
Julian Förster

System Identification of
the Crazyflie 2.0 Nano

Quadrocopter

Bachelor Thesis

Institute for Dynamic Systems and Control
Swiss Federal Institute of Technology (ETH) Zurich

Supervision

Michael Hamer
Prof. Dr. Raffaello D’Andrea

August 2015

IDSC-RD-MDH-04

Preface

The Crazyflie 2.0 (Crazyflie) is the second generation of a nano quadrocopter,
developed by the Swedish company Bitcraze AB. It is meant to be a development
platform and is therefore open source as well as open hardware.
Currently some research is being undertaken on point-to-point distance measure-
ments using ultra-wideband (UWB) sensors at the Institute for Dynamic Sys-
tems and Control (IDSC). Due to its light weight and small size, the Crazyflie
was chosen as a demonstration tool for this technology. In the future these
quadrocopters should be used to demonstrate the achievements of the research
mentioned above at as well as outside of the ETH.
For this purpose the estimation and control algorithms that are already included
in Bitcraze’s firmware for the Crazyflie have to be replaced. The goal of this
bachelor thesis, documented in this report, was to determine the system pa-
rameters that will be needed in order to design the new estimation and control
algorithms. These are all moments of inertia of the quadrocopter, thrust maps
and the transfer function of the motors as well as the drag coefficients of the
Crazyflie.

i

Contents

Abstract v

Nomenclature vii

1 Introduction 1

2 Inertia 3

2.1 Application . 3

2.2 Theoretical Background . 3

2.3 Design Considerations . 4

2.3.1 Abrupt Stopping . 5

2.3.2 Accelerated Rotation . 5

2.3.3 Harmonic Swinging . 6

2.4 Experiment . 6

2.4.1 Experiment Design . 7

2.4.2 Preparation . 9

2.4.3 Experimental Procedure 14

2.4.4 Data Analysis . 14

2.5 Results and Discussion . 18

2.6 Verification . 21

3 Motor Parameters 23

3.1 Applications . 23

3.2 Equipment . 24

3.2.1 Load Cell . 24

3.2.2 Tachometer . 25

3.3 Mappings . 26

3.3.1 Input Command → Thrust 26

3.3.2 Input Command → Angular Velocity 28

3.3.3 Thrust → Torque . 29

3.4 Transfer Function . 29

3.4.1 Theoretical Background 30

3.4.2 Experimental Setup and Procedure 30

3.4.3 Data Processing . 31

3.4.4 Results and Discussion . 34

3.4.5 Verification . 35

iii

4 Drag Coefficients 39
4.1 Application and Theoretical Background 39
4.2 Equipment . 42
4.3 Design Considerations . 43

4.3.1 Computer Vision . 43
4.3.2 Wind Generator . 43

4.4 Experiment . 44
4.4.1 Experiment Design . 44
4.4.2 Experimental Procedure 45
4.4.3 Data Analysis . 46

4.5 Results and Discussion . 48
4.6 Verification . 51

5 Conclusion & Outlook 53

A Overview Results 57

B Mathematics 59
B.1 Derivation of the Solution to the Equation of Motion of a Pendulum 59
B.2 Derivation of the Solution to the Equation of Motion of a Drop-

ping Weight . 60
B.3 Derivation of the formula for the moments of inertia of a cuboid 62

C Code 63
C.1 Sensor Data Processing for Inertia Matrix Experiments 63

C.1.1 Encoder Logger . 63
C.1.2 Processing of Encoder Data from Dropping Weight Ex-

periment . 64
C.1.3 Linear and nonlinear fit to data from swing experiments . 66
C.1.4 Calculation of the Crazyflie’s inertia matrix 73
C.1.5 Analytic calculation of moments of inertia for the test body 74
C.1.6 Calculation of the test body’s moments of inertia from

experiment results . 77
C.1.7 Other Calculations . 78

C.2 Code in connection with thrust parameters 79
C.2.1 Static Thrust Tests . 79
C.2.2 Load Cell Logger . 84
C.2.3 Data processing for the mappings 85
C.2.4 Signal generation and data logging for the transfer function 90
C.2.5 Data processing for the transfer function 99
C.2.6 Ping Test . 108

C.3 Code in connection with drag coefficients 111
C.3.1 Data processing of the wind tunnel experiment data . . . 111

Abstract

The physical parameters of the Crazyflie 2.0 nano quadrocopter and the exper-
iments that were used to determine them are presented. Firstly, to measure the
coefficients of the inertia matrix, the relationship between the moment of inertia
and the period of a pendulum was made use of. Secondly, a set of motor param-
eter mappings between motor input command, produced thrust and torque and
the rotor’s angular velocities was determined using a force/torque sensor and a
laser tachometer. In addition, a transfer function for the motors was identified
by applying sinusoidal inputs to the motors. Thirdly, the quadrocopter’s drag
coefficients that characterize the force acting on the rotating propellers when
the quadrocopter is moving in air were determined. For this, air was blown
onto the Crazyflie while it was mounted to the force/torque sensor. Finally,
the experimental methods for determining the inertia matrix and the motor
parameter mappings were verified using appropriate experiments.

v

Nomenclature

Symbols

I Inertia Matrix [kg ·m2]

u Unit Vector [−]

W Energy [J]

M Torque [N ·m]

g Earth’s gravity [N/kg]

t Time [s]

ϕ Angular position of an axis [rad]

r Radius, e.g. of an axis [m]

d Diameter [m]

Ω Angular velocity [rad/s]

N Number of data points [−]

T Period [s]

m Mass [kg]

f Thrust [N]

θ̇ Angular velocity [rad/s]

cmd Motor input command [−]

RPM Revolutions per minute [1/min]

τ Torque [N ·m]

R Rotation matrix [−]

x Position [m]

Indicies

x, y, z Axis of Reference for e.g. a moment of inertia

a With respect to an axis (e.g. the rotation axis of the swing experiment)

fr Friction

0 Initial condition

exp Experimental setup or experimental data

s Sampling, e.g. Ts is the sampling time

pm Point mass

vii

CF Crazyflie

TB Test body

T Transient

Acronyms and Abbreviations

ETH Eidgenössische Technische Hochschule

IDSC Institute for Dynamic Systems and Control

UWB Ultra Wideband

PMMA Polymethylmethacrylat (acrylic glass)

eq. Equation

FFT Fast Fourier transform

RTT Round trip time

FMA Flying machine arena

Chapter 1

Introduction

Drones and robots are gaining more and more importance in everyday life.
They are used for search and rescue missions [12], photography from viewpoints
that are difficult to reach for humans [14] and countless other applications.
Many of them already fly autonomously, however there are still limits making
human intervention necessary on occasion. Indoors, autonomous operation in
particular is possible but often dependent on expensive and/or complex absolute
positioning systems (e.g. computer vision systems) that observe the current
position and orientation of moving modules, see [10].

At the IDSC research on a cost efficient and robust alternative to common in-
door localization systems is currently being done: using ultra-wideband (UWB)
radios [13]. With one radio mounted on each module of a robotic system and
a certain number of so-called anchor radios distributed in the space of interest,
a measurement of the inter-modular distance as well as the determination of
the absolute position of the system becomes possible. To facilitate the research
on such a system and to be able to demonstrate its results, a suitable platform
was sought. The Crazyflie, developed by the company Bitcraze in Sweden, was
chosen from several small sized quadrocopters due to its particularly small size
and weight, good flight performance and most importantly because the system
is open source and open hardware and therefore easily customizable.

The customization of the Crazyflie for the purpose of a demonstration platform
will include replacing both the estimator and flight controller that are already
included in the quadrocopter’s firmware [7], with a new model based estimator
(extended Kalman filter) and controller. The goal of this thesis is to determine
all physical parameters of the Crazyflie that will be necessary to implement
these new algorithms. That is the drag coefficients that will be used by the
estimator to estimate the quadrocopter’s velocity based on accelerometer data
as well as the inertia matrix and parameters characterizing the motors. These
two latter parameters are used by the controller to translate actuating variables
for translational and angular velocity into input commands for the Crazyflie’s
motors.

This thesis is subdivided into three main chapters. Chapter 2 concentrates
on the determination of the inertia matrix, Chapter 3 presents everything in
connection with the motors and Chapter 4 reveals the details on ascertaining
the drag coefficients of the quadrocopter. Every chapter includes details on the
application of the parameter, theoretical background, considerations regarding

1

2

the choice of experiments, experimental setup and procedure, data analysis,
results and the verification of the methods.
Readers that are mainly interested in the numeric results of the experiments
can find a sheet summarizing them in Appendix A.

Chapter 2

Inertia

This chapter begins with an explanation of what the inertial properties of the
Crazyflie will be used for. Then the theory, that was used as well as the exper-
imental methods that were developed to determine said matrix are described
and finally the results are discussed.

2.1 Application

The inertia matrix mainly influences angular accelerations of a body. For this
reason it is used by a quadrocopter’s on-board controller to calculate the thrust
that is necessary in order to achieve a desired angular velocity about a given
axis.
As already mentioned earlier, the Crazyflie’s estimator and controller is going
to be replaced by a more effective and efficient one for the IDSC’s desired ap-
plications. In order to have a good starting point for the design process, the
Crazyflie’s inertia matrix, with respect to the mass center, had to be determined
as accurately as possible.

2.2 Theoretical Background

The inertia properties of a body can be completely characterized by its inertia
matrix [8]:

I =

 Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 . (2.1)

In this matrix, Iii are the body’s moments of inertia with respect to the bodyframe
axes x, y and z as defined in Figure 2.4 and Iij are the products of inertia. As
the inertia matrix is symmetric, that is Iij = Iji, it has only six independent
parameters.
All proposed experimental procedures that are described below have something
in common: they only allow one to determine a body’s moment of inertia around
one axis at the time instead of the whole matrix at once. However it is possible to

3

4 2.3. Design Considerations

then determine the whole inertia matrix by solving a linear system of equations
that is based on the following equation [8]:

IOa = Ixxu
2
x + Iyyu

2
y + Izzu

2
z − 2Ixyuxuy − 2Iyzuyuz − 2Izxuzux. (2.2)

In this equation IOa is the moment of inertia of a body about an arbitrary axis,
ux, uy and uz are the components of the unit vector that indicates the direction
of axis Oa and Iij are the moments and products of inertia of the body. Now
measuring the moments of inertia with respect to six different axes and plugging
the results as well as the directions of the axes into equation (2.2) leads to a
system of six linear equations with six unknowns: the independent components
of the body’s inertia matrix.
In order to get the inertia matrix with respect to the mass center the measured
moments of inertia IOa all have to be with respect to the mass center. However
some of the methods presented below don’t allow these to be determined directly.
Instead, the parallel axis theorem (eq. (2.3)) [8] can be used to shift the results
into the center of mass:

Ixx = Ixx,G +m(y2
G + z2

G),

Iyy = Iyy,G +m(x2
G + z2

G),

Izz = Izz,G +m(x2
G + y2

G).

(2.3)

This theorem allows the calculation of the moment of inertia Iii,G with respect to
an axis that passes the mass center using the moment of inertia Iii with respect
to a parallel axis that passes an arbitrary point and the distance between these
two axes.
To sum this up, the idea is to measure the Crazyflie’s moments of inertia with
respect to six different axes that pass arbitrary points and to use the parallel
axis theorem as well as the formula to calculate the moment of inertia around
an arbitrary axis in order to obtain a linear system of equations. The solutions
of this linear system of equations are the six independent components of the
inertia matrix.

2.3 Design Considerations

When designing the experiments needed to determine the Crazyflie’s inertia
matrix, three main criteria had to be taken into account.
Firstly, a body’s moments and products of inertia only show their effects when
the body is rotating in an accelerated way. You can see this for example in
the equation of motion of a pendulum (eq. (2.8)). As long as the angular
acceleration ϕ̈(t) is zero the inertia matrix I does not appear in the equation.
Secondly and as can be shown using the parallel axis theorem (eq. (2.3)) the
moments of inertia of a body depend on the axis of the rotation. For this reason
the axis of rotation had to be easy to determine.
And finally the motion of the Crazyflie had to be observed during the experi-
ment.
Based on these requirements several experiment designs were developed, con-
sidered and some of them rejected. In the following, the most important ones
are presented.

Chapter 2. Inertia 5

2.3.1 Abrupt Stopping

The idea behind this approach was to make use of the kinetic energy Wkin that a
rotating body has. Wkin, which can be calculated using equation (2.4), depends
on the body’s moment of inertia Ia with respect to the rotation axis but also
on it’s angular velocity ω.

Wkin =
1

2
Iaω

2 (2.4)

The experiment setup for this design would consist of an axis on which the
Crazyflie can be mounted, a motor, an encoder and a force/torque sensor. The
Crazyflie is mounted on an axis rotated by the motor with at a constant angular
velocity. Then the motor is used to stop the Crazyflie’s motion abruptly. During
the braking process torques around the spinning axis are detected with the
force/torque sensor. From the measured torques the Crazyflie’s moment of
inertia with respect to the mounting axis can be calculated, taking the braking
time into account.
This method was rejected due to its complicated setup and the complex data
analysis that would be necessary after the experiments.

2.3.2 Accelerated Rotation

In contrast to the method described in the above section, this method makes
use of the effects of the Crazyflie’s inertia that show up when the quadrocopter
is accelerated around one axis instead of decelerated.
The experiment setup for this experiment consists of a weight, an encoder and
again an axis for the Crazyflie. The Crazyflie is mounted to the axis that - this
time - has to be pivoted as frictionlessly as possible. The same axis is used to
wind up a filament with the weight mweight fixed to its loose end. With a known
radius r of the axis, the accelerating moment mweightgr in equation (2.5) can
be calculated easily. Logging the motion and comparing it to the solution of
the equation of motion (eq. (2.5)) for this problem allows one to determine the
Crazyflie’s moment of inertia with respect to the mounting axis.

Iaϕ̈(t) = mweightgr −Mfrϕ̇(t) (2.5)

Here, Ia is the moment of inertia of all bodies that participate in the spinning
motion, g is the earth’s gravity and Mfr is a constant friction coefficient that
has to be determined experimentally. Solving equation (2.5) according to the
rules for constant coefficient differential equations and assuming ϕ(0) = 0 and
ϕ̇(0) = 0 leads to the following result, the derivation of which can be found in
Appendix B.2.

ϕ(t) =
mweightgrIa

M2
fr

(
e−

Mfr
Ia

t − 1

)
+
mweightgr

Mfr
t (2.6)

ϕ̇(t) =
mweightgr

Mfr

(
1− e−

Mfr
Ia

t

)
(2.7)

6 2.4. Experiment

Interpreting equation (2.7) leads to the conclusion that the dropping mass will
accelerate until the axis’ angular velocity converges to the steady-state speed
ϕ̇(t → ∞) =

mweightgr
Mfr

. Measuring this velocity using the encoder leads to the

desired moment of inertia.
This idea was rejected because it would have required a complicated mount to
attach the Crazyflie to the axis.

2.3.3 Harmonic Swinging

The third idea is based on the principle of harmonic swinging. The period of
the swinging motion of a pendulum depends on the moment of inertia of the
pendulum with respect to the mounting axis. As a consequence when mounting
the Crazyflie to an axis, deflecting it and observing its swinging motion, it
becomes possible to calculate its moment of inertia with respect to the mounting
axis.

!!

!"!

!!!

!!" !

Figure 2.1: Schematic of a pendulum

The equation of motion governing the swinging motion is

Iaϕ̈(t) = −mgr · sin (ϕ(t))−Mfrϕ̇(t) (2.8)

A schematic of a pendulum is depicted in Figure 2.1. Due to its simplicity and
good realizability this method was chosen to determine the inertia matrix of the
Crazyflie.
In the following Section 2.4 the chosen harmonic swinging experiment is ex-
plained in more detail.

2.4 Experiment

This section presents the experiment that was used to determine the inertia
matrix, that is experiment design, preparation, experimental procedure and the
data analysis that was done after the experiment.

Chapter 2. Inertia 7

(a) Crazyflie Pendulum (b) Mounting device that allows to mount
the Crazyflie to the axis in six different
orientations.

Figure 2.2: Harmonic Swinging Experiment Setup

2.4.1 Experiment Design

Figure 2.2a shows the experiment setup. The frame of the pendulum that was
built for the Crazyflie consists of standard aluminium profiles. The axis that
is used to mount the Crazyflie has a diameter d of 4 mm and is pivoted on one
side using a ball bearing and on the other side with an encoder. The connection
between axis and encoder is established with a shrink hose to achieve centering
between mounting axis and encoder axis. Custom designed and 3D printed
parts are used to keep the ball bearing and the encoder in place.

This setup allows the determination of the moment of inertia of a body mounted
to the axis with respect to the rotation axis. However as was already mentioned
in Section 2.2, measurements for six different axes are needed in order to deter-
mine the whole inertia matrix. So in order to be able to mount the Crazyflie
in different orientations and at the same time to the rotational axis, a special
mounting device (mounting cube) was designed and 3D printed. This cube is
depicted in Figure 2.2b. It is attached to the Crazyflie by removing one motor
including motor mount from the quadrocopter, sliding the cube onto the motor
mount and reattaching everything to the Crazyflie.

As it can be seen in Figure 2.2b the cube has four holes to hold the axis. Conse-
quently it is already possible to mount the Crazyflie in four different orientations
when the cube is mounted to one arm of the quadrocopter. By also mounting
the cube to a neighboring arm, it is possible to get two more orientations. All
orientations are depicted in Figure 2.3. In addition, the body frame system that
was introduced for the Crazyflie is presented in Figure 2.4.

The radial encoder data that reflects the Crazyflie’s swinging motion was recorded
using a rotary magnetic shaft encoder by RLS (serial number 35R684) and an
RLS E201-9S USB encoder interface. To read out the data with a computer a
Python script was implemented (see C.1.1). However as minor inconsistencies
could be observed in the data when using this script, another script implemented

8 2.4. Experiment

x-z

x-y
z

x

Figure 2.3: Shows how the cube can be used to mount the Crazyflie so that it
rotates about the depicted body frame axes. By then mounting the cube to a
neighboring arm of the Crazyflie, another two axes of rotation are possible: the
y axis instead of the depicted x axis and the y-z axis instead of the depicted x-z
axis. With ”x-y axis”, an axis that lies in the x-y plane and has an angle of 45°
to the x and the y axes is meant.

Figure 2.4: Crazyflie together with the body frame that was defined. The x axis
corresponds to the pitch, y to the roll and z to the yaw axis of the quadrocopter.
This coordinate system is referred to throughout the whole report.

Chapter 2. Inertia 9

by Michael Hamer was used to record the data that was finally used.

2.4.2 Preparation

Equation of Motion

Recall the pendulum’s equation of motion which was already introduced earlier
(eq. (2.8))

Iaϕ̈(t) = −mgr · sin (ϕ(t))−Mfrϕ̇(t). (2.9)

This equation can be linearized using the small-angle assumption sin (ϕ) ≈ ϕ
for small ϕ. The linearized equation is

Iaϕ̈(t) = −mgr · ϕ(t)−Mfrϕ̇(t). (2.10)

Solving this equation analytically leads to

ϕ(t) =

√
ϕ2

0 +

(
Ω0 + δϕ0

ω

)2

· e−δt · cos

(
ωt− arctan

(
Ω0 + δϕ0

ωϕ0

))
(2.11)

where ϕ(t) the deflection angle of the Crazyflie, ϕ0 the initial deflection, Ω0

the initial angular velocity, δ =
Mfr

2Ia
, ω0 =

√
mgr
Ia

and ω =
√
ω2

0 − δ2. The

derivation of this solution can be found in Appendix B.1.

Center of Mass

The Crazyflie’s center of mass needs to be known for two calculations: the first
is fitting the solution of the equation of motion (eq. (2.11)) to the recorded
swinging motion data. The second is calculating the moments of inertia with
respect to an axis that passes the center of mass using the parallel axis theorem
(eq. (2.3)).
For simplicity, it was assumed that the position of the mass center in the x-
y plane matches the geometrical center of the Crazyflie (intersection between
straights connecting opposite rotor axes). This assumption makes sense because
to achieve an optimal flight performance, a quadrocopter’s mass center should
be as close to the geometrical center as possible.

Figure 2.5: Setup that can be used to determine the z position of the Crazyflie’s
center of mass.

10 2.4. Experiment

The z position of the mass center was determined using a custom composition
that is depicted in Figure 2.5. It consists of two axes and two pairs of 3D printed
parts. Two of those parts were attached to two opposite motors of the Crazyflie.
The two parts that were left were attached to two axes and then slid into the
parts that were attached to the Crazyflie. Subsequently the two axes were fixed
on a table so that the Crazyflie could spin freely and the quadrocopter was
brought into a position where its z axis pointed horizontally. The z position of
the mass center was then determined by sliding the 3D printed parts back and
forth until the Crazyflie was balanced and stopped leaving its vertical position.
Finally, measuring the position of the 3D printed parts led to the result that the
Crazyflie’s mass center lies 17.425 mm above the ground when the quadrocopter
stands on a flat surface.

Friction

A starting value for the friction coefficient Mfr required for the fitting process
was determined experimentally. To achieve this, known weights were attached
to a fishing line that was wrapped up on the axis of the Crazyflie swing. Sub-
sequently the weight was dropped and the dropping motion was recorded using
the encoder. The experiment setup is depicted in Figure 2.6.

Figure 2.6: Experiment setup used to determine the friction coefficient Mfr of
the Crazyflie swing. A fishing line is wrapped around the axis and a known
weight is attached to its end. The friction coefficient can be determined via the
steady state velocity of the dropping weight.

The equations describing this situation were already introduced in Section 2.3.2.
The equation of motion is

Iexpϕ̈(t) = mweightgr −Mfrϕ̇(t) (2.12)

The solution to this equation which is derived in Appendix B.2 under the as-
sumptions that ϕ(0) = 0 and ϕ̇(0) = 0 is

ϕ(t) =
mweightgrIa

M2
fr

(
e−

Mfr
Ia

t − 1

)
+
mweightgr

Mfr
t (2.13)

Chapter 2. Inertia 11

ϕ̇(t) =
mweightgr

Mfr

(
1− e−

Mfr
Ia

t

)
(2.14)

The steady-state velocity of the spinning axis is ϕ̇(t → ∞) =
mweightgr
Mfr

. It

can easily be converted to the translational velocity of the dropping weight:
v(t) = ϕ̇(t) · r.
Figure 2.7a shows the recorded encoder data for an example experiment where
a weight of mweight = 20 g dropped from approximately one meter. The axes of
the diagram were adapted as explained in Section 2.4.4.

For the next step the data was unwrapped and the derivative was computed
using Matlab’s diff command. Additionally the speed data was filtered with
a median filter (orders between 1 and 11) to reject outliers. The results are
displayed in the Figures 2.7b and 2.7c.

In order to get only one value for the angular velocity, the velocity was averaged
in a manually chosen interval. The interval was chosen so that the speed data
in this interval was as constant as possible (apart from noise).

This whole procedure was repeated for different weights. All results are sum-
marized in Table 2.1 and some experiment data is depicted in Figure 2.8.

Table 2.1: Results of the dropping mass experiments for different weights. The
speeds were calculated by averaging the measured angular velocity in a manually
selected interval. The resulting friction coefficients were calculated using the
average speeds.

Index i Mass mweight Averaged speed v Resulting Mfr

Unit - g rad/s 105 · kg·m2
/rad·s

1 20 51.97 0.7551
2 20 57.13 0.6869
3 20 57.41 0.6835
4 20 58.13 0.6750
5 20 66.53 0.5898
6 30 232.37 0.2533
7 30 280.48 0.2099
8 30 271.58 0.2167
9 30 291.17 0.2022
10 30 283.76 0.2074
11 40 498.07 0.1576
12 40 463.00 0.1695
13 40 470.78 0.1667
14 40 513.76 0.1528
15 50 588.37 0.1667
16 50 562.57 0.1744
17 50 603.36 0.1625
18 50 591.74 0.1658
19 50 608.88 0.1611

12 2.4. Experiment

Time [s]
0 2 4 6 8 10 12

A
n
gl
e
[r
ad

]

-4

-3

-2

-1

0

1

2

3

(a) Raw data of an experiment where a
mass of 20 g dropped down approximately
1 m. The axes were scaled as described in
Section 2.4.4.

Time [s]
0 2 4 6 8 10 12

A
n
gl
e
[r
ad

]

0

50

100

150

200

250

300

350

400

(b) The same data unwrapped.

Time [s]
0 2 4 6 8 10 12

A
n
gl
u
la
r
V
el
o
ci
ty

[r
a
d

s
]

-10

0

10

20

30

40

50

60

70

80

(c) Angular velocity of the spinning axis calculated
from the unwrapped data and filtered with a median
filter (order 7). The black vertical lines are manually
chosen borders and the orange horizontal line is the
average of the speed data between these borders.
The borders are chosen so that the speed between
them is as constant as possible.

Figure 2.7: Data from the dropping weight experiment. The code that was used
to generate these plots can be found in Appendix C.1.2.

Chapter 2. Inertia 13

Time [s]
0 5 10 15 20

A
n
gl
e
[r
ad

]

0

200

400

600

800

1000

(a) i = 5

Time [s]
0 5 10 15 20

A
n
gl
u
la
r
V
el
o
ci
ty

[r
a
d

s
]

0

20

40

60

80

(b) i = 5

Time [s]
0 2 4 6

A
n
g
le

[r
ad

]

0

200

400

600

800

1000

(c) i = 17

Time [s]
0 1 2 3 4 5 6

A
n
gl
u
la
r
V
el
o
ci
ty

[r
a
d

s
]

0

100

200

300

400

500

600

(d) i = 17

Figure 2.8: Data from selected dropping weight experiments. The indices cor-
respond to the ones in Table 2.1. Left column: unwrapped measurement data,
thus showing the position over time. Right column: derivative of unwrapped
data and mean value in depicted interval. The code that was used to generate
these figures is similar to the one in Appendix C.1.2.

When analyzing the last column of Table 2.1 it becomes clear that the resulting
friction coefficient is relatively similar for all experiments except from the ones
where the average speed of the dropping weight is low compared to the other
experiments (i = [1, 5]).

In addition the experiments were also carried out with a weight of mweight =
10 g. The data for this experiment can be seen in Figure 2.9. This data was not
included in the above table because in this case the speed and therefore also the
friction was not constant during one rotation of the axis.

To sum it up, the friction of the experiment setup seems to be influenced by
currently inexplicable effects, especially at low angular velocities of the axis.
For this reason, the effect of friction at slow speeds on the resulting moment of
inertia was further investigated. Details on that can be found in Section 2.4.4.

Another conclusion that can be drawn from the dropping weight experiment
concerns the moment of inertia of the experiment setup itself (axis and mounting
cube). Equation (2.14) allows to conclude that the stationary speed is reached
more slowly when the moment of inertia of the spinning axis is higher. During
all dropping weight experiments the mounting cube was attached to the axis. As
can be seen in Figure 2.7b the acceleration almost happens instantaneously. For
this reason and because of the satisfying results during the verification (Section
2.6) it was decided to neglect the moment of inertia of the mounting cube and
the axis for the calculation of the moments of inertia during this experiment.

14 2.4. Experiment

Time [s]
0 5 10 15 20 25 30 35

A
n
g
le

[r
a
d
]

-6

-5

-4

-3

-2

-1

0

1

2

(a) Raw data of an ex-
periment where a mass of
10g dropped down approxi-
mately 1m.

Time [s]
0 5 10 15 20 25 30 35

A
n
g
le

[r
a
d
]

-10

0

10

20

30

40

50

(b) The same data un-
wrapped.

Time [s]
0 5 10 15 20 25 30 35

A
n
g
lu
la
r
V
el
o
ci
ty

[r
a
d

s
]

0

1

2

3

4

5

6

7

(c) Derivative of the un-
wrapped data. A median
filter of order 7 was applied
to reject outliers.

Figure 2.9: Data from the dropping weight experiment. From the changing
speed we can infer that the friction at slow speeds is influenced by nonlinear
and unapparent effects. The code that was used to generate these plots can be
found in Appendix C.1.2.

2.4.3 Experimental Procedure

Taking measurements using the setup as described in Section 2.4.1 was per-
formed by the following steps:

1. Attach the mounting cube to the Crazyflie.

2. Mount the cube together with the Crazyflie to the swinging axis in a
desired orientation. Prevent slipping between cube and axis by fixing the
cube using folded paper.

3. Trigger the recording on the computer.

4. Deflect the Crazyflie by hand to an arbitrary angle between 20 and 70
degrees.

5. Let the Crazyflie swing until it stops.

6. Stop the recording on the computer.

2.4.4 Data Analysis

After finishing the steps described above the data had to be post processed and
analyzed in order to get the moment of inertia. Figure 2.10 shows the starting
point of this procedure. The data that is plotted there was not processed at all.

Preparing the Data

As a first step the units of the axes were adapted: the time axis was changed
to start at 0 and the unit was changed to seconds. Additionally the unit of
the encoder data axis was changed to radians. To do this the maximal encoder
value was determined by turning the encoder axis manually by more than 360°
and identifying the maximum which showed to be 4194047. Subsequently the
data points were scaled to be between 0 and 2π instead. Also, the mean of the

Chapter 2. Inertia 15

Time [µs] ×108
7.48 7.5 7.52 7.54 7.56 7.58 7.6

E
n
co
d
er

V
a
lu
e
[-
]

×105

2

4

6

8

10

12

Figure 2.10: Raw data that was
recorded with the radial encoder
while deflecting the Crazyflie by hand
around its x axis and waiting until it
stopped swinging. The data in this fig-
ure was not post processed in any way.

Time [s]
0 1 2 3 4 5 6

A
n
g
le

[r
a
d
]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2.11: Result after changing the
units and removing the biases of both
axes as well as deleting the parts of the
data where the Crazyflie was deflected
or where the Crazyflie moves at slow
speeds.

first few data points was subtracted from all data points in order to have the
motion start at 0 rad.

Secondly, the part where the Crazyflie was deflected by hand was removed by
finding the highest peak and deleting all data points before that peak.

Finally, the data where the angle was below approximately 10° was deleted as
well. In the example in Figure 2.11 this corresponds to only considering data
up to the 8th peak. This was done because the motion of the experiment setup
showed an inexplicable nonlinear behavior when moving at small speeds. More
information on this can be found in Section 2.4.2. The result of these processing
steps can be seen in Figure 2.11.

However as is presented later (Section 2.6), this experiment gives the most
accurate results for the moments of inertia when the fit is done for all the
available data and not just up to the 8th peak. It is not yet understood why
this is the case. Despite this lack of understanding, a fit using all the data was
also done for the Crazyflie. This fit was then compared to the result of the fit
using data up to the 8th peak.

Fitting the Data

Alternatively to fitting the experiment data, the logarithmic decrement ln
(

ϕ(t)
ϕ(t+T)

)
=

Tδ also could have been used to calculate the moment of inertia from the data.
However when calculating the decrement, the results appeared to vary quite a
lot. For this reason, fitting the solution of the linearized equation of motion to
the recorded data was chosen to determine the moment of inertia.

Linear Fitting The fitting was done using Matlab’s function fminsearch.
The objective function that is based on the solution to the linearized equation

16 2.4. Experiment

of motion of a pendulum (eq. (2.11)) is

N∑
i=1

ϕexp,i −

ϕ(t)︷ ︸︸ ︷√
ϕ2

0 +

(
Ω0 + δϕ0

ω

)2

· e−δ·iTs · cos

(
ω · iTs − arctan

(
Ω0 + δϕ0

ωϕ0

))


2

(2.15)

where N is the number of data points, ϕexp,i is the ith data point and Ts is the
sampling time which was Ts = 0.004 s in this experiment. All other variables
have the same definition as in equation (2.11).
The parameters Mfr, Ia and Ω0 were optimized and all other variables were
declared as constants. The initial values and the values of the constants as well
as their derivations are summarized in Table 2.2.
The Matlab file that was used for the fitting can be found in Appendix C.1.3.
In Figure 2.12 an example for a result of such a fitting is depicted.

Time [s]
0 1 2 3 4 5 6

A
n
gl
e
[r
ad

]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 Data ϕexp,i(t)
Model ϕ(t)

Figure 2.12: Result of fitting the solution of the linearized equation of motion to
the data. During this experiment, the Crazyflie was swinging about its x axis.

Nonlinear Fitting As the maximum angle the Crazyflie had during the swing
experiment exceeded 50° from time to time, there was a reason to doubt the va-
lidity of the small angle assumption that was made when linearizing the equation
of motion. In order to investigate the effects of the mistake that was introduced
by this, a fit to the nonlinear equation of motion (eq. (2.9)) was done as well.
When fitting the data to the nonlinear equation of motion the first and the sec-
ond derivative of the data are needed as well. However when numerically taking
the derivative of discrete data points, existing noise is amplified [4]. To avoid
this effect a different approach was chosen. When fitting a well defined at least
two times differentiable function to the data it is possible to analytically take

Chapter 2. Inertia 17

Table 2.2: Initial values for parameters that are fitted using Matlab’s
fminsearch and values of numeric constants that are also needed to perform
the fit. In the right column there is an explanation for every value on how it
was determined.

Optimized while fitting?

Yes: No:
Variable Initial Value Value Origin

Mfr 0.1813 · 10−5kg·m2
/rad·s Mean of all results from Table

2.1 with indices i = [6, 19]
Ia 4.48 · 10−5kg ·m2 Moment of inertia Ipm = mr2 of

a point mass (same weight as
Crazyflie, mCF = 28g) with
distance from axis that equals
approximately half the diameter
of the Crazyflie (dCF = 0.092 m)

Ω0 0rad/s Not exactly but very close to 0
because Crazyflie is deflected
and launched manually.
Optimized to improve the fit.

ϕ0 ϕexp,0 Is set equal to the first data
point

mCF 28.0 g Measured using scales (Snowrex
EA-3000 with a precision of
0.1g)

g 9.81 N/kg Earth’s gravity
r ri The distance between the

rotation axis to the mass center
depends on the current
mounting orientation of the
Crazyflie and is calculated with
the Matlab script in Appendix
C.1.7

18 2.5. Results and Discussion

the derivative of this function. The results are the desired first two derivatives
of the data.
After analyzing the plot of the experiment data the following function was cho-
sen:

ϕflex(t) =
(
a1 · t2 + a2 · t+ a3 + e−a4·t

)
· cos

((
a5 + a6 · t+ a7 · t2

)
· t+ a8

)
.

(2.16)

Fitting this equation to the measured data (result in Figure 2.13a) and taking
the analytical derivative using Wolfram Mathematica led to the first and second
derivative of the data (result in Figure 2.13b). Subsequently the nonlinear
equation of motion could directly be fitted to the data.

Time [s]
0 1 2 3 4 5 6

A
n
gl
e
[r
ad

]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 Data ϕ(t)
Model ϕflex(t)

(a) Fitted function compared to the data.
The curves are nearly indistinguishable.

Time [s]
0 1 2 3 4 5

A
n
gl
e
[r
ad

]

-1

-0.5

0

0.5

1

A
n
gu

la
r
ve
lo
ci
ty
/a

cc
el
er
at
io
n
[r

a
d
s
]/
[r

a
d

s
2
]

-200

-100

0

100

200

ϕflex(t)
ϕ̇flex(t)
ϕ̈flex(t)

(b) Fitted function (left y-axis) with its
first and second derivative (right y-axis).

Figure 2.13: Result of fitting the function from equation (2.16) to the data from
the swinging experiment (x axis of the Crazyflie in this case) and taking the
analytical derivatives.

2.5 Results and Discussion

Linear Fitting The results for the linear fitting are summarized in Table
2.3. Due to geometrical symmetries of the Crazyflie the moments of inertia are
expected to be very similar for the x and y axes or for the x-z and x-y axes
respectively. This can be observed in the results. Also the expectation that the
initial angular velocity is close to zero is met.
However another result is not as expected: the friction coefficient. Looking only
at the results from the swing experiment is quite pleasing because the friction
coefficient is similar for all measurements. But as soon as one compares these
coefficients to the ones determined through the dropping mass experiment (see
Section 2.4.2) it becomes clear that the new coefficients are one order of magni-
tude larger than the predicted ones. Apart from the nonlinear friction effects at
small speeds no possible explanation could be found and further investigation is
required. However as the results of the verification experiment (Section 2.6) re-
garding the accuracy of the determined moment of inertia were very encouraging
it was decided to abdicate these investigation for the time being.

Chapter 2. Inertia 19

Table 2.3: This table shows the results of fitting the solution of the linearized
equation of motion to the measured data. # of peaks says up to which peak
the measured data is taken into account for the fitting process. This data was
generated using the Matlab script that is shown in Appendix C.1.3.

Axis # of peaks Ia Mfr Ω0

Unit - - 10−5 · kg ·m2 10−5 · kg·m2
/rad·s rad/s

x 8 3.144988 2.446468 -0.0644
x 11 3.119770 2.683766 0.1842
y 8 3.151127 2.521742 -0.0610
y 11 3.128159 2.773404 0.1553
z 8 7.058874 2.701683 -0.0625
z 16 7.004148 3.214519 -0.0805
xy 8 5.003777 2.392808 -0.0230
xy 16 4.940333 2.849633 -0.0784
xz 8 4.640540 2.560766 -0.0045
xz 13 4.600706 2.920212 -0.0278
yz 8 4.780235 2.191634 -0.0334
yz 15 4.713093 2.684329 -0.0050

Nonlinear Fitting The results for the nonlinear fitting are displayed in Table
2.4. It was expected that these results were more accurate than the ones for the
linear fitting because the small angle assumption was not relied on here. But
when looking at the resulting moments of inertia and friction coefficients it is
obvious that they are (with one exception) nearly exactly equal to the ones that
were determined using linear fitting. Consequently it was decided to proceed
with the results from the linear fitting.

Table 2.4: This table shows the results of fitting the parameters in the nonlinear
equation of motion to the measured data. This data was generated using the
Matlab script that is shown in Appendix C.1.3.

Axis Ia Mfr

Unit - 10−5 · kg ·m2 10−5 · kg·m2
/rad·s

x 3.144988 2.446468
y 3.151127 2.521742
z 7.058874 2.836767
xy 4.753588 2.512448
xz 4.640540 2.560766
yz 4.541223 2.301216

Inertia Matrix The goal of this experiment was to determine the inertia
matrix of the Crazyflie with respect to its mass center. In order to calculate
this matrix from the results that are contained in Table 2.3, the moments of
inertia with respect to the mounting axes were converted into moments of inertia

20 2.5. Results and Discussion

with respect to parallel axes that pass the mass center using the parallel axis
theorem (eq. (2.3)). Subsequently a linear system of equations was set up
based on equation (2.2). The solution of this system of equations is a vector
containing the six independent components of the inertia matrix. The resulting
inertia matrix for all experiments, where the first eight peaks were used for the
fit, is

ICF,1 =

16.823890 1.224320 0.716891
1.224320 16.885278 2.083147
0.716891 2.083147 29.808912

 · 10−6kg ·m2. (2.17)

The inertia matrix, based on the fits where a higher number of peaks was con-
sidered, is

ICF,2 =

16.571710 0.830806 0.718277
0.830806 16.655602 1.800197
0.718277 1.800197 29.261652

 · 10−6kg ·m2. (2.18)

All steps described above that were used to obtain the inertia matrices were
executed using the Matlab script in Appendix C.1.4.
Both inertia matrices are very similar. However as in the verification process
better results were yielded when fitting to the whole data and not just to the
first few peaks (see Section 2.6) it was decided to settle on the second inertia
matrix:

ICF = ICF,2. (2.19)

There are two reasons why this result for the inertia matrix makes sense.
Firstly, the components on the diagonal (moments of inertia) are significantly
larger than the products of inertia. If our assumption that the mass center and
the geometrical center of the Crazyflie are identical was correct, the products
of inertia would have been zero. This is the case because the x-y, x-z and the
y-z planes in the Crazyflie body frame are planes of symmetry [8].
Secondly, the moment of inertia with respect to the z axis is approximately
twice as large as the moments of inertia with respect to x and y axis. Why
this is expected can be understood intuitively: The motors are the heaviest
components whose mass center positions are not even similar to the position of
the overall mass center. Assume that dCF is the distance between two opposite
motor axes of the Crazyflie. When the Crazyflie is now spinning about its z
axis the motors have a distance of dz := dCF

2 to the common mass center. In
contrast when spinning about the x or y axis, the motors have a distance of

dx,y :=
√

2
4 dCF to the common mass center (compare Figure 2.14). It follows

that dz
dx,y

=
√

2. At the same time the moment of inertia is proportional to

the square of the distance between a mass point and the rotation axis: I ∝ d2.
Putting everything together leads to

Iz
Ix,y

=

(
dz

dx,y

)2

= 2 =⇒ Iz = 2 · Ix,y (2.20)

which is what can be observed in the result for the inertia matrix (eq. (2.18)).

Chapter 2. Inertia 21

!
!!

!!

!!

!!!

!!,! !

45°!

Figure 2.14: Geometrical situation that is used to prove why Iz = 2 · Ix,y.

2.6 Verification

To verify that the experimental procedure described above yields the correct re-
sults for the moment of inertia a test body with known mass (mTB = 17.6 g) and
dimensions was built. The idea behind the test body is to measure its moment
of inertia in exactly the same way as the Crazyflie’s and to then additionally
calculate its moment of inertia. Comparing the measured moment of inertia
to the calculated one is a promising test for the precision of the experimental
method. Figure 2.15 shows a picture of the test body that was used.

Figure 2.15: Polymethylmethacrylat (PMMA) test body with the mounting
cube already attached to its shaft.

Calculation of moments of inertia When calculating the moments of in-
ertia of the test body we make use of the formula for the moment of inertia of
a cuboid:

22 2.6. Verification

Ixx,G = m ·
(
b2

12
+
c2

12

)
Iyy,G = m ·

(
a2

12
+
c2

12

)
Izz,G = m ·

(
a2

12
+
b2

12

) (2.21)

!

!!

!!

!!

!!

!!
!!

Figure 2.16: Geometrical sit-
uation for inertia formulas for
cuboids.

The geometrical situation corresponding to this formula is shown in Figure 2.16
and the derivation of the formula can be found in Appendix B.3.
Using this formula as well as the parallel axis theorem (eq. (2.3)) we get the
values shown in Table 2.5. The calculation was done using the Matlab script
from Appendix C.1.5.

Measurement of moments of inertia The experimental procedure when
measuring the moments of inertia of the test body was exactly the same as for
the Crazyflie. Only the calculations of the distances from the axes to the body’s
mass center and the moments of inertia with respect to a mass center axis were
a little bit different because of the different geometry. The file that was used
to calculate the distances is the second one in Appendix C.1.5 and the file that
was used to move the measured moments of inertia to the mass center is in
Appendix C.1.6. The results can be found in Table 2.5.
When looking at the results it becomes clear that the measured moments of
inertia are more accurate when the fit is done for more data points.

Table 2.5: Calculated and experimentally determined values for two different
moments of inertia of the test body. The measured moments of inertia for (1)
were obtained by fitting data up to the 10th and 13th peak for x and z axis
respectively. For (2) the fit was done using data up to the 8th peak for both
axes. The numbers in the ’error’ lines are relative errors between measured and
calculated moments of inertia.

Ixx,G Izz,G

Calculated 6.410179 · 10−6 kg m2 9.860228 · 10−6 kg m2

Measured (1) 6.428337 · 10−6 kg m2 9.998638 · 10−6 kg m2

Error (1) 0.2833 % 1.4037 %
Measured (2) 6.530529 · 10−6 kg m2 10.426414 · 10−6 kg m2

Error (2) 1.8775 % 5.7421 %

In addition as the error is very small, the test body experiment successfully
validates the choice of this experiment for the determination of the inertia matrix
of the Crazyflie.

Chapter 3

Motor Parameters

In this chapter, the process of characterizing the Crazyflie’s motors is presented.
This characterization includes mappings between important operation variables,
such as produced thrust and torque and the input command passed to the
motors from within the Crazyflie’s firmware. In addition, the motor’s transfer
function was determined.

3.1 Applications

The controller that will be implemented on the Crazyflie will output a value for
every motor that represents the thrust that should be produced by this motor.
However this value cannot be directly commanded to the motors. The motor
driver on the Crazyflie only accepts a 16 bit integer (0 = motors off, 65535 =
full thrust) for each motor at a time that subsequently is converted into a PWM
signal [7]. In order to make a connection between the set point given in Newton
and the 16 bit motor command we need a conversion function.

CW

CCW CW

CCW

Figure 3.1: Spinning directions of a quadrocopter’s rotors. CW = clockwise,
CCW = counterclockwise.

Apart from that, the Crazyflie’s rotation about its z axis (yaw) is controlled
by making use of the torque that is produced by the rotors spinning in air.
The vector of the produced torque points exactly in the opposite direction of
the rotor’s angular velocity vector. In order to prevent the quadrocopter from
spinning all the time, this effect has to be abrogated which is done by letting two
propellers spin clockwise and the other two counterclockwise (compare Figure

23

24 3.2. Equipment

3.1). When the quadrocopter is hovering all propellers have approximately
the same speed and therefore generate torques with similar magnitudes that
cancel each other out. Now when a rotation about the z axis is desired, the
speed of two opposite propellers is reduced and the speed of the two remaining
propellers is increased equally so that the total thrust remains the same. The
result is a torque that generates the desired rotation. In order to determine the
thrust reduction and increase necessary to achieve a specific torque, a mapping
between torque and thrust is needed.

Furthermore the rotor’s angular velocity can be used to calculate the thrust the
rotor currently produces. The following formula introduced in [13] shows the
connection between those two values:

f =

4∑
i=1

κθ̇2
i (3.1)

In this equation, f is the total thrust produced, κ is a proportionality constant
and θ̇i is the angular velocity of rotor i. As the Crazyflie features brushed
motors, a direct measurement of rotor angular velocity is not possible. Instead
the angular velocity has to be estimated. For this, a mapping between input
command given to the motors and angular velocity was determined as well.

Finally the motor transfer function was determined. It can be used to predict
how fast the motor will adapt to a new velocity and it is planned to be used for
simulation purposes.

3.2 Equipment

3.2.1 Load Cell

The produced thrust and torque of the quadrocopter was measured with an ATI
industrial automation force/torque sensor Mini40 (load cell) [1]. As is depicted
in Figure 3.2 fixing the Crazyflie on the load cell was done using a custom 3D
printed mount.

Load cell
mount

Figure 3.2: The Crazyflie is attached to the load cell using a custom 3D printed
mount.

Chapter 3. Motor Parameters 25

To log the load cell data a Python logger was implemented (Appendix C.2.2).
The extreme noise observed when looking at the resulting data really stood out
(compare Figure 3.3). However as only steady-state forces and torques were
interesting for the mappings, taking the average in the interval in which the
motors were turned on gives the required result.

It is also interesting to take the FFT of the load cell data (see Figure 3.4). It
reveals that the noise of the load cell data is concentrated at a few distinct
frequencies. These frequencies probably correspond to the frequency of the
Crazyflie’s spinning rotors.

Time [s]
0 2 4 6 8 10 12 14

T
h
ru
st

z
[N

]

-0.1

-0.05

0

0.05

0.1

0.15

Load cell data
Average

Figure 3.3: Thrust produced by one
motor while being turned on with an
input command of 28000 (43 % of max-
imum thrust) and off again. In order
to get a single value for the produced
thrust the data is averaged in a manu-
ally chosen interval.

Ω[0,π]
0 0.5 1 1.5 2 2.5 3

M
ag

n
it
u
d
e
of

F
F
T

0

20

40

60

80

100

120

140

160

180

200

Figure 3.4: FFT of the load cell data
from Figure 3.3. The noise is concen-
trated at very distinct frequencies that
most probably correspond to the rota-
tional frequency of the Crazyflie’s ro-
tors.

3.2.2 Tachometer

To measure the angular velocities of the rotors a UNI-T UT372 laser tachometer
was used. It was mounted below the load cell as depicted in Figure 3.5.

To make the Crazyflie’s rotor wings visible for the tachometer, sticky reflective
marker tape was applied to both wings of a rotor (Figure 3.6). Sticking tape on
solely one wing was not possible because it would have disturbed the balance
of the propeller significantly. Even with two prepared wings an increase in
vibration during operation could be heard.

Because of this the RPM value that was displayed on the tachometer had to be
divided by two. For converting the RPM into an angular velocity ω with unit
rad/s, the formula

ω = 2π · RPM
2 · 60

=
π

60
·RPM (3.2)

was used. In this equation RPM is the value that was read from the tachometer.

26 3.3. Mappings

Figure 3.5: Mounting position
of the tachometer. It is fixed
to the aluminium profiles us-
ing a tripod.

Figure 3.6: Reflective tape beneath the rotors
of the Crazyflie. As the tachometer now sees
both wings of one propeller the displayed RPM
has to be divided by two. Only using one re-
flective tape was not possible due to balancing
issues.

3.3 Mappings

3.3.1 Input Command → Thrust

Experiment Setup and Procedure In order to determine the input com-
mand to thrust mapping, a way to provide the Crazyflie with an input command
as well as a way to measure the thrust the Crazyflie produces was needed.
For this, the Crazyflie’s firmware was extended in order to be able to send
constant thrust input commands to the motors. The files that were added can
be found in Appendix C.2.1. The commands are transmitted from a computer
via the Crazyradio PA and using a Python script that can be found in the same
appendix.
The thrust was measured using the load cell as described in Section 3.2.1.

After mounting the Crazyflie to the load cell the following steps were repeated
until enough data points were collected.

1. Start logging the load cell data to a file.

2. Send a setpoint from the interval [0, 65535] to two opposite motors of the
Crazyflie using the script mentioned above. Wait for approximately 10 s.

3. Send the 0 setpoint to the Crazyflie and stop the logging.

4. Repeat the above steps until all input commands between 0 and 64000
with an increment of 2000 are measured.

The setpoints are sent to two opposite motors of the Crazyflie because this
results in torque and thrust values that are twice as high compared to when only
one motor is turned on. This increases the signal-to-noise ratio and therefore
reduces the measurement error.

Chapter 3. Motor Parameters 27

Data Processing As described in Section 3.2.1 the average was taken in a
manually selected interval in which the Crazyflie’s rotors were turned on. Sub-
sequently a polynomial with degree two was fitted to the data. The data pro-
cessing was done with the Matlab file in Appendix C.2.3 and uses the command
polyfit.

Results The data processing led to the following function

fi = 2.130295 · 10−11 · cmd2
i + 1.032633 · 10−6 · cmdi + 5.484560 · 10−4 (3.3)

where fi is the thrust produced by rotor i and cmdi is the input command
passed to motor i.
A plot of this function can be found in Figure 3.7.

Input command [0, 65535] ×104
0 1 2 3 4 5 6 7

T
h
ru
st

[N
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Experiment data
Quadratic fit

Figure 3.7: Mapping between input command and thrust for one motor together
with the data points that were used to compute the mapping.

Verification To verify that the load cell provides the correct values for thrust,
a second experiment was undertaken. It included mounting the Crazyflie to
scales (see Figure 3.8) and measuring the thrust produced by the Crazyflie
via the weight reduction compared to when the motors were turned off. The
Crazyflie had to be mounted offset from the scales and even the table because
when mounting the Crazyflie centrally over the scales the ground effect of the
air stream falsified the measurements. Figure 3.9 shows the results for this
verification experiment together with the load cell data and the fit from above.
As the verification data is very close to the load cell data it is assumed that the
load cell data is correct.
In addition to this, it could be confirmed that the maximum thrust measured
for one motor in the load cell is most probably correct by comparing it to a
value given by Bitcraze on their homepage. According to them the maximum
takeoff weight for the Crazyflie is 42 g [2]. In the experiment described above
the maximum thrust that can be produced by one motor was determined to be
approximately 0.15 N. From this it follows that the maximum mass that could
be kept in hover by four motors is 4·0.15 N

9.81 N/kg = 61.16 g. Note that if the Crazyflie

28 3.3. Mappings

did indeed weigh 61.16 g, it would only be able to hover at its current height and
not ascend. Therefore the maximum thrust that was determined seems to be
well proportioned to carry a weight of 42 g as specified by Bitcraze and therefore
quite realistic.

Figure 3.8: Experimental setup
that was used to verify that the
load cell provides correct values
for the thrust produced by the
Crazyflie.

Input command [0, 65535] ×104
0 1 2 3 4 5 6 7

T
h
ru
st

[N
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Experiment data
Quadratic fit
Verification data

Figure 3.9: Results of the verifica-
tion experiment compared to the results
from the load cell experiment.

3.3.2 Input Command → Angular Velocity

Experiment Setup and Procedure Input commands were transmitted to
the Crazyflie as described in Section 3.3.1 and the rotors angular velocity was
measured as described in Section 3.2.2.
The following steps were performed until all data points were collected.

1. Send a setpoint from the interval [0, 65535] to the motor with the reflective
tape using the script mentioned above.

2. Wait until the display of the tachometer stabilized. Write down the value.

3. Turn the motor off.

4. Repeat the above steps until all input commands between 0 and 64000
with an increment of 2000 are measured.

In total two series of measurements were recorded.

Data Analysis From the measured data points the angular velocities were
calculated using equation (3.2). The data analysis was done with the Matlab
file in Appendix C.2.3. After inspection of the data it was decided to fit a
polynomial with degree one to the data.

Results The data analysis led to the following two mappings that are dis-
played in Figure 3.10:

θi = 0.03950236 · cmdi + 420.9420

θi = 0.04076521 · cmdi + 380.8359
(3.4)

Chapter 3. Motor Parameters 29

The norm of the residuals is equal to 599.6187 for the first series of measurements
and 471.0714 for the second one. Therefore the fitting is better for the second
series.

Input command [0, 65535] ×104
0 1 2 3 4 5 6 7

A
n
gu

la
r
ve
lo
ci
ty

[r
ad

/
s]

0

500

1000

1500

2000

2500

3000

Experiment data
Linear fit

(a) First series of measurements.

Input command [0, 65535] ×104
0 1 2 3 4 5 6 7

A
n
gu

la
r
ve
lo
ci
ty

[r
ad

/
s]

0

500

1000

1500

2000

2500

3000

Experiment data
Linear fit

(b) Second series of measurements.

Figure 3.10: Results and linear fit for the two measurement rows of rotor angular
velocity.

As the behavior of the angular velocity is not linear in the input command
interval [0, 1000] it is not recommended to use the mapping there. Instead, the
angular velocity should be assumed to be zero in this interval.

3.3.3 Thrust → Torque

Experiment Setup and Procedure Thrust as well as torque was measured
as described in Section 3.2.1 and input commands were again transmitted to
the Crazyflie as introduced in 3.3.1.
Also for this mapping, data points corresponding to input commands between
0 and 64000 with an increment of 2000 were collected.
The experiment was done using two opposite propellers in order to get more
accurate results.

Data Analysis The data was analyzed using the Matlab script in Appendix
C.2.3.

Results The following function resulted from fitting a linear polynomial to
the data. It is plotted in Figure 3.11.

τi = 0.005964552 · fi + 1.563383 · 10−5 (3.5)

In this equation τi is the torque and fi the thrust, each produced by one rotor.

3.4 Transfer Function

This section describes the process of determining a transfer function between
input command given to the motors and produced thrust for the Crazyflie’s
motors.

30 3.4. Transfer Function

Thrust [N]
0 0.05 0.1 0.15 0.2

T
or
q
u
e
[N

m
]

×10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experiment data
Linear fit

Figure 3.11: Mapping between produced thrust and torque for one motor to-
gether with the data points that were used to compute the mapping.

3.4.1 Theoretical Background

As already illustrated in Section 3.2.1 the data recorded using the load cell has
a very bad signal-to-noise ratio. When taking measurements for the mappings
it was possible to circumnavigate this problem by taking the average over the
interval where the Crazyflie’s motors were turned on because only steady state
forces and torques were needed for the mappings. However when determining
the transfer function the steady state signal is not sufficient because it does not
contain any information on how fast the motors react.
In order to solve the problem with noise this time a method explained by
D’Andrea et al. in [5] is employed. The idea of this method is to input si-
nusoidal signals of different frequencies into the plant that is to be identified.
When a sinusoidal input is applied, the output of the system will also be a
sinusoid of the same frequency, which is scaled and shifted. Therefore nearly
the whole energy of the response to the input signal is concentrated at one
frequency (the input frequency) whereas the energy of the noise is spread over
several frequencies. This allows one to consider the system response isolated
from the influence of noise.

3.4.2 Experimental Setup and Procedure

The whole experimental procedure and data processing is based on [5]. The
application to this context as well as the code implementation is part of this
thesis.
For this experiment the thrust produced by the Crazyflie was again measured
using the load cell (Section 3.2.1).
However this time as the shift between input and output signal is essential to
determine the transfer function, the time scales of the input commands given
on the Crazyflie and the forces detected by the load cell had to be synchronized
somehow. To achieve this a, script as well as a new Crazyflie firmware module
were developed (see Appendix C.2.4). When launched, the script asks the load
cell to start streaming data. Every incoming bit of data from the load cell is time
stamped by the script. Subsequently the user is able to customize the sinusoidal
input sequence (equation (3.6)) that the Crazyflie motors should receive. The
variables that can be modified are the motor ID of the motor that should execute

Chapter 3. Motor Parameters 31

the sequence, the length of the sequence N , the amplitude of the sinusoid A and
the frequency determining integer l. The value of B was fixed to 30000.

ue[n] = A · cos (Ωln) +B, Ωl =
2πl

N
(3.6)

When this is finished, a packet containing these values is sent to the Crazyflie
via the Crazyradio PA and the time at which the packet is sent is logged. As
soon as the Crazyflie receives the packet it starts generating the input sequence
and commanding it to the specified motor(s) with a frequency of 500 Hz. Every
time the input sequence crosses the middle value B, a packet is sent from the
Crazyflie back to the client who logs it together with a time stamp. Thanks
to the time stamps that the client collects for the incoming force and input
command data a temporal relationship between input and output of the motors
is established.

This procedure was repeated for various values of l. In total two series of
measurements were recorded. The parameters for both series can be found in
Table 3.1.

Table 3.1: Parameters that were used for the two series of measurements. The
increment of l was not constant but increasing.

1st series of measurements 2nd series of measurements
N 4000 8000
A 20000 20000
l [0, . . . , 2000] [0, . . . , 4000]
Motor # 1 3
of measurements 43 40

3.4.3 Data Processing

This section describes the data processing that was done for every measurement
(one set of input parameters) using the Matlab script in Appendix C.2.5.

The first processing step is to create a common time vector for the logged load
cell and input command data. In addition, the input sequence is reconstructed
based on the logging points that were sent back from the Crazyflie, the param-
eters that were passed to the Crazyflie for this measurement and the general
formula for input sequences (equation (3.6)). An example of the data after this
step is depicted in Figure 3.12.

Subsequently the FFT of both the input sequence and the load cell data were
taken using Matlab. For this step the first NT data points were neglected in
order to only consider the part of the output signal without transient. For the
first series of measurements, NT was chosen to be 500 and for the second series
1800 because the second series has a larger number of data points N .

In addition, to keep the peaks of the FFT as sharp as possible the FFT was
taken on a number of samples NFFT that is as close to a multiple of the number

32 3.4. Transfer Function

Time [s]
0 2 4 6 8 10

In
p
u
t
co
m
m
a
n
d
[-
]

×104

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(a) The blue circles represent the logging
packets that come back from the Crazyflie
and the orange curve is the input se-
quence that was reconstruct as part of the
post processing.

Time [s]
0 2 4 6 8 10

T
h
ru
st

[N
]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(b) Data that was logged from the load
cell while applying the input sequence.

Figure 3.12: Data that was collected during one measurement in the first series
of measurements. For this experiment l was chosen to be 12. The first processing
step (synchronizing the time axes) and the reconstruction of the input signal
were already performed.

of samples of one period as possible. In [6] it is explained why this works: as
long as the condition (adapted from [6])

k0
2π

NFFT
= Ω0 =

2πl

N
(3.7)

is met for an integer k0 there exists an FFT coefficient at exactly the frequency of
our signal. This FFT coefficient then captures the whole energy of the signal [6].
If the condition is not met, the energy would be spread over all FFT coefficients
which is called leakage. Transforming equation (3.7) leads to

NFFT =
N

l︸︷︷︸
of samples of one period

·k0 (3.8)

As there does not always exist a k0 < l such that this equation is satisfied, Nl is
rounded to the next integer and k0 is chosen so that NFFT is as close as possible
to N − NT. Like this leakage is not always completely prevented but at least
minimized.
The FFTs for our example measurement are depicted in Figure 3.13.
To verify their correctness one can calculate the discrete time frequency that
corresponds to the parameters that were chosen for this sample experiment:
Ω = 2πl

N = 2π·12
4000 = 0.01884956 rad. As there exist peaks at this value in the

figures 3.13a and 3.13b it is now possible to say that they correctly represent
the input/output frequency of our system.
Apart from these peaks there is a peak at Ω = 0 rad in both the input and the
output FFT. These peaks are there because the middle value of both the input
and output signal is greater than 0.

Chapter 3. Motor Parameters 33

Ωl [rad]
0 0.02 0.04 0.06 0.08 0.1

M
a
gn

it
u
d
e
of

F
F
T

×107

0

2

4

6

8

10

12

(a) FFT of the input command sequence
in the interval n = NT, . . . , NT+NFFT−1
displayed for Ωl between 0 and 0.1.

Ωl [rad]
0 0.02 0.04 0.06 0.08 0.1

M
a
gn

it
u
d
e
of

F
F
T

0

50

100

150

200

250

(b) FFT of the load cell output in the
interval n = NT, . . . , NT +NFFT − 1 dis-
played for Ωl between 0 and 0.1.

Ωl [rad]
0 0.5 1 1.5 2 2.5 3

M
ag

n
it
u
d
e
of

F
F
T

×107

0

2

4

6

8

10

12

(c) FFT of the input command sequence
in the interval n = NT, . . . , NT+NFFT−1
displayed for Ωl between 0 and π.

Ωl [rad]
0 0.5 1 1.5 2 2.5 3

M
ag

n
it
u
d
e
of

F
F
T

0

50

100

150

200

250

(d) FFT of the load cell output in the
interval n = NT, . . . , NT +NFFT − 1 dis-
played for Ωl between 0 and π.

Figure 3.13: FFTs of the data depicted in Figure 3.12.

Furthermore there are two peaks visible in Figure 3.13b that belong to the har-
monics of the output frequency and many peaks in Figure 3.13d on the right
that correspond to high frequency noise of the load cell signal.

The next processing step is to compute a frequency response estimate using the
FFT of the input signal at the input frequency Ue[l] and the FFT of the output
signal at the input frequency Ym[l] according to [5]

Ĥ(Ωl) =
Ym[l]

Ue[l]
. (3.9)

In order to finally get the transfer function

H(z) =

∑B−1
k=0 bkz

−k

1 +
∑A−1
k=1 akz

−k
(3.10)

34 3.4. Transfer Function

[5] explains to make use of the frequency response

H(Ω) =

∑B−1
k=0 bke

−jΩk

1 +
∑A−1
k=1 ake

−jΩk
. (3.11)

After multiplying this equation with the denominator, a least squares problem
can be formulated considering all measurements. The goal of the least squares
problem is to minimize the error

e = G−H ·Θ. (3.12)

In this equation, G and H are composed using the frequency response and Θ
contains the unknown parameters. According to [5], the solution to the problem
is

Θ = (F TF)−1F TG. (3.13)

All least squares problems that occurred during this work were solved using this
equation.
When determining the transfer function, the least squares problem was weighted:
due to the relatively low sampling rate on the Crazyflie the higher frequency
input sequences were considered to be generated less accurately. Therefore mea-
surements with l > 15 for the first series of measurements and l > 50 for the
second series were weighted with 0.5 while measurements with lower values of l
were weighted with 2 for the first series and 2.5 for the second one. Values with
l > 100 for the first series and l > 200 for the second one (both corresponding to
a continuous time frequency of 12.5 Hz) were completely ignored. The solution
to a weighted least squares problem is [5]

Θ = (F TW TWF)−1F TW TWG. (3.14)

The results of the least squares problem are the coefficients of the transfer
function.

3.4.4 Results and Discussion

The first series of measurements led to the transfer function H1(z) while the
second series of experiments resulted in the transfer function H2(z).

H1(z) =
6.0705967 · 10−8

1− 0.9745210 · z−1
(3.15)

H2(z) =
7.2345374 · 10−8

1− 0.9695404 · z−1
(3.16)

Figures 3.14 and 3.15 depict the frequency response estimates as well as the
fitted frequency responses for both series of measurements.

Chapter 3. Motor Parameters 35

CT Frequency [rad
s
]

0 20 40 60 80

M
ag
n
it
u
d
e
[d
B
]

-135

-130

-125

-120

-115

-110
Frequency response estimates
Weighted least squares fit

CT Frequency [rad
s
]

0 20 40 60 80

P
h
as
e
[◦
]

-150

-100

-50

0

50

Figure 3.14: Result of the first series
of measurements.

CT Frequency [rad
s
]

0 20 40 60 80

M
ag
n
it
u
d
e
[d
B
]

-135

-130

-125

-120

-115

-110
Frequency response estimates
Weighted least squares fit

CT Frequency [rad
s
]

0 20 40 60 80

P
h
as
e
[◦
]

-200

-100

0

100

200

Figure 3.15: Result for the second se-
ries of measurements.

When looking at these figures what stands out is that the frequency response
estimates vary a lot, especially at high frequencies and especially the phase. One
of the reasons for this might be that the time scale synchronization between the
input and output signal is not perfect because currently the latency of the signals
is completely omitted.
The latency of the connection between Python client and Crazyflie was deter-
mined. For this a simple ping test was implemented as a Python script running
on a computer and a new part of the Crazyflie’s firmware (firmware module)
(both in Appendix C.2.6). From the Python script packets are sent to the
Crazyflie. Immediately after receiving a packet the Crazyflie returns an empty
packet. The Python script logs the time between sending and receiving a packet.
The results are summarized in Table 3.2. The average latency over all experi-
ments is 57.1030 ms. As the input signal is generated onboard of the Crazyflie
half of this value for the latency would have to be subtracted from all time
stamps of logging packets coming in from the Crazyflie.
The latency of the load cell is more difficult to determine than the latency
for the Crazyflie. For this reason it was not determined. As both latencies
would have been subtracted from the corresponding time scales if they had been
known, only taking the Crazyflie latency into account would have worsened the
situation compared to when latencies are ignored. Therefore it was decided to
not incorporate either latency into the calculation.
As the phase for the data from the second series of measurements exhibits
slightly less outliers than the phase of the data from the first series, the second
transfer function approximates the data more accurately. For this reason, it is
recommended to use the second transfer function:

H(z) = H2(z). (3.17)

3.4.5 Verification

The transfer functions were verified by simulating them using Matlab’s lsim

command and comparing the simulated output to the measured one. Figure
3.16 demonstrates the result of this for the transfer function that was yielded
from the first series of measurements. The first series was chosen because it is

36 3.4. Transfer Function

Table 3.2: Results for the ping test that was conducted to determine the latency
of the connection between a script running on a computer and the Crazyflie.
The table contains the times that were measured from the client, that is full
roundtrip times (RTT).

Index Circumstances # packets Mean RTT [ms] Standard devia-
tion [ms]

1 CF just started
up

1000 58.2088 16.2416

2 2nd experiment
after startup

1000 56.9923 15.8395

3 3rd experiment
after startup

1000 57.2185 16.1054

4 CF just started
up

500 58.1413 16.0421

5 2nd experiment
after startup

500 55.9051 15.8487

3 3rd experiment
after startup

500 56.1523 15.6315

interesting to see how the transfer function that is assumed to be less accurate
performs.
For l = 12 the transfer function corresponds to the measured data very well.
However for l = 25 a distinct shift between the simulated and the measured
course can be seen. This error can most probably be accounted to the missing
latency compensation.

Chapter 3. Motor Parameters 37

Time [s]
0 1 2 3 4 5 6 7 8

In
p
u
t
co
m
m
an

d
[-
]

×104

1

2

3

4

5

T
h
ru
st

[N
]

-0.1

0

0.1

0.2

Input
Measured output
Simulated output

(a) l = 12

Time [s]
0 1 2 3 4 5 6 7 8

In
p
u
t
co
m
m
an

d
[-
]

×104

1

2

3

4

5

T
h
ru
st

[N
]

-0.1

0

0.1

0.2

Input
Measured output
Simulated output

(b) l = 25

Figure 3.16: Verification of the motor transfer function that was done by sim-
ulating its time domain response to an input (N = 4000, A = 20000) and
comparing it to the measured output corresponding to the same input.

38 3.4. Transfer Function

Chapter 4

Drag Coefficients

This chapter describes the process of determining the coefficients that represent
the drag that the spinning propellers of the Crazyflie cause in an air flow.

4.1 Application and Theoretical Background

Application According to [13] the translational dynamics of a quadrocopter
can be described by the equation

mẍ = R (fe3 + fa) +mg

Ṙ = R [[ω×]]
(4.1)

where x is the quadrocopter’s position in an inertial reference frame, R is the
rotation of the body frame with respect to the inertial frame, f is the total
thrust produced by the rotors and ω is the quadrocopter’s angular velocity in
the body frame. fa denotes (also according to [13]) all aerodynamic forces apart
from f and can be calculated as

fa = Kaeroθ̇ΣR
−1ẋ (4.2)

with Kaero = diag(κ⊥, κ⊥, κ‖) being the constant drag coefficients and θ̇Σ =∑4
i=1|θ̇i| the sum of the angular velocities of all rotors.

Under the assumption that there is no wind, equation (4.2) can be used to esti-
mate the current vehicle speed in the body frame solely based on accelerometer
data. When transforming equation (4.1) it becomes more clear why this works:

fa = m R−1(ẍ− g)︸ ︷︷ ︸
accelerations in body frame

−fe3 (4.3)

The quadrocopter’s accelerometer measures all accelerations in the body frame
as highlighted in the equation above. The vehicle mass m is known and the
produced thrust can be calculated with the formula f =

∑4
i=1 κθ̇

2
i [13] if the

angular velocities of the rotors can be measured. If the angular velocities are

39

40 4.1. Application and Theoretical Background

unknown f could for example be determined using a mapping from thrust to
input command (Section 3.3.1). Subsequently the result for fa can be plugged
into the following equation, a transformed version of equation (4.2):

R−1ẋ =
1

θ̇Σ

K−1
aerofa (4.4)

which gives as a result the desired speed of the quadrocopter in the body frame
R−1ẋ.

Theoretical Background This section explains the origin of the drag force
fa.
There exists a large number of aerodynamic effects that cause forces on a spin-
ning rotor. However according to [11], apart from the one that is responsible
for the produced thrust, there are two major effects: induced drag and blade
flapping. Both of them appear when the quadrocopter is moving in the air and
both of them can cause the total thrust to have a component that is parallel to
the rotor plane.

Induced drag occurs as soon as a rotor wing is moving in the air. As explained in
[9] it is caused because there is a higher pressure under the wing than above the
wing which leads to the formation of vortices at the wing tips. These vortices
lead to air flowing down behind the wing with velocity w. This effect is called
downwash and it influences the effective incident velocity Ue as is shown in
Figure 4.1. According to the lift theorem introduced by Kutta and Zhukovsky
the lift force L of a wing is proportional and perpendicular to Ue [9]. As Ue has a
vertical component downwards, L will have a horizontal component backwards.
This component is called induced drag.

Figure 4.1: From Kundu, Cohen et al. [9] (p. 712). Relationships between wind
velocity U , downwash w, effective incident velocity Ue, and effectively generated
lift Le.

Now for a vehicle that has rotating wings such as a quadrocopter, these induced
drag components have equal magnitudes for all points on the circumference of a
rotor [11] (see Figure 4.2). Therefore no resulting force but only a torque around
the rotor axis is generated (note that this torque is used to control the yaw angle
of a quadrocopter). But as soon the quadrocopter moves in one direction the
advancing blade of the motor feels a higher relative air speed than the retreating

Chapter 4. Drag Coefficients 41

blade. As the induced drag is proportional to the lift which is proportional to
the relative air speed, the induced drag will increase for the advancing blade
and decrease for the retreating blade (see Figure 4.3). As a consequence there
will be a resulting force opposing the direction of travel.

Direction of rotation

Resulting
Torque

Figure 4.2: Spinning rotor dur-
ing hover. The induced drag is
equally spread around the cir-
cumference. There is no result-
ing drag force but only a torque
about the rotor axis.

Relative
wind

Direction of
rotation

Resulting Force

Resulting
Torque

Figure 4.3: Spinning rotor while
quadrocopter is translating. In-
duced drag is increased for the
advancing and decreased for the
retreating blade, leading not
only to the torque that is felt
during hover but also to a re-
sulting force pointing opposite
to the direction of travel.

Whereas the phenomenon of induced drag is based on the fact that wings are
rather rigid, blade flapping only can occur when the rotor wings have a certain
degree of flexibility [11]. Again this effect is based on the fact that the advancing
blade has a higher tip speed than the retreating one. Due to this higher speed
the lift force on the advancing blade is also increased whereas the lift force
of the retreating blade is decreased. The result is a torque on the rotor that
points in the opposite direction of the vehicle’s velocity (for counterclockwise
spinning rotors). However because the rotor spins at a high angular velocity
and therefore has a high angular momentum, it acts like a gyroscope. For this
reason, the attacking torque shows its effect in a direction that is rotated by 90°
with respect to the original one [11]. Consequently the rotor tilts backwards.
As the lift force is perpendicular to the rotor plane, it is also tilted backwards
and now has a drag component. This effect is partially extenuated because,
due to its up flapping, the advancing blade has a reduced angle of attack which
decreases the lift and therefore the torque, which is responsible for the flapping.
This results in an established equilibrium [11]. The geometrical situation for

42 4.2. Equipment

this effect is depicted in Figure 4.4.

Apparent Wind

Vehicle Velocity

Flapping Angle

Lift Force

Drag Component of Lift Force

Figure 4.4: Adapted from Mahony, Kumar and Corke [11]. The apparent wind
induces a torque on the rotor plane which causes it to tilt away from the apparent
wind. The component of the lift force that points in the opposite direction of
the vehicle velocity is the drag that is caused by blade flapping.

4.2 Equipment

During this experiment for determining the drag coefficients, apart from mea-
suring forces, using the load cell (Section 3.2.1), and rotor angular velocities,
using the laser tachometer (Section 3.2.2), wind speeds had to be measured
frequently. For this a hand-handled optical vane anemometer was used. It
can measure wind velocities of up to 20 m/s with a varying resolution between
0.05 m/s for slow wind speeds and 0.5 m/s for faster wind speeds. The device is
depicted in Figure 4.5.

Figure 4.5: Anemometer that was used to determine wind velocities.

Chapter 4. Drag Coefficients 43

4.3 Design Considerations

4.3.1 Computer Vision

The first approach to determine the drag coefficients κ⊥ and κ‖ experimentally
involved making use of the IDSC’s flying machine arena (FMA), more specif-
ically its global sensing system Vicon that is described in more detail in [10].
With the Vicon system it is possible to track the position and orientation of an
object very accurately. Therefore the drag coefficients of a quadrocopter can
be determined by keeping track of position x and its derivatives as well as the
rotation R and its derivative with Vicon while also logging f and θ̇Σ onboard
during a quadrocopter’s random flight in the FMA. Subsequently, equations
(4.1) and (4.2) can be used to formulate a least squares problem of which the
drag coefficients result.

However this is unfortunately not possible for the Crazyflie. Due to its small
size only one marker with the sufficient area (circle with a diameter of at least
2 cm) could be attached to the Crazyflie’s battery. Yet for keeping track of
the orientation, Vicon requires a minimum of three markers. More markers
could have been mounted to the Crazyflie but not without also mounting a
construction to attach them. Such a construction would have influenced the
Crazyflie’s dynamics, especially the drag, significantly which disqualified this
method for the purpose of determining the drag coefficients.

4.3.2 Wind Generator

The idea that was developed as an alternative was to keep the Crazyflie station-
ary while simulating the quadrocopter’s translation through the air by blowing
air onto it and measuring all attacking forces using the load cell (see Section
3.2.1).

In order to prove that this method would work in principle a rapid prototype
was built from carton. It is depicted in Figure 4.6 and features a 12V DC
powered fan. With this fan the wind speeds across the opening varied between
2.25 and 4.25 m/s. However, it was still possible to determine drag coefficients
with a correct sign.

(a) View from the outside. (b) View of the opening where the gen-
erated wind comes out. The fan is well
recognizable.

Figure 4.6: Paper prototype for a wind generator that was built using standard
carton, scotch tape and a fan.

44 4.4. Experiment

Nonetheless in order to get more accurate results the design was improved iter-
atively. Firstly while the fan was still used the carton was replaced by a PMMA
pipe with a diameter of approximately 15 cm. The problem with this design
was that the speed of the air flow at the exit still varied a lot. Especially in the
center, where the speed was about half as fast as it was along the circumfer-
ence. This was most probably due to the large motor housing in the center of
the fan. In order to generate a more homogenous flow, firstly only a funnel with
decreasing diameter was added based on [3] (Figure 4.7a). But because the flow
was still very inhomogeneous - most likely due to turbulence - a honeycomb was
introduced as well. The final composition of the wind generator is depicted in
Figure 4.7b. The next section contains more information on the experimental
design and procedure.

(a) Paper funnel inside the tube to in-
crease the flow speed in the center of the
opening.

(b) Additional honey comb to reduce tur-
bulance and to make the flow as homoge-
nous as possible.

Figure 4.7: PMMA tube with fan and two different configurations inside.

4.4 Experiment

4.4.1 Experiment Design

Figure 4.8 shows the final experimental setup while the geometrical situation is
depicted in Figure 4.9. The Crazyflie was mounted to the load cell and supplied
by a constant 3.7 V DC power supply in order to have constant conditions
for all experiments. The anemometer and the tachometer were in place to
take measurements. The wind generator was mounted to the load cell cage
and powered by a second power supply with up 12 V DC. This voltage was
used to control the velocity of the air flow. What angle wind was blown onto
the Crazyflie from could be varied by fixing the wind generator to the cage in
different heights using cable ties. For this experiment the angles 0°, 48.4° and
77.9° with respect to a vertical position were chosen because fixing the generator
in these positions was convenient.

Chapter 4. Drag Coefficients 45

The load cell data was recorded using the logger in Appendix C.2.2 and input
commands were given to the Crazyflie’s motors using the code in Appendix
C.2.1.

!

Figure 4.8: Experimental setup that was used to determine the drag coefficient
of the Crazyflie. The quadrocopter is mounted to the load cell and powered
using a 3.7 V DC power supply. The wind generator can be mounted to the
load cell cage in 3 different angles. The tachometer for measuring rotor angular
velocity while wind is blown onto the Crazyflie and the anemometer used to
measure the flow speed around the Crazyflie are prepared.

4.4.2 Experimental Procedure

After several iterations on the experimental procedure it was decided to do
a total of 112 experiments: seven different input commands to the Crazyflie
motors (0, 10000, 20000, 30000, 37300, 40000 and 50000), three wind angles
and for every wind angle five fan voltages (5 V, 6 V, 8 V, 10 V and 12 V). In
addition, one experiment for every input command was conducted without wind
blowing onto the Crazyflie.
During the experiments the following procedure was followed.

1. Mount the wind generator at one of the three angles.

(a) Set a wind speed by adjusting the voltage.

(b) Measure the wind speed around the Crazyflie.

i. Set a motor input command for all motors on the Crazyflie.

ii. Measure one motor’s angular velocity.

iii. Start the load cell measurement and wait for about 10 s.

iv. Stop the load cell measurement and turn the motors off.

v. Start again from i. until all input commands were measured.

(c) Start again from (a) until all wind speeds were measured.

2. Start again from 1. until all measurements for all three angles were taken.

46 4.4. Experiment

x

y

28.4574°

Relative
wind

Figure 4.9: Geometrical situation depicting the direction the wind is blowing
from in the x-y plane. The angle was determined based on length and angle
measurements in the load cell cage using a folding rule and a triangle ruler.

The wind speed was always measured all around the Crazyflie. The maximum
and minimum wind speed was logged.
The results of proceeding like this were 112 force vectors, each one acting on the
Crazyflie during one experiment under a specific combination of input command
and wind speed.

4.4.3 Data Analysis

The data collected during the experiments was processed using the Matlab script
from Appendix C.3.1.

Data Preparation After reading in the data from a file the first step was
to remove the influences from sensor bias of the load cell, gravity and parasite
drag (caused by wind blowing onto all surfaces of the Crazyflie). This was done
by subtracting the average of the first 500 data points from all data points. As
described in the experimental procedure section wind was already blowing on
the Crazyflie when the load cell measurement was started. This is the reason
why the effect of parasite drag is removed when subtracting the average value
of the first few data points.
Subsequently in order to only end up with one value for every force component
the corresponding data points were averaged over a manually chosen interval (as
for example described in Section 3.2.1). This resulted in a single force vector for
each combination of input command, wind velocity and wind angle. However
this force does still not solely represent the drag force that is of interest, since
the produced thrust is still a part of it. To eliminate the thrust’s influence,
the steady state thrust from the measurements without wind blowing onto the
Crazyflie and with a certain input command was subtracted from all forces that
were measured during experiments with the same input command. Like this,
the pure drag force was obtained.
Equation (4.2) that is used to determine the drag coefficients contains, apart
from the drag coefficients and the drag force, the sum of the rotors’ angular
velocities and the vehicle speed expressed in the body frame. The sum of the
angular velocities is obtained using the RPM that was measured for each com-

Chapter 4. Drag Coefficients 47

bination of input commands and wind speeds. The vehicle speed is calculated
from the measured wind speeds in combination with the orientation of the wind
generator. In order to get only one wind speed per measurement the maximum
and minimum values that were logged were averaged.

The next step was calculating estimates for the drag coefficients. This was
done in three different ways: firstly fitting the simple drag force model given by
equation (4.2) to the data, secondly fitting a more complex drag force model to
the data and thirdly fitting the simple model with a full drag coefficient matrix
instead of just a diagonal one to the data.

Simple Model In order to uncover any dependencies of the drag coefficients
for the x and y direction they were fitted in different ways: firstly they were
calculated separately using equation (4.2) resulting in values for this drag coef-
ficient for x and y direction and for every combination of input command and
wind velocity/angle separately.

Secondly one drag coefficient value was calculated for every combination of input
command and wind velocity/angle. This was done by formulating and solving
a least squares problem.

Thirdly one drag coefficient was calculated for all wind speeds resulting in values
for every combination of wind angle and input command.

And finally one drag coefficient was fitted to all data at once.

The drag coefficient for the z direction was calculated separately for every ex-
periment. To get only one value the average of the calculated ones can be
taken.

Complex Model To cover more of the possible dependencies on rotor angular
velocity and vehicle speed than those already covered by the simple model, a
more complex model was introduced. Instead of equation (4.2), the following
equation is employed:

fa = Kaero,1θ̇Σv+Kaero,2(v).∧2+Kaero,3θ̇
2
Σ+Kaero,4v+Kaero,5θ̇Σ+Kaero,6

(4.5)

where v = R−1ẋ, Kaero,i ∈ R3 for i = 3, 5, 6 and Kaero,i ∈ R3×3 for i = 1, 2, 4.
(). ∧ 2 denotes the element-wise square of a vector.

It was fitted to the data using least squares. In contrast to the simple fit it
was not calculated one coefficient per experiment (single combination of motor
input command, air flow velocity and angle) but only one coefficient fitting the
whole data as well as possible.

Cross-coupling Model This model was introduced to investigate whether
there exist couplings between the different axes. An example for coupling would
be a drag force in z direction although the Crazyflie is only translating in x
direction. According to the simple model there should be no drag force then.

48 4.5. Results and Discussion

Cross-couplings were determined using a similar equation as in the simple model:

fa = Kaero,fullθ̇ΣR
−1ẋ. (4.6)

However to model the cross-couplings, a full matrix with nine coefficients was
fitted. For the fitting, certain symmetries were expected: the drag coefficients
as well as the cross coupling between x and y axis should be the same. Due
to symmetries, a wind velocity in z direction causes the same force in x and y
direction. Apart from that, a drag force in z direction caused by a velocity in x
direction should be the same as a drag force in z direction caused be the same
velocity in y direction. For these reasons, the matrix that was fitted has the
following form:

Kaero,full =

κ1 κ2 κ3

κ2 κ1 κ3

κ4 κ4 κ5

 . (4.7)

Due to symmetry aspects, one would expect κ2 as well as κ3 to be rather small.

The matrix was also fitted to the data using least squares.

4.5 Results and Discussion

Figure 4.10 depicts the drag force data that was yielded from the experiments
and prepared as described above. From the plots it is possible to see that the
collected data is as expected from the model: the absolute value of every drag
force component grows for increasing rotor angular velocity and wind velocity.
Together with Figure 4.9 the signs of the components also become obvious. The
Crazyflie’s y axis is nearly orthogonal to the direction of the wind. For this
reason the magnitude of the force in y direction is small compared to the other
directions.

From fitting the simple model to the data, the expected results for all experi-
ments were to get a constant drag coefficient κ‖ and constant and equal drag
coefficient κ⊥. However a look at the results in Figure 4.11 shows that this is
not the case. Instead some trends can be observed: κ‖ is decreasing whereas
κ⊥ increasing for increasing rotor angular velocities. In addition both drag co-
efficients decrease for increasing relative wind speeds. Those trends were the
reason why the more complex model was fitted to the data. When solving the
least squares problem for all experiments for the drag coefficient in x and y
direction and taking the average of all calculated drag coefficients in z direction
the following matrix results:

Kaero = diag
(
−9.1785 · 10−7,−9.1785 · 10−7,−10.311 · 10−7

)
kg · rad−1 (4.8)

The drag coefficients resulting from fitting the more complex function to the

Chapter 4. Drag Coefficients 49

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

0.01

0

-0.01

-0.02

-0.03

f
a,
x
[N

]

(a) Wind from 0°, x axis

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

0.01

0

-0.01

-0.02

-0.03

f
a,
x
[N

]

(b) Wind from 48.4°, x axis

1.5
2

2.5
3

|v| [m
s
]

3.5
48000

7000

θ̇Σ [rad
s
]

6000

5000

4000

-0.03

-0.02

-0.01

0

0.01

f
a,
x
[N

]
(c) Wind from 77.9°, x axis

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

0.01

0

-0.01

-0.02

-0.03

f
a,
y
[N

]

(d) Wind from 0°, y axis

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

-0.03

-0.02

-0.01

0

0.01

f
a,
y
[N

]

(e) Wind from 48.4°, y axis

1.5
2

2.5
3

|v| [m
s
]

3.5
48000

7000

θ̇Σ [rad
s
]

6000

5000

4000

-0.03

-0.02

-0.01

0

0.01

f
a,
y
[N

]

(f) Wind from 77.9°, y axis

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

-0.02

-0.01

-0.03

0

0.01

f
a,
z
[N

]

(g) Wind from 0°, z axis

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

-0.03

-0.02

-0.01

0

0.01

f
a,
z
[N

]

(h) Wind from 48.4°, z axis

1.5
2

2.5
3

|v| [m
s
]

3.5
48000

7000

θ̇Σ [rad
s
]

6000

5000

4000

-0.03

-0.02

-0.01

0

0.01

f
a,
z
[N

]

(i) Wind from 77.9°, z axis

Figure 4.10: Drag force data that resulted from the experiments. Each plots
shows one component of the drag force plotted over all wind velocities and rotor
angular velocities. |v| is the absolute value of the wind velocity and θ̇Σ is the
sum of all rotor angular velocities.

50 4.5. Results and Discussion

θ̇Σ [rad
s
]

3000 4000 5000 6000 7000 8000 9000

κ
⊥
[
k
g

r
a
d
]

×10−7

-20

-15

-10

-5

0

(a) Drag coeffiecient for x and y direction.

θ̇Σ [rad
s
]

3000 4000 5000 6000 7000 8000 9000

κ
‖
[
k
g

r
a
d
]

×10−7

-20

-15

-10

-5

0

(b) Drag coefficient for z direction.

Figure 4.11: Drag coefficients calculated from the experiment data. Least
squares was applied to fit one drag coefficient for both x and y direction. Green
curves show results from experiments where wind was blowing from above, red
represents wind from 48.4° and blue from 77.9°. The lighter the curves, the
higher the wind velocity.

data are

Kaero,1 = diag
(
−8.9158 · 10−7,−8.9158 · 10−7,−3.1574 · 10−7

)
kg · rad−1

Kaero,2 = diag
(
−6.8572 · 10−5,−6.8572 · 10−5, 5.2068 · 10−5

)
kg · rad−1

Kaero,3 =
(
1.1254 · 10−10, 1.1254 · 10−10,−2.3662 · 10−10

)T
kg · rad−1

Kaero,4 = diag
(
−5.4233 · 10−4,−5.4233 · 10−4,−2.2935 · 10−3

)
kg · rad−1

Kaero,5 =
(
−1.8443 · 10−6,−1.8443 · 10−6, 4.8857 · 10−7

)T
kg · rad−1

Kaero,6 =
(
6.4061 · 10−3, 6.4061 · 10−3, 3.0985 · 10−3

)T
kg · rad−1

(4.9)

The matrix Kaero in the complex model corresponds to the matrix Kaero,1 in
the more simple model. Both matrices’ coefficients are similar. However apart
from this observation it is difficult to draw a conclusion from the results as
they are right now because in equation (4.5) the coefficients are multiplied with
values of very different magnitudes. In order to render the coefficients more
comparable they were multiplied with the mean of all measured variables they
belong to and divided by the sum of all means (see code in Appendix C.3.1 for
details on this calculation). The following weighted parameters resulted from

Chapter 4. Drag Coefficients 51

this:

Kaero,norm,1 = diag
(
−5.2370 · 10−7,−5.2370 · 10−7,−1.8546 · 10−7

)
Kaero,norm,2 = diag

(
−1.9155 · 10−8,−1.9155 · 10−8, 1.4545 · 10−8

)
Kaero,norm,3 =

(
2.3195 · 10−11, 2.3195 · 10−11,−4.8768 · 10−11

)T
Kaero,norm,4 = diag

(
−5.3157 · 10−8,−5.3157 · 10−8,−22.4798 · 10−8

)
Kaero,norm,5 =

(
−3.8011 · 10−7,−3.8011 · 10−7, 1.0069 · 10−7

)T
Kaero,norm,6 =

(
2.2032 · 10−7, 2.2032 · 10−7, 1.0656 · 10−7

)T
(4.10)

Now it is visible that in equation (4.5) the terms with Kaero,1, Kaero,5 and
Kaero,6 have the most significant influence. The influence of the term with
Kaero,5 could explain the trend in the drag coefficients, however at the mo-
ment there is no explanation for the strong influence of the term with Kaero,6.

The fit of the cross-coupling model yielded the following matrix:

Kaero,full =

−10.2506 −0.3177 −0.4332
−0.3177 −10.2506 −0.4332
−7.7050 −7.7050 −7.5530

 · 10−7 kg · rad−1 (4.11)

This result shows that the interdependency of velocity in x direction and drag
force in y direction as well as vice versa is rather weak. Also, a velocity in z
direction does not cause a strong drag force in the x-y plane. So far, this is as
expected.
In contrast, the magnitude of the coefficients describing the effect of a velocity in
the x-y plane on a drag force in z direction is large. This could be explained with
the effects described in Section 4.1: the lifting force is tilted backwards which
increases the horizontal component (drag) and decreases the vertical component
(lift). This decrease of lift could also be regarded as drag.
However one has to pay attention with the signs as they are at the moment:
the questionable coefficients are −7.7050 < 0. This means that a translation
in positive x direction causes a negative drag force in z direction (which is
correct) but a translation in negative x direction causes a drag force in positive
z direction. This cannot be correct. In order to account for this, a new model
would have to be introduced.

4.6 Verification

To verify that the calculated drag coefficients from the complex fit indeed fit
the drag force data, the drag force was calculated using equation (4.5), the
drag coefficients and the available data for the rotor angular velocity and the
wind velocity. The result for the z component is depicted in Figure 4.12 and is
similar to the experiment data in Figure 4.10. The sum of the squared errors
between experimentally determined drag forces and calculated drag forces is
0.0022072 N2. When calculating back the forces using the drag coefficients from
the simple fit the plot is nearly indistinguishable from the plots in Figure 4.12.

52 4.6. Verification

However the sum of the squared errors is 0.0035997 N2 which means that the
data from the complex fit does fit the measured data better. Yet, the sum of
the squared errors is the least for the cross-coupling model: 0.0019127 N2.

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

0.01

0

-0.01

-0.02

-0.03

f
a
,c
a
lc
,z
[N

]

(a) Wind from 0°

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

0.01

0

-0.01

-0.02

-0.03

f
a
,c
a
lc
,z
[N

]
(b) Wind from 48.4°

2
3

|v| [m
s
]

48000
7000

θ̇Σ [rad
s
]

6000
5000

4000

0.01

0

-0.01

-0.02

-0.03

f
a
,c
a
lc
,z
[N

]

(c) Wind from 77.9°

Figure 4.12: Drag force data that is calculated back from the drag coefficients
resulting from the complex fit. For brevity reasons only one component of the
drag force is plotted over all wind velocities and rotor angular velocities. |v| is
the absolute value of the wind velocity and θ̇Σ is the sum of all rotor angular
velocities.

Another experiment to verify the drag coefficients was not designed due to the
complexity of this task. Instead the quality of the drag coefficients will be
measured indirectly through their performance as a part of the new estimator
that is going to be implemented on the Crazyflie.

Chapter 5

Conclusion & Outlook

During this work physical parameters that are needed to implement new model
based estimation and control for the Crazyflie were determined experimentally.
The inertia matrix was measured by observing and analyzing the Crazyflie’s
pendulum motion. Estimates for the moments of inertia were calculated by
fitting the solution of the linearized equation of motion to the collected data.
The method was verified by measuring the moments of inertia of a test body
and comparing them to said analytically determined moments of inertia.
Several motor mappings between motor input command, produced thrust and
torque as well as the rotor’s angular velocities were defined to enable the con-
troller to give appropriate input commands to the motors. Additionally a mo-
tor transfer function between motor input command and produced thrust was
found. It can be used for simulation purposes. All data for these experiments
were collected using a load cell and a tachometer.
Finally the Crazyflie’s drag coefficients were determined by blowing air onto the
Crazyflie, powering its motors and measuring the resulting forces with a load
cell. The drag coefficients can be used to estimate the vehicle’s velocity based
on accelerometer data. For these experiments the load cell, a tachometer and
an anemometer were used.

Of course all experimental methods have the potential to be improved with the
goal to get more accurate results for the Crazyflie’s physical parameters:

Inertia Matrix The problems with the friction could be analyzed in more
depth. Also the friction could be reduced allowing operation at lower
angles which would improve the validity of using a linearized model.

Motor Parameters For determining the transfer function a load cell with
higher resolution and less noise could be used to improve the signal-to-
noise ratio of the collected data. This would facilitate the further analysis.

Drag Coefficients The wind generator could be improved to provide a more
homogenous stream of air. Then the results for the drag coefficients should
vary less and be more accurate.

However, determining the physical parameters is not the final goal of this re-
search. For this reason the most promising next step would be implementing

53

54

the new estimator and controller on the Crazyflie and evaluating the overall
system performance.

Chapter 5. Conclusion & Outlook 55

Acknowledgements

During the course of this work many people supported me and I would like to
thank them. First of all, of course, my supervisor Mike. It was really a pleasure
to work with him and he provided me with very helpful advice. Always being
able to come to his office and ask questions was an invaluable help.
Furthermore I would like to thank everyone from IDSC as well as my friends
who helped me a lot by discussing the problems that occurred when designing
and evaluating the experiments with me.
And finally a big thank you to my parents who rendered my studies in Zurich
possible.

56

Appendix A

Overview Results

This appendix is intended for readers who are mainly interested in the numeric
results of this work. It summarizes the results from the experiments that are
described above.

Inertia Matrix

Mass of the Crazyflie m = 28.0 g

Inertia Matrix ICF =

16.571710 0.830806 0.718277
0.830806 16.655602 1.800197
0.718277 1.800197 29.261652

 · 10−6kg ·m2

Motor Parameters

Mappings

Input Command → Thrust fi = 2.130295 · 10−11 · cmd2
i + 1.032633 · 10−6 · cmdi + 5.484560 · 10−4

Input Command → θi = 0.04076521 · cmdi + 380.8359
Rotor Angular Velocity
Thrust → Torque τi = 0.005964552 · fi + 1.563383 · 10−5

Transfer Function

H(z) =
7.2345374 · 10−8

1− 0.9695404 · z−1

Drag Coefficients

Simple Model

Model equation [13] fa = Kaeroθ̇ΣR
−1ẋ

Drag coefficients Kaero = diag
(
−9.1785 · 10−7,−9.1785 · 10−7,−10.311 · 10−7

)
kg · rad−1

57

58

Complex Model

Model equation fa = Kaero,1θ̇Σv + Kaero,2(v). ∧ 2 + Kaero,3θ̇
2
Σ + . . .

Kaero,4v + Kaero,5θ̇Σ + Kaero,6

Drag coefficients

Kaero,1 = diag
(
−8.9158 · 10−7,−8.9158 · 10−7,−3.1574 · 10−7

)
kg · rad−1

Kaero,2 = diag
(
−6.8572 · 10−5,−6.8572 · 10−5, 5.2068 · 10−5

)
kg · rad−1

Kaero,3 =
(
1.1254 · 10−10, 1.1254 · 10−10,−2.3662 · 10−10

)T
kg · rad−1

Kaero,4 = diag
(
−5.4233 · 10−4,−5.4233 · 10−4,−2.2935 · 10−3

)
kg · rad−1

Kaero,5 =
(
−1.8443 · 10−6,−1.8443 · 10−6, 4.8857 · 10−7

)T
kg · rad−1

Kaero,6 =
(
6.4061 · 10−3, 6.4061 · 10−3, 3.0985 · 10−3

)T
kg · rad−1

Cross-coupling Model

Model equation fa = Kaero,fullθ̇ΣR
−1ẋ

Drag coefficients

Kaero,full =

−10.2506 −0.3177 −0.4332
−0.3177 −10.2506 −0.4332
−7.7050 −7.7050 −7.5530

 · 10−7 kg · rad−1

Appendix B

Mathematics

B.1 Derivation of the Solution to the Equation
of Motion of a Pendulum

The equation of motion for the general pendulum motion is

Iaϕ̈(t) = −mgr · sin (ϕ(t))−Mfrϕ̇(t) (B.1)

Linearizing it under the assumption that sin (ϕ) ≈ ϕ for small ϕ leads to

Iaϕ̈(t) = −mgr · ϕ(t)−Mfrϕ̇(t) (B.2)

In order to keep the derivation simple, the following substitutions are made:

δ =
Mfr

2Ia
and ω0 =

√
mgr
Ia

. Plugging them into equation B.2 leads to

ϕ̈(t) + 2δ · ϕ̇(t) + ω2
0 · ϕ(t) = 0 (B.3)

The characteristic polynomial for this constant coefficient differential equation
is

λ2 + 2δ · λ+ ω2
0 = 0 (B.4)

Its zeros are

λ1,2 = −δ ±
√
δ2 − ω2

0 (B.5)

From observing the Crazyflie’s swinging motion we can already tell that the
oscillation is underdamped which means that δ2 < ω2

0 . With the additional
substitution ω =

√
ω2

0 − δ2 equation B.5 simplifies to

λ1,2 = −δ ± iω (B.6)

59

60
B.2. Derivation of the Solution to the Equation of Motion of a Dropping

Weight

Therefore the general solution to our ODE is

ϕ(t) = e−δt (C1 · cosωt+ C2 · sinωt) (B.7)

By using the trigonometric identity a·sinωt+b·cosωt =
√
a2 + b2·cosωt− arctan a

b
which can be proved using trigonometric sum identities equation B.7 can be re-
stated as

ϕ(t) =
√
C2

1 + C2
2 · e−δt · cos

(
ωt− arctan

(
C2

C1

))
(B.8)

Plugging the initial conditions ϕ(0) = ϕ0 and ϕ̇(0) = Ω0 into equation B.7 leads
to

C1 = ϕ0

C2 =
Ω0 + δϕ0

ω

(B.9)

and finally we get

ϕ(t) =

√
ϕ2

0 +

(
Ω0 + δϕ0

ω

)2

· e−δt · cos

(
ωt− arctan

(
Ω0 + δϕ0

ωϕ0

))
(B.10)

B.2 Derivation of the Solution to the Equation
of Motion of a Dropping Weight

Figure B.1: Experiment Setup of the Dropping Weight Experiment

A weight with mass mweight is attached to a fishing line which is wrapped around
the axis (radius r) of the Crazyflie pendulum (see figure B.1). The equation of
motion for this situation is

Iexp · ϕ̈(t) +Mfr · ϕ̇(t)−mweightgr = 0 (B.11)

In this equation Iexp is the moment of inertia of the setup (axis, moving parts
in encoder and mounting cube), ϕ(t) is the angular position of the axis, g is the
gravity of the earth and Mfr is the constant friction coefficient of the setup.

Appendix B. Mathematics 61

The first step is to determine the solution to the homogenous equation

Iexp · ϕ̈(t) +Mfr · ϕ̇(t) = 0 (B.12)

It has the characteristic polynomial

Iexp · λ2 +Mfr · λ = 0 (B.13)

with the solutions

λ1 = 0, λ2 = −Mfr

Iexp
(B.14)

Therefore the homogenous solution is

ϕh(t) = C1 + C2 · e
− Mfr

Iexp
t

(B.15)

For the particular solution we choose as a started point the educated guess

ϕp(t) = C3t (B.16)

Plugging this into equation B.11 leads to

C3 =
mweightgr

Mfr
(B.17)

The general solution is

ϕ(t) = ϕp(t) + ϕh(t) = C1 + C2 · e
− Mfr

Iexp
t

+
mweightgr

Mfr
t (B.18)

With the initial conditions ϕ(0) = 0 and ϕ̇(0) = 0 we get

ϕ(t) =
Iexp ·mweightgr

M2
fr

·
(
e
− Mfr

Iexp
t − 1

)
+
mweightgr

Mfr
t (B.19)

ϕ̇(t) =
mweightgr

Mfr
·
(

1− e−
Mfr
Iexp

t
)

(B.20)

62 B.3. Derivation of the formula for the moments of inertia of a cuboid

B.3 Derivation of the formula for the moments
of inertia of a cuboid

The situation is depicted in figure 2.16. The moments of inertia can be cal-
culated using the general formula for calculating a moment of inertia [8]. The
moment of inertia with respect to the x axis can be calculated as

Ixx,G =

∫
m

(
y2 + z2

)
dm

= ρ

∫∫∫
V

(
y2 + z2

)
dxdy dz

= ρ

∫ c
2

− c
2

∫ b
2

− b
2

∫ a
2

− a
2

(
y2 + z2

)
dxdy dz

= . . .

= m

(
b2

12
+
c2

12

)
(B.21)

The moment of inertia with respect to the y and z axes can be calculated
similarly.

Appendix C

Code

C.1 Sensor Data Processing for Inertia Matrix
Experiments

C.1.1 Encoder Logger

1 import time
2 from datetime import date
3 from threading import Lock
4 from twisted.internet import reactor
5 from twisted.internet.serialport import SerialPort
6 from twisted.protocols import basic
7 from serial.tools import list ports
8 import pandas as pd
9

10 # Running log of all Encoder communications
11 EncoderLog = [] # This is a list
12 EncoderLock = Lock()
13
14 axisLabel = ''
15
16 def QuitHandler():
17 print('')
18 EncoderLock.acquire()
19 if len(EncoderLog)>0:
20 print "Saving EncoderLog..."
21 columnNames = ['t','phi']
22 data = pd.DataFrame(data=EncoderLog, index=None, columns=

columnNames)
23 filename = 'Encoder data {0} {1} {2}.csv'.format(date.today(),

time.strftime('%H−%M−%S'),axisLabel)
24 data.to csv(path or buf=filename, index=None, float format="%.6

f")
25 print "Data saved to %s. Bye :−)" % filename
26 else:
27 print "Nothing to save. Bye :−)"
28
29
30 class EncoderLogger(basic.LineReceiver):
31 delimiter = '\r'
32

63

64 C.1. Sensor Data Processing for Inertia Matrix Experiments

33 @staticmethod
34 def getDevice():
35 EncoderRanger = list(list ports.grep("usbmodem1"))
36 if len(EncoderRanger) > 0:
37 return EncoderRanger[0][0]
38 else:
39 return None
40
41 def connectionMade(self):
42 print('Connected to Encoder at {0}'.format(self.getDevice()))
43 print "Start logging..."
44 self.delimiter = "".rstrip()
45 self.sendLine("!")
46 self.delimiter = '\r'
47
48 def lineReceived(self,line):
49 now = time.time()
50 spl = line.split(":") # '1:2' −−> ['1','2']
51 #print line
52 #print spl
53 #print '−−−'
54 apd = (now,spl[0]) # This is a tuple
55 EncoderLock.acquire()
56 EncoderLog.append(apd)
57 EncoderLock.release()
58 self.delimiter = "".rstrip()
59 self.sendLine("!")
60 self.delimiter = '\r'
61
62
63 if name ==" main ":
64 axisLabel = raw input("What axis are we measuring? Input: ")
65 while(EncoderLogger.getDevice() is None):
66 print "Waiting for device..."
67 time.sleep(1)
68 SerialPort(EncoderLogger(),EncoderLogger.getDevice(), reactor,

baudrate = 115200)
69 reactor.addSystemEventTrigger('before','shutdown',QuitHandler)
70 reactor.run()

C.1.2 Processing of Encoder Data from Dropping Weight
Experiment

1 clc
2 clear all
3 close all
4
5 % Read the data in
6 filename='Data/2015−05−29 20−17−39 encoder 10g.csv';
7 NR ignPks=0;
8 O medfilt=7;
9 start time=3500;

10 end time=7000;
11
12 angle raw=csvread(filename,1,1);
13 time raw=csvread(filename,1,0,[1 0 length(angle raw) 0]);
14 angle raw=angle raw(3:end);
15 time raw=time raw(3:end);
16
17 angle raw=angle raw−angle raw(1);

Appendix C. Code 65

18 maximum angle = 4194047;
19 angle raw = angle raw / maximum angle * 2*pi;
20
21
22
23 % Unwrap the data
24 [pks, loc]=findpeaks(angle raw);
25
26 angle unwr = angle raw;
27
28 for i=1+NR ignPks:length(loc)
29 for j=loc(i)+1:length(angle unwr)
30 angle unwr(j) = angle unwr(j) + 2*pi;
31 end
32 end
33
34 time raw=time raw−time raw(1);
35 time raw=time raw/1000; % Now the unit is milliseconds
36
37 figure
38 plot(time raw/1000,angle raw)
39 grid on
40 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
41 ylabel('Angle [rad]','Interpreter','LaTex','fontsize',20)
42 ax=gca;
43 ax.FontSize=18;
44 ax.TickLabelInterpreter='latex';
45
46 % Make new time vector
47 Ts = 4; % ms
48
49 % Number of elements in new time vector
50 N = floor(max(time raw)/Ts);
51 % New time vector
52 time = (0:Ts:N*Ts)';
53
54 angle = interp1(time raw,angle unwr,time);
55
56 figure
57 plot(time/1000,angle)
58 grid on
59 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
60 ylabel('Angle [rad]','Interpreter','LaTex','fontsize',20)
61 ax=gca;
62 ax.FontSize=18;
63 ax.TickLabelInterpreter='latex';
64 ylim([min(angle)−10 max(angle)+10])
65
66 % Determine slope of motion (−−> speed)
67
68 angle diff=diff(angle)/Ts*1000; % Angular velocity in rad/s
69
70 % Apply median filter to reject outliers
71 angle diff = medfilt1(angle diff,O medfilt);
72
73 % Average on a manually selected interval
74 for i=1:length(time)−1
75 if time(i)<=start time && time(i+1)>start time
76 start idx=i;
77 end
78 if time(i)<=end time && time(i+1)>end time
79 end idx=i;

66 C.1. Sensor Data Processing for Inertia Matrix Experiments

80 end
81 end
82 if start time>max(time)
83 start idx=length(time)−1;
84 end
85 if end time>max(time)
86 end idx=length(time)−1;
87 end
88
89 speed = mean(angle diff(start idx:end idx));
90 speed vec=speed*ones(length(angle diff),1);
91
92 time plot=time/1000;
93
94 figure
95 hold on
96 plot(time plot(1:end−1),angle diff)
97 plot([time plot(start idx) time plot(start idx)],[min(angle diff) max(

angle diff)],'k','linewidth',2)
98 plot([time plot(end idx) time plot(end idx)],[min(angle diff) max(

angle diff)],'k','linewidth',2)
99 plot(time plot(1:end−1),speed vec,'linewidth',3)

100 grid on
101 box on
102 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
103 ylabel('Anglular Velocity [$\frac{rad}{s}$]','Interpreter','LaTex','

fontsize',20)
104 ax=gca;
105 ax.FontSize=18;
106 %xlim([time(1) time(end−1)])
107 ax.TickLabelInterpreter='latex';

C.1.3 Linear and nonlinear fit to data from swing experi-
ments

The main file that was used for the fit. Linear fit: lines 24 - 84, nonlinear fit:
85 - end of the file.

1 clc
2 clear all
3 close all
4
5 format long
6
7 global angle FTP time FTP phi 0 m g r time non0 angle non0 angle exact

angle exact dot angle exact dotdot pi LS
8
9 filename='Data/Shrink3/2015−07−07 11−23−36 encoder yz.csv';

10 [time raw,angle raw,time,angle,time FTP,angle FTP]=prepareCFdata(
filename);

11
12 % Plot raw measurement data
13 figure
14 plot(time FTP,angle FTP)
15 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
16 ylabel('Angle [rad]','Interpreter','LaTex','fontsize',20)
17 ax=gca;
18 ax.FontSize=18;
19 ax.TickLabelInterpreter='latex';
20 grid on
21 %title('Crazyflie pendulum motion around x axis')

Appendix C. Code 67

22 xlim([0 time(length(time))])
23 ylimval = angle(1)+0.1;
24 ylim([−ylimval ylimval])
25
26 %%
27 % figure(1)
28 % plot(time FTP,angle FTP)
29
30 % Determine parameters of linear model to use them as initial

conditions
31 % for calculating the exactly fitting function
32
33 disp('Linear fit')
34
35 % Known parameters
36 m = 0.028;
37 g = 9.81;
38 phi 0 = angle(1);
39 [r x y, r z, r xy, r xz yz]=Distances from CoM;
40 r = r xz yz;
41
42 % Initial guess
43 %M fr guess = 2e−5;
44 M fr guess = 0.1813e−5;
45 Theta guess = 4.48e−5; % Moment of inertia
46 Omega 0 guess = 0;
47
48 param 0 = [M fr guess Theta guess Omega 0 guess];
49
50 [param opt,fmin] = fminsearch(@objFunc single,param 0);
51
52 %Evaluate result
53
54 fmin
55 M fr = param opt(1)
56 Theta = param opt(2)
57 Omega 0 = param opt(3)
58 delta=M fr/2/Theta;
59 omega 0=sqrt(m*g*r/Theta);
60 omega=sqrt(omega 0ˆ2−deltaˆ2);
61
62 angle model = zeros(length(angle),1);
63 for i=1:length(angle model)
64 angle model(i)=sqrt(phi 0ˆ2+((Omega 0+delta*phi 0)/omega)ˆ2)*exp(−

delta*time(i))*cos(omega*time(i)−atan((Omega 0+delta*phi 0)/
omega/phi 0));

65 end
66
67 figure
68 plot(time,angle,time,angle model)
69 h=legend('Data $\varphi \mathrm{exp,i} (t)$','Model $\varphi (t)$');
70 h.Interpreter='latex';
71 h.FontSize=20;
72 xlim([0 time(length(time))])
73 ylimval = angle(1)+0.1;
74 ylim([−ylimval ylimval])
75 grid on
76 box on
77 %title('Fitting a linearized model to the data')
78 ax=gca;
79 ax.FontSize=18;
80 ax.TickLabelInterpreter='latex';

68 C.1. Sensor Data Processing for Inertia Matrix Experiments

81 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
82 ylabel('Angle [rad]','Interpreter','LaTex','fontsize',20)
83
84 fmin man=0;
85 for i=1:length(angle FTP)
86 fmin man=fmin man+(angle FTP(i)−angle model(i))ˆ2;
87 end
88 fmin man
89
90
91 %%
92
93 % Cut part in the end where angle is constantly 0 in order to improve

the fitting
94 tol=0.003;
95 for i=1:length(angle)−3
96 if abs(angle(i))<tol && abs(angle(i+1))<tol && abs(angle(i+3))<tol
97 end idx = i;
98 break
99 end

100 end
101 angle non0=angle(1:end idx);
102 time non0=time(1:end idx);
103
104
105 % Calculate exactly fitting function
106 disp('Exact fit')
107
108 % Initial conditions
109 a3=sqrt(phi 0ˆ2+((Omega 0+delta*phi 0)/omega)ˆ2);
110 a7=−atan((Omega 0+delta*phi 0)/omega/phi 0);
111 % param 0 = [0 0 a3 delta omega 0 a7 0 0 0 0 0]; 5 3
112 param 0 = [0 0 a3 delta omega 0 a7 0 0]; % Weird: adding one more

zero than there are actually parameters improves fmin
113
114
115 [param opt,fmin] = fminsearch(@objFunc embracing func,param 0);
116
117 angle exact = zeros(length(angle non0),1);
118 for i=1:length(angle exact)
119 % 5 3
120 % angle exact(i)=(param opt(12)*time(i)ˆ5+param opt(9)*time(i)ˆ4+

param opt(8)*time(i)ˆ3+param opt(1)*time(i)ˆ2+param opt(2)*time
(i)+param opt(3)+exp(−param opt(4)*time(i))) * cos((param opt
(5)+param opt(6)*time(i)+param opt(10)*time(i)ˆ2+param opt(11)*
time(i)ˆ3)*time(i)+param opt(7));

121 angle exact(i)=(param opt(1)*time(i)ˆ2+param opt(2)*time(i)+
param opt(3)+exp(−param opt(4)*time(i))) * cos((param opt(5)+
param opt(6)*time(i)+param opt(8)*time(i)ˆ2)*time(i)+param opt
(7));

122 end
123
124 figure
125 plot(time non0, angle non0,'k', time non0, angle exact)
126 h=legend('Data $\varphi (t)$','Model $\varphi \mathrm{flex} (t)$');
127 h.Interpreter='latex';
128 h.FontSize=20;
129 xlim([0 time(length(time))])
130 ylimval = angle(1)+0.1;
131 ylim([−ylimval ylimval])
132 grid on
133 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)

Appendix C. Code 69

134 ylabel('Angle [rad]','Interpreter','LaTex','fontsize',20)
135 %title('Fitting more flexible function to the data')
136 box on
137 ax=gca;
138 ax.FontSize=18;
139 ax.TickLabelInterpreter='latex';
140
141
142
143 % Derivatives from Mathematica
144
145 a1=param opt(1);
146 a2=param opt(2);
147 a3=param opt(3);
148 a4=param opt(4);
149 a5=param opt(5);
150 a6=param opt(6);
151 a7=param opt(7);
152 a8=param opt(8);
153 angle exact dot = zeros(length(angle exact),1);
154 angle exact dotdot = angle exact dot;
155 for i=1:length(angle exact dot)
156 angle exact dot(i) = (a2 − a4 *exp(−a4 *time(i)) + 2* a1 *time(i))

cos(a7 + time(i) (a5 + a6 *time(i) + a8 *time(i)ˆ2)) − (a3 +
exp(−a4 *time(i)) + a2 *time(i) + a1 *time(i)ˆ2)* (a5 + a6 *
time(i) + a8 *time(i)ˆ2 + time(i)* (a6 + 2 *a8 *time(i))) *sin(
a7 + time(i)* (a5 + a6 *time(i) + a8 *time(i)ˆ2));

157 angle exact dotdot(i) = (2 *a1 + a4ˆ2 *exp(−a4 *time(i))) *cos(a7 +
time(i)* (a5 + a6 *time(i) + a8 *time(i)ˆ2)) − (a3 + exp(−a4 *
time(i)) + a2 *time(i) + a1 *time(i)ˆ2)* (a5 + a6 *time(i) + a8

time(i)ˆ2 + time(i) (a6 + 2 *a8 *time(i)))ˆ2 *cos(a7 + time(
i)* (a5 + a6 *time(i) + a8 *time(i)ˆ2)) − (2 *a6 + 6* a8 *time(
i)) *(a3 + exp(−a4 *time(i)) + a2 *time(i) + a1 *time(i)ˆ2) *
sin(a7 + time(i)* (a5 + a6 *time(i) + a8 *time(i)ˆ2)) − 2 *(a2
− a4 *exp(−a4 *time(i)) + 2 *a1 *time(i)) *(a5 + a6 *time(i) +
a8 *time(i)ˆ2 + time(i)* (a6 + 2* a8 *time(i))) *sin(a7 + time(
i)* (a5 + a6 *time(i) + a8 *time(i)ˆ2));

158 end
159
160 figure
161 [hAx,˜,˜]=plotyy(time non0,angle exact,[time non0,time non0],[

angle exact dot,angle exact dotdot]);
162 h=legend('$\varphi \mathrm{flex} (t)$','$\dot{\varphi} \mathrm{flex} (t

) $','$\ddot{\varphi} \mathrm{flex} (t) $');
163 h.Interpreter='latex';
164 h.FontSize=20;
165 grid on
166 box on
167 ax=gca;
168 ax.FontSize=18;
169 ax.TickLabelInterpreter='latex';
170 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
171 ylabel(hAx(1),'Angle [rad]','Interpreter','LaTex','fontsize',20)
172 ylabel(hAx(2),'Angular velocity/acceleration [$\frac{rad}{s}$]/[$\frac{

rad}{sˆ2}$]','Interpreter','LaTex','fontsize',20)
173
174 % Check whether derivative makes sense
175 angle exact diffdot=diff(angle exact)/0.004;
176 %figure
177 %plot(time non0(1:end−1),angle exact diffdot,time non0(1:end−1),

angle exact dot(1:end−1))
178

70 C.1. Sensor Data Processing for Inertia Matrix Experiments

179
180 % Fit parameters of nonlinear differential equation
181
182 disp('Nonlinear fit')
183
184 % Initial condition
185 param 0 = [Theta M fr];
186
187 [param opt,fmin] = fminsearch(@objFunc nonLin,param 0);
188
189 fmin
190 M fr exact = param opt(2)
191 Theta exact = param opt(1)
192
193 %% Plug parameters from nonlinear fit into linearized differential

equation
194 disp('Linear model with exact parameters')
195 delta=M fr exact/2/Theta exact;
196 omega 0=sqrt(m*g*r/Theta exact);
197 omega=sqrt(omega 0ˆ2−deltaˆ2);
198
199 angle model = zeros(length(angle),1);
200 for i=1:length(angle model)
201 angle model(i)=sqrt(phi 0ˆ2+((Omega 0+delta*phi 0)/omega)ˆ2)*exp(−

delta*time(i))*cos(omega*time(i)−atan((Omega 0+delta*phi 0)/
omega/phi 0));

202 end
203
204 figure
205 plot(time,angle,time,angle model)
206 legend('Data','Model')
207 xlim([0 time(length(time))])
208 ylimval = angle(1)+0.1;
209 ylim([−ylimval ylimval])
210 grid on
211 xlabel('Time [s]')
212 ylabel('Angle [rad]')
213 title('Linearized model with exact parameters')
214
215 fmin man=0;
216 for i=1:length(angle FTP)
217 fmin man=fmin man+(angle FTP(i)−angle model(i))ˆ2;
218 end
219 fmin man
220
221 %% Simulate differential equation
222
223 pi LS=[Theta exact, M fr exact];
224 [T verif,Y verif] = ode45(@crazymotion,[0 time(end)],[angle(1) 0]);
225
226 figure
227 plot(time, angle,T verif,Y verif(:,1))
228 legend('Sensor data','ODE solve')
229 xlim([0 time(length(time))])
230 grid on
231 ylimval = angle(1)+0.1;
232 ylim([−ylimval ylimval])
233 xlabel('Time [s]')
234 ylabel('Angle [rad]')
235 title('Simulation using ODE solver with exact parameters')

File that was used to prepare the data.

Appendix C. Code 71

1 function [time raw,angle raw,time,angle,time FTP,angle FTP] =
prepareCFdata(filename)

2
3 angle raw=csvread(filename,1,1);
4 time raw=csvread(filename,1,0,[1 0 length(angle raw) 0]);
5 angle raw=angle raw(3:end);
6 time raw=time raw(3:end);
7
8 figure
9 plot(time raw,angle raw)

10 xlabel('Time [μs]','Interpreter','LaTex','fontsize',20)
11 ylabel('Encoder Value [−]','Interpreter','LaTex','fontsize',20)
12 ax=gca;
13 ax.FontSize=18;
14 ax.TickLabelInterpreter='latex';
15 grid on
16 min(angle raw);
17 ylim([min(angle raw)−100000,max(angle raw)+100000])
18
19 % Die Einheit des Zeitvektors ist Mikrosekunden
20 time raw = time raw / 1000/1000;
21 % Jetzt ist die Einheit des Zeitvektors Sekunden
22
23 % Adjust angle axis to radians.
24 maximum angle = 4194047;
25 angle raw = angle raw / maximum angle * 2*pi;
26
27 a0 = angle raw(20);
28 angle raw = angle raw − a0;
29
30 % Cut part where CF is deflected. Make the first peak be located at t

=0.
31 [˜,idx] = max(angle raw);
32
33 NR cutfirstelements=idx−1;
34 time cut = zeros(length(time raw)−NR cutfirstelements,1);
35 angle cut = zeros(length(angle raw)−NR cutfirstelements,1);
36 for i=(NR cutfirstelements+1):length(time raw)
37 time cut(i−NR cutfirstelements)=time raw(i);
38 angle cut(i−NR cutfirstelements)=angle raw(i);
39 end
40
41 time cut = time cut − time cut(1);
42
43 % Regularize data
44
45 % Create new time vector up to a value that is nearly as high as the
46 % highest value in time raw.
47 Ts = 0.004;
48
49 % Number of elements in new time vector
50 N = floor(time cut(length(time cut))/Ts);
51 % New time vector
52 time = (0:Ts:N*Ts)';
53 % New angle vector
54 angle = interp1(time cut,angle cut,time);
55
56 %plot(time,angle)
57
58 % Modify data so that only the first n pks periods are used for the

estimate
59 n pks = 14;

72 C.1. Sensor Data Processing for Inertia Matrix Experiments

60
61 % Find the peaks
62 [˜, loc] = findpeaks(angle);
63
64 % Time and angle vectors containing only the data up to the 3rd peak
65 angle FTP = zeros(loc(n pks),1);
66 time FTP = zeros(loc(n pks),1);
67 for i=1:length(angle FTP)
68 angle FTP(i) = angle(i);
69 time FTP(i) = time(i);
70 end
71
72 end

Objective function for linear fit.

1 function f = objFunc single(a)
2
3 % a = [M fr Theta Omega 0]
4
5 global angle FTP time FTP phi 0 m g r
6 f=0;
7 delta=a(1)/2/a(2);
8 omega 0=sqrt(m*g*r/a(2));
9 omega=sqrt(omega 0ˆ2−deltaˆ2);

10 a0=sqrt(phi 0ˆ2+((a(3)+delta*phi 0)/omega)ˆ2);
11 a1=−delta;
12 a2=omega;
13 a3=−atan((a(3)+delta*phi 0)/omega/phi 0);
14
15 for i=1:length(angle FTP)
16 f = f + (angle FTP(i)−a0*exp(a1*time FTP(i))*cos(a2*time FTP(i)+a3)

)ˆ2;
17 end
18 end

Objective function for the fit to a more flexible function. The result of this fit
can then be used to directly fit the data to the nonlinear equation of motion.
This fit is needed to determine the first and second derivative of the data.

1 function f = objFunc embracing func(a)
2
3 % phi(t) = (a1*tˆ2+a2*t+a3+exp(−a4*t)) * cos((a5+a6*t+a8*tˆ2)*t+a7)
4
5 global time non0 angle non0
6 f=0;
7 for i=1:length(angle non0)
8 % f = f + (angle non0(i)− (a(12)*time non0(i)ˆ5+a(9)*time non0(i)

ˆ4+a(8)*time non0(i)ˆ3+a(1)*time non0(i)ˆ2+a(2)*time non0(i)+a(3)+
exp(−a(4)*time non0(i))) * cos((a(5)+a(6)*time non0(i)+a(10)*
time non0(i)ˆ2+a(11)*time non0(i)ˆ3)*time non0(i)+a(7)))ˆ2;

9 f = f + (angle non0(i)− (a(1)*time non0(i)ˆ2+a(2)*time non0(i)+a(3)
+exp(−a(4)*time non0(i))) * cos((a(5)+a(6)*time non0(i)+a(8)*
time non0(i)ˆ2)*time non0(i)+a(7)))ˆ2;

10 end
11 end

Objective function to fit the nonlinear equation of motion to the data.

1 function f = objFunc nonLin(a)

Appendix C. Code 73

2
3 % Theta*phi dotdot = −M fr*phi dot − m*g*r*sin(phi)
4
5 global angle exact angle exact dot angle exact dotdot m g r
6 f=0;
7
8 for i=1:length(angle exact)
9

10 f = f + (a(1)*angle exact dotdot(i)+a(2)*angle exact dot(i)+m*g*r*
sin(angle exact(i)))ˆ2;

11 end
12
13 end

ODE that describes the nonlinear equation of motion. This file is used to verify
the result by simulating the equation of motion with Matlab’s ode45 solver.

1 function dy = crazymotion(t,y)
2 %crazymotion ODE that describes CF's motion.
3
4 global pi LS m g r
5 dy = zeros(2,1);
6 dy(1) = y(2);
7 dy(2) = −1/pi LS(1)*(pi LS(2)*y(2)+m*g*r*sin(y(1)));
8
9 end

C.1.4 Calculation of the Crazyflie’s inertia matrix

1 % Script to calculate the Crazyflie's inertia matrix
2 clc
3 clear all
4 close all
5
6 [r x y, r z, r xy, r xz yz] = Distances from CoM;
7 m=0.028;
8
9 % % Values for presentation

10 % I a x = 3.123854506572300E−05;
11 % I a y = 3.131407384567920E−05;
12 % I a z = 7.081772686347800E−05;
13 % I a xy = 5.019475570019130E−05;
14 % I a xz = 4.686939838435990E−05;
15 % I a yz = 4.849766349082040E−05;
16
17 % % Values for report, n pks = 7
18 % I a x = 3.144988206680423E−05;
19 % I a y = 3.151127080468852E−05;
20 % I a z = 7.058874150001670E−05;
21 % I a xy = 5.003777167580184E−05;
22 % I a xz = 4.640539662252733E−05;
23 % I a yz = 4.780234696836194E−05;
24
25 % Values for report, n pks varying, see report
26 I a x = 3.119770273213515e−05;
27 I a y = 3.128159434626518e−05;
28 I a z = 7.004148241971259e−05;
29 I a xy = 4.940332984711082e−05;

74 C.1. Sensor Data Processing for Inertia Matrix Experiments

30 I a xz = 4.600706365028182e−05;
31 I a yz = 4.713092929680177e−05;
32
33 % Transfer I's to CoM
34 I a x G = I a x − m*r x yˆ2;
35 I a y G = I a y − m*r x yˆ2;
36 I a z G = I a z − m*r zˆ2;
37 I a xy G = I a xy − m*r xyˆ2;
38 I a xz G = I a xz − m*r xz yzˆ2;
39 I a yz G = I a yz − m*r xz yzˆ2;
40
41 y=[I a x G I a y G I a z G I a xy G I a xz G I a yz G]';
42
43 u x = [1 0 0];
44 u y = [0 1 0];
45 u z = [0 0 1];
46 u xy = [1/sqrt(2) 1/sqrt(2) 0];
47 u xz = [1/sqrt(2) 0 1/sqrt(2)];
48 u yz = [0 1/sqrt(2) 1/sqrt(2)];
49
50 A=[u x(1)ˆ2, u x(2)ˆ2, u x(3)ˆ2, −2*u x(1)*u x(2), −2*u x(2)*u x(3),

−2*u x(1)*u x(3);
51 u y(1)ˆ2, u y(2)ˆ2, u y(3)ˆ2, −2*u y(1)*u y(2), −2*u y(2)*u y(3),

−2*u y(1)*u y(3);
52 u z(1)ˆ2, u z(2)ˆ2, u z(3)ˆ2, −2*u z(1)*u z(2), −2*u z(2)*u z(3),

−2*u z(1)*u z(3);
53 u xy(1)ˆ2, u xy(2)ˆ2, u xy(3)ˆ2, −2*u xy(1)*u xy(2), −2*u xy(2)*

u xy(3), −2*u xy(1)*u xy(3);
54 u xz(1)ˆ2, u xz(2)ˆ2, u xz(3)ˆ2, −2*u xz(1)*u xz(2), −2*u xz(2)*

u xz(3), −2*u xz(1)*u xz(3);
55 u yz(1)ˆ2, u yz(2)ˆ2, u yz(3)ˆ2, −2*u yz(1)*u yz(2), −2*u yz(2)*

u yz(3), −2*u yz(1)*u yz(3)];
56
57 b=A\y;
58 I x = b(1)
59 I y=b(2)
60 I z=b(3)
61 I xy=b(4)
62 I yz=b(5)
63 I xz=b(6)

C.1.5 Analytic calculation of moments of inertia for the
test body

1
2
3 clc
4 close all
5 clear all
6
7
8 % Everything in SI units.
9

10 m=0.0176;
11
12
13 % Shaft (1)
14 l1=0.026;
15 b1=0.0051;
16 h1=0.0048;

Appendix C. Code 75

17
18 V1=l1*h1*b1;
19
20 % Body (2)
21 l2=0.05975;
22 b2=0.0498;
23 h2=0.0048;
24
25 V2=l2*b2*h2;
26
27
28 V=V1+V2;
29 rho=m/V;
30
31 m1=rho*V1;
32 m2=rho*V2;
33
34 % Distance of common CoM to bottom edge:
35 yG dash = (l2/2*m2+(l2+l1/2)*m1)/(m1+m2);
36
37
38 %%
39
40 % Distances of axes to CoM
41 [r x,r z]=Distances from CoM(yG dash)
42 r y=0.04; % Not the correct value!!!
43
44 % Moments of inertia x axis
45
46 % 1, CoM 1
47 Theta x1G = m1*(l1ˆ2+h1ˆ2)/12;
48
49 % 1, CoM common
50 Theta x1 = Theta x1G + m1*(l1/2+l2−yG dash)ˆ2;
51
52 % 2, CoM 2
53 Theta x2G = m2*(l2ˆ2+h2ˆ2)/12;
54
55 % 2, CoM common
56 Theta x2 = Theta x2G+m2*(yG dash−l2/2)ˆ2;
57
58 % Total, CoM common
59 Theta xG = Theta x1 + Theta x2
60
61 % Total, Position of axis
62 Theta x = Theta xG + m*r xˆ2
63
64
65
66
67 % Moments of inertia z axis
68
69 % 1, CoM 1
70 Theta z1G = m1*(b1ˆ2+l1ˆ2)/12;
71
72 % 1, CoM common
73 Theta z1 = Theta z1G + m1*(l1/2+l2−yG dash)ˆ2;
74
75 % 2, CoM 2
76 Theta z2G = m2*(b2ˆ2+l2ˆ2)/12;
77
78 % 2, CoM common

76 C.1. Sensor Data Processing for Inertia Matrix Experiments

79 Theta z2 = Theta z2G+m2*(yG dash−l2/2)ˆ2;
80
81 % Total, CoM common
82 Theta zG = Theta z1 + Theta z2
83
84 % Total, Position of axis
85 Theta z = Theta zG + m*r zˆ2
86
87
88 % Moments of inertia xy axis
89
90 % 1, CoM 1
91 Theta y1G = m1*(b1ˆ2+h1ˆ2)/12;
92
93 % 1, CoM common
94 Theta y1 = Theta y1G + m1*(l1/2+l2−yG dash)ˆ2;
95
96 % 2, CoM 2
97 Theta y2G = m2*(b2ˆ2+h2ˆ2)/12;
98
99 % 2, CoM common

100 Theta y2 = Theta y2G + m2*(yG dash−l2/2)ˆ2;
101
102 % Total, CoM common
103 Theta yG = Theta y1 + Theta y2;
104
105 % Total, Position of axis
106 Theta y = Theta yG + m*r yˆ2;

The distances of the rotational axes from mass center are calculated using the
geometry of the test body and the mounting cube.

1 function [d x, d z] = Distances from CoM(y com)
2
3
4 % All values in m
5
6 % Origin of the coordinate system is on the lowest edge of the testbody

in
7 % the middle:
8 %
9 % | |

10 % | |
11 % | |
12 % | x |
13
14
15 % Position of the center of mass:
16 com = [0,y com,0]';
17
18 % z axis
19
20 % Point that z−axis goes through
21 a z = [−5.6,59.75+1+15,0]';
22 a z = a z * 1e−3;
23
24 % Direction of z−axis
25 b z = [0,0,1]';
26
27 %disp('Distance of CoM to z−axis: ')
28 d z = norm(cross((com − a z),b z))/norm(b z);
29

Appendix C. Code 77

30
31
32 % x axis
33
34 % Point that x axis goes through
35 a x = [0,59.75+1+11,4.8/2+6.7−4.2]';
36 a x = a x * 1e−3;
37
38 % Direction of x−axis
39 b x = [1,0,0]';
40
41 %disp('Distance of CoM to x axis: ')
42 d x = norm(cross((com − a x),b x))/norm(b x);
43
44 % y axis
45
46 % Point that y axis goes through
47 %a y=[0,
48
49
50 end

C.1.6 Calculation of the test body’s moments of inertia
from experiment results

1
2 m=0.0176;
3
4 %% x axis
5
6 % Value for n pks = 9
7 I xx 1 = 3.507552821629088e−5;
8 % Value for n pks = 7
9 I xx 2=3.517772052094052e−05;

10
11 r x = 0.040344532815297;
12
13 I xx 1 G = I xx 1 − m*r xˆ2
14
15 Error x 1 = abs(I xx 1 G−6.410179e−6)/6.410179e−6
16
17 I xx 2 G = I xx 2 − m*r xˆ2
18
19 Error x 2 = abs(I xx 2 G−6.410179e−6)/6.410179e−6
20
21
22 %% z axis
23
24 % Value for n pks = 9
25 I zz 1 = 4.487304318368619e−5;
26 % Value for n pks = 12
27 I zz 2 = 4.469524719338436e−5;
28 % Value for n pks = 7
29 I zz 3 = 4.512302287526182e−05;
30
31
32 r z = 0.044400430747127;
33
34 I zz 1 G = I zz 1 − m*r zˆ2
35

78 C.1. Sensor Data Processing for Inertia Matrix Experiments

36 Error z 1 = abs(I zz 1 G−9.860228e−6)/9.860228e−6
37
38 I zz 2 G = I zz 2 − m*r zˆ2
39
40 Error z 2 = abs(I zz 2 G−9.860228e−6)/9.860228e−6
41
42 I zz 3 G = I zz 3 − m*r zˆ2
43
44 Error z 3 = abs(I zz 3 G−9.860228e−6)/9.860228e−6

C.1.7 Other Calculations

Calculating distances from rotation axes to mass center of the Crazyflie

Calculates the distances between all possible rotation axes the Crazyflie can be
mounted to and the Crazyflie’s mass center. The calculations are based on the
geometry of the Crazyflie and the mounting cube.

1 function [d x y, d z, d xy, d xz yz] = Distances from CoM
2
3 % Origin has the same x and y position as the center of mass but is on

the
4 % surface the Crazyflie stands on.
5
6 % A line is represented using a point the line goes through (a) and a
7 % vector that specifies the line's direction (b).
8
9

10 % Position of the center of mass:
11 z com = 17.425e−3; % Determined through experiments
12 com = [0,0,z com]';
13
14 %% z axis
15
16 % a in coordinate frame with y dash axis along the arm of the CF
17 a z dash = 10ˆ(−3)*[−5.2/2−3,92/2−6.9/2−0.8−4,0]';
18
19 % Transformation matrix from x/y dash to x/y
20 tm = [cos(pi/4),sin(pi/4),0;−sin(pi/4),cos(pi/4),0;0,0,1];
21
22 % Point that z−axis goes through
23 a z = tm * a z dash;
24
25 % Direction of z−axis
26 b z = [0,0,1]';
27
28 %disp('Distance of CoM to z−axis: ')
29 d z = norm(cross((com − a z),b z))/norm(b z);
30
31 %% xy axis
32
33 % a in coordinate frame with y dash axis along the arm of the CF
34 a xy dash = 10ˆ(−3)*[0,92/2−6.9/2−0.8−8,17.3−0.85+6.7−4.2]';
35
36 % Trafo matrix is the same as for z axis
37
38 % Point that xy axis goes through
39 a xy = tm * a xy dash;
40
41 % Direction of xy−axis
42 b xy = [−sqrt(2)/2,sqrt(2)/2,0]';

Appendix C. Code 79

43
44 %disp('Distance of CoM to xy−axis: ')
45 d xy = norm(cross((com − a xy),b xy))/norm(b xy);
46
47 %% x or y axis
48
49 % a in coordinate frame with y dash axis along the arm of the CF
50 a x y dash = 10ˆ(−3)*[0,92/2−6.9/2−0.8−19/2,17.3−0.85+6.7−4.2]';
51
52 % Trafo matrix is the same as for z axis
53
54 % Point that xy axis goes through
55 a x y = tm * a x y dash;
56
57 % Direction of xy−axis
58 b x y = [1,0,0]';
59
60 %disp('Distance of CoM to x or y axis: ')
61 d x y = norm(cross((com − a x y),b x y))/norm(b x y);
62
63 %% xz or yz axis
64
65 % a in coordinate frame with y dash axis along the arm of the CF
66 a xz yz dash = 10ˆ(−3)*[−0.8,92/2−6.9/2−0.8−7,17.3−0.85+6.7]';
67
68 % Trafo matrix is the same as for z axis
69
70 % Point that xz or yz axis goes through
71 a xz yz = tm * a xz yz dash;
72
73 % Direction of xz or yz axis
74 b xz yz = [−1,0,−1]';
75
76 %disp('Distance of CoM to xz or yz axis: ')
77 d xz yz = norm(cross((com − a xz yz),b xz yz))/norm(b xz yz);
78
79 end

C.2 Code in connection with thrust parameters

C.2.1 Static Thrust Tests

Python script that allows to transmit thrust setpoints for an arbitrary number
of motors to the Crazyflie.

1 # −*− coding: utf−8 −*−
2 #
3 # Written by Julian Foerster based on the example ramp.py that was

developed by Bitcraze.
4 #
5
6 """
7 Program that allows entering motor commands for each motor

separately or for several motors at the same time and sending
them to the Crazyflie. This script communicates with the thrust
module on the Crazyflie.

8 """
9

10 import time, sys

80 C.2. Code in connection with thrust parameters

11 from threading import Thread
12
13 sys.path.append("../lib")
14 import cflib
15 from cflib.crazyflie import Crazyflie
16 from cflib.crtp.crtpstack import CRTPPort
17 from cflib.crtp.crtpstack import CRTPPacket
18 from twisted.internet import reactor
19
20
21 import logging
22 logging.basicConfig(level=logging.ERROR)
23
24 import struct
25
26 class SendThrustSetpoints:
27 """Script that allows to run motor commands"""
28 def init (self, link uri):
29 """ Initialize and run the script with the specified link uri

"""
30
31 self. cf = Crazyflie()
32
33 self. cf.connected.add callback(self. connected)
34 self. cf.disconnected.add callback(self. disconnected)
35 self. cf.connection failed.add callback(self. connection failed

)
36 self. cf.connection lost.add callback(self. connection lost)
37
38 self. cf.open link(link uri)
39
40 print "Connecting to %s" % link uri
41
42 def connected(self, link uri):
43 """ This callback is called form the Crazyflie API when a

Crazyflie
44 has been connected and the TOCs have been downloaded."""
45
46 # Start a separate thread to do the motor test.
47 # Do not hijack the calling thread!
48 Thread(target=self. motor control).start()
49
50 def connection failed(self, link uri, msg):
51 """Callback when connection initial connection fails (i.e no

Crazyflie
52 at the speficied address)"""
53 print "Connection to %s failed: %s" % (link uri, msg)
54
55 def connection lost(self, link uri, msg):
56 """Callback when disconnected after a connection has been made

(i.e
57 Crazyflie moves out of range)"""
58 print "Connection to %s lost: %s" % (link uri, msg)
59
60 def disconnected(self, link uri):
61 """Callback when the Crazyflie is disconnected (called in all

cases)"""
62 print "Disconnected from %s" % link uri
63
64 def motor control(self):
65 self. cf.commander.send setpoint(0,0,0,0)

Appendix C. Code 81

66 print "WARNING: This script allows to let the CF motors run
with full thrust. Make sure that the Crazyflie is secured
properly to prevent it from flying away and suffering
severe damage."

67 print "The motor IDs are indicated on the Crazyflie's circuit
board: If the two blue LEDs are pointing towards you, motor
1 is the one on the top right and the other motors are
numbered clockwisely."

68
69 while (1):
70 choice = raw input("Enter the number of motors you would

like to adress. To turn off all motors hit P. To adress
all motors type A. To leave this program type Q. Input
: ")

71
72 pk = CRTPPacket()
73 pk.port = CRTPPort.THRUST
74
75 if (choice == "P"):
76 pk.data = struct.pack('<Hi', 0, 4)
77 self. cf.send packet(pk)
78 time.sleep(0.1)
79 print "All motors stopped."
80 elif (choice == "A"):
81 thrustVal = int(input("Enter the input command all

motors should be provided with (Max. 65535): "))
82 if (thrustVal>65535):
83 print "The entered value is too high, try again."
84 continue
85 pk.data = struct.pack('<Hi', thrustVal, 4)
86 self. cf.send packet(pk)
87 time.sleep(0.1)
88 print "Command sent."
89 elif (choice == "Q"):
90 pk.data = struct.pack('<Hi', 0, 4)
91 self. cf.send packet(pk)
92 time.sleep(0.1)
93 print "All motors stopped."
94 print "Disconnecting from Crazyflie and terminating

execution..."
95 break
96 else:
97 choice = int(choice)
98 if (choice >= 1 and choice <= 3):
99 thrust = [0,0,0]

100 motor NR = [0,0,0]
101 x=1
102 while x<=choice:
103 motor NR[x−1]=int(raw input("%d) What motor

number? " % x))
104 if motor NR[x−1]<1 or motor NR[x−1]>4:
105 print "Input not valid, try again."
106 continue
107 thrust[x−1]=int(raw input("%d) What input

command? " % x))
108 if (thrust[x−1]>65535):
109 print "The entered value is too high, try

again."
110 continue
111 x += 1
112 for x in range(0,choice):

82 C.2. Code in connection with thrust parameters

113 pk.data = struct.pack('<Hi', thrust[x],
motor NR[x]−1)

114 self. cf.send packet(pk)
115 time.sleep(0.1)
116 print "Commands sent."
117 else:
118 print "Input not valid."
119
120 self. cf.close link()
121
122 if name == ' main ':
123 # Initialize the low−level drivers (don't list the debug drivers)
124 cflib.crtp.init drivers(enable debug driver=False)
125 # Scan for Crazyflies and use the first one found
126 print "Scanning interfaces for Crazyflies..."
127 available = cflib.crtp.scan interfaces()
128 print "Crazyflies found:"
129 for i in available:
130 print i[0]
131
132 if len(available) > 0:
133 #le = SendThrustSetpoints(available[0][0])
134 #le = SendThrustSetpoints("radio://0/80/250K")
135 reactor.callInThread(SendThrustSetpoints,available[0][0])
136 reactor.run()
137 else:
138 print "No Crazyflies found, cannot run example"

Crazyflie module that receives the thrust setpoints and passes them to the mo-
tors. ATTENTION: when using this the four consecutive lines motorsSetRatio(MOTOR Mi,

motorPowerMi) with i = 1, . . . , 4 have to be commented out. Otherwise the
commander watchdog of the firmware will turn off the motors immediately af-
ter they were started because there is no continuous stream of input commands
being transmitted.

1 //Created by Julian Foerster
2
3 // Module that is used to determine the CF's thrust map. It allows to

pass inputs to every single motor.
4
5 // This module was written with the Crazyflie firmware modules from

Bitcraze as reference.
6
7 #ifndef THRUST H
8 #define THRUST H
9

10 //Member functions
11 void thrustInit(void);
12
13
14 #endif /* THRUST H */

1 // Created by Julian Foerster
2
3 // Module that is used to determine the CF's thrust map. It allows to

pass inputs to every single motor.
4
5 // This module was written with the Crazyflie firmware modules from

Bitcraze as reference.

Appendix C. Code 83

6
7
8 #include "FreeRTOS.h"
9 #include "task.h"

10
11 #include "crtp.h" //Used to send and receive information
12 #include "thrust.h"
13
14 #include "motors.h" // Contains function motorsSetRatio
15
16 struct thrustCrtpValues { // Inspired by struct defined in

commander.c
17 uint16 t thrust;
18 int motorID;
19 } attribute ((packed));
20
21
22 // Member variables
23 static bool isInit;
24 struct thrustCrtpValues targetValue;
25
26
27 // Function prototypes
28 static void thrustCrtpCB(CRTPPacket* pk);
29 static uint16 t limitThrust(int32 t value); // Taken from

stabilizer.c
30
31 //Member functions
32 void thrustInit(void)
33 {
34 // Only has to be initialized once...
35 if(isInit)
36 return;
37
38 // We need crtp, so make sure it is initialized (if it is already

initialized, nothing will happen
39 crtpInit();
40 // Register the function that will be called when a comes in on the

HELLO port
41 crtpRegisterPortCB(CRTP PORT THRUST, thrustCrtpCB);
42
43 isInit = true;
44 }
45
46 static void thrustCrtpCB(CRTPPacket* pk)
47 {
48 targetValue = *((struct thrustCrtpValues*)pk−>data);
49
50 uint32 t motorRatio = limitThrust(targetValue.thrust);
51
52 if (targetValue.motorID == 4) {
53 motorsSetRatio(MOTOR M1, motorRatio);
54 motorsSetRatio(MOTOR M2, motorRatio);
55 motorsSetRatio(MOTOR M3, motorRatio);
56 motorsSetRatio(MOTOR M4, motorRatio);
57 } else {
58 motorsSetRatio(targetValue.motorID, motorRatio);
59 }
60
61 }
62
63 // Taken from stabilizer.c

84 C.2. Code in connection with thrust parameters

64 static uint16 t limitThrust(int32 t value)
65 {
66 if(value > UINT16 MAX)
67 {
68 value = UINT16 MAX;
69 }
70 else if(value < 0)
71 {
72 value = 0;
73 }
74
75 return (uint16 t)value;
76 }

C.2.2 Load Cell Logger

Simple logger that connects to the load cell, asks it to stream force and torque
data continuously and saves this data in a .csv file.

1 import time
2 from datetime import date
3 from threading import Lock
4 from struct import pack, unpack
5 from twisted.internet import reactor
6 from twisted.internet.protocol import DatagramProtocol
7 import pandas as pd
8 import socket
9

10
11
12 # Running log of all FTS (=Force Torque Sensor) communications
13 FTSLog = [] # This is a list
14 FTSLock = Lock()
15
16 def QuitHandler():
17 print('')
18 FTSLock.acquire()
19 if len(FTSLog)>0:
20 print "Saving FTSLog..."
21 columnsNames = ['t','Fx','Fy','Fz','Tx','Ty','Tz']
22 data = pd.DataFrame(data=FTSLog,columns=columnsNames, index=

None)
23 filename = 'FTS data {0} {1}.csv'.format(date.today(),time.

strftime('%H−%M−%S'))
24 data.to csv(path or buf=filename, index=None)
25 print "Data saved to %s. Bye :−)" % filename
26 else:
27 print "Nothing to save. Bye :−)"
28
29
30 class FTSLogger(DatagramProtocol):
31 # Based on http://twistedmatrix.com/documents/12.3.0/core/howto/udp

.html
32 HOST = '192.168.1.200'
33 PORT = 49152
34 ADR = (HOST,PORT)
35
36 def startProtocol(self):
37 print('Connecting to {0}:{1}...'.format(self.HOST,self.PORT))
38 self.transport.connect(self.HOST,self.PORT)

Appendix C. Code 85

39 print "Requesting data..."
40 self.transport.write(pack('>HHI',0x1234,0x0002,0))
41
42 def datagramReceived(self,datagram,address):
43 now = time.time()
44 #print "Received something..."
45 seqNum1,seqNum2,status,Fx,Fy,Fz,Tx,Ty,Tz = unpack('>IIIiiiiii',

datagram)
46 apd = (now,Fx,Fy,Fz,Tx,Ty,Tz)
47 FTSLock.acquire()
48 FTSLog.append(apd)
49 FTSLock.release()
50
51 def connectionRefused(self):
52 print "No one listening..."
53
54 if name ==" main ":
55
56 reactor.listenUDP(FTSLogger.PORT, FTSLogger())
57 reactor.addSystemEventTrigger('before','shutdown',QuitHandler)
58 reactor.run()

C.2.3 Data processing for the mappings

Input command → angular velocity

1 clc
2 close all
3
4 % Input command
5 cmd = 0:2000:64000;
6 cmd = zeros(length(cmd)−1,1);
7 cmd(1)=cmd (1);
8 cmd(2:end)=cmd (3:end);
9

10 % First data points
11 M1 = xlsread('RPM measurements.xlsx','E4:E36');
12 M1 = zeros(length(M1)−1,1);
13 M1(1)=M1 (1);
14 M1(2:end)=M1 (3:end);
15 M1=M1/2; % Reflective stickers on both blades −−> double the RPM

is measured...
16 M1=M1/60*2*pi; % convert to angular velocity
17
18 % Second data points
19 M2 = xlsread('RPM measurements.xlsx','F4:F36');
20 M2 = zeros(length(M2)−1,1);
21 M2(1)=M2 (1);
22 M2(2:end)=M2 (3:end);
23 M2=M2/2;
24 M2=M2/60*2*pi; % convert to angular velocity
25
26
27 [p1,e1]=polyfit(cmd,M1,1);
28 [p2,e2]=polyfit(cmd,M2,1);
29
30 figure
31 scatter(cmd,M1)
32 hold on
33 plot(cmd,p1(1)*cmd+p1(2))

86 C.2. Code in connection with thrust parameters

34 grid on
35 box on
36 hleg=legend('Experiment data','Linear fit','Location','best');
37 set(hleg,'FontSize',20)
38 hleg.Interpreter='latex';
39 %title('1st measurement row')
40 xlabel('Input command [0, 65535]','Interpreter','latex','FontSize',20)
41 ylabel('Angular velocity [rad/s]','Interpreter','latex','FontSize',20)
42 ax=gca;
43 ax.FontSize=18;
44 ax.TickLabelInterpreter='latex';
45
46 figure
47 scatter(cmd,M2)
48 hold on
49 plot(cmd,p2(1)*cmd+p2(2))
50 grid on
51 box on
52 hleg=legend('Experiment data','Linear fit','Location','best');
53 set(hleg,'FontSize',20)
54 hleg.Interpreter='latex';
55 %title('2nd measurement row')
56 xlabel('Input command [0, 65535]','Interpreter','latex','FontSize',20)
57 ylabel('Angular velocity [rad/s]','Interpreter','latex','FontSize',20)
58 %title('Input Command −> Angular Velocity')
59 ax=gca;
60 ax.FontSize=18;
61 ax.TickLabelInterpreter='latex';
62
63 disp('First row')
64 disp(['omega = ' num2str(p1(1)) ' * command + ' num2str(p1(2))])
65 disp(['Error: ' num2str(e1.normr)])
66
67 disp('Second row')
68 disp(['omega = ' num2str(p2(1)) ' * command + ' num2str(p2(2))])
69 disp(['Error: ' num2str(e2.normr)])

Input command → thrust and thrust → torque

1
2 clc
3 close all
4
5 global data M2
6
7 %% Thrust −> torque
8
9 date = '150608 ';

10
11 % First column: Fz, second column: Tz
12 data=zeros(32,2);
13
14 times = zeros(32,2);
15 times(2,:)=[5 7];
16 times(3,:)=[4 8];
17 times(4,:)=[4 8];
18 times(5,:)=[4 8];
19 times(6,:)=[4 7];
20 times(7,:)=[5.5 10];
21 times(8,:)=[4.5 8];
22 times(9,:)=[5 9];

Appendix C. Code 87

23 times(10,:)=[6 10];
24 times(11,:)=[4 7.6];
25 times(12,:)=[4.5 8.5];
26 times(13,:)=[5 8];
27 times(14,:)=[7 10.5];
28 times(15,:)=[7 11.5];
29 times(16,:)=[5 9];
30 times(17,:)=[4 7];
31 times(18,:)=[3 6.5];
32 times(19,:)=[2.5 6];
33 times(20,:)=[2.5 5.5];
34 times(21,:)=[3.3 7];
35 times(22,:)=[3 7.5];
36 times(23,:)=[2.5 7];
37 times(24,:)=[3.5 8];
38 times(25,:)=[2 6.5];
39 times(26,:)=[2 6];
40 times(27,:)=[2 6];
41 times(28,:)=[3 7];
42 times(29,:)=[4 8];
43 times(30,:)=[3.5 7.2];
44 times(31,:)=[2 7];
45 times(32,:)=[3 10];
46
47 plot true=0;
48 for i=2:length(data)
49 if i==50
50 plot true=1;
51 end
52 [data(i,1), data(i,2)] = prepare data([date num2str(i+1) '.csv'],

plot true,times(i,1),times(i,2));
53 plot true=0;
54 end
55
56 [m,˜]=polyfit(data(:,1),data(:,2),1);
57
58 figure
59 scatter(data(:,1),data(:,2))
60 hold on
61 plot(data(:,1),m(1)*data(:,1)+m(2))
62 xlabel('Thrust [N]','Interpreter','latex','FontSize',20)
63 ylabel('Torque [Nm]','Interpreter','latex','FontSize',20)
64 hleg=legend('Experiment data','Linear fit','Location','southeast');
65 set(hleg,'FontSize',20)
66 hleg.Interpreter='latex';
67 grid on
68 box on
69 %title('Thrust −> Torque')
70 ax=gca;
71 ax.FontSize=18;
72 ax.TickLabelInterpreter='latex';
73
74 format long
75 disp(['Torque = ' num2str(m(1)) ' * Thrust + ' num2str(m(2))])
76
77 %% input command −> thrust
78
79 cmd = 0:2000:64000;
80 cmd = zeros(length(cmd)−1,1);
81 cmd(1)=cmd (1);
82 cmd(2:end)=cmd (3:end);
83

88 C.2. Code in connection with thrust parameters

84 [p,˜]=polyfit(cmd,data(:,1),2);
85
86 % [p matthew,˜]=polyfit(cmd,data(:,1),1);
87
88 figure
89 scatter(cmd,data(:,1))
90 hold on
91 plot(cmd,p(1).*cmd.ˆ2+p(2).*cmd+p(3))
92 grid on
93 box on
94 xlabel('Input command [0, 65535]','Interpreter','latex','FontSize',20)
95 ylabel('Thrust [N]','Interpreter','latex','FontSize',20)
96 hleg=legend('Experiment data','Quadratic fit','Location','best');
97 set(hleg,'FontSize',20)
98 hleg.Interpreter='latex';
99 ax=gca;

100 ax.FontSize=18;
101 ax.TickLabelInterpreter='latex';
102 %title('Input Command −> Thrust')
103
104 disp(['Thrust = ' num2str(p(1)) ' * cmdˆ2 + ' num2str(p(2)) ' * cmd + '

num2str(p(3))])
105
106 % % Linear
107 % figure
108 % scatter(cmd,data(:,1))
109 % hold on
110 % plot(cmd,p matthew(1).*cmd+p matthew(2))
111 % grid on
112 % xlabel('Input command [−]')
113 % ylabel('Thrust [N]')
114 % legend('Experiment data','Quadratic fit','Location','southeast')
115 %
116 % disp(['Thrust = ' num2str(p matthew(1)) ' * cmd + ' num2str(p matthew

(2))])
117
118 %% Verification input −> thrust
119
120 %Compare to verify data measured with the scales
121 figure
122 scatter(cmd,data(:,1))
123 hold on
124 plot(cmd,p(1).*cmd.ˆ2+p(2).*cmd+p(3))
125 grid on
126 xlabel('Input command [0, 65535]','Interpreter','latex','FontSize',20)
127 ylabel('Thrust [N]','Interpreter','latex','FontSize',20)
128 %title('Input Command −> Thrust')
129 cmd SD = 0:4000:64000;
130 SD = xlsread('Verification','F5:F21');
131 box on
132 scatter(cmd SD,SD,'MarkerEdgeColor',[1 204/255 51/255],'linewidth',2)
133 hleg=legend('Experiment data','Quadratic fit','Verification data','

Location','best');
134 set(hleg,'FontSize',20)
135 hleg.Interpreter='latex';
136 ax=gca;
137 ax.FontSize=18;
138 ax.TickLabelInterpreter='latex';
139
140
141 %% Rotor speed −> thrust
142

Appendix C. Code 89

143 % Second data points rotor speed (chose them because error is smaller)
144 M2 = xlsread('../Input Speed/RPM measurements.xlsx','F4:F36');
145 M2 = zeros(length(M2)−1,1);
146 M2(1)=M2 (1);
147 M2(2:end)=M2 (3:end);
148 M2=M2/2; % Divide by two because each propeller blade has a

reflective marker on it so the real RPM is half of the measured one
149 M2=M2/60*2*pi; % Convert to rad/s
150
151 [n,˜]=polyfit(M2,data(:,1),2);
152
153 init=n(1);
154 [param opt,fmin]=fminsearch(@objFunc Mat,init);
155
156 figure
157 scatter(M2,data(:,1))
158 hold on
159 plot(M2,n(1).*M2.ˆ2+n(2).*M2+n(3))
160 grid on
161 xlabel('Angular velocity [rad/s]')
162 ylabel('Thrust [N]')
163 legend('Experiment data','Quadratic fit','Location','southeast')
164 title('Angluar velocity −> Thrust')
165
166 disp(['Thrust = ' num2str(n(1)) ' * omegaˆ2 + ' num2str(n(2)) ' * omega

+ ' num2str(n(3))])
167
168 % Only xˆ2
169 figure
170 scatter(M2,data(:,1))
171 hold on
172 plot(M2,param opt.*M2.ˆ2)
173 grid on
174 xlabel('Angular velocity [rad/s]')
175 ylabel('Thrust [N]')
176 legend('Experiment data','Quadratic fit','Location','southeast')
177
178 disp(['Thrust = ' num2str(param opt) ' * omegaˆ2'])

1 function [Fz mean, Tz mean] = prepare data(filename,plot true,
start time,end time)

2
3 Tz raw = csvread(filename,1,6);
4 Fz raw = csvread(filename,1,3,[1 3 length(Tz raw) 3]);
5 t raw = csvread(filename,1,0,[1 0 length(Tz raw) 0]);
6 t raw=t raw−t raw(1);
7
8 counts per force torque=1000000;
9 Tz raw=(Tz raw./counts per force torque)/2; % Divide by 2 bcs

experiment was carried out with 2 props/motors at the same time.
10 Fz raw=(Fz raw./counts per force torque)/2;
11
12 bias=mean(Fz raw(10:60));
13 Fz raw =Fz raw−bias;
14 bias=mean(Tz raw(10:60));
15 Tz raw =Tz raw−bias;
16
17 %max beginning=max(Fz raw(10:60));
18
19 for i=1:length(t raw)−1
20 if t raw(i)<=start time && t raw(i+1)>start time

90 C.2. Code in connection with thrust parameters

21 start idx=i;
22 end
23 if t raw(i)<=end time && t raw(i+1)>end time
24 end idx=i;
25 end
26 end
27
28 Fz mean=mean(Fz raw(start idx:end idx));
29 Tz mean=mean(Tz raw(start idx:end idx));
30
31 if plot true==1
32 figure
33 subplot(121)
34 plot(t raw,Fz raw)
35 hold on
36 % Plot the mean value
37 plot(t raw,Fz mean*ones(length(t raw),1))
38 % Plot vertical lines that mark where the mean calculation starts

and ends
39 plot([t raw(start idx) t raw(start idx)],[min(Fz raw) max(Fz raw)],

'color','k')
40 plot([t raw(end idx) t raw(end idx)],[min(Fz raw) max(Fz raw)],'

color','k')
41 title('Fz')
42
43 subplot(122)
44 plot(t raw,Tz raw)
45 hold on
46 % Plot the mean value
47 plot(t raw,Tz mean*ones(length(t raw),1))
48 % Plot vertical lines that mark where the mean calculation starts

and ends
49 plot([t raw(start idx) t raw(start idx)],[min(Tz raw) max(Tz raw)],

'color','k')
50 plot([t raw(end idx) t raw(end idx)],[min(Tz raw) max(Tz raw)],'

color','k')
51 title('Tz')
52 end
53
54 end

1 function [res] = objFunc Mat(a)
2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4 global data M2
5
6 res=0;
7 for i=1:length(data(:,1))
8 res=res+(data(i,1)−a*M2(i))ˆ2;
9 end

10 end

C.2.4 Signal generation and data logging for the transfer
function

Python script that triggers the generation of sinusoidal input commands on the
Crazyflie and logs the resulting load cell data.

1 import time, sys, struct
2 from datetime import date

Appendix C. Code 91

3 from threading import Lock, Thread, Event
4 from struct import pack, unpack
5 from twisted.internet import reactor
6 from twisted.internet.protocol import DatagramProtocol
7 import pandas as pd
8 import socket
9 from math import pi, cos

10
11 sys.path.append("../../crazyflie−clients−python−master/lib")
12 import cflib
13 from cflib.crazyflie import Crazyflie
14 from cflib.crtp.crtpstack import CRTPPort
15 from cflib.crtp.crtpstack import CRTPPacket
16
17 import logging
18 logging.basicConfig(level=logging.ERROR)
19
20 # Config
21 UseLoadcell = 1
22 UseCF = 1 # Not yet implemented
23
24
25 # Running log of all FTS (=Force Torque Sensor) communications
26 FTSLog = [] # This is a list
27 FTSLock = Lock()
28
29 ThrustLog = []
30 ThrustLock = Lock()
31
32 TriggerEvent = Event()
33
34
35 def QuitHandler():
36 print('')
37 FTSLock.acquire()
38 if len(FTSLog)>0:
39 print "Saving FTSLog..."
40 columnsNames = ['t','Fx','Fy','Fz','Tx','Ty','Tz']
41 data = pd.DataFrame(data=FTSLog,columns=columnsNames, index=

None)
42 filename = 'FTS data {0} {1}.csv'.format(date.today(),time.

strftime('%H−%M−%S'))
43 data.to csv(path or buf=filename, index=None,float format="%.6f

")
44 print "Data saved to %s. Bye :−)" % filename
45 else:
46 print "Nothing to save. Bye :−)"
47
48 class FTSLogger(DatagramProtocol):
49 # Based on http://twistedmatrix.com/documents/12.3.0/core/howto/udp

.html
50 HOST = '192.168.1.200'
51 PORT = 49152
52 ADR = (HOST,PORT)
53
54 def startProtocol(self):
55 print('Connecting to loadcell under {0}:{1}...'.format(self.

HOST,self.PORT))
56 self.transport.connect(self.HOST,self.PORT)
57 print "Requesting data from loadcell..."
58 self.transport.write(pack('>HHI',0x1234,0x0002,0))
59

92 C.2. Code in connection with thrust parameters

60 def datagramReceived(self,datagram,address):
61 now = time.time()
62 #print "Received something..."
63 seqNum1,seqNum2,status,Fx,Fy,Fz,Tx,Ty,Tz = unpack('>IIIiiiiii',

datagram)
64 apd = (now,Fx,Fy,Fz,Tx,Ty,Tz)
65 FTSLock.acquire()
66 FTSLog.append(apd)
67 FTSLock.release()
68
69 def connectionRefused(self):
70 print "No one listening..."
71
72
73 class TriggerSine:
74 """Script that allows to run motor commands"""
75 def init (self, link uri):
76 """ Initialize and run the script with the specified link uri

"""
77
78 self. cf = Crazyflie()
79
80 self. cf.connected.add callback(self. connected)
81 self. cf.disconnected.add callback(self. disconnected)
82 self. cf.connection failed.add callback(self. connection failed

)
83 self. cf.connection lost.add callback(self. connection lost)
84
85 # Add callback (gets called when data comes in from the Flie)
86 self. cf.add port callback(CRTPPort.SINE, self. receiving)
87
88 self. cf.open link(link uri)
89
90 self.thrustsetpoints = []
91 self.thrustsetpointsLock = Lock()
92
93 self.ampl = 0
94 self.omega l = 0
95
96 self.TriggerTime = 0
97
98
99 print "Connecting to %s" % link uri

100
101 def connected(self, link uri):
102 """ This callback is called form the Crazyflie API when a

Crazyflie
103 has been connected and the TOCs have been downloaded."""
104
105 # Start a separate thread.
106 # Do not hijack the calling thread!
107 Thread(target=self. trigger).start()
108
109 def connection failed(self, link uri, msg):
110 """Callback when connection initial connection fails (i.e no

Crazyflie
111 at the speficied address)"""
112 print "Connection to %s failed: %s" % (link uri, msg)
113
114 def connection lost(self, link uri, msg):
115 """Callback when disconnected after a connection has been made

(i.e

Appendix C. Code 93

116 Crazyflie moves out of range)"""
117 print "Connection to %s lost: %s" % (link uri, msg)
118
119 def disconnected(self, link uri):
120 """Callback when the Crazyflie is disconnected (called in all

cases)"""
121 print "Disconnected from %s" % link uri
122
123 def trigger(self):
124 print "WARNING: Don't run this script before fastening the

Crazyflie securely."
125
126 while (1):
127 TriggerEvent.clear()
128
129 choice = raw input("Enter S to start the experiment, D to

start it with a default set of values apart from l (
motor=3, ampl=20000, N=8000) or Q to end this program.
Input: ")

130
131 pk = CRTPPacket()
132 pk.port = CRTPPort.SINE
133 # Structure of the data that will be sent to the Crazyflie:

(motor nr, amplitude, omega l, N)
134
135 if (choice=="Q"):
136 break
137 elif (choice=="D"):
138 motor NR = 3
139 self.ampl = 20000
140 N = 8000
141
142 if (N % 2 == 0):
143 rightBorder = N/2
144 else:
145 rightBorder = (N−1)/2
146
147 try:
148 l = int(raw input("Enter l (pick one in the range

[{0},{1}]). Input: ".format(0,rightBorder)))
149 except ValueError:
150 print "Entered value not an int. Try again..."
151 continue
152 if l<0 or l>rightBorder:
153 print "Not valid. Try again..."
154 continue
155
156 self.omega l = 2*pi*l/N
157 self.omega l = float(self.omega l)
158 pk.data = pack('<HHfI',motor NR,self.ampl,self.omega l,

N)
159 self. cf.send packet(pk)
160 self.TriggerTime = time.time()
161 print "Trigger Time is %f" % self.TriggerTime
162 print "Waiting for the experiment to finish..."
163
164 # Wait until execution on the Crazyflie is finished.
165 TriggerEvent.wait()
166
167 elif (choice=="S"):
168 print "The motors will be given the commands u[n]=A*cos

(omega l*n) for n=0,..,N with omega l=2*pi*l/N"

94 C.2. Code in connection with thrust parameters

169
170 try:
171 motor NR = int(raw input("Enter the number of the

motor you want to let run or enter 0 to address
all motors. Input: "))

172 except ValueError:
173 print "Entered value not an int. Try again..."
174 continue
175 if motor NR<0 or motor NR>4:
176 print "Not valid. Try again..."
177 continue
178
179 try:
180 self.ampl = int(raw input("Enter the integer

amplitude A (Max. 30000). Input: "))
181 except ValueError:
182 print "Entered value not an int. Try again..."
183 continue
184 if (self.ampl>30000 or self.ampl<0):
185 print "Amplitude not valid. Try again."
186 continue
187
188 try:
189 N = int(raw input("Enter N (Max. 4'294'967'295).

Input: "))
190 except ValueError:
191 print "Entered value not an int. Try again..."
192 continue
193 if N>4294967295 or N<0:
194 print "Not valid. Try again..."
195 continue
196
197 if (N % 2 == 0):
198 rightBorder = N/2
199 else:
200 rightBorder = (N−1)/2
201
202 try:
203 l = int(raw input("Enter l (pick one in the range

[{0},{1}]). Input: ".format(0,rightBorder)))
204 except ValueError:
205 print "Entered value not an int. Try again..."
206 continue
207 if l<0 or l>rightBorder:
208 print "Not valid. Try again..."
209 continue
210
211 self.omega l = 2*pi*l/N
212 self.omega l = float(self.omega l)
213
214 pk.data = pack('<HHfI',motor NR,self.ampl,self.omega l,

N)
215 self. cf.send packet(pk)
216 self.TriggerTime = time.time()
217 print "Trigger Time is %f" % self.TriggerTime
218
219 print "Waiting for the experiment to finish..."
220
221 # Execution gets certainly until here...
222
223 # Wait until execution on the Crazyflie is finished.
224 TriggerEvent.wait()

Appendix C. Code 95

225
226 else:
227 print "Unvalid choice. Try again..."
228
229 print "Quit connection to the CF..."
230
231
232 self. cf.close link()
233
234 def receiving(self, packet):
235 """
236 Is called when a new packet comes in
237 """
238 now = time.time()
239 if (packet.channel==1):
240 # Save the ThrustLog
241 print('')
242 ThrustLock.acquire()
243 if len(ThrustLog)>0:
244 print "Saving ThrustLog..."
245 thr columnsNames = ['t','thrust rec']
246 thr data = pd.DataFrame(data=ThrustLog,columns=

thr columnsNames, index=None)
247 # print thr data
248 thr filename = 'Thrust data {0} {1}.csv'.format(date.

today(),time.strftime('%H−%M−%S'))
249 thr data.to csv(path or buf=thr filename, index=None,

float format="%.6f")
250 print "Data saved to %s. Bye :−)" % thr filename
251 del ThrustLog[:]
252 else:
253 print "Nothing to save."
254
255 ThrustLock.release()
256
257 # Set the event for the waiting trigger.
258 print "Reset Trigger."
259 TriggerEvent.set()
260
261
262 else:
263 thrust rec = unpack('<H',packet.data)[0]
264 # print thrust rec
265 apd = (now, thrust rec)
266 print apd
267 ThrustLock.acquire()
268 ThrustLog.append(apd)
269 ThrustLock.release()
270
271
272
273 if name ==" main ":
274
275 if UseLoadcell ==1:
276 reactor.listenUDP(FTSLogger.PORT, FTSLogger())
277 reactor.addSystemEventTrigger('before','shutdown',QuitHandler)
278
279 # Initialize the low−level drivers (don't list the debug drivers)
280 cflib.crtp.init drivers(enable debug driver=False)
281 # Scan for Crazyflies and use the first one found
282 print "Scanning interfaces for Crazyflies..."
283 available = cflib.crtp.scan interfaces()

96 C.2. Code in connection with thrust parameters

284 print "Crazyflies found:"
285 for i in available:
286 print i[0]
287
288 if len(available) > 0:
289 reactor.callInThread(TriggerSine,available[0][0])
290 #le = TriggerSine("radio://0/80/250K")
291 reactor.run()
292 else:
293 print "No Crazyflies found, cannot run example"

Crazyflie module that starts, upon reception of the trigger packet from the
Python script, applying sinusoidal inputs to the motors.

1 //Created by Julian FÃ¶rster
2
3 // App that is used to determine the CF's thrust map. It allows to pass

sinusoidal inputs to every single motor.
4
5 #ifndef SINE H
6 #define SINE H
7
8 #include <stdbool.h>
9

10
11 //Member functions
12 void sineInit(void);
13
14
15 #endif /* SINE H */

1 // Created by Julian FÃ¶rster
2
3 // App that is used to determine the CF's thrust map. It allows to pass

sinusoidal inputs to every single motor.
4
5 #include <math.h>
6 #include <string.h>
7
8 #include "FreeRTOS.h"
9 #include "task.h"

10 #include "semphr.h"
11
12 #include "config.h"
13 #include "system.h"
14 #include "crtp.h" //Used to send and receive information
15 #include "sine.h"
16
17 #include "lps25h.h" // Don't know what that is.
18
19 #include "motors.h" // Contains function motorsSetRatio
20
21 struct sineCrtpValues { // Inspired by struct defined in

commander.c
22 uint16 t motorID;
23 uint16 t ampl;
24 float omega;
25 uint32 t N;
26 } attribute ((packed));
27

Appendix C. Code 97

28
29 // Member variables
30 static bool isInit;
31 static struct sineCrtpValues targetValue;
32 CRTPPacket logSetpoint;
33 CRTPPacket finished;
34
35
36 // Function prototypes
37 static void sineCrtpCB(CRTPPacket* pk);
38 static uint16 t limitThrust(int32 t value); // Taken from

stabilizer.c
39
40 // Task prototype
41 static void sineTask(void* param);
42
43 // Semaphore that signals when the sinusoidal input can be applied
44 static xSemaphoreHandle triggerSem;
45
46 //Member functions
47 void sineInit(void)
48 {
49 // Only has to be initialized once...
50 if(isInit) return;
51
52 // We need crtp and the motors, so make sure they are initialized (

if it is already initialized, nothing will happen)
53 crtpInit();
54 motorsInit();
55
56 // Register the function that will be called when a comes in on the

HELLO port
57 crtpRegisterPortCB(CRTP PORT SINE, sineCrtpCB);
58
59 // Set up CRTP
60 logSetpoint.size = sizeof(uint16 t);
61 logSetpoint.header = CRTP HEADER(CRTP PORT SINE,0);
62 finished.size = sizeof(uint8 t);
63 finished.header = CRTP HEADER(CRTP PORT SINE,1);
64
65 // Create the task
66 xTaskCreate(sineTask, (const signed char * const)SINE TASK NAME,

SINE TASK STACKSIZE, NULL, SINE TASK PRI, NULL);
67
68 vSemaphoreCreateBinary(triggerSem);
69 xSemaphoreTake(triggerSem, portMAX DELAY);
70
71 isInit = true;
72 }
73
74 static void sineCrtpCB(CRTPPacket* pk)
75 {
76 targetValue = *((struct sineCrtpValues*)pk−>data);
77
78 xSemaphoreGive(triggerSem);
79 }
80
81 static void sineTask(void* param) {
82
83 uint16 t motor;
84 uint16 t ampl;
85 float omega;

98 C.2. Code in connection with thrust parameters

86 uint32 t N;
87
88 int i;
89 uint16 t freq = 500; //Hz // How high should this frequency

be?
90 uint32 t thrust raw;
91 uint16 t thrust;
92 uint16 t thrust old = 0;
93
94 uint32 t lastWakeTime;
95
96 while (1) {
97
98 xSemaphoreTake(triggerSem, portMAX DELAY);
99

100 lastWakeTime = xTaskGetTickCount();
101
102 motor = targetValue.motorID;
103 ampl = targetValue.ampl;
104 omega = targetValue.omega;
105 N = targetValue.N;
106
107 i=0;
108
109 switch (motor) {
110 case 0:
111 // All motors
112 while (i<N) {
113 vTaskDelayUntil(&lastWakeTime, F2T(freq));
114
115 thrust raw = ampl * cos(omega * i) + 30000;
116 thrust = limitThrust(thrust raw);
117
118 if ((thrust old>30000 && thrust<=30000) | |(thrust old

<30000 && thrust>=30000) | | i==0) {
119 memcpy(logSetpoint.data, &thrust, sizeof(uint16 t))

;
120 crtpSendPacket(&logSetpoint);
121 }
122
123 motorsSetRatio(MOTOR M1, thrust);
124 motorsSetRatio(MOTOR M2, thrust);
125 motorsSetRatio(MOTOR M3, thrust);
126 motorsSetRatio(MOTOR M4, thrust);
127 i++;
128
129 thrust old = thrust;
130 }
131
132 break;
133
134 default:
135 // One motor
136
137 while (i<N) {
138 vTaskDelayUntil(&lastWakeTime, F2T(freq));
139
140 thrust raw = ampl * cos(omega * i) + 30000;
141 thrust = limitThrust(thrust raw);
142
143 if ((thrust old>30000 && thrust<=30000) | |(thrust old

<30000 && thrust>=30000) | | i==0) {

Appendix C. Code 99

144 memcpy(logSetpoint.data, &thrust, sizeof(uint16 t))
;

145 crtpSendPacket(&logSetpoint);
146 }
147
148 motorsSetRatio(motor−1, thrust);
149 i++;
150
151 thrust old = thrust;
152 }
153
154 break;
155 }
156 // Turn all motors off
157 motorsSetRatio(MOTOR M1, 0);
158 motorsSetRatio(MOTOR M2, 0);
159 motorsSetRatio(MOTOR M3, 0);
160 motorsSetRatio(MOTOR M4, 0);
161
162 thrust = 0;
163 memcpy(logSetpoint.data, &thrust, sizeof(uint16 t));
164 crtpSendPacketBlock(&logSetpoint);
165
166 vTaskDelay(1000); // Wait for a second
167
168 finished.data[0] = 'a';
169 crtpSendPacketBlock(&finished);
170 }
171 }
172
173
174 // Taken from stabilizer.c
175 static uint16 t limitThrust(int32 t value)
176 {
177 if(value > UINT16 MAX)
178 {
179 value = UINT16 MAX;
180 }
181 else if(value < 0)
182 {
183 value = 0;
184 }
185
186 return (uint16 t)value;
187 }

C.2.5 Data processing for the transfer function

These files were used to process the data of the first series of measurements.
The ones for the second series are identical apart from series specific constants
such as the file names that include the data or the number of sample N .

1 %clc
2 %clear all
3 %close all
4
5 Use Force=1;
6 fancy fft=1;
7
8 % Parameters

100 C.2. Code in connection with thrust parameters

9 Ts = 1/500;
10
11 % Vector containing all values of l
12
13 l = xlsread('Experiment Index1.xlsx','H4:H46');
14
15 % Number of Frequencies to consider for system identification
16 % L = length(l);
17 L=33;
18
19 l=l(1:L);
20 H hat = zeros(L,1);
21 Omega l = zeros(L,1);
22
23
24
25 %%
26 % Get all estimates for frequency response
27
28 % l = 0,...,4
29 if L>=5
30 for i=1:5
31 if i==6
32 [H hat(i),Omega l(i),time indi,Ty]=prepare data1 return F('

FTS 150615 1.csv',['CF 150615 ' num2str(i) '.csv'
],1,1,1,l(i),Ts,Use Force,fancy fft);

33 else
34 [H hat(i),Omega l(i)]=prepare data1('FTS 150615 1.csv',['

CF 150615 ' num2str(i) '.csv'],0,0,0,l(i),Ts,Use Force,
fancy fft);

35 end
36 end
37 end
38 %%
39 % l = 5,...,10
40 if L>=11
41 for i=6:11
42 if i==5
43 [H hat(i),Omega l(i)]=prepare data1('FTS 150615 2.csv',['

CF 150615 ' num2str(i) '.csv'],1,1,1,l(i),Ts,Use Force,
fancy fft);

44 else
45 [H hat(i),Omega l(i)]=prepare data1('FTS 150615 2.csv',['

CF 150615 ' num2str(i) '.csv'],0,0,0,l(i),Ts,Use Force,
fancy fft);

46 end
47 end
48 end
49 %%
50 % l = 11,...,40
51 if L>=21
52 for i=12:21
53 if i==13
54 [H hat(i),Omega l(i),time indi,Ty1]=prepare data1 return F(

'FTS 150615 3.csv',['CF 150615 ' num2str(i) '.csv'
],0,0,0,l(i),Ts,Use Force,fancy fft);

55 elseif i==18
56 [H hat(i),Omega l(i),time indi,Ty2]=prepare data1 return F(

'FTS 150615 3.csv',['CF 150615 ' num2str(i) '.csv'
],0,0,0,l(i),Ts,Use Force,fancy fft);

57 else

Appendix C. Code 101

58 [H hat(i),Omega l(i)]=prepare data1('FTS 150615 3.csv',['
CF 150615 ' num2str(i) '.csv'],0,0,0,l(i),Ts,Use Force,
fancy fft);

59 end
60 end
61 end
62 %%
63 % l = 45,...,90
64 if L>=33
65 for i=22:31
66 [H hat(i),Omega l(i)]=prepare data1('FTS 150615 4.csv',['

CF 150615 ' num2str(i) '.csv'],0,0,0,l(i),Ts,Use Force,
fancy fft);

67 end
68
69 % l = 95
70 [H hat(32),Omega l(32)]=prepare data1('FTS 150615 5.csv',['

CF 150615 ' num2str(32) '.csv'],0,0,0,l(32),Ts,Use Force,
fancy fft);

71
72 % l = 100
73 [H hat(33),Omega l(33)]=prepare data1('FTS 150615 4.csv',['

CF 150615 ' num2str(33) '.csv'],0,0,0,l(33),Ts,Use Force,
fancy fft);

74 end
75
76 % l = 110,...,2000
77 if L>=43
78 for i=34:43
79 [H hat(i),Omega l(i)]=prepare data1('FTS 150615 5.csv',['

CF 150615 ' num2str(i) '.csv'],0,0,0,l(i),Ts,Use Force,
fancy fft);

80 end
81 end
82
83
84 %%
85 %close all
86
87 % Design parameters
88 % A=2;
89 % B=5;
90 A=2;
91 B=1;
92
93
94 F=zeros(2*L,A+B−1);
95 G=zeros(2*L,1);
96 W=zeros(2*L,2*L);
97 pos=1;
98 for i=1:L
99 for idx a=1:A−1

100 % Real
101 F(pos,idx a)=abs(H hat(i))*cos(angle(H hat(i))−idx a*Omega l(i)

);
102 % Imaginary
103 F(pos+1,idx a)=abs(H hat(i))*sin(angle(H hat(i))−idx a*Omega l(

i));
104 end
105 for idx b=0:B−1
106 F(pos,idx b+A)=(−1)*cos(idx b*Omega l(i));
107 F(pos+1,idx b+A)=sin(idx b*Omega l(i));

102 C.2. Code in connection with thrust parameters

108 end
109 G(pos)=(−1)*abs(H hat(i))*cos(angle(H hat(i)));
110 G(pos+1)=(−1)*abs(H hat(i))*sin(angle(H hat(i)));
111
112 if i<=16
113 W(pos,pos)=2;
114 W(pos+1,pos+1)=2;
115 else
116 W(pos,pos)=0.5;
117 W(pos+1,pos+1)=0.5;
118 end
119
120 pos=pos+2;
121 end
122
123
124 weighted=1;
125 if weighted==1
126 F=W*F;
127 G=W*G;
128 end
129 % Least squares solution
130 Theta = (F'*F)\(F'*G);
131
132 num=Theta(A:end)';
133 den=Theta(1:A−1)';
134 SYS1 = tf(num,[1 den],Ts,'variable','zˆ−1')
135
136 % Estimated frequency response
137 H=Omega l;
138 for i=1:length(Omega l)
139 H(i)=freqResp(Omega l(i),Theta,A);
140 end
141
142 % Plot magnitude response
143 figure
144 subplot(211)
145 %title('Magnitude response Exp. 1','FontSize',15)
146 hold on
147 scatter(Omega l/Ts,20*log10(abs(H hat)))
148 ylim([−135 −110])
149 plot(Omega l/Ts,log10(abs(H))*20)
150 grid on
151 box on
152 xlabel('CT Frequency [$\frac{rad}{s}$]','Interpreter','latex','FontSize

',20)
153 ylabel('Magnitude [dB]','Interpreter','latex','FontSize',20)
154 h legend=legend('Frequency response estimates','Weighted least squares

fit');
155 set(h legend,'FontSize',14)
156 h legend.Interpreter='latex';
157 ax=gca;
158 ax.FontSize=18;
159 ax.TickLabelInterpreter='latex';
160
161 % Plot phase response
162 subplot(212)
163 %title('Phase response Exp. 1','FontSize',15)
164 hold on
165 scatter(Omega l/Ts,angle(H hat)/pi*180)
166 plot(Omega l/Ts,angle(H)/pi*180)
167 grid on

Appendix C. Code 103

168 box on
169 xlabel('CT Frequency [$\frac{rad}{s}$]','Interpreter','latex','FontSize

',20)
170 ylabel('Phase [$ˆ{\circ}$]','Interpreter','latex','FontSize',20)
171 ax=gca;
172 ax.FontSize=18;
173 ax.TickLabelInterpreter='latex';
174
175
176 %% Make bode plot
177 % opts=bodeoptions;
178 % opts.TickLabel.FontSize=18;
179 % %opts.TickLabel.Interpreter='latex';
180 % opts.xlabel.FontSize=20;
181 % opts.ylabel.FontSize=20;
182 % opts.xlabel.Interpreter='latex';
183 % opts.ylabel.Interpreter='latex';
184 % opts.title.String=' ';
185
186 figure
187 bode(SYS1)
188
189 xlim([1 Omega l(end)/Ts])
190 %title('Bode Plot Exp. 1','FontSize',15)
191 grid on
192 box on
193
194
195 %% Simulate response to different inputs
196
197 Tfinal=8;
198 t=0:Ts:Tfinal;
199
200 % Calculate impulse response
201 h=impulse(SYS1,t);
202 % figure
203 % plot(t,h)
204
205 % Create input signals
206 x1=20000*cos(2*pi*12/4000/0.002*t)+30000;
207 x2=20000*cos(2*pi*25/4000/0.002*t)+30000;
208 x3=20000*cos(2*t)+30000;
209
210 % Calculate outputs
211 y1=conv(x1,h);
212 y2=conv(x2,h);
213 y3=conv(x3,h);
214
215 % figure
216 % plotyy(t,x1,t,y1(1:length(t)))
217 % figure
218 % plotyy(t,x2,t,y2(1:length(t)))
219 % figure
220 % plotyy(t,x3,t,y3(1:length(t)))
221
222 % l=12
223 figure
224 y=lsim(SYS1,x1,t);
225 len =min(length(time indi),length(t));
226 [hAx,hLine1,hLine2]=plotyy(t(1:len),x1(1:len),[time indi(1:len),t(1:

len)'],[Ty1(1:len),y(1:len)]);
227 %title('Simulation of system response l=12','FontSize',14)

104 C.2. Code in connection with thrust parameters

228 xlabel('Time [s]','Interpreter','latex','FontSize',20)
229 ylabel(hAx(1),'Input command [−]','Interpreter','latex','FontSize',20)
230 ylabel(hAx(2),'Thrust [N]','Interpreter','latex','FontSize',20)
231 set(hAx(1),'ylim',[5000 55000])
232 set(hAx(2),'ylim',[mean(Ty1)−0.2 mean(Ty1)+0.2])
233 hLine1.Color = [255 64 0]/255;
234 set(hAx(1),'ycolor',[255 64 0]/255)
235 hLine2(1).Color = [0 140 204]/255;
236 hLine2(2).Color = 'k';
237 hLine2(2).LineWidth = 3;
238 h legend=legend('Input','Measured output','Simulated output');
239 set(h legend,'FontSize',14)
240 h legend.Interpreter='latex';
241 hAx(1).FontSize=18;
242 hAx(2).FontSize=18;
243 hAx(1).TickLabelInterpreter='latex';
244 hAx(2).TickLabelInterpreter='latex';
245
246 % l=25
247 figure
248 y=lsim(SYS1,x2,t);
249 len =min(length(time indi),length(t));
250 [hAx,hLine1,hLine2]=plotyy(t(1:len),x2(1:len),[time indi(1:len),t(1:

len)'],[Ty2(1:len),y(1:len)]);
251 %title('Simulation of system response l=25','FontSize',14)
252 xlabel('Time [s]','Interpreter','latex','FontSize',20)
253 ylabel(hAx(1),'Input command [−]','Interpreter','latex','FontSize',20)
254 ylabel(hAx(2),'Thrust [N]','Interpreter','latex','FontSize',20)
255 set(hAx(1),'ylim',[5000 55000])
256 set(hAx(2),'ylim',[mean(Ty2)−0.2 mean(Ty2)+0.2])
257 hLine1.Color = [255 64 0]/255;
258 set(hAx(1),'ycolor',[255 64 0]/255)
259 hLine2(1).Color = [0 140 204]/255;
260 hLine2(2).Color = 'k';
261 hLine2(2).LineWidth = 3;
262 h legend=legend('Input','Measured output','Simulated output');
263 set(h legend,'FontSize',14)
264 h legend.Interpreter='latex';
265 hAx(1).FontSize=18;
266 hAx(2).FontSize=18;
267 hAx(1).TickLabelInterpreter='latex';
268 hAx(2).TickLabelInterpreter='latex';

1 function [H hat,Omega l] = prepare data1(filename FT,filename CF,
plot FT,plot CF,plot fft,l,Ts,Use Force,fancy fft)

2 %disp(['l=' num2str(l)])
3 % Import FT data
4 FT data = csvread(filename FT,1,0);
5 % Looking at torque around y axis.
6 Ty raw = FT data(:,6)*(−1);
7 t FT = FT data(:,1);
8
9 % Get rid of bias

10 bias=mean(Ty raw(1:1000));
11 Ty raw=Ty raw−bias;
12
13 % Adapt unit
14 Ty raw=Ty raw/1000000;
15 % Now the unit is Nm
16 if Use Force==1
17 d=92e−3/2; % Distance from propeller axis to loadcell origin.

Appendix C. Code 105

18 Ty raw=Ty raw/d;
19 % Now the unit is N
20 end
21
22 %plot(Ty raw)
23
24 % Import motor input data
25 CF data = csvread(filename CF,1,0);
26 t CF = CF data(:,1);
27 refPoints = CF data(:,2);
28
29 for i=1:length(t FT)−1
30 if t FT(i)<=t CF(1) && t FT(i+1)>t CF(1)
31 start idx=i;
32 end
33 if t FT(i)<t CF(end) && t FT(i+1)>=t CF(end)
34 end idx=i+1;
35 end
36 end
37
38 % Relevant FT data
39 t FT rel = t FT(start idx:end idx);
40 Ty rel = Ty raw(start idx:end idx);
41
42 % Adjust timescales
43 t FT rel = t FT rel − t CF(1);
44 t CF = t CF − t CF(1);
45
46 % New timescale
47 %Ts=mean(diff(t FT rel))
48 % Individual N used to calculate the motor input
49 N indi=ceil(t CF(end)/Ts);
50 n indi=0:N indi−1;
51 time indi=(0:Ts:(N indi−1)*Ts)';
52
53 % Interpolate FT data
54 Ty=interp1(t FT rel,Ty rel,time indi);
55
56 % Reconstruct motor input command
57 motor input = (refPoints(1)−30000) * cos(2*pi*l/N indi*n indi) + 30000;
58
59 if plot FT==1
60 figure
61 plot(time indi,Ty)
62 grid on
63 box on
64 xlabel('Time [s]','Interpreter','LaTex','fontsize',20)
65 ylimval=max(abs(min(Ty)),abs(max(Ty)))+0.015;
66 ylim([−ylimval+mean(Ty) ylimval+mean(Ty)])
67 if Use Force˜=1
68 ylabel('Torque [Nm]','Interpreter','LaTex','fontsize',20)
69 else
70 ylabel('Thrust [N]','Interpreter','LaTex','fontsize',20)
71 end
72 title(['l = ' num2str(l)],'FontSize',14)
73 ax=gca;
74 ax.FontSize=18;
75 ax.TickLabelInterpreter='latex';
76 end
77 if plot CF==1
78 figure
79 scatter(t CF,refPoints)

106 C.2. Code in connection with thrust parameters

80 hold on
81 plot(time indi,motor input)
82 grid on
83 box on
84 xlabel('Time[s]','Interpreter','LaTex','fontsize',20)
85 ylabel('Input command [−]','Interpreter','LaTex','fontsize',20)
86 ylim([5000 55000])
87 title(['l = ' num2str(l)],'FontSize',14)
88 ax=gca;
89 ax.FontSize=18;
90 ax.TickLabelInterpreter='latex';
91 end
92
93 % Calculate frequency response estimate
94 N T = 500;
95 Omega l=2*pi*l/N indi;
96
97 if fancy fft==1
98 % Get correct region for fft (Mike's idea)
99 if l==0 | | l==1

100 N fft=N indi−N T;
101 else
102 N period=round(4000/l);
103 number periods=floor((N indi−N T)/N period);
104 N fft=N period*number periods;
105 end
106
107 Y m=fft(Ty(N T:N T+N fft−1));
108 U e=fft(motor input(N T:N T+N fft−1));
109
110 % Get rid of middle value
111 % if l˜=0
112 % Y m(1)=0;
113 % U e(1)=0;
114 % end
115
116 % Plot ffts
117 if plot fft==1
118 figure
119 n=0:length(motor input(N T:N T+N fft−1))−1;
120 Omega=2*pi*n/length(n);
121 stem(Omega,abs(U e))
122 xlim([0 0.1])
123 xlabel('l','FontSize',14)
124 ylabel('Magnitude of FFT','FontSize',14)
125 title(['Input l = ' num2str(l)],'FontSize',14)
126 figure
127 stem(Omega,abs(Y m))
128 xlim([0 0.1])
129 xlabel('l','FontSize',14)
130 ylabel('Magnitude of FFT','FontSize',14)
131 title(['Output l = ' num2str(l)],'FontSize',14)
132 end
133
134 %H hat = Y m(l fft+1)/U e(l fft+1);
135
136 [˜, idx max y]=max(abs(Y m(2:end)));
137 [˜, idx max u]=max(abs(U e(2:end)));
138
139
140 if l==0
141 idx max y=0;

Appendix C. Code 107

142 idx max u=0;
143 end
144
145
146 H hat = Y m(idx max y+1)/U e(idx max u+1); % +1 because searching

the max started at index 2
147 else
148 Y m = fft(Ty(N T:end));
149 U e = fft(motor input(N T:end));
150
151 N fft = length(Ty(N T:end));
152 l fft=round(Omega l/2/pi*N fft);
153
154 % Get rid of middle value
155 % if l˜=0
156 % Y m(1)=0;
157 % U e(1)=0;
158 % end
159
160 % Plot ffts
161 if plot fft==1
162 figure
163 n=0:length(motor input(N T:end))−1;
164 Omega=2*pi*n/length(n);
165 stem(Omega,abs(U e))
166 xlim([0 0.1])
167 xlabel('\Omega [rad]','FontSize',14)
168 ylabel('Magnitude of FFT','FontSize',14)
169 title(['Input l = ' num2str(l)],'FontSize',14)
170 figure
171 stem(Omega,abs(Y m))
172 xlim([0 0.1])
173 xlabel('\Omega [rad]','FontSize',14)
174 ylabel('Magnitude of FFT','FontSize',14)
175 title(['Output l = ' num2str(l)],'FontSize',14)
176 end
177
178 %H hat = Y m(l fft+1)/U e(l fft+1);
179
180 [˜, idx max y]=max(abs(Y m(2:end)));
181 [˜, idx max u]=max(abs(U e(2:end)));
182
183 if l==0
184 idx max y=0;
185 idx max u=0;
186 end
187
188 H hat = Y m(idx max y+1)/U e(idx max u+1);
189
190 end
191
192 end

The function prepare data1 return F is identical to the function prepare data1

apart from that it returns the time and force vectors in addition.

1 function res = freqResp(Omega,Theta,A)
2 num=0;
3 for i=A:length(Theta)
4 num=num+Theta(i)*exp(−1i*Omega*(i−A));
5 end
6 den=1;

108 C.2. Code in connection with thrust parameters

7 for i=1:A−1
8 den=den+Theta(i)*exp(−1i*Omega*i);
9 end

10 res=num/den;
11 end

C.2.6 Ping Test

Python script that can be used to initiate the ping test.

1 # −*− coding: utf−8 −*−
2 #
3 # Written by Julian Foerster based on the example ramp.py written by

Bitcraze
4 #
5
6 """
7 Programm that allows measure the latency of the connection between

Crazyradio PA and Crazyflie
8 """
9

10 import time, sys
11 from threading import Thread, Lock, Event
12 from numpy import mean, std
13
14 sys.path.append("../lib")
15 import cflib
16 from cflib.crazyflie import Crazyflie
17 from cflib.crtp.crtpstack import CRTPPort
18 from cflib.crtp.crtpstack import CRTPPacket
19 from twisted.internet import reactor
20
21
22 import logging
23 logging.basicConfig(level=logging.ERROR)
24
25 import struct
26
27 WaitLock = Lock()
28
29 class Ping:
30 """Script that allows to run motor commands"""
31 def init (self, link uri):
32 """ Initialize and run the script with the specified link uri

"""
33
34 self. cf = Crazyflie()
35
36 self. cf.connected.add callback(self. connected)
37 self. cf.disconnected.add callback(self. disconnected)
38 self. cf.connection failed.add callback(self. connection failed

)
39 self. cf.connection lost.add callback(self. connection lost)
40
41 # Add callback (gets called when data comes in from the Flie)
42 self. cf.add port callback(CRTPPort.PING, self. receiving)
43
44 self. cf.open link(link uri)
45
46 self.rxTime = 0

Appendix C. Code 109

47 self.txTime = 0
48 self.times = []
49 self.timesLock = Lock()
50
51 print "Connecting to %s" % link uri
52
53 def connected(self, link uri):
54 """ This callback is called form the Crazyflie API when a

Crazyflie
55 has been connected and the TOCs have been downloaded."""
56
57 # Start a separate thread to do the motor test.
58 # Do not hijack the calling thread!
59 Thread(target=self. send ping).start()
60
61 def connection failed(self, link uri, msg):
62 """Callback when connection initial connection fails (i.e no

Crazyflie
63 at the speficied address)"""
64 print "Connection to %s failed: %s" % (link uri, msg)
65
66 def connection lost(self, link uri, msg):
67 """Callback when disconnected after a connection has been made

(i.e
68 Crazyflie moves out of range)"""
69 print "Connection to %s lost: %s" % (link uri, msg)
70
71 def disconnected(self, link uri):
72 """Callback when the Crazyflie is disconnected (called in all

cases)"""
73 print "Disconnected from %s" % link uri
74
75 def send ping(self):
76 self. cf.commander.send setpoint(0,0,0,0)
77 a=0 # Index variable
78
79 choice = raw input("Enter the number of executions. Input: ")
80 choice = int(choice)
81 print "0 %"
82 while (a<=choice):
83 a=a+1
84 if ((100*float(a)/float(choice)) % 10 == 0):
85 print "%i %%" % (100*a/choice)
86 pk = CRTPPacket()
87 pk.port = CRTPPort.PING
88 WaitLock.acquire()
89 self.txTime = time.time()
90 self. cf.send packet(pk)
91 WaitLock.release()
92 time.sleep(0.1)
93
94 self.timesLock.acquire()
95 mean data = mean(self.times)
96 std data = std(self.times)
97
98 print "Mean: {}\nStandard Deviation: {}".format(mean data,

std data)
99

100 self. cf.close link()
101
102 def receiving(self, packet):
103 """

110 C.2. Code in connection with thrust parameters

104 Is called when a new packet comes in
105 """
106 self.rxTime = time.time()
107 WaitLock.acquire()
108
109 Difference = self.rxTime − self.txTime
110
111 self.timesLock.acquire()
112 self.times.append(Difference)
113 self.timesLock.release()
114 WaitLock.release()
115
116 if name == ' main ':
117 # Initialize the low−level drivers (don't list the debug drivers)
118 cflib.crtp.init drivers(enable debug driver=False)
119 # Scan for Crazyflies and use the first one found
120 print "Scanning interfaces for Crazyflies..."
121 available = cflib.crtp.scan interfaces()
122 print "Crazyflies found:"
123 for i in available:
124 print i[0]
125
126 if len(available) > 0:
127 reactor.callInThread(Ping,available[0][0])
128 reactor.run()
129 else:
130 print "No Crazyflies found, cannot run example"

Crazyflie firmware module that responds to an incoming packet by immediately
sending back an empty packet.

1
2
3
4
5
6 #ifndef PING H
7 #define PING H
8
9

10
11 //Member functions
12 void pingInit(void);
13
14
15
16
17 #endif /* PING H */

1 //Created by Julian FÃ¶rster
2
3 /* Module that answers on an incoming packet right away in order to

measure the Crazyflie's response time. */
4
5 #include "FreeRTOS.h"
6 #include "task.h"
7
8
9 #include "crtp.h" //Used to send and receive information

10 #include "ping.h"

Appendix C. Code 111

11 #include "debug.h"
12 #include "console.h"
13
14 //Member variables
15 static bool isInit = false;
16 CRTPPacket answerping;
17
18 // Function prototype
19 static void pingCrtpCB(CRTPPacket* pk);
20
21 //Member functions
22 void pingInit(void)
23 {
24 // Only has to be initialized once...
25 if(isInit)
26 return;
27
28 // We need crtp, so make sure it is initialized (if it is already

initialized, nothing will happen
29 crtpInit();
30 // Register the function that will be called when a comes in on the

HELLO port
31 crtpRegisterPortCB(CRTP PORT PING, pingCrtpCB);
32
33 answerping.size = 0;
34 // Make sure that the packet we send back reaches the right

function within the client
35 answerping.header = CRTP HEADER(CRTP PORT PING, 0);
36
37 isInit = true;
38 }
39
40 static void pingCrtpCB(CRTPPacket* pk)
41 {
42 // Send answer CRTPPacket
43 if (crtpSendPacket(&answerping) == pdTRUE) {
44 // Packet was sent successfully
45 }
46 }

C.3 Code in connection with drag coefficients

C.3.1 Data processing of the wind tunnel experiment data

1 clc
2 clear all
3 close all
4
5 format long
6 % All forces except from aerodynamic ones occur in the measurement. So

we
7 % subtract this force from the other two
8
9 %% Import all forces

10 F = zeros(7*3,16);
11
12 % Get vector with all filenames
13 [˜,filenames1,˜] = xlsread('ProofofConcept5.xlsx','C25:C43');

112 C.3. Code in connection with drag coefficients

14 [˜,filenames2,˜] = xlsread('ProofofConcept5.xlsx','H25:H43');
15 [˜,filenames3,˜] = xlsread('ProofofConcept5.xlsx','M25:M43');
16 [˜,filenames4,˜] = xlsread('ProofofConcept5.xlsx','R25:R43');
17 [˜,filenames5,˜] = xlsread('ProofofConcept5.xlsx','W25:W43');
18 [˜,filenames6,˜] = xlsread('ProofofConcept5.xlsx','W6:W22');
19 filenames=[filenames1; filenames2; filenames3; filenames4; filenames5;

filenames6];
20
21 % Vector with input commands
22 input vec = [10000 20000 30000 37300 40000 50000];
23
24
25 % 0 V
26 spalte = 1;
27 start=1;
28
29 filename=['Data/' char(filenames(start)) '.csv'];
30 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2000,4000,0);
31 filename=['Data/' char(filenames(start+1)) '.csv'];
32 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,7500,9000,0);
33 filename=['Data/' char(filenames(start+2)) '.csv'];
34 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,9000,11500,0);
35 filename=['Data/' char(filenames(start+3)) '.csv'];
36 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,7000,10000,0);
37 filename=['Data/' char(filenames(start+4)) '.csv'];
38 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,6000,9000,0);
39 filename=['Data/' char(filenames(start+5)) '.csv'];
40 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,5000,8000,0);
41 filename=['Data/' char(filenames(start+6)) '.csv'];
42 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,5000,10000,0);
43
44 % 5 V, 0 deg
45 spalte=2;
46 start=8;
47 filename=['Data/' char(filenames(start)) '.csv'];
48 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2000,4000,0);
49 filename=['Data/' char(filenames(start+1)) '.csv'];
50 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,6000,9000,0);
51 filename=['Data/' char(filenames(start+2)) '.csv'];
52 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,14000,17000,0);
53 filename=['Data/' char(filenames(start+3)) '.csv'];
54 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,8000,11000,0);
55 filename=['Data/' char(filenames(start+4)) '.csv'];
56 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,6000,8000,0);
57 filename=['Data/' char(filenames(start+5)) '.csv'];
58 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,8000,11000,0);
59 filename=['Data/' char(filenames(start+6)) '.csv'];
60 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,6000,10000,0);

Appendix C. Code 113

61
62 % 6 V, 0 deg
63 spalte=3;
64 start=15;
65 filename=['Data/' char(filenames(start)) '.csv'];
66 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,1500,4000,0);
67 filename=['Data/' char(filenames(start+1)) '.csv'];
68 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data end(filename

,6000,9000,0);
69 filename=['Data/' char(filenames(start+2)) '.csv'];
70 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,6000,9000,0);
71 filename=['Data/' char(filenames(start+3)) '.csv'];
72 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,6000,8000,0);
73 filename=['Data/' char(filenames(start+4)) '.csv'];
74 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,7000,10000,0);
75 filename=['Data/' char(filenames(start+5)) '.csv'];
76 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,10000,13000,0);
77 filename=['Data/' char(filenames(start+6)) '.csv'];
78 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,6000,9000,0);
79
80 % 8 V, 0 deg
81 spalte=4;
82 start=22;
83 filename=['Data/' char(filenames(start)) '.csv'];
84 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2000,4000,0);
85 filename=['Data/' char(filenames(start+1)) '.csv'];
86 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,6000,9000,0);
87 filename=['Data/' char(filenames(start+2)) '.csv'];
88 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,6000,9000,0);
89 filename=['Data/' char(filenames(start+3)) '.csv'];
90 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,9000,12000,0);
91 filename=['Data/' char(filenames(start+4)) '.csv'];
92 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,6400,10200,0);
93 filename=['Data/' char(filenames(start+5)) '.csv'];
94 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,6000,10000,0);
95 filename=['Data/' char(filenames(start+6)) '.csv'];
96 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,8000,13000,0);
97
98 % 10 V, 0 deg
99 spalte=5;

100 start=29;
101 filename=['Data/' char(filenames(start)) '.csv'];
102 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2000,6000,0);
103 filename=['Data/' char(filenames(start+1)) '.csv'];
104 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,5000,9000,0);
105 filename=['Data/' char(filenames(start+2)) '.csv'];

114 C.3. Code in connection with drag coefficients

106 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename
,7000,10000,0);

107 filename=['Data/' char(filenames(start+3)) '.csv'];
108 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,7000,10000,0);
109 filename=['Data/' char(filenames(start+4)) '.csv'];
110 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,7000,11000,0);
111 filename=['Data/' char(filenames(start+5)) '.csv'];
112 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,6000,9000,0);
113 filename=['Data/' char(filenames(start+6)) '.csv'];
114 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,8000,13000,0);
115
116 % 12 V, 0 deg
117 spalte=6;
118 start=36;
119 filename=['Data/' char(filenames(start)) '.csv'];
120 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2000,5000,0);
121 filename=['Data/' char(filenames(start+1)) '.csv'];
122 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,5000,9000,0);
123 filename=['Data/' char(filenames(start+2)) '.csv'];
124 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,7000,12000,0);
125 filename=['Data/' char(filenames(start+3)) '.csv'];
126 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,7600,11400,0);
127 filename=['Data/' char(filenames(start+4)) '.csv'];
128 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,8000,12000,0);
129 filename=['Data/' char(filenames(start+5)) '.csv'];
130 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,9000,14000,0);
131 filename=['Data/' char(filenames(start+6)) '.csv'];
132 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,6000,10600,0);
133
134 % 5 V, 48,4 deg
135 spalte=7;
136 start=43;
137 filename=['Data/' char(filenames(start)) '.csv'];
138 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,4000,8000,0);
139 filename=['Data/' char(filenames(start+1)) '.csv'];
140 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,7000,11000,0);
141 filename=['Data/' char(filenames(start+2)) '.csv'];
142 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,6000,10000,0);
143 filename=['Data/' char(filenames(start+3)) '.csv'];
144 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,11000,15000,0);
145 filename=['Data/' char(filenames(start+4)) '.csv'];
146 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,9000,15000,0);
147 filename=['Data/' char(filenames(start+5)) '.csv'];
148 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,6000,11000,0);
149 filename=['Data/' char(filenames(start+6)) '.csv'];

Appendix C. Code 115

150 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename
,6000,10000,0);

151
152 % 6 V, 48,4 deg
153 spalte=8;
154 start=50;
155 filename=['Data/' char(filenames(start)) '.csv'];
156 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,3000,7000,0);
157 filename=['Data/' char(filenames(start+1)) '.csv'];
158 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,7000,11000,0);
159 filename=['Data/' char(filenames(start+2)) '.csv'];
160 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,7000,12000,0);
161 filename=['Data/' char(filenames(start+3)) '.csv'];
162 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,8000,13000,0);
163 filename=['Data/' char(filenames(start+4)) '.csv'];
164 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,10000,13000,0);
165 filename=['Data/' char(filenames(start+5)) '.csv'];
166 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,9000,13000,0);
167 filename=['Data/' char(filenames(start+6)) '.csv'];
168 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,8000,11900,0);
169
170 % 8 V, 48,4 deg
171 spalte=9;
172 start=57;
173 filename=['Data/' char(filenames(start)) '.csv'];
174 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,3000,7000,0);
175 filename=['Data/' char(filenames(start+1)) '.csv'];
176 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,7000,11000,0);
177 filename=['Data/' char(filenames(start+2)) '.csv'];
178 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,6000,11000,0);
179 filename=['Data/' char(filenames(start+3)) '.csv'];
180 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,7300,11300,0);
181 filename=['Data/' char(filenames(start+4)) '.csv'];
182 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,10000,15000,0);
183 filename=['Data/' char(filenames(start+5)) '.csv'];
184 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,9000,14000,0);
185 filename=['Data/' char(filenames(start+6)) '.csv'];
186 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,8000,12000,0);
187
188 % 10 V, 48,4 deg
189 spalte=10;
190 start=64;
191 filename=['Data/' char(filenames(start)) '.csv'];
192 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2500,6500,0);
193 filename=['Data/' char(filenames(start+1)) '.csv'];
194 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,7300,12000,0);

116 C.3. Code in connection with drag coefficients

195 filename=['Data/' char(filenames(start+2)) '.csv'];
196 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,7000,11000,0);
197 filename=['Data/' char(filenames(start+3)) '.csv'];
198 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,8000,13000,0);
199 filename=['Data/' char(filenames(start+4)) '.csv'];
200 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,11000,15000,0);
201 filename=['Data/' char(filenames(start+5)) '.csv'];
202 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,8000,14000,0);
203 filename=['Data/' char(filenames(start+6)) '.csv'];
204 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,9000,14000,0);
205
206 % 12 V, 48,4 deg
207 spalte=11;
208 start=71;
209 filename=['Data/' char(filenames(start)) '.csv'];
210 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,2000,7000,0);
211 filename=['Data/' char(filenames(start+1)) '.csv'];
212 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,8000,13000,0);
213 filename=['Data/' char(filenames(start+2)) '.csv'];
214 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,7000,12000,0);
215 filename=['Data/' char(filenames(start+3)) '.csv'];
216 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,7000,12000,0);
217 filename=['Data/' char(filenames(start+4)) '.csv'];
218 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,9000,14000,0);
219 filename=['Data/' char(filenames(start+5)) '.csv'];
220 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,8000,14000,0);
221 filename=['Data/' char(filenames(start+6)) '.csv'];
222 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,13000,19600,0);
223
224 % 5 V, 77.9 deg
225 spalte=12;
226 start=78;
227 filename=['Data/' char(filenames(start)) '.csv'];
228 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,4000,8000,0);
229 filename=['Data/' char(filenames(start+1)) '.csv'];
230 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,12000,16000,0);
231 filename=['Data/' char(filenames(start+2)) '.csv'];
232 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,9000,15000,0);
233 filename=['Data/' char(filenames(start+3)) '.csv'];
234 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,7000,13000,0);
235 filename=['Data/' char(filenames(start+4)) '.csv'];
236 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,8000,16000,0);
237 filename=['Data/' char(filenames(start+5)) '.csv'];
238 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,10000,14000,0);

Appendix C. Code 117

239 filename=['Data/' char(filenames(start+6)) '.csv'];
240 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,8000,14000,0);
241
242 % 6 V, 77.9 deg
243 spalte=13;
244 start=85;
245 filename=['Data/' char(filenames(start)) '.csv'];
246 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,3000,9000,0);
247 filename=['Data/' char(filenames(start+1)) '.csv'];
248 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,8000,13000,0);
249 filename=['Data/' char(filenames(start+2)) '.csv'];
250 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,8000,14000,0);
251 filename=['Data/' char(filenames(start+3)) '.csv'];
252 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,8000,15000,0);
253 filename=['Data/' char(filenames(start+4)) '.csv'];
254 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,9000,15000,0);
255 filename=['Data/' char(filenames(start+5)) '.csv'];
256 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,8000,15000,0);
257 filename=['Data/' char(filenames(start+6)) '.csv'];
258 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,7000,14000,0);
259
260 % 8 V, 77.9 deg
261 spalte=14;
262 start=92;
263 filename=['Data/' char(filenames(start)) '.csv'];
264 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,3000,8000,0);
265 filename=['Data/' char(filenames(start+1)) '.csv'];
266 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,8000,13000,0);
267 filename=['Data/' char(filenames(start+2)) '.csv'];
268 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,8000,14000,0);
269 filename=['Data/' char(filenames(start+3)) '.csv'];
270 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,10000,16000,0);
271 filename=['Data/' char(filenames(start+4)) '.csv'];
272 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,8000,16000,0);
273 filename=['Data/' char(filenames(start+5)) '.csv'];
274 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,8000,15000,0);
275 filename=['Data/' char(filenames(start+6)) '.csv'];
276 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,8000,14000,0);
277
278 % 10 V, 77.9 deg
279 spalte=15;
280 start=99;
281 filename=['Data/' char(filenames(start)) '.csv'];
282 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,3000,10000,0);
283 filename=['Data/' char(filenames(start+1)) '.csv'];

118 C.3. Code in connection with drag coefficients

284 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename
,9000,17000,0);

285 filename=['Data/' char(filenames(start+2)) '.csv'];
286 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,9000,15000,0);
287 filename=['Data/' char(filenames(start+3)) '.csv'];
288 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,10000,17000,0);
289 filename=['Data/' char(filenames(start+4)) '.csv'];
290 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,10000,17000,0);
291 filename=['Data/' char(filenames(start+5)) '.csv'];
292 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,9000,17000,0);
293 filename=['Data/' char(filenames(start+6)) '.csv'];
294 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,11000,17000,0);
295
296 % 12 V, 77.9 deg
297 spalte=16;
298 start=106;
299 filename=['Data/' char(filenames(start)) '.csv'];
300 [F(1,spalte),F(2,spalte),F(3,spalte)]=prepare data(filename

,6000,11000,0);
301 filename=['Data/' char(filenames(start+1)) '.csv'];
302 [F(4,spalte),F(5,spalte),F(6,spalte)]=prepare data(filename

,10000,16000,0);
303 filename=['Data/' char(filenames(start+2)) '.csv'];
304 [F(7,spalte),F(8,spalte),F(9,spalte)]=prepare data(filename

,10000,17000,0);
305 filename=['Data/' char(filenames(start+3)) '.csv'];
306 [F(10,spalte),F(11,spalte),F(12,spalte)]=prepare data(filename

,9000,16000,0);
307 filename=['Data/' char(filenames(start+4)) '.csv'];
308 [F(13,spalte),F(14,spalte),F(15,spalte)]=prepare data(filename

,8000,16000,0);
309 filename=['Data/' char(filenames(start+5)) '.csv'];
310 [F(16,spalte),F(17,spalte),F(18,spalte)]=prepare data(filename

,11000,20000,0);
311 filename=['Data/' char(filenames(start+6)) '.csv'];
312 [F(19,spalte),F(20,spalte),F(21,spalte)]=prepare data(filename

,9000,19000,0);
313
314 %% Matrix that contains the corrected drag forces for each experiment
315
316 F drag = zeros(3*6,15);
317 % F drag = F tot − F thr
318
319 for i=1:size(F drag,2)
320 for j=1:3:size(F drag,1)
321 F drag(j:j+2,i) = F(j+3:j+3+2,i+1) − F(j+3:j+3+2,1);
322 end
323 end
324
325 % Read in Theta sigmas
326 Thetas raw = xlsread('ProofofConcept5.xlsx','C9:Q19');
327 Thetas = zeros(6,15);
328 j=1;
329 for i=1:size(Thetas,1)
330 Thetas(i,:) = Thetas raw(j,:);
331 j=j+2;
332 end

Appendix C. Code 119

333 Thetas=Thetas/2/60*2*pi; % Change unit to rad/s
334 Theta sigma=Thetas*4;
335
336 %%
337 % Wind velocities
338 v abs = [1.5 2.25 (2.8+3.6)/2 (4.2+3.1)/2 (3.7+5.1)/2 (1+1.8)/2

(1.6+2.8)/2 (2+3.7)/2 (2.8+4.3)/2 (3.3+5)/2 (1.4+1.8)/2 (1.8+2.5)/2
(2.2+3.4)/2 (2.6+4)/2 (3+4.5)/2]; % [m/s]

339 v = zeros(3,length(v abs));
340 angles = [0 0 0 0 0 48.4 48.4 48.4 48.4 48.4 77.9 77.9 77.9 77.9

77.9]/180*pi;
341 for i=1:length(v abs)
342 v(1:3,i) = [v abs(i)*sin(angles(i))*cos(0.4967);−v abs(i)*sin(

angles(i))*sin(0.4967);v abs(i)*cos(angles(i))];
343 end
344
345 % Calculate drag coefficients kappa par (z direction)
346 kappa par=zeros(6,15);
347 % Rows: input commands, Columns: Angles and wind speeds
348 for i=1:size(F drag,2)
349 for j=1:size(F drag,1)/3
350 kappa par(j,i) = F drag(j*3,i)/Theta sigma(j,i)/v(3,i);
351 end
352 end
353
354 % Calculate drag coefficients kappa orth (x,y direction) each alone
355 kappa orth=zeros(2*6,10);
356 % Rows: input commands (two rows per command, one for x and one for y),
357 % Columns: angles and wind speeds (excluding angle 0 deg)
358 idx kappa=1;
359 for i=6:size(F drag,2)
360 for j=1:size(F drag,1)/3
361 kappa orth(idx kappa,i−5) = F drag(j*3−2,i)/Theta sigma(j,i)/v

(1,i); % x
362 kappa orth(idx kappa+1,i−5) = F drag(j*3−1,i)/Theta sigma(j,i)/

v(2,i); % y
363 idx kappa = idx kappa + 2;
364 end
365 idx kappa = 1;
366 end
367
368 % Calculate drag coefficients in x and y direction with LS for each

wind
369 % velocity and each angular velocity alone
370 kappa orth LS=zeros(6,10);
371 for i=6:size(F drag,2)
372 for j=1:size(F drag,1)/3
373 y=[F drag(j*3−2,i)/Theta sigma(j,i)/v(1,i); F drag(j*3−1,i)/

Theta sigma(j,i)/v(2,i)];
374 H=[1;1];
375 kappa orth LS(j,i−5)=(H'*H)\(H'*y);
376 end
377 end
378
379 % Calculate drag coefficients in x and y direction with LS for all wind
380 % velocities but each angular velocity alone (still separately for each
381 % wind angle)
382 kappa orth LS allWinds=zeros(6,2);
383 y48 4 = zeros(2*5,1);
384 y77 9 = y48 4;
385 H=ones(10,1);
386 idx force=6;

120 C.3. Code in connection with drag coefficients

387 for j=1:size(F drag,1)/3 % Iterate RPMs
388 for m=1:2:10 % Iterate wind speeds
389 y48 4(m) = F drag(j*3−2,idx force)/Theta sigma(j,idx force)/v

(1,idx force);
390 y48 4(m+1) = F drag(j*3−1,idx force)/Theta sigma(j,idx force)/v

(2,idx force);
391 y77 9(m) = F drag(j*3−2,idx force+5)/Theta sigma(j,idx force+5)

/v(1,idx force+5);
392 y77 9(m+1) = F drag(j*3−1,idx force+5)/Theta sigma(j,idx force

+5)/v(2,idx force+5);
393 idx force=idx force+1;
394 end
395 kappa orth LS allWinds(j,1)=(H'*H)\(H'*y48 4);
396 kappa orth LS allWinds(j,2)=(H'*H)\(H'*y77 9);
397 idx force=6;
398 end
399
400
401 % Calculate drag coefficients in x and y direction with LS for all

angular
402 % velocities but each wind velocity alone
403 kappa orth LS allInputs=zeros(2,5);
404 y48 4 = zeros(2*6,1);
405 y77 9 = y48 4;
406 H=ones(12,1);
407 idx force=1;
408 for i=1:5 % Iterate wind speeds
409 for m=1:2:12
410 y48 4(m) = F drag(idx force*3−2,i+5)/Theta sigma(idx force,i+5)

/v(1,i+5);
411 y48 4(m+1) = F drag(idx force*3−1,i+5)/Theta sigma(idx force,i

+5)/v(2,i+5);
412 y77 9(m) = F drag(idx force*3−2,i+10)/Theta sigma(idx force,i

+10)/v(1,i+10);
413 y77 9(m+1) = F drag(idx force*3−1,i+10)/Theta sigma(idx force,i

+10)/v(2,i+10);
414 idx force=idx force+1;
415 end
416 kappa orth LS allInputs(1,i) = (H'*H)\(H'*y48 4);
417 kappa orth LS allInputs(2,i) = (H'*H)\(H'*y77 9);
418 idx force=1;
419 end
420
421 % Calculate drag coefficients in x and y direction with LS for all

angular
422 % velocities and all wind velocities
423 kappa orth LS all=zeros(2,1);
424 y48 4 = zeros(2*6*5,1);
425 y77 9 = y48 4;
426 H=ones(length(y48 4),1);
427 idx y=1;
428 for i=6:10 % Iterate Wind velocities
429 for j=1:6 % Iterate input commands
430 y48 4(idx y) = F drag(j*3−2,i)/Theta sigma(j,i)/v(1,i);
431 y48 4(idx y+1) = F drag(j*3−1,i)/Theta sigma(j,i)/v(2,i);
432 y77 9(idx y) = F drag(j*3−2,i+5)/Theta sigma(j,i+5)/v(1,i+5);
433 y77 9(idx y+1) = F drag(j*3−1,i+5)/Theta sigma(j,i+5)/v(2,i+5);
434 idx y=idx y+2;
435 end
436 end
437 kappa orth LS all(1) = (H'*H)\(H'*y48 4);
438 kappa orth LS all(2) = (H'*H)\(H'*y77 9);

Appendix C. Code 121

439
440 %% LS new force model
441
442 % y vector containing all the forces
443 y=zeros(numel(F drag),1);
444 H=zeros(length(y),12);
445 idx y=1;
446 idx 3=1;
447 for j=1:size(F drag,2)
448 for i=1:size(F drag,1) % 1:6*3
449 y(idx y) = F drag(i,j);
450
451 if mod(idx y,3)==0
452 idx H = 2;
453 else
454 idx H = 1;
455 end
456
457 % K aero1
458 H(idx y,idx H) = Theta sigma(ceil(i/3),j) * v(idx 3,j);
459 % K aero2
460 H(idx y,idx H+2) = v(idx 3,j)ˆ2;
461 % K aero3
462 H(idx y,idx H+4) = Theta sigma(ceil(i/3),j)ˆ2;
463 % K aero4
464 H(idx y,idx H+6) = v(idx 3,j);
465 % K aero5
466 H(idx y,idx H+8) = Theta sigma(ceil(i/3),j);
467 % K aero6
468 H(idx y,idx H+10) = 1;
469
470 idx y=idx y+1;
471 idx 3=idx 3+1;
472 if idx 3==4
473 idx 3=1;
474 end
475 end
476 end
477
478 %H sub=H−mean(H,1);
479 %H sub=H sub
480
481 %K=(H'*W*H)\(H'*W*y)
482 K=H\y;
483 K aero1=diag([K(1) K(1) K(2)]);
484 K aero2=diag([K(3) K(3) K(4)]);
485 K aero3=[K(5);K(5);K(6)];
486 K aero4=diag([K(7) K(7) K(8)]);
487 K aero5=[K(9);K(9);K(10)];
488 K aero6=[K(11);K(11);K(12)];
489
490 % Weight all coefficients using the variables they are multiplied with

in
491 % order to make them comparable.
492 norm1=mean(mean(Theta sigma))*mean(v abs)
493 norm2=mean(v abs)ˆ2
494 norm3=mean(mean(Theta sigma))
495 norm4=mean(v abs)
496 norm5=mean(mean(Theta sigma))
497 norm6=1
498 norm sum=norm1+norm2+norm3+norm4+norm5+norm6
499

122 C.3. Code in connection with drag coefficients

500 K norm1=K aero1*norm1/norm sum
501 K norm2=K aero2*norm2/norm sum
502 K norm3=K aero3*norm3/norm sum
503 K norm4=K aero4*norm4/norm sum
504 K norm5=K aero5*norm5/norm sum
505 K norm6=K aero6*norm6/norm sum
506
507
508 F drag calc = F drag;
509 for j=1:size(F drag,2)
510 for i=1:size(F drag,1)/3 % 1:6
511 F drag calc(i*3−2:i*3,j) = K aero1*Theta sigma(i,j)*v(:,j) +

K aero2*(v(:,j).ˆ2) + K aero3*Theta sigma(i,j)ˆ2 + K aero4*
v(:,j) + K aero5*Theta sigma(i,j) + K aero6;

512 end
513 end
514
515 %% Forces based on old force model
516
517 F drag calc simpleModel = F drag;
518 K aero simple = diag([mean(kappa orth LS all) mean(kappa orth LS all)

mean(mean(kappa par))]);
519 %K aero simple=diag([20 20 10]);
520 for j=1:size(F drag,2)
521 for i=1:size(F drag,1)/3 % 1:6
522 F drag calc simpleModel(i*3−2:i*3,j) = K aero simple*

Theta sigma(i,j)*v(:,j);
523 end
524 end
525
526 %% Calculate sum of squared errors
527 Err simpleModel=sum(sum((F drag−F drag calc simpleModel).ˆ2))
528
529 Err newModel=sum(sum((F drag−F drag calc).ˆ2))
530
531 %% Fitting − whole matrix forcing symetries
532
533 % The matrix used looks like
534 % (a b c)
535 % K aero = (b a c)
536 % (d d e)
537
538 y=zeros(numel(F drag),1);
539 H=zeros(length(y),5); % Five coefficients
540 idx y=1;
541 for j=1:size(F drag,2) % iterate wind speeds
542 for i=1:size(F drag,1)/3 % iterate input commands
543 y(idx y:idx y+2)=F drag(3*i−2:3*i,j);
544
545 H(idx y,:)=Theta sigma(i,j)*[v(1,j),v(2,j),0,0,v(3,j)];
546 H(idx y+1,:)=Theta sigma(i,j)*[v(2,j),v(1,j),0,0,v(3,j)];
547 H(idx y+2,:)=Theta sigma(i,j)*[0,0,v(1,j)+v(2,j),v(3,j),0];
548
549 idx y=idx y+3;
550 end
551 end
552
553 K=(H'*H)\(H'*y);
554 K aero4 1 = [K(1),K(2),K(5);K(2),K(1),K(5);K(3),K(3),K(4)];
555
556
557 K2=H\y;

Appendix C. Code 123

558 K aero4 2 = [K2(1),K2(2),K2(5);K2(2),K2(1),K2(5);K2(3),K2(3),K2(4)]
559
560
561 F drag calc4 = F drag;
562 for j=1:size(F drag,2)
563 for i=1:size(F drag,1)/3 % 1:6
564 F drag calc4(i*3−2:i*3,j) = K aero4 1*Theta sigma(i,j)*v(:,j);
565 end
566 end
567
568 Err newModel4=sum(sum((F drag−F drag calc4).ˆ2))
569
570 %% Surface plot of force in x − data
571
572 min v=min(v abs);
573 max v=max(v abs);
574 min theta=min(min(Theta sigma));
575 max theta=max(max(Theta sigma));
576 min F=min(min(F drag));
577 max F=max(max(F drag));
578
579 % Absolute wind velocity vs. Theta sigma
580 figure
581 labelx='$ |v |$ $[\frac{m}{s}]$';
582 labely='$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$';
583 labelz='$f {\mathrm{a,x}} [N]$';
584 size font labels=20;
585 % 0 deg
586 %surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,1:5))
587 surf wind=v abs(1:5);
588 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,1:5),F drag(1:3:end,1:5))
589 colormap bone
590 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
591 ylabel(labely,'interpreter','latex','FontSize',size font labels)
592 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
593 %title('Data, wind from $0ˆ\circ$','interpreter','latex','FontSize',16)
594 view(150,40)
595 xlim([min v max v])
596 ylim([min theta max theta])
597 zlim([min F max F])
598 ax=gca;
599 ax.FontSize=18;
600 ax.TickLabelInterpreter='latex';
601 % 48.4 deg
602 figure
603 %surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,6:10))
604 surf wind=v abs(6:10);
605 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,6:10),F drag(1:3:end,6:10))
606 colormap bone
607 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
608 ylabel(labely,'interpreter','latex','FontSize',size font labels)
609 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
610 %title('Data, wind from $48.4ˆ\circ$','interpreter','latex','FontSize

',16)
611 view(150,40)
612 xlim([min v max v])
613 ylim([min theta max theta])
614 zlim([min F max F])

124 C.3. Code in connection with drag coefficients

615 ax=gca;
616 ax.FontSize=18;
617 ax.TickLabelInterpreter='latex';
618 % 77.9 deg
619 figure
620 %surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,11:15))
621 surf wind=v abs(11:15);
622 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,11:15),F drag(1:3:end,11:15))
623 colormap bone
624 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
625 ylabel(labely,'interpreter','latex','FontSize',size font labels)
626 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
627 %title('Data, wind from $77.9ˆ\circ$','interpreter','latex','FontSize

',16)
628 view(150,40)
629 xlim([min v max v])
630 ylim([min theta max theta])
631 zlim([min F max F])
632 ax=gca;
633 ax.FontSize=16;
634 ax.TickLabelInterpreter='latex';
635
636
637 %% Surface plot of force in y − data
638
639 min v=min(v abs);
640 max v=max(v abs);
641 min theta=min(min(Theta sigma));
642 max theta=max(max(Theta sigma));
643 min F=min(min(F drag));
644 max F=max(max(F drag));
645
646 % Absolute wind velocity vs. Theta sigma
647 figure
648 labelx='$ |v |$ $[\frac{m}{s}]$';
649 labely='$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$';
650 labelz='$f {\mathrm{a,y}} [N]$';
651 size font labels=20;
652 % 0 deg
653 %surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,1:5))
654 surf wind=v abs(1:5);
655 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,1:5),F drag(2:3:end,1:5))
656 colormap bone
657 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
658 ylabel(labely,'interpreter','latex','FontSize',size font labels)
659 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
660 %title('Data, wind from $0ˆ\circ$','interpreter','latex','FontSize',16)
661 view(150,40)
662 xlim([min v max v])
663 ylim([min theta max theta])
664 zlim([min F max F])
665 ax=gca;
666 ax.FontSize=18;
667 ax.TickLabelInterpreter='latex';
668 % 48.4 deg
669 figure
670 %surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,6:10))

Appendix C. Code 125

671 surf wind=v abs(6:10);
672 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,6:10),F drag(2:3:end,6:10))
673 colormap bone
674 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
675 ylabel(labely,'interpreter','latex','FontSize',size font labels)
676 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
677 %title('Data, wind from $48.4ˆ\circ$','interpreter','latex','FontSize

',16)
678 view(150,40)
679 xlim([min v max v])
680 ylim([min theta max theta])
681 zlim([min F max F])
682 ax=gca;
683 ax.FontSize=18;
684 ax.TickLabelInterpreter='latex';
685 % 77.9 deg
686 figure
687 %surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,11:15))
688 surf wind=v abs(11:15);
689 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,11:15),F drag(2:3:end,11:15))
690 colormap bone
691 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
692 ylabel(labely,'interpreter','latex','FontSize',size font labels)
693 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
694 %title('Data, wind from $77.9ˆ\circ$','interpreter','latex','FontSize

',16)
695 view(150,40)
696 xlim([min v max v])
697 ylim([min theta max theta])
698 zlim([min F max F])
699 ax=gca;
700 ax.FontSize=16;
701 ax.TickLabelInterpreter='latex';
702
703 %% Surface plot of force in z − data
704
705 min v=min(v abs);
706 max v=max(v abs);
707 min theta=min(min(Theta sigma));
708 max theta=max(max(Theta sigma));
709 min F=min(min(F drag));
710 max F=max(max(F drag));
711
712 % Absolute wind velocity vs. Theta sigma
713 figure
714 labelx='$ |v |$ $[\frac{m}{s}]$';
715 labely='$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$';
716 labelz='$f {\mathrm{a,z}} [N]$';
717 size font labels=20;
718 % 0 deg
719 %surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,1:5))
720 surf wind=v abs(1:5);
721 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,1:5),F drag(3:3:end,1:5))
722 colormap bone
723 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
724 ylabel(labely,'interpreter','latex','FontSize',size font labels)
725 zlabel(labelz,'interpreter','latex','FontSize',size font labels)

126 C.3. Code in connection with drag coefficients

726 %title('Data, wind from $0ˆ\circ$','interpreter','latex','FontSize',16)
727 view(150,40)
728 xlim([min v max v])
729 ylim([min theta max theta])
730 zlim([min F max F])
731 ax=gca;
732 ax.FontSize=18;
733 ax.TickLabelInterpreter='latex';
734 % 48.4 deg
735 figure
736 %surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,6:10))
737 surf wind=v abs(6:10);
738 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,6:10),F drag(3:3:end,6:10))
739 colormap bone
740 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
741 ylabel(labely,'interpreter','latex','FontSize',size font labels)
742 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
743 %title('Data, wind from $48.4ˆ\circ$','interpreter','latex','FontSize

',16)
744 view(150,40)
745 xlim([min v max v])
746 ylim([min theta max theta])
747 zlim([min F max F])
748 ax=gca;
749 ax.FontSize=18;
750 ax.TickLabelInterpreter='latex';
751 % 77.9 deg
752 figure
753 %surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag(1:3:end,11:15))
754 surf wind=v abs(11:15);
755 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,11:15),F drag(3:3:end,11:15))
756 colormap bone
757 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
758 ylabel(labely,'interpreter','latex','FontSize',size font labels)
759 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
760 %title('Data, wind from $77.9ˆ\circ$','interpreter','latex','FontSize

',16)
761 view(150,40)
762 xlim([min v max v])
763 ylim([min theta max theta])
764 zlim([min F max F])
765 ax=gca;
766 ax.FontSize=16;
767 ax.TickLabelInterpreter='latex';
768
769 %% 2D plot of kappa par
770
771 figure
772 plot(Theta sigma(:,1),kappa par(1:end,1),'Color',[0 150 0]/255)
773 hold on
774 grid on
775 box on
776 plot(Theta sigma(:,2),kappa par(1:end,2),'Color',[0 200 0]/255)
777 plot(Theta sigma(:,3),kappa par(1:end,3),'Color',[0 255 0]/255)
778 plot(Theta sigma(:,4),kappa par(1:end,4),'Color',[50 255 50]/255)
779 plot(Theta sigma(:,5),kappa par(1:end,5),'Color',[100 255 100]/255)
780 plot(Theta sigma(:,6),kappa par(1:end,6),'Color',[255 0 0]/255)
781 plot(Theta sigma(:,7),kappa par(1:end,7),'Color',[255 40 40]/255)

Appendix C. Code 127

782 plot(Theta sigma(:,8),kappa par(1:end,8),'Color',[255 80 80]/255)
783 plot(Theta sigma(:,9),kappa par(1:end,9),'Color',[255 120 120]/255)
784 plot(Theta sigma(:,10),kappa par(1:end,10),'Color',[255 160 160]/255)
785 plot(Theta sigma(:,11),kappa par(1:end,11),'Color',[0 0 153]/255)
786 plot(Theta sigma(:,12),kappa par(1:end,12),'Color',[0 0 220]/255)
787 plot(Theta sigma(:,13),kappa par(1:end,13),'Color',[40 40 255]/255)
788 plot(Theta sigma(:,14),kappa par(1:end,14),'Color',[100 100 255]/255)
789 plot(Theta sigma(:,15),kappa par(1:end,15),'Color',[150 150 255]/255)
790 xlabel('$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$','interpreter','latex',

'FontSize',20)
791 ylabel('$\kappa {\parallel }$ $[\frac{kg}{rad}]$','interpreter','latex'

,'FontSize',20)
792 %title('Green: from $0ˆ\circ$ data, Red: from $48.4ˆ\circ$ data, Blue:

from $77.9ˆ\circ$ data','interpreter','latex','FontSize',14)
793 ylim([−21e−7 4e−7])
794 ax=gca;
795 ax.FontSize=18;
796 ax.TickLabelInterpreter='latex';
797
798
799 %% 2D plot of kappa orth x
800
801 figure
802 hold on
803 grid on
804 box on
805 plot(Theta sigma(:,6),kappa orth(1:2:end,1),'Color',[255 0 0]/255)
806 plot(Theta sigma(:,7),kappa orth(1:2:end,2),'Color',[255 40 40]/255)
807 plot(Theta sigma(:,8),kappa orth(1:2:end,3),'Color',[255 80 80]/255)
808 plot(Theta sigma(:,9),kappa orth(1:2:end,4),'Color',[255 120 120]/255)
809 plot(Theta sigma(:,10),kappa orth(1:2:end,5),'Color',[255 160 160]/255)
810 plot(Theta sigma(:,11),kappa orth(1:2:end,6),'Color',[0 0 153]/255)
811 plot(Theta sigma(:,12),kappa orth(1:2:end,7),'Color',[0 0 220]/255)
812 plot(Theta sigma(:,13),kappa orth(1:2:end,8),'Color',[40 40 255]/255)
813 plot(Theta sigma(:,14),kappa orth(1:2:end,9),'Color',[100 100 255]/255)
814 plot(Theta sigma(:,15),kappa orth(1:2:end,10),'Color',[150 150

255]/255)
815 xlabel('$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$','interpreter','latex',

'FontSize',20)
816 ylabel('Drag coefficient in x direction')
817 title('Red: 48.4 deg, Blue: 77.9 deg')
818 ylim([−21e−7 4e−7])
819 ax=gca;
820 ax.FontSize=18;
821 ax.TickLabelInterpreter='latex';
822
823 %% 2D plot of kappa orth y
824
825 figure
826 hold on
827 grid on
828 plot(Theta sigma(:,6),kappa orth(2:2:end,1),'Color',[255 0 0]/255)
829 plot(Theta sigma(:,7),kappa orth(2:2:end,2),'Color',[255 40 40]/255)
830 plot(Theta sigma(:,8),kappa orth(2:2:end,3),'Color',[255 80 80]/255)
831 plot(Theta sigma(:,9),kappa orth(2:2:end,4),'Color',[255 120 120]/255)
832 plot(Theta sigma(:,10),kappa orth(2:2:end,5),'Color',[255 160 160]/255)
833 plot(Theta sigma(:,11),kappa orth(2:2:end,6),'Color',[0 0 153]/255)
834 plot(Theta sigma(:,12),kappa orth(2:2:end,7),'Color',[0 0 220]/255)
835 plot(Theta sigma(:,13),kappa orth(2:2:end,8),'Color',[40 40 255]/255)
836 plot(Theta sigma(:,14),kappa orth(2:2:end,9),'Color',[100 100 255]/255)
837 plot(Theta sigma(:,15),kappa orth(2:2:end,10),'Color',[150 150

255]/255)

128 C.3. Code in connection with drag coefficients

838 xlabel('Theta sigma [rad/s]')
839 ylabel('Drag coefficient in y direction')
840 title('Red: 48.4 deg, Blue: 77.9 deg')
841 ylim([−19e−7 4e−7])
842
843 %% 2D plot of kappa orth LS
844 figure
845 hold on
846 grid on
847 box on
848 plot(Theta sigma(:,6),kappa orth LS(:,1),'Color',[255 0 0]/255)
849 plot(Theta sigma(:,7),kappa orth LS(:,2),'Color',[255 40 40]/255)
850 plot(Theta sigma(:,8),kappa orth LS(:,3),'Color',[255 80 80]/255)
851 plot(Theta sigma(:,9),kappa orth LS(:,4),'Color',[255 120 120]/255)
852 plot(Theta sigma(:,10),kappa orth LS(:,5),'Color',[255 160 160]/255)
853 plot(Theta sigma(:,11),kappa orth LS(:,6),'Color',[0 0 153]/255)
854 plot(Theta sigma(:,12),kappa orth LS(:,7),'Color',[0 0 220]/255)
855 plot(Theta sigma(:,13),kappa orth LS(:,8),'Color',[40 40 255]/255)
856 plot(Theta sigma(:,14),kappa orth LS(:,9),'Color',[100 100 255]/255)
857 plot(Theta sigma(:,15),kappa orth LS(:,10),'Color',[150 150 255]/255)
858 xlabel('$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$','interpreter','latex',

'FontSize',20)
859 ylabel('$\kappa {\perp }$ $[\frac{kg}{rad}]$','interpreter','latex','

FontSize',20)
860 %title('Red: 48.4 deg, Blue: 77.9 deg')
861 ylim([−21e−7 4e−7])
862 ax=gca;
863 ax.FontSize=18;
864 ax.TickLabelInterpreter='latex';
865
866
867 %% 2D plot of kappa orth LS allWinds
868 figure
869 hold on
870 grid on
871 plot(input vec,kappa orth LS allWinds(:,1),'Color',[255 0 0]/255)
872 plot(input vec,kappa orth LS allWinds(:,2),'Color',[0 0 255]/255)
873 xlabel('Motor input command [−]')
874 ylabel('Drag coefficient in x and y direction')
875 title('Red: 48.4 deg, Blue: 77.9 deg')
876 ylim([−19e−7 4e−7])
877
878
879 %% 2D plot of kappa orth LS all
880 figure
881 hold on
882 grid on
883 plot(input vec,kappa orth LS all(1)*ones(length(input vec),1),'Color'

,[255 0 0]/255)
884 plot(input vec,kappa orth LS all(2)*ones(length(input vec),1),'Color'

,[0 0 255]/255)
885 xlabel('Motor input command [−]')
886 ylabel('Drag coefficient in x and y direction')
887 title('Red: 48.4 deg, Blue: 77.9 deg')
888 ylim([−19e−7 4e−7])
889
890
891 %% Surface plot of calculated F drag in x direction − new model
892
893 % Absolute wind velocity vs. Theta sigma
894 figure
895 labelx='$ |v |$ $[\frac{m}{s}]$';

Appendix C. Code 129

896 labely='$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$';
897 labelz='$F x [N]$';
898 % 0 deg
899 surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(1:3:end,1:5))
900 xlabel(labelx,'interpreter','latex','FontSize',14)
901 ylabel(labely,'interpreter','latex','FontSize',14)
902 zlabel(labelz,'interpreter','latex','FontSize',14)
903 title('Extended model, wind from $0ˆ\circ$','interpreter','latex','

FontSize',14)
904 view(150,40)
905 % 48.4 deg
906 figure
907 surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(1:3:end,6:10))
908 xlabel(labelx,'interpreter','latex','FontSize',14)
909 ylabel(labely,'interpreter','latex','FontSize',14)
910 zlabel(labelz,'interpreter','latex','FontSize',14)
911 title('Extended model, wind from $48.4ˆ\circ$','interpreter','latex','

FontSize',14)
912 view(150,40)
913 % 77.9 deg
914 figure
915 surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(1:3:end,11:15))
916 xlabel(labelx,'interpreter','latex','FontSize',14)
917 ylabel(labely,'interpreter','latex','FontSize',14)
918 zlabel(labelz,'interpreter','latex','FontSize',14)
919 title('Extended model, wind from $77.9ˆ\circ$','interpreter','latex','

FontSize',14)
920 view(150,40)
921
922 %% Surface plot of calculated F drag in y direction − new model
923
924 % Absolute wind velocity vs. Theta sigma
925 figure
926 labelx='Absolute value of wind velocity [m/s]';
927 labely='Theta sigma [rad/s]';
928 labelz='Calculated drag force in y direction [N]';
929 % 0 deg
930 surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(2:3:end,1:5))
931 xlabel(labelx)
932 ylabel(labely)
933 zlabel(labelz)
934 title('Calculated from 0 deg measurements')
935 view(150,40)
936 % 48.4 deg
937 figure
938 surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(2:3:end,6:10))
939 xlabel(labelx)
940 ylabel(labely)
941 zlabel(labelz)
942 title('Calculated from 48.4 deg measurements')
943 view(150,40)
944 % 77.9 deg
945 figure
946 surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(2:3:end,11:15))
947 xlabel(labelx)
948 ylabel(labely)

130 C.3. Code in connection with drag coefficients

949 zlabel(labelz)
950 title('Calculated from 77.9 deg measurements')
951 view(150,40)
952
953 %% Surface plot of calculated F drag in z direction − new model
954
955 min v=min(v abs);
956 max v=max(v abs);
957 min theta=min(min(Theta sigma));
958 max theta=max(max(Theta sigma));
959 min F=min(min(F drag));
960 max F=max(max(F drag));
961
962 % Absolute wind velocity vs. Theta sigma
963 figure
964 labelx='$ |v |$ $[\frac{m}{s}]$';
965 labely='$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$';
966 labelz='$f \mathrm{a,calc,z} [N]$';
967 size font labels=20;
968 % 0 deg
969 %surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(3:3:end,1:5))
970 colormap bone
971 surf wind=v abs(1:5);
972 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,1:5),F drag calc(3:3:end,1:5))
973 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
974 ylabel(labely,'interpreter','latex','FontSize',size font labels)
975 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
976 %title('Extended model, wind from $0ˆ\circ$','interpreter','latex','

FontSize',14)
977 view(150,40)
978 xlim([min v max v])
979 ylim([min theta max theta])
980 zlim([min F max F])
981 ax=gca;
982 ax.FontSize=18;
983 ax.TickLabelInterpreter='latex';
984 % 48.4 deg
985 figure
986 %surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(3:3:end,6:10))
987 surf wind=v abs(6:10);
988 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,6:10),F drag calc(3:3:end,6:10))
989 colormap bone
990 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
991 ylabel(labely,'interpreter','latex','FontSize',size font labels)
992 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
993 %title('Extended model, wind from $48.4ˆ\circ$','interpreter','latex','

FontSize',14)
994 view(150,40)
995 xlim([min v max v])
996 ylim([min theta max theta])
997 zlim([min F max F])
998 ax=gca;
999 ax.FontSize=18;

1000 ax.TickLabelInterpreter='latex';
1001 % 77.9 deg
1002 figure
1003 %surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc(3:3:end,11:15))

Appendix C. Code 131

1004 surf wind=v abs(11:15);
1005 surf([surf wind;surf wind;surf wind;surf wind;surf wind;surf wind],

Theta sigma(:,11:15),F drag calc(3:3:end,11:15))
1006 colormap bone
1007 xlabel(labelx,'interpreter','latex','FontSize',size font labels)
1008 ylabel(labely,'interpreter','latex','FontSize',size font labels)
1009 zlabel(labelz,'interpreter','latex','FontSize',size font labels)
1010 %title('Extended model, wind from $77.9ˆ\circ$','interpreter','latex','

FontSize',14)
1011 view(150,40)
1012 xlim([min v max v])
1013 ylim([min theta max theta])
1014 zlim([min F max F])
1015 ax=gca;
1016 ax.FontSize=18;
1017 ax.TickLabelInterpreter='latex';
1018
1019 %% Plot new drag coefficients that are equivalent to the ones of old

model in same plots as old model
1020
1021 % z
1022 figure
1023 plot(Theta sigma(:,1),kappa par(1:end,1),'y')
1024 hold on
1025 grid on
1026 plot(Theta sigma(:,2),kappa par(1:end,2),'y')
1027 plot(Theta sigma(:,3),kappa par(1:end,3),'y')
1028 plot(Theta sigma(:,4),kappa par(1:end,4),'y')
1029 plot(Theta sigma(:,5),kappa par(1:end,5),'y')
1030 plot(Theta sigma(:,6),kappa par(1:end,6),'m')
1031 plot(Theta sigma(:,7),kappa par(1:end,7),'m')
1032 plot(Theta sigma(:,8),kappa par(1:end,8),'m')
1033 plot(Theta sigma(:,9),kappa par(1:end,9),'m')
1034 plot(Theta sigma(:,10),kappa par(1:end,10),'m')
1035 plot(Theta sigma(:,11),kappa par(1:end,11),'c')
1036 plot(Theta sigma(:,12),kappa par(1:end,12),'c')
1037 plot(Theta sigma(:,13),kappa par(1:end,13),'c')
1038 plot(Theta sigma(:,14),kappa par(1:end,14),'c')
1039 plot(Theta sigma(:,15),kappa par(1:end,15),'c')
1040 plot(Theta sigma(:,1),K(2)*ones(length(input vec),1),'Color',[0 155

0]/255,'LineWidth',3)
1041 xlabel('Theta sigma [rad/s]')
1042 ylabel('Drag coefficient in z direction')
1043 title('yellow: 0 deg, magenta: 48.4 deg, cyan: 77.9 deg, green: new

model fit')
1044 ylim([−21e−7 4e−7])
1045
1046 % x,y
1047 figure
1048 hold on
1049 grid on
1050 plot(Theta sigma(:,6),kappa orth LS(:,1),'Color',[255 0 0]/255)
1051 plot(Theta sigma(:,7),kappa orth LS(:,2),'Color',[255 40 40]/255)
1052 plot(Theta sigma(:,8),kappa orth LS(:,3),'Color',[255 80 80]/255)
1053 plot(Theta sigma(:,9),kappa orth LS(:,4),'Color',[255 120 120]/255)
1054 plot(Theta sigma(:,10),kappa orth LS(:,5),'Color',[255 160 160]/255)
1055 plot(Theta sigma(:,11),kappa orth LS(:,6),'Color',[0 0 153]/255)
1056 plot(Theta sigma(:,12),kappa orth LS(:,7),'Color',[0 0 220]/255)
1057 plot(Theta sigma(:,13),kappa orth LS(:,8),'Color',[40 40 255]/255)
1058 plot(Theta sigma(:,14),kappa orth LS(:,9),'Color',[100 100 255]/255)
1059 plot(Theta sigma(:,15),kappa orth LS(:,10),'Color',[150 150 255]/255)

132 C.3. Code in connection with drag coefficients

1060 plot(Theta sigma(:,6),K(1)*ones(length(input vec),1),'Color',[0 155
0]/255,'LineWidth',3)

1061 xlabel('Theta sigma [rad/s]')
1062 ylabel('Drag coefficient in x and y direction')
1063 title('Red: 48.4 deg, Blue: 77.9 deg, Green: new model fit')
1064 ylim([−19e−7 4e−7])
1065
1066 %% Surface plot of calculated F drag in x direction − simple model
1067
1068 % Absolute wind velocity vs. Theta sigma
1069 figure
1070 labelx='Absolute value of wind velocity [m/s]';
1071 labely='Theta sigma [rad/s]';
1072 labelz='Calculated drag force in x direction (simple model) [N]';
1073 % 0 deg
1074 surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(1:3:end,1:5))
1075 xlabel(labelx)
1076 ylabel(labely)
1077 zlabel(labelz)
1078 title('Calculated from 0 deg measurements')
1079 view(150,40)
1080 % 48.4 deg
1081 figure
1082 surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(1:3:end,6:10))
1083 xlabel(labelx)
1084 ylabel(labely)
1085 zlabel(labelz)
1086 title('Calculated from 48.4 deg measurements')
1087 view(150,40)
1088 % 77.9 deg
1089 figure
1090 surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(1:3:end,11:15))
1091 xlabel(labelx)
1092 ylabel(labely)
1093 zlabel(labelz)
1094 title('Calculated from 77.9 deg measurements')
1095 view(150,40)
1096
1097 %% Surface plot of calculated F drag in y direction − simple model
1098
1099 % Absolute wind velocity vs. Theta sigma
1100 figure
1101 labelx='Absolute value of wind velocity [m/s]';
1102 labely='Theta sigma [rad/s]';
1103 labelz='Calculated drag force in y direction (simple model) [N]';
1104 % 0 deg
1105 surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(2:3:end,1:5))
1106 xlabel(labelx)
1107 ylabel(labely)
1108 zlabel(labelz)
1109 title('Calculated from 0 deg measurements')
1110 view(150,40)
1111 % 48.4 deg
1112 figure
1113 surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(2:3:end,6:10))
1114 xlabel(labelx)
1115 ylabel(labely)

Appendix C. Code 133

1116 zlabel(labelz)
1117 title('Calculated from 48.4 deg measurements')
1118 view(150,40)
1119 % 77.9 deg
1120 figure
1121 surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(2:3:end,11:15))
1122 xlabel(labelx)
1123 ylabel(labely)
1124 zlabel(labelz)
1125 title('Calculated from 77.9 deg measurements')
1126 view(150,40)
1127
1128 %% Surface plot of calculated F drag in z direction − simple model
1129
1130 % Absolute wind velocity vs. Theta sigma
1131 figure
1132 labelx='$ |v |$ $[\frac{m}{s}]$';
1133 labely='$\dot{\theta} \Sigma$ $[\frac{rad}{s}]$';
1134 labelz='$F \mathrm{z} [N]$';
1135 % 0 deg
1136 surf(v abs(1:5),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(3:3:end,1:5))
1137 colormap bone
1138 xlabel(labelx,'interpreter','latex','FontSize',14)
1139 ylabel(labely,'interpreter','latex','FontSize',14)
1140 zlabel(labelz,'interpreter','latex','FontSize',14)
1141 title('Simple model, wind from $0ˆ\circ$','interpreter','latex','

FontSize',14)
1142 view(150,40)
1143 zlim([−0.04 0.005])
1144 % 48.4 deg
1145 figure
1146 surf(v abs(6:10),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(3:3:end,6:10))
1147 colormap bone
1148 xlabel(labelx,'interpreter','latex','FontSize',14)
1149 ylabel(labely,'interpreter','latex','FontSize',14)
1150 zlabel(labelz,'interpreter','latex','FontSize',14)
1151 title('Simple model, wind from $48.4ˆ\circ$','interpreter','latex','

FontSize',14)
1152 view(150,40)
1153 % 77.9 deg
1154 figure
1155 surf(v abs(11:15),[15400 21900 27800 31600 33400 39300]/2/60*2*pi*4,

F drag calc simpleModel(3:3:end,11:15))
1156 colormap bone
1157 xlabel(labelx,'interpreter','latex','FontSize',14)
1158 ylabel(labely,'interpreter','latex','FontSize',14)
1159 zlabel(labelz,'interpreter','latex','FontSize',14)
1160 title('Simple model, wind from $77.9ˆ\circ$','interpreter','latex','

FontSize',14)
1161 view(150,40)

1 function [Fx,Fy,Fz] = prepare data(filename,start idx,end idx,
plot forces)

2
3 counts = 1000000;
4
5 data = csvread(filename,1,0);
6 Fx raw = data(:,2)/counts;

134 C.3. Code in connection with drag coefficients

7 Fy raw = data(:,3)/counts;
8 Fz raw = data(:,4)/counts;
9 % Unit is N now

10 clear data
11
12 % Get rid of bias in the beginning −−> all forces apart from thrust and
13 % drag will be ignored
14 Fx raw = Fx raw − mean(Fx raw(1:500));
15 Fy raw = Fy raw − mean(Fy raw(1:500));
16 Fz raw = Fz raw − mean(Fz raw(1:500));
17
18 % Calculate forces
19 Fx=mean(Fx raw(start idx:end idx));
20 Fy=mean(Fy raw(start idx:end idx));
21 Fz=mean(Fz raw(start idx:end idx));
22 F=[Fx;Fy;Fz];
23
24 % Transfer forces to CF body frame
25 rot mat = [cos(pi/4) −sin(pi/4) 0;sin(pi/4) cos(pi/4) 0;0 0 1];
26 F=rot mat*F;
27 Fx=F(1);
28 Fy=F(2);
29 Fz=F(3);
30
31 % Plot forces and start and end idx and means
32 if plot forces==1
33 figure
34 plot(Fx raw)
35 hold on
36 plot([start idx start idx],[min(Fx raw) max(Fx raw)])
37 plot([end idx end idx],[min(Fx raw) max(Fx raw)])
38 plot(Fx*ones(length(Fx raw),1))
39 xlabel('idx [−]')
40 ylabel('Fx [N]')
41 grid on
42 figure
43 plot(Fy raw)
44 hold on
45 plot([start idx start idx],[min(Fy raw) max(Fy raw)])
46 plot([end idx end idx],[min(Fy raw) max(Fy raw)])
47 plot(Fy*ones(length(Fx raw),1))
48 xlabel('idx [−]')
49 ylabel('Fy [N]')
50 grid on
51 figure
52 plot(Fz raw)
53 hold on
54 plot([start idx start idx],[min(Fz raw) max(Fz raw)])
55 plot([end idx end idx],[min(Fz raw) max(Fz raw)])
56 plot(Fz*ones(length(Fx raw),1))
57 xlabel('idx [−]')
58 ylabel('Fz [N]')
59 grid on
60 end
61
62
63 end

Bibliography

[1] ATI Industrial Automation. Network Force/Torque Sensor System Instal-
lation and Operation Manual, 9620-05-net ft edition, February 2013.

[2] Bitcraze. Crazyflie 2.0 product website. https://www.bitcraze.io/

crazyflie-2/. Accessed: 2015-08-23.

[3] Louis Cattafesta, Chris Bahr, and Jose Mathew. Fundamentals of wind-
tunnel design. Encyclopedia of Aerospace Engineering, 2010.

[4] Rick Chartrand. Numerical differentiation of noisy, nonsmooth data. ISRN
Applied Mathematics, 2011, 2011.

[5] Raffaello D’Andrea, Federico Augugliaro, and Michael Hamer. Lecture 11
- system identification. Lecture notes for the lecture ”Signals and Systems”
by R. D’Andrea, December 2014.

[6] Raffaello D’Andrea, Federico Augugliaro, and Michael Hamer. Lecture 6 -
fourier analysis: Applied concepts. Lecture notes for the lecture ”Signals
and Systems” by R. D’Andrea, October 2014.

[7] Julian Förster. Crazyflie 2.0 - Firmware Documentation. IDSC @ ETH
Zurich, April 2015.

[8] R. C. Hibbeler and Kai Beng Yap. Mechanics for Engineer: Dynamics.
Pearson Education South Asia Pte Ltd, thirteenth si edition edition, 2012.

[9] Pijush K Kundu, Ira M Cohen, David R Dowling, P S Ayyaswamy, and
H H Hu. Fluid Mechanics. Academic Press, 5th edition, 2008.

[10] Sergei Lupashin, Markus Hehn, Mark W Mueller, Angela P Schoellig,
Michael Sherback, and Raffaello D’Andrea. A platform for aerial robotics
research and demonstration: The flying machine arena. Mechatronics,
24(1):41–54, 2014.

[11] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor. IEEE Robotics & amp amp
Automation Magazine, (19):20–32, 2012.

[12] L Marconi, Claudio Melchiorri, Michael Beetz, Dejan Pangercic, R Sieg-
wart, Stefan Leutenegger, Raffaella Carloni, Stefano Stramigioli, Herman
Bruyninckx, Patrick Doherty, et al. The sherpa project: Smart collabo-
ration between humans and ground-aerial robots for improving rescuing
activities in alpine environments. In Safety, Security, and Rescue Robotics
(SSRR), 2012 IEEE International Symposium on, pages 1–4. IEEE, 2012.

135

https://www.bitcraze.io/crazyflie-2/
https://www.bitcraze.io/crazyflie-2/

[13] Mark W Mueller, Michael Hamer, and Raffaello D’Andrea. Fusing ultra-
wideband range measurements with accelerometers and rate gyroscopes for
quadrocopter state estimation. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 1730–1736. IEEE, 2015.

[14] Geert Verhoeven, Sergei Lupashin, Christian Briese, and Michael Doneus.
Airborne imaging for heritage documentation using the fotokite tethered
flying camera. In EGU General Assembly Conference Abstracts, volume 16,
page 15202, 2014.

Institute for Dynamic Systems and Control
Prof. Dr. R. D’Andrea, Prof. Dr. L. Guzzella

Title of work:

System Identification of the Crazyflie 2.0 Nano

Quadrocopter

Thesis type and date:

Bachelor Thesis, August 2015

Supervision:

Michael Hamer
Prof. Dr. Raffaello D’Andrea

Student:

Name: Julian Förster
E-mail: fjulian@student.ethz.ch
Legi-Nr.: 12-937-835
Semester: 6

Statement regarding plagiarism:

By signing this statement, I affirm that I have read the information notice
on plagiarism, independently produced this paper, and adhered to the general
practice of source citation in this subject-area.

Information notice on plagiarism:

http://www.ethz.ch/students/semester/plagiarism_s_en.pdf

Zurich, 1. 9. 2015:

http://www.ethz.ch/students/semester/plagiarism_s_en.pdf

	Abstract
	Nomenclature
	Introduction
	Inertia
	Application
	Theoretical Background
	Design Considerations
	Abrupt Stopping
	Accelerated Rotation
	Harmonic Swinging

	Experiment
	Experiment Design
	Preparation
	Experimental Procedure
	Data Analysis

	Results and Discussion
	Verification

	Motor Parameters
	Applications
	Equipment
	Load Cell
	Tachometer

	Mappings
	Input Command Thrust
	Input Command Angular Velocity
	Thrust Torque

	Transfer Function
	Theoretical Background
	Experimental Setup and Procedure
	Data Processing
	Results and Discussion
	Verification

	Drag Coefficients
	Application and Theoretical Background
	Equipment
	Design Considerations
	Computer Vision
	Wind Generator

	Experiment
	Experiment Design
	Experimental Procedure
	Data Analysis

	Results and Discussion
	Verification

	Conclusion & Outlook
	Overview Results
	Mathematics
	Derivation of the Solution to the Equation of Motion of a Pendulum
	Derivation of the Solution to the Equation of Motion of a Dropping Weight
	Derivation of the formula for the moments of inertia of a cuboid

	Code
	Sensor Data Processing for Inertia Matrix Experiments
	Encoder Logger
	Processing of Encoder Data from Dropping Weight Experiment
	Linear and nonlinear fit to data from swing experiments
	Calculation of the Crazyflie's inertia matrix
	Analytic calculation of moments of inertia for the test body
	Calculation of the test body's moments of inertia from experiment results
	Other Calculations

	Code in connection with thrust parameters
	Static Thrust Tests
	Load Cell Logger
	Data processing for the mappings
	Signal generation and data logging for the transfer function
	Data processing for the transfer function
	Ping Test

	Code in connection with drag coefficients
	Data processing of the wind tunnel experiment data

