
ab =

∑n
i=1 I

i model
ab

n
(D.5)

where n represents the number of GPS satellites available for the station pair a and b

at the corresponding epoch. The single-difference slant ionospheric delay Iiab at epoch t

calculated with Equation D.1 to D.3 is then corrected by adding the mean model value

Imodel
ab at the same epoch and written as

Iab = Iiab + Imodel
ab . (D.6)

The estimated slant differential ionospheric delay is thus free from code-related biases

such as the differential code biases (DCB) and has the same noise level as the phase

measurements, namely millimeter level. However, it should be noted that the model values

derived from the CODE global ionosphere maps are temporally and spatially smoothed.

With the slant differential ionospheric delays, two sets of slant ionosphere gradients are

calculated. One set with the baseline length l, and the other set with the IPP distance

lIPP :

gab l =
Iab
l

(D.7)

gab IPP =
Iab
lIPP

(D.8)

Vertical Differential Ionospheric Delay and its Gradient

The slant differential ionospheric delays are mapped into the vertical direction based on

the thin-shell model. The mapping function F used in the processing is derived from

ICAO (1996):

F = (1− (
R · cos ǫ
R+ h

)
2

)−
1

2 (D.9)

164



Assessment of Single-difference Ionospheric Residuals in a Regional Network for GBAS

where R =6378136.3 m and h =350 km denote the radius of the Earth and the height of

the ionosphere thin-shell model, respectively. ǫ stands for the elevation angle from station

to satellite.

Since the differential ionospheric delays are extracted from the double-differences, the

vertical delays Ivab can only be calculated on the single-difference level as shown in Equa-

tion D.10:

Ivab =
Iab
Fab

(D.10)

with

Fab =
Fa + Fb

2
, (D.11)

where Fa, Fb and Fab represent the mapping functions for station a, station b and the

station-pair mean mapping function, respectively.

The vertical delays Ivab calculated in this way are different from the vertical delays

extracted at the zero-difference level Ivab zd

Ivab zd =
Ia
Fa

− Ib
Fb

. (D.12)

The difference Ivb is given by

∆I = Ivab zd − Ivab (D.13)

=
Ib + Iab

Fa
− Ib

Fb
− 2 · Iab

Fa + Fb

=
Fb − Fa

Fa · Fb
· Ib +

Fb − Fa

Fa · (Fa + Fb)
· Iab

with Ib approximately equals to the ionosphere model values from station b to satellite i

derived from the global CODE ionosphere map at the corresponding epoch.

The vertical differential ionospheric delays are then corrected with ∆I and described as

Ivmap
ab :

Ivmap
ab = Ivab +∆I (D.14)

Afterwards, the vertical ionosphere gradients are calculated with the IPP distances lIPP :

gvmap
ab IPP =

Ivmap
ab

lIPP
(D.15)

Analysis of the Ionospheric Residuals

Figure D.5 shows the daily maximum (absolute value) differential ionospheric delays in

the slant and vertical direction. The vertical delays of the stormy ionosphere days (see

Table D.1) have been excluded. We see that the slant and vertical ionospheric residuals

on the single-difference level reach 6.2 m and 2.4 m on November 24, 2001. The 11-year

solar cycle is also visible in the plot.
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Figure D.5: Daily maximum differential ionospheric delays in the slant and vertical direction using

the AGNES stations from 1999 to 2013.

Looking into the details of, e.g., the vertical delays, we can see that most of the daily

maximum vertical differential delays appear between 10:00 and 14:00 in Central European

Time (CET) (see Figure D.6), and concentrate mostly in the south direction (about 49%

between 150◦ and 210◦ in the station-pair mean azimuth to the satellite) with low elevation

angles (about 67% below 30◦ in the station-pair mean elevation) (see Figure D.7). This

indicates possible non-ionospheric errors like multipath that still remain in the residuals.

The hole in the north direction in Figure D.7 is due by the GPS satellite constellation as

seen from Switzerland.

As mentioned before, the zero-mean condition applied for each baseline per epoch for the

slant differential ionospheric delays is corrected for by adding the mean model values from

the global CODE ionosphere maps. Figure D.8 shows the daily maximum (in absolute
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Figure D.6: Histogram of the daily maximum vertical differential ionospheric residuals with respect

to Central European Time (CET) from 1999 to 2013.

166



Assessment of Single-difference Ionospheric Residuals in a Regional Network for GBAS

EW

N

S

90◦

60◦

30◦

0◦

Daily max. abs. vertical diff. iono. residuals (m)

0.5

1

1.5

2

Figure D.7: Skyplot of the daily absolute maximum vertical differential ionospheric residuals in

meters from 1999 to 2013.

values) and the daily mean of these model corrections. We see that the daily maxima are

in the decimeter to meter range, while the mean values are mostly at centimeter level.

The trend of the maximum corrections also corresponds more or less to the activity of

the ionosphere. The maximal model correction amounts to about 2.35 m on November

24, 2001, while the corrections between 2006 and 2010 are in general smaller. These

corrections have a large influence on the results and can not be neglected.
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Figure D.8: The daily maximum and daily mean values of the baseline-wise epoch mean slant

differential ionospheric delays derived from the CODE global model from 1999 to

2013.
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Remaining Non-ionospheric Biases

In the AGNES network there are several very short baselines, i.e. shorter than 25 m. They

are not used for calculating the gradients, but are very useful to investigate the remaining

non-ionospheric biases, since the differential ionospheric residuals for such short baselines

should almost be zero.

The day June 16, 2013 with very weak ionosphere activity (KP = 0.7, DST = −1 nT)

was selected for the analysis of these very short baselines. Figure D.9 shows the slant

differential residuals (top), the mean (red dots, bottom) and the standard deviation (blue

lines, bottom) of the residuals for 11 very short baselines on June 16, 2013. We see that

the standard deviations of the slant residuals are in the millimeter to centimeter range.

The maximal observed value is 12.7 cm and is generated by the station pair ETH2 and

ETHZ with a baseline length of about 13.7 m.

Figure D.10 shows the skyplot of the slant differential ionosphere delays for the station

pair ETH2 and ETHZ on June 16, 2013. The slant delays increase with decreasing ele-

vation angles, while the azimuth-dependency is not very obvious. Further analysis also

shows that the biases are not strongly related to CET (see Figure D.11).

This analysis shows that the non-ionospheric biases remaining in the estimated slant

differential ionospheric delays are generally at cm-level and are elevation-dependent. Mul-

tipath is one of the possible error sources.

Figure D.9: Slant differential ionosphere residuals for very short baselines on June 16, 2013.
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Figure D.10: Skyplot of the differential slant ionosphere residuals for station pair ETH2 and ETHZ

on June 16, 2013.
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Figure D.11: Slant differential ionosphere delays for station pair ETH2 and ETHZ with respect to

CET on June 16, 2013.

Correlation with the Indices

Figure D.12 shows the relationship between the absolute daily maximum (in absolute

values) slant differential ionospheric delays and the geomagnetic indices KP , DST , as

well as the mean TEC values between 12:00 and 14:00 UT derived from the CODE global

ionosphere maps (CODE products, 2014). We see that the absolute daily maximum delays

increase proportionally to the absolute values of all three indices.

In order to compare the correlation between the slant delays and these three indices, the

indices and the slant delays are modified, so that the auto-correlations of their absolute

169



Assessment of Single-difference Ionospheric Residuals in a Regional Network for GBAS

0 1 2 3 4 5 6 7
0

5

10

Abs. daily max. slant diff. delays (m)

K
P

0 1 2 3 4 5 6 7
−500

0

500

Abs. daily max. slant diff. delays (m)

D
S
T
(n
T
)

0 1 2 3 4 5 6 7
0

50

100

Abs. daily max. slant diff. delays (m)

T
E
C
(T
E
C
U
)

Real values

Linear polynomial

Figure D.12: Correlation between the absolute daily maximum slant differential ionospheric delays

and different indices.

values at zero lag are equal to 1:

Imod
S =

|DIS |
√

xcorr(|IS |, 0)
(D.16)

Kmod
P =

|DKP |
√

xcorr(|KP |, 0)
(D.17)

Dmod
ST =

|DDST |
√

xcorr(|DST |, 0)
(D.18)

TECmod =
|DTEC|

√

xcorr(|TEC|, 0)
, (D.19)

where DIS , DKP , DDST and DTEC represent the daily maximum (in absolute values)

slant differential ionospheric delay, the daily peak KP index, the daily lowest DST index

and the mean TEC value. Imod
S , Kmod

P , Dmod
ST and TECmod stand for the modified slant

delays and the modified indices. xcorr(x, 0) represents the auto-correlation of time series

x at zero lag. The auto-correlations of Imod
S , Kmod

P , Dmod
ST and TECmod are thus one.

Figure D.13 illustrates the cross correlations of the modified slant delays Imod
S and the

modified indices. We see that a positive correlation exists between the modified slant

differential delays and all the three indices, while the correlation between TECmod and

Imod
S is the highest. The two local maxima at circa 4000 days (see the green line) could

correspond to the 11-year solar cycle.

Analysis of the Ionosphere Gradients

The ionosphere gradients were calculated based on the slant and vertical differential iono-

spheric delays. Figure D.14 shows the daily maximum (in absolute values) slant and
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Figure D.13: Comparison of the cross correlations between the modified slant differential delays

and the modified indices using the data from 1999 to 2013.

vertical ionosphere gradients gab IPP and gvmap
ab IPP from 1999 to 2013 for IPP pairs not

shorter than 5 km. The stormy ionosphere days were excluded from the vertical gradients

(red lines). We see that the range of the slant gradients is within ±50 mm/km in about

98.9% of the time, while the vertical gradients are in about 98.7% of the time within

±20 mm/km. The maximum absolute value reaches 81.2 mm/km for the slant gradients

on October 20, 2001, and 33.8 mm/km for the vertical gradients on October 24, 2001,

respectively. Both gradient time series decrease gradually after 2003 and increase again

after 2011.
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Figure D.14: Daily maximum slant and vertical ionosphere gradients from 1999 to 2013.
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Overbounding Vertical Ionosphere Gradients

The so-called overbounding vertical ionosphere gradient σoverbound
vig is calculated based on

the work of Lee et al. (2006b). The vertical ionosphere gradients were distributed into

different distance bins according to their IPP distances and normalized in each bin with

the mean gradient µbin of the bin and the standard deviation σbin of the bin. The bin

distance is defined as 10 km in this study.

Afterwards, the zero-mean one-sigma Gaussian Probability Density Function (PDF)

(see magenta line in Figure D.15) is inflated until all the non-Gaussian tails (outside

±3 mm/km) of the actual normalized gradients (see blue dots in Figure D.15) are bounded

(see the green line in Figure D.15). Figure D.15 shows the inflated PDF for an quiet

ionosphere day, namely July 20, 2006. The inflating factor f on this day is 2.09.

With the inflating factor f , the bin mean µbin and the bin standard deviation σbin of the

vertical gradients, the overbounding vertical ionosphere gradient σoverbound
vig was calculated

according to Lee et al. (2006b) in each bin:

σoverbound
vig = |µbin|+ f · σbin (D.20)

Figure D.16 shows the σoverbound
vig (top) and the number of the IPP pairs (bottom) in

each distance bin. In the first bin only IPP pairs longer than 5 km are considered. We

see that the σoverbound
vig are mostly below 1 mm/km and increase rapidly when the distance

bin gets smaller than 20 km. This might partially be caused by the low number of IPP

pairs in the first two bins (1232 and 45968). However, we can see that the number of

IPP pairs decreases also to below 5 · 104 when the distance bin is longer than 250 km.

Another reason for the rapid increase might be the non-ionospheric biases remaining in

the ionospheric residuals. Residual biases at centimeter level can cause gradient biases of

several mm/km with an IPP distance of 10 km.
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Figure D.15: Inflated PDF of the normalized vertical ionosphere gradients on July 20, 2006.
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Figure D.16: σoverbound
vig and the number of IPP pairs in each 10-km distance bin on July 20, 2006.

The daily maximum σoverbound
vig over these 15 years are plotted in Figure D.17. The four

subfigures indicate the daily maximum σoverbound
vig with different bin starts. For example,

the first figure (top left in Figure D.17) shows the daily maximum σoverbound
vig starting from

the first bin, the bin start is 5 km since all IPP pairs not longer than 5 km are excluded, and

the second figure (top right in Figure D.17) shows the daily maximum σoverbound
vig starting

from the second bin, namely 10 km. The black dots represent the days with a relatively

strong ionospheric activity (KP ≥7 or DST <-200 nT). The stormy ionosphere days were

excluded from the vertical gradients. It should be noticed that the daily inflating factor f

used in all four subfigures are the same, namely the one calculated with all the normalized

vertical gradients per day. The daily inflating factors from 1999 to 2013 are plotted in

Figure D.18.

It is not difficult to see that most of the daily maximum σoverbound
vig are generated in the

first and the second distance bin because of the remaining non-ionospheric biases. The
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Figure D.17: Daily maximum σoverbound
vig with different bin starts from 1999 to 2013.
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Figure D.18: Inflating factor f from 1999 to 2013.

huge σoverbound
vig in these two bins are mainly generated by the large bin mean µbin and

the bin standard deviation σbin (see Figure D.19). The inflating factor f , however, does

not vary much with the ionosphere activity (see Figure D.18). However, it is interesting

to see that the inflating factor f shows a yearly pattern and is always getting larger in

winter. In the years with strong ionosphere activity, this periodical behavior of f is even

more pronounced.

Figure D.20 shows the mean number of IPP pairs per day used for the estimation of the

σoverbound
vig for each distance bin from 1999 to 2013. The IPP pairs shorter than 5 km were

excluded from the first bin. The number increases gradually during these 15 years and

most of the IPP pairs concentrate at distances between 50 km and 150 km. In the years

1999, 2000 and 2001, the mean number of IPP pairs per day between 5 km and 10 km
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Figure D.19: |µbin| and σbin for daily maximum σoverbound
vig from 1999 to 2013.
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(first bin) is even below 500. Considering the relatively large non-ionospheric biases and

the low observation number in the first two bins, we suggest not to take into account the

σoverbound
vig in these two bins. Ignoring the values in these two bins, about 96.9% of the daily

maximum σoverbound
vig over these 15 years are below or equal to 4 mm/km, the suggested

value in Lee et al. (2006b). The maximum σoverbound
vig of 11.74 mm/km appears on April

3, 2000, ignoring the first two bins.

Comparison with the CONUS Threat Model

The slant ionosphere gradients were calculated not only for the stormy ionosphere days,

but for all days under diverse ionospheric conditions considering all the IPP pairs not

shorter than 5 km. In order to comply with the slant gradients used for the CONUS

model (Ene et al., 2005), the set of slant gradients calculated with the baseline length

was used and the resulting daily maximum absolute values are plotted as blue dots in

Figure D.21. The red dots represent the days with stormy ionospheric activity and the

magenta line illustrates the slant ionosphere gradient bound of the CONUS ionospheric

anomaly threat model (Pullen et al., 2009).

We see that the daily maximum absolute slant gradients are far below the slant iono-

sphere gradient bound of the CONUS model, the largest slant gradient of 42.6 mm/km

occurring on November 24, 2001, for the station pair ETHZ and SCHA with a baseline

length of 38.3 km. The maximum slant gradient appeared in the late afternoon (between

17:00 and 18:00) of CET (see Figure D.22) at a low elevation angle of about 7.5 degrees

(see Figure D.23).

With the assumptions that the actual separation of the GBAS reference point and the

airplane at a 200 ft decision height d is 6 km, that the time constant of the single-frequency

carrier-smoothing filter t amounts to 100 s and the velocity of the aircraft in the landing

process va/c is 0.07 km/s (Pullen et al., 2009), the maximum differential pseudorange error
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Figure D.20: Mean number of IPP pairs per day for each distance bin from 1999 to 2013.
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Figure D.21: Comparison of the daily maximum absolute slant ionosphere gradients with the

CONUS ionospheric anomaly threat model.
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Figure D.22: Slant ionosphere gradient for the station pair ETHZ and SCHA occuring on November

24, 2001.

perr generated by the maximum absolute slant ionosphere gradient gS amounts to

perr = gS · (d+ 2 · t · va/c) (D.21)

= 42.6
mm

km
· 20 km

= 0.852 m

according to Pullen et al. (2009).

It should be noted that the CONUS ionospheric anomaly threat model also considers

the ionosphere front speed and front width. These parts of the threat model have not

been considered in this study.
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Figure D.23: Skyplot of the slant ionosphere gradients for the station pair ETHZ and SCHA on

November 24, 2001.

Conclusion

In order to assess the ionospheric errors remaining in the differential GPS observations

between the GBAS reference stations and the airborne user in Switzerland, the single-

difference ionospheric delays and the ionosphere gradients were estimated based on the

GPS data from the AGNES stations over 15 years. The results derived from double-

difference phase observations with resolved ambiguities are free from code-related biases

like DCBs. Nevertheless, the global CODE ionosphere model values used to correct for the

epoch-wise zero-mean condition per baseline might cause temporal and spatial smoothing

effects on the results.

Using the modified slant ionospheric residuals, the modified geomagnetic indices KP ,

DST , and the modified mean TEC values between 12:00 and 14:00 UT derived from

the CODE global ionosphere maps, we observed positive correlations between the slant

residuals and all three indices. The correlation of the differential slant ionospheric residuals

with the TEC values is stronger than with the other two geomagnetic indices.

The daily maximum (absolute values) differential ionospheric residuals are mostly

(99.82%) within ±4 m in the slant direction and ±2 m (99.98%) in the vertical direc-

tion. The daily maximum vertical differential residuals are mostly concentrated around

local noon in Switzerland. Through the analysis of the slant differential ionospheric resid-

uals for some very short baselines, we know that non-ionospheric biases on the centimeter

level still remain in the residuals. This may affect the estimated ionosphere gradients for

short IPP distances significantly.

The absolute daily maximum slant and vertical ionosphere gradients calculated with

the IPP distances are in 98.85% of the time within 50 mm/km and in 98.68% of the time

within 20 mm/km. The σoverbound
vig increases for the bins with short bin distance because
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of the remaining non-ionospheric biases and the low observation numbers. Ignoring bins

shorter than 20 km, about 96.9% of the daily maximum σoverbound
vig in Switzerland during

the 15 years in Switzerland are below 4 mm/km.

The slant ionosphere gradients calculated with the baseline length are estimated for

all days under different ionospheric conditions and compared with the slant ionosphere

gradient boundary of the CONUS ionospheric anomaly threat model. The biggest value

of the absolute daily maximum slant gradient is 42.6 mm/km which lies well below the

CONUS slant ionosphere gradient boundary.
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