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Abstract. Hypergraphs are widely adopted tools to examine systems with
higher-order interactions. Despite recent advancements in methods for com-
munity detection in these systems, we still lack a theoretical analysis of their
detectability limits. Here, we derive closed-form bounds for community detec-
tion in hypergraphs. Using a message-passing formulation, we demonstrate that
detectability depends on the hypergraphs’ structural properties, such as the dis-
tribution of hyperedge sizes or their assortativity. Our formulation enables a char-
acterization of the entropy of a hypergraph in relation to that of its clique expan-
sion, showing that community detection is enhanced when hyperedges highly
overlap on pairs of nodes. We develop an efficient message-passing algorithm
to learn communities and model parameters on large systems. Additionally, we
devise an exact sampling routine to generate synthetic data from our probabil-
istic model. Using these methods, we numerically investigate the boundaries of
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community detection in synthetic datasets, and extract communities from real
systems. Our results extend our understanding of the limits of community detec-
tion in hypergraphs and introduce flexible mathematical tools to study systems
with higher-order interactions.

Keywords: inference of graphical models, message-passing algorithms,
statistical inference

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. The hypergraph stochastic block model (HySBM) . . . . . . . . . . . . . . . . . . . . . . 5

3. Inference and generative modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. Induced factor graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3.2. Message-passing (MP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3.3. Expectation–Maximization to learn the model parameters . . . . . . . . . . . . . . . . . . .8

3.4. Sampling from the generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

4. Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1. Detectability bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2. Phase transition in hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3. The impact of higher-order interactions on detectability . . . . . . . . . . . . . . . . . . . 15

4.4. Entropy and higher-order information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. Experiments on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Appendix A. Expected degree and choice of κd . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Appendix B. MP derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.1. Message updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.2. External field updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B.3. Marginal belief updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B.4. Summary: approximate MP updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix C. EM inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Appendix D. Algorithmic and computational details . . . . . . . . . . . . . . . . . . . . . . 29

D.1. Dynamic programming for MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D.2. Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendix E. Sampling from the generative model . . . . . . . . . . . . . . . . . . . . . . . . 33

E.1. Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

https://doi.org/10.1088/1742-5468/ad343b 2

https://doi.org/10.1088/1742-5468/ad343b


Message-passing on hypergraphs: detectability, phase transitions and higher-order information

J.S
tat.

M
ech.(2024)

043403

E.2. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix F. Phase transition: complementary derivations and
additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.1. Proof of proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.2. Transition matrix formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F.2.1. Proof of lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

F.2.2. Proof of lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

F.3. Elapsed time of MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix G. Calculations of the free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

G.1. Computation of the free energy landscape on High School data . . . . . . . . . . . 46

G.2. Inference of class affinity on High School data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

G.3. Further comments on higher-order interactions on High School data . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Introduction

Modeling complex systems as graphs has broadened our understanding of the macro-
scopic features that emerge from the interaction of individual units. Among the various
aspects of this problem, community detection stands out as a fundamental task, as it
provides a coarse-grained description of a network’s structural organization. Notably,
community structure is observed across different systems, such as food webs [1], spatial
migration and the gene flow of animal species [2], as well as in social networks [3], power
grids [4] and other systems [5].

In the case of networks with only pairwise interactions, there are solid theoretical
results on detectability limits, describing whether the task of community detection can
or cannot succeed [6–11]. However, many complex systems with interactions that extend
beyond pairs are better modeled by hypergraphs [12], which generalize the simpler case
of dyadic graphs. Phenomena that have been investigated on graphs are now readily
explored on hypergraphs, with examples including diffusion processes, synchronization,
phase transitions [13] and, more recently, community structure [14–18].

Extending the rigorous results of detectability transitions for networks to higher-
order interactions is a relevant open question.

One of the main obstacles in modeling hypergraphs is their intrinsic complexity,
which poses both theoretical and computational challenges and restricts the range of
results available in the literature. The difficulty of defining communities in hypergraphs
and of deriving theoretical thresholds for their recovery has limited investigations in the
study of d -uniform hypergraphs, i.e. hypergraphs that only contain interactions among
exactly d nodes [19–27].

A related line of literature focuses on the detection of planted sub-hypergraphs
[28, 29] and testing for the presence of community structure in hypergraphs [30, 31].
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Generally, extracting recovery results on non-uniform hypergraphs has proved to be
demanding, with scarce literature on the subject.

Recently, Chodrow et al [32] conjectured a recoverability threshold for their spectral
clustering algorithm on non-uniform hypergraphs. Closer to the scope of our work,
Dumitriu and Wang [18] provided a probabilistic model and bounds for the theoretical
recovery of communities under the same model. However, such detectability bounds are
based on algorithms that are not feasible in practice, and no empirical demonstration
of the predicted recovery is provided. Furthermore, all these methods lack a variety of
desirable probabilistic features, such as the estimation of marginal probabilities of a node
to belong to a community, a principled procedure to sample synthetic hypergraphs with
prescribed community structure, and the possibility to investigate the energy landscape
of a problem via free energy estimations.

In this work, we address these issues by deriving a precise detectability threshold
for hypergraphs that depends on the node degree distribution, the assortativity of
the hyperedges, and crucially, on higher-order properties such as the distribution of
hyperedge sizes. Additionally, we show how these properties can be formally described
via notions of entropy and information, leading to a clear interpretation of the role of
higher-order interaction in detectability.

Our approach is based on a probabilistic generative model and a related Bayesian
inference procedure, which we utilize to study the limits of the community detection
problem using a message-passing (MP) formulation [33–35], originating from the cavity
method in statistical physics [36, 37]. We focus on an extension to hypergraphs of the
stochastic block model (SBM) [38, 39], a generative model for networks with community
structure. Several variants of the SBM [15], and of its mixed-membership version [16,
17], have been extended to hypergraphs. The model we utilize is an extension of the
dyadic SBM to hypergraphs and allows generalizing the seminal detectability results of
Decelle et al [6, 7] to higher-order interactions.

In addition to our theoretical contributions, we derive an algorithmic implementa-
tion for inferring both communities and parameters of the models from the data. Our
implementation scales well to both large hypergraphs and large hyperedges, owing to a
dynamic-program formulation.

Finally, we show how, with additional combinatorial arguments, one can efficiently
sample hypergraphs with arbitrary communities from our probabilistic model. This
problem, often studied in conjunction with inference, deserves its own attention when
dealing with hypergraphs, as recently discussed in related work [40, 41].

Through numerical experiments, we confirm our theoretical calculations by show-
ing that our algorithm accurately recovers the true community structure in synthetic
hypergraphs all the way down to the predicted detectability threshold. We also illustrate
that our approach gives insights into the community organization of real hypergraphs
by analyzing a dataset of group interactions between students in a school. To facilit-
ate reproducibility, we release the code that implements our inference and sampling
procedures open source [42].
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2. The hypergraph stochastic block model (HySBM)

Consider a hypergraph H = (V ,E), where V = {1, . . .,N} is the set of nodes and E the
set of hyperedges. A hyperedge e is a set of two or more nodes. We define Ω = {e : 2 ⩽
|e|⩽D}, the set of all possible hyperedges up to some maximum dimension D ⩽N ,
with |e| being the size of a hyperedge, i.e. the number of nodes it contains. Notice that
E ⊆ Ω. We denote with Ae = 1 all e ∈ E and with Ae = 0 hyperedges e ∈ Ω \E.

Our HySBM is an extension of the classical SBM for graphs [38, 39]. It partitions
nodes into K communities by assigning a hard membership ti ∈ [K]≡ {1, . . . ,K} to each
node i ∈ V , with t= {ti }i∈V being the membership vector. It does so probabilistically,
assuming that the likelihood of observing a hyperedge Ae is a Bernoulli distribution
with a parameter that depends on the memberships {ti}i∈e of its nodes. Formally, the
probabilistic model is summarized as

ti ∼ Cat(n) ∀i ∈ V (1)

Ae | t∼ Be

(
πe
κ|e|

)
∀e ∈ Ω, (2)

where n= (n1, . . . ,nK) is a vector of prior categorical probabilities for the hard assign-
ments ti. The Bernoulli probabilities are given by

πe =
∑
i<j∈e

pti tj , (3)

with 0 ⩽ pab ⩽ 1 being elements of a symmetric probability matrix (also referred to as
an affinity matrix) and κ|e| a normalizing constant that only depends on the hyperedge
size |e|. This can take on any value, provided that it yields sparse hypergraphs where
πe/κ|e| =O(1/N) and valid probabilities πe/κ|e|. We develop our theory for a general
form of κ|e| and elaborate more on its choice in appendix A. In our experiments, we

utilize the value κd =
(
N−2
d−2

)d(d−1)
2 [17, 41].

Our specific formulation of the likelihood is only one among many alternatives to
model communities in hypergraphs. The likelihood we propose has three main proper-
ties. First, the HySBM reduces to the standard SBM when only pairs are present (as
κ2 = 1). Since we aim to develop a model that generalizes the SBM to hypergraphs, this
is an important condition to satisfy. Second, it enables us to develop the MP equations
presented in the following section, which in turn leads to a theoretical characterization
of the detectability limits and a computationally efficient algorithmic implementation.
Third, the likelihoods based on expressions similar to equation (3) have been shown to
accurately describe higher-order interactions that possibly contain nodes from different
communities [41].

For convenience, we work with a rescaled affinity matrix c=Np, which is of order
c=O(1) in sparse hypergraphs. The log-likelihood L ≡ L(A, t |p,n) evaluates to
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L=
∑
e∈Ω

[
Ae log

(
πe
κe

)
+ (1−Ae) log

(
1− πe

κe

)]
+
∑
i∈V

lognti

=
∑
e∈Ω

Ae log

∑
i<j∈e

cti tj

+ (1−Ae) log

(
1−

∑
i<j∈e cti tj

Nκe

)+
∑
i∈V

lognti + const. ,

(4)

where const. denotes quantities that do not depend on the parameters of the model.

3. Inference and generative modeling

3.1. Induced factor graph representation

The probabilistic model in equations (1) and (2) has a negative log-likelihood that can
be interpreted as the Hamiltonian of a Gibbs–Boltzmann distribution on the community
assignments t :

p(t |A,p,n) =
p(A, t |p,n)

p(A |p,n)
=

expL(A, t |p,n)

Z
, (5)

where Z is the partition function of the system, which corresponds to the marginal
likelihood of the data. The quantity F =− logZ is also called the free energy. The equi-
valence in equation (5) allows interpreting the probabilistic model in terms of factor
graphs [34]. Here, the function nodes are hyperedges f ∈ Ω, and variable nodes are ele-
ments of V. The interactions between function and variable nodes can be read directly
from the log-likelihood in equation (4). In other words, the probabilistic model induces a
factor graph F = (V,F ,E) with variable nodes V = V , function nodes F = Ω and edges
E = {(i,e) ∈ V ×F : i ∈ e}. In figure 1 we show a graphical representation of the equival-
ence between hypergraphs and factor graphs. For any variable node i and function node f
of the factor graph we define the neighbors, or boundaries, as ∂i = {f ∈ F : (i,e) ∈ E},
being all function nodes adjacent to i, and ∂f = {i ∈ V : (i,e) ∈ E} being all variable
nodes adjacent to f.

3.2. Message-passing (MP)

Given the factor graph representation of HySBM, we can perform Bayesian inference
of the community assignments via MP. Originally obtained from the cavity method
on spin glasses [36, 37], MP allows estimating marginal distributions on the variable
nodes of a graphical model by iteratively updating messages, auxiliary variables that
operate on the edges of the factor graph. The efficiency of MP comes from the fact that
the structure of the factor graph favors locally distributed updates. Although exact
theoretical results are only proven on trees, MP has been shown to obtain a strong
performance also on locally tree-like graphs [34], and it has been extended to dense
graphs with short loops [43, 44].

Applying MP to our model, the inference procedure yields expressions for the mar-
ginal probabilities qi(a) of a node i to be assigned to any given community a ∈ [K]. Their
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https://doi.org/10.1088/1742-5468/ad343b


Message-passing on hypergraphs: detectability, phase transitions and higher-order information

J.S
tat.

M
ech.(2024)

043403

Figure 1. Representing hypergraphs as factor graphs. (a) We depict a hypergraph
and its factor graph equivalent. In the factor graph F , function nodes represent
hyperedges. Notice that, while the node sets are the same in both representations,
due to the presence of all possible hyperedges in the log-likelihood in equation (4),
the factor graph not only contains the observed interactions E (black), but also the
unobserved ones Ω \E (gray). (b) In factor graphs, there are two types of messages:
variable-to-function node q (red), and function-to-variable node q̂ (blue).

values are obtained as solutions to closed-form fixed-point equations, which involve mes-
sages qi→e(ti) from variable to function nodes, and q̂e→i(ti) from function to variable
nodes. The messages follow the sum-product updates

qi→e (ti)∝ nti
∏

f ∈∂i\e

q̂f→i (ti) (6)

q̂e→i (ti)∝
∑

tj :j∈∂e\i

(
πe
κe

)Ae
(

1− πe
κe

)1−Ae ∏
j∈∂e\i

qj→e (tj) , (7)

and yield marginal distributions as

qi (ti)∝ nti
∏
e∈∂i

q̂e→i (ti) . (8)

Notice that, compared to those for graphs, the MP equations for hypergraphs in
equations (6)–(8) present additional challenges. First, in graphs, the updates can be
simplified. One can in fact collapse the two types of messages (and equations) into
a unique one, since paths (i,f ,j) in the factor graph reduce to pairwise interactions
(i, j ) between nodes. This simplification is not possible in hypergraphs, as one function
node may connect more than two variable nodes. Second, the dimensionality of the MP
equations grows faster when accounting for higher-order interactions. Here, the number
of function nodes is equal to |F|= |Ω|=

∑D
d=2

(
N
d

)
, yielding |F|=O(2N ) at large D =N.

In contrast, one gets O(N 2) pairwise messages in the updates for graphs. To produce
computationally feasible MP updates one can assume sparsity, as already done in the
dyadic case. We outline such updates in the following theorem.

https://doi.org/10.1088/1742-5468/ad343b 7
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Theorem 1. Assuming sparse hypergraphs where c=O(1), the MP updates satisfy the
following fixed-point equations to leading order in N. For all hyperedges e ∈ E and
nodes i ∈ e, the messages and marginals are given by

qi→e (ti)∝ nti

 ∏
f ∈E
f ∈∂i\e

q̂f→i(ti)

exp(−h(ti)) (9)

q̂e→i (ti)∝
∑

tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e(tj) (10)

qi (ti)∝ nti

∏
f ∈E
f ∈∂i

q̂f→i(ti)

exp(−h(ti)) (11)

h(ti) =
C ′

N

∑
j∈V

∑
tj

cti tjqj (tj) , (12)

where C ′ =
∑D

d=2

(
N−2
d−2

)
1
κd
.

A proof of theorem 1 is provided in appendix B. The updates in equations (9)–(12)
are in principle computationally feasible, as products of function nodes f ∈ E have
replaced products over the entire space f ∈ Ω. In sparse graphs, which we observe in
many real datasets, E is much smaller than the original Ω, thus significantly decreasing
the computation cost. An intuitive justification of theorem 1, which we formalize in its
proof, is that the observed interactions f ∈ E hold most of the weight in the updates
of their neighbors, while the unobserved ones f ∈ Ω \E send approximately constant
messages and thus can be absorbed in the external field h introduced in equation (12).
This idea is inspired by the dyadic MP equations in Decelle et al [6]. However, in
contrast to MP on graphs, a vanilla implementation of the updates is still not scalable
in hypergraphs, as the computational cost of equation (10) is O(K |e|−1). To tackle
this issue, we develop a dynamic programming approach that reduces the complexity to
O(K2|e|). Dynamic programming is exact, as it does not rely on further approximations
of the MP updates, and its detailed derivations are provided in appendix D.1.

The fixed-point equations of theorem 1 naturally suggest an algorithmic implement-
ation of the MP inference procedure. We present a pseudocode for it in appendix D.2.

3.3. Expectation–Maximization to learn the model parameters

We have presented an MP routine for inferring the community assignments {ti}i∈V .
Now, we derive closed-form updates for the model parameters c,n via an Expectation–
Maximization (EM) routine [45]. Differentiating the log-likelihood in equation (4) with

respect to n, and imposing the constraint
∑K

a=1na = 1, yields the update

na =
Na

N
. (13)
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Notice that this update depends on the MP results, asNa = |{i ∈ V : arg maxbqi(b) = a}|
is the count of nodes assigned to a community a according to the inferred marginals.
To update the rescaled affinity c we adopt a variational approach, where we maximize a
lower bound of the log-likelihood, or, equivalently, minimize the variational free energy.
In appendix C, we show detailed derivations for the following fixed-point updates:

c
(t+1)
ab = c

(t)
ab

2
∑

e∈E #e
ab/πe

NC ′ (Nnanb− δabna)
, (14)

where #e
ab =

∑
i<j∈e δti aδtjb is the count of dyadic interactions between two communities

a,b within a hyperedge e. In practice, when inferring t,n,c, one proceeds by alternat-
ing the MP inference of t, as presented in section 3.2, with the updates of c and n
in equations (13) and (14) until convergence. A pseudocode for the EM procedure is
presented in appendix D.2.

3.4. Sampling from the generative model

One of the main advantages of using a probabilistic formulation is the ability to generate
data with the desired community structure. Among other tasks, this can be used in par-
ticular to test detectability results like the ones we theoretically derive in the following
section. However, in hypergraphs, writing a probabilistic model does not directly imply
the ability to sample from it, as is typically the case for graphs [40, 41]. In fact, while
the O(N 2) configuration space of graphs allows performing sampling explicitly, in the
case of hypergraphs the exploding configuration space Ω makes this task prohibitive,
even for hypergraphs with a moderate number of nodes and hyperedge sizes.

We propose a sampling algorithm that can efficiently scale and produce hypergraphs
of dimensions in the tens or hundreds of thousands of nodes. We exploit the hard-
membership nature of the assignments to obtain exact sampling via combinatorial argu-
ments, as opposed to the approximate sampling in recent work for mixed-membership
models [41]. The key observation to obtain an efficient algorithm is that the hyperedge
probabilities do not depend on the nodes they contain, but only on their community
assignments, as implied by equation (3).

With this in mind, we define the auxiliary quantity

#e
a =

∑
i∈e

δti a , (15)

for a hyperedge e and community a ∈ [K], which is the count of nodes in e that belong
to a community a. Crucially, the hyperedge probability depends only on these counts:

πe =
∑

a<b∈[K]

#e
a#e

b pab +
∑
a∈[K]

#e
a (#e

a− 1)

2
paa . (16)

Therefore, all hyperedges with different nodes, but the same counts #e
1, . . . ,#

e
K , have

equal probability.
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Using equation (16), we sample hypergraphs as in algorithm 1 with the following
steps:

(i) Iterate over the combinations.
For hyperedges of size d = 2, sample all the N(N − 1)/2 edges directly. Otherwise,
iterate steps (ii)–(iv) for the hyperedge sizes d= 3, . . . ,D and vectors # =
(#1, . . . ,#K) of community counts (where we omitted the superscript e to highlight

that the same counts yield an identical equation (16)), satisfying
∑K

a=1 #a = d.

(ii) Compute the probability.
For a given count vector #, the hyperedge probability π# is given in equation (16).

Notice that there are N# =
(
N1

#1

)
· . . . ·

(
NK

#K

)
hyperedges satisfying the count #, since

we can choose #a nodes from the Na nodes in each community a.

(iii) Sample the number of hyperedges.
Importantly, we do not sample the individual hyperedges, but the number of
observed hyperedges. Since the individual hyperedges are independent Bernoulli
variables with the same probability, their sum X follows a binomial distribution:

X ∼ Binom

(
N#,

π#

κd

)
(17)

with probability π# fixed, determined by #, and number of realizations N#.
Sampling directly from equation (17) is numerically challenging for large N#

and κd , hence we adopt a series of numerical approximations summarized in
appendix E.1.

(iv) Sample the hyperedges.
Given the count X of hyperedges sampled from equation (17), we can sample
the hyperedges. This operation is performed by independently sampling X times
#a nodes from each community a. Note that this procedure might yield repeated
hyperedges, which are not allowed. In sparse regimes, this event has low probability
[46]. As a sensible approximation, we delete repeated hyperedges.

Due to this sampling procedure, our results are not limited to theoretical deriva-
tions, but can be tested numerically on synthetic data, as we show in appendix E.2.
In appendix E.1 we give a detailed analysis of the complexity, which is asymptotically
upper bounded by O(N logN). A pseudocode for this procedure is shown in algorithm
1, and we provide an open source implementation of the sampling procedure [42].
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Algorithm 1. Sampling hypergraphs.

Inputs: D, maximum size of hyperedges
N, number of nodes
K, number of communities
n, prior of the community memberships
p, affinity matrix

sample node memberships using equation (1)
for d= 2, . . . ,D do ▷ (i)

if d = 2 then
sample N(N − 1)/2 (hyper)edges from equation (2)

else

for each # = (#1, . . . ,#K) such that
∑K

a=1 #a = d do ▷ (i)
compute π# with equation (16) ▷ (ii)
sample X from equation (17) ▷ (iii)
for a= 1, . . . ,K do

sample X times #a nodes ▷ (iv)
end for

end for
delete repeated hyperedges

end if
end for

4. Phase transition

4.1. Detectability bounds

Besides providing a valid and efficient inference algorithm, one of the main advantages of
MP is the possibility of deriving closed-form expressions for the detectability of planted
communities. The transition from detectable to undetectable regimes was first shown
to exist in MP-based inference models for graphs [6], and gave rise to an extensive body
of literature on theoretical detectability limits and sharp phase transitions [8, 9]. Here,
we extend these classical arguments to hypergraphs, and find relevant differences when
higher-order interactions are considered.

In line with previous work, we restrict our study to the case where groups have
constant expected degrees. In fact, in settings where such an assumption does not hold,
it is possible to obtain good classification by simply clustering nodes based on their
degrees [6]. Formally, we assume

K∑
b=1

cabnb = c , (18)

for some fixed constant c. Notice that equation (18) does not immediately imply a con-
stant degree for the groups, as in hypergraphs the expected degree is defined differently
than the left-hand side of the equation above. Nevertheless, in appendix F.1 we prove
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Figure 2. Local tree assumption. (a) The classical local tree assumption for graphs.
Here, it is assumed that the neighborhoods of nodes are approximately trees. (b)
The tree assumption for factor graphs. Here, a path from a leaf (light blue) to a
root (orange) consists of steps alternating variable nodes and function nodes. These
two representations coincide in the case of graphs. (c) The perturbations propagate
up the tree via the messages. In graphs (a), they reach the root passing from nodes
ir+1 to i r (green). In hypergraph-induced factor graphs, perturbations spread from
a node ir+1, at depth r + 1, to its neighboring function nodes fr+1 (red), and up to
node ir at depth r (blue) in an alternating fashion.

that imposing the condition in equation (18) does indeed imply a constant average
degree. More precisely,

Proposition 1. Assuming equation (18), the following holds:

• all the groups have the same expected degree;

• the fixed points for the messages read

qi→e (ti) = nti ∀e ∈ E, i ∈ e (19)

q̂e→i (ti) =
1

K
∀e ∈ E, i ∈ e . (20)

We want to study the propagation of perturbations around the fixed points of
equations (19) and (20). We assume that the factor graph is locally tree-like, i.e. neigh-
borhoods of nodes are approximately trees. We provide a visualization of this in figure 2.
Classically, it has been proven that for sparse graphs almost all nodes have local tree-like
structures up to distances of order O(logN) [34]. We are not aware of similar statements
for hypergraphs. While our empirical results prove that these assumptions are reason-
able and approximately valid, we leave the formalization of such an argument for future
work.

Referring to figure 2(b), one can see that between every leaf and the root, there is a
single connecting path. Thus, perturbations on the leaves propagate through a tree to
the root, and transmit via the following transition matrix:

T̃ abr =
∂qir→fr (a)

∂qir+1→fr+1 (b)
, (21)

where ir,fr are respectively the rth variable node and function node in the path. In
other words, this is the dependency of a message on the message one level below in
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the path. In appendix F.2 we show that, to leading terms in N, the transition matrix
evaluates to

T̃ abr =
2na

|fr|(|fr| − 1)

(cab
c
− 1
)

. (22)

A related expression previously obtained for the transition matrix on graphs is T ab =
na (cab/c− 1) [6]. Hence, we can compactly write T̃ abi = [2/(|fr|(|fr| − 1))]T ab. This con-
nection highlights an important difference between the two cases: the hyperedges induce
a higher-order prefactor with a ‘dispersion’ effect. The larger the hyperedge, the lower
the magnitude of this transition. Instead, if the hyperedge is a pair, this prefactor
reduces to one, and we recover the result on graphs. A perturbation ϵkdtd of a leaf node

kd influences the perturbation ϵk0
t0 on the root t0 by

ϵk0
t0 =

∑
{tr}r=1,...,d

(
d−1∏
r=0

T̃ trtr+1

i

)
ϵkdtd . (23)

We can also express this connection in matrix form as

ϵk0 =

(
d−1∏
r=0

2

|fr|(|fr| − 1)

)
T dϵkd , (24)

where T is the matrix with entries T ab (in equation (24) raised to the power of d),

and ϵkd the array of ϵkdtd values. Now, similarly to Decelle et al [6], we consider paths
of length d→+∞. In this case, the r -dependent prefactor in equation (24) converges
almost surely to

µ= exp

(
E
[
d log

2

|f |(|f | − 1)

])
, (25)

where the expectation is taken with respect to randomly drawn hyperedges f ∈ E. If λ
is the leading eigenvector of T, then

ϵk0 ≈ µλdϵkd . (26)

Aggregating over the leaves, and since the perturbations have an expected value of zero,
we obtain the variance:

⟨(ϵk0
t0 )2⟩ ≈

〈[d0(F−1)]d∑
k=1

µλdϵkt

2〉
(27)

i.i.d.
= (d0 (F − 1))dµ2λ2d⟨

(
ϵkt
)2⟩ , (28)

https://doi.org/10.1088/1742-5468/ad343b 13

https://doi.org/10.1088/1742-5468/ad343b


Message-passing on hypergraphs: detectability, phase transitions and higher-order information

J.S
tat.

M
ech.(2024)

043403

where d0 is the average node degree and F the average hyperedge size. The expression
in equation (28) yields the following stability criterion, the key result of our derivations:

d0 (F − 1)

(
expE

[
log

2

|f |(|f | − 1)

])2

λ2 < 1. (29)

This generalizes the seminal result cλ2 < 1 of Decelle et al [6] to hypergraphs. When
equation (29) holds, the influence of the leaves on the root decays when propagating up
the tree in figure 2(b). Conversely, if equation (29) is not satisfied, it grows exponentially.

To obtain more interpretable bounds, we focus on a benchmark scenario where the
affinity matrix contains all equal on- and off-diagonal elements, i.e. caa = cin for all
a ∈ [K] and cab = cout for all a ̸= b. In this case, condition equation (18) becomes cin +
(K − 1)cout =Kc, the leading eigenvalue of T is λ= (cin− cout)/Kc, and the stability
condition in equation (29) reads

|cin− cout|>
Kc√

d0 (F − 1)
exp

(
−E
[
log

2

|f |(|f | − 1)

])
. (30)

When hypergraphs only contain dyadic interactions, equation (30) reduces to the
bound |cin− cout|>K

√
c previously derived for graphs [6], also known as the Kesten–

Stigum bound [47, 48].

4.2. Phase transition in hypergraphs

We test the bound obtained in equation (30) by running MP on synthetic hypergraphs
generated via the sampling algorithm of section 3.4. In our experiments, we fix K = 4
and sample hypergraphs with N = 104 nodes. We also fix c = 10 and change the ratio
cout/cin. In this setup, for graphs, one expects a continuous phase transition between
two regimes where the system is undetectable and detectable [6]. In the former, where
the inequality yielded by the Kesten–Stigum bound does not hold, and the graph does
not carry sufficient information about the community assignments, community detec-
tion is impossible. In the latter, communities can be efficiently recovered by MP. In
figure 3 we plot the overlap = (

∑
i q

⋆
i /N −maxana)/(1−maxana) with q⋆i ≡ qi(a⋆i ) and

a⋆i = arg maxbqi(b), against cout/cin. Our results are in agreement with the theoretical
predictions: the overlap is low in the undetectable region, high in the detectable region,
and we observe a continuous phase transition at the Kesten–Stigum bound for graphs,
i.e. when D = 2.

We expect the presence of higher-order interactions to improve detectability, as this
yields greater overlap for any cout/cin and shifts the theoretical transition to larger values.
We empirically validate this prediction by evaluating equation (30) for hyperedges up
to size D = 50 and performing MP inference in figure 3. Diverging convergence times
for larger cout/cin, i.e. when the free energy landscape gets progressively rugged, further
demonstrate this behavior, as shown in appendix F.3.
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Figure 3. Phase transition. The overlap between ground truth and inferred com-
munities varies for different cout/cin ratios. The values attained are positive in the
detectable region (left of the dotted theoretical bounds) and continuously drop to
zero as the phase transition boundary approaches. Values for hyperedges up to size
D = 50 (orange) always yield higher overlap compared to D = 2 (light blue). Shaded
areas are standard deviations over five random initializations of MP.

4.3. The impact of higher-order interactions on detectability

As mentioned above, the transition matrix in equation (22) reduces to the clas-
sic T ab [6] when only dyadic interactions are present. In fact, the additional pre-
factor 2/(|fr|(|fr| − 1)) is equal to one for two-dimensional hyperedges. However, when
hyperedges of higher sizes are present, this prefactor is strictly smaller than one. This
dampens the perturbations ϵk0 when they propagate up the tree in figure 2(b). It is
unclear whether this higher-order effect aids or hinders detectability, as it could prevent
signals from being propagated, but also noise from accumulating at the root.

With this in mind, we investigate the impact of higher-order interactions on detect-
ability by disentangling the effect that K, c and, most importantly, D have on the
detectability bound set by equation (29). To this end, we rewrite equation (30) as∣∣∣∣ρin−

1

Kc

∣∣∣∣> Φ(K,c,D) . (31)

Here, we utilized cin/Kc = ρin ∈ [0,1], a degree-independent rescaling of cin, where we
normalize by its maximum possible value Kc, as per equation (18). The term Φ(K,c,D)
is the value of the theoretical bound on the rhs of equation (30), normalized by Kc as
well. In this way, we obtain the decomposition Φ(K,c,D) = α(K)β(c)γ(D) as a product
of three independent terms:

α(K) =
K − 1

K
(32)

β (c) =
1√
c

(33)
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Figure 4. Theoretical phase transition. Due to the decomposition of our bound in
equations (32)–(34) it is possible to separately describe the effects of K, c and D
on the predicted phase transition. (a) Detectability bounds for networks (D = 2).
Increasing c yields a broader range of detectable configurations (colored areas) for
ρin. The number of communities skews detectability: while for K = 2 communities
can be detected in extremely disassortative regimes (ρin close to zero), when more
communities are present, only assortative networks are detectable. (b) Effect of
the maximum hyperedge size D. The term γ(D) in equation (34) can be split
into the product γ1(D)γ2(D), as defined in equations (35) and (36). The non-
trivial decrease of γ(D) results from the interplay of γ1(D) and γ2(D), having
opposite monotonicity. (c) The percentage decrease ∆Φ(K,c,D) = (Φ(K,c,D)−
Φ(K,c,2))/Φ(K,c,2) in detectability for different c,D values shows that higher-
order interactions steadily improve detection, especially in sparse regimes.

γ (D) =
exp

(
−E
[
log 2

|f |(|f |−1)

])
√
C (F − 1)/2

, (34)

where C =
∑D

d=2

(
N−2
d−2

)
d
κd

In our experiments we choose κd =
(
N−2
d−2

)d(d−1)
2 , which conveniently returns C =

2HD−1 (see appendix A), with HD−1 being the (D− 1)th harmonic number. However,
our theory holds true for any κd yielding sparse hypergraphs.

The classic effect of α(K) and β(c) is summarized in figure 4(a), where the maximum
hyperedge size is fixed to D = 2, hence γ(D) = 1. Here, we observe that the undetect-
ability gap reduces when increasing c. Graphs with higher average degrees are more
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detectable even when there is a larger inter-community mixing. The effect of larger K
is that of skewing the detectability phase transition. This is because the edges con-
tributing to cout are spread over K − 1 communities, while those accounting for cin are
concentrated in a single one. Intuitively, increasing K allows us to have more in–out
edges, and detectability is still possible because of the dominating cin term. The limit
value ρin = 1/K constitutes the perfect mixing case cin = cout = c, where detectability
is unfeasible for any K and finite degree c. One should notice that, while the bounds
drawn in figure 4 hold theoretically, for large K it may be exponentially hard to retrieve
communities even in the detectable region [6, 49].

The higher-order effects on detectability are shown in figures 4(b) and (c). The
presence of hyperedges with D > 2 enters in equation (34) as the product of two separate
contributions, γ(D) = γ1(D)γ2(D), where

γ1 (D) = exp

(
−E
[
log

2

(|f |(|f | − 1))

])
(35)

γ2 (D) =
1√

C (F − 1)/2
. (36)

These two terms have contrasting effects that multiply to obtain the overall trend of
γ(D): γ1(D) is monotonically increasing while γ2(D) is monotonically decreasing. If we
were to consider only the ‘dispersion’ contribution γ1, we would enlarge the detectab-
ility gap by increasing Φ. However, the γ2 term factors in the increasing number of
interactions observed with larger hyperedges. The result is an overall higher-order con-
tribution to detectability γ(D) = γ1(D)γ2(D), where the value of γ2 dominates over γ1,
giving rise to the non-trivial, monotonically decreasing, profile of figure 4(b).

The overall effect of higher-order terms is illustrated by plotting the relative differ-
ence ∆Φ(K,c,D) = (Φ(K,c,D)−Φ(K,c,2))/Φ(K,c,2) for a range of c and D values,
with K = 4, as shown in figure 4(c). We observe how higher-order interactions lead to
better detectability for all c, especially in sparse regimes, where c is small and pairwise
information is not sufficient for the recovery of the communities.

4.4. Entropy and higher-order information

Hypergraphs are often compared against their clique decomposition, i.e. the graph
obtained by projecting all hyperedges onto their pairwise connections, as a baseline
network structure [50–52].

The clique decomposition yields highly dense graphs. For this reason, most the-
oretical results on sparse graphs are not directly applicable, algorithmic implementa-
tions become heavier—many times unfeasible—and storage in memory is suboptimal.
Previous work also showed that algorithms developed for hypergraphs tend to work
better in many practical scenarios [16]. Intuitively, hypergraphs ‘are more informative’
than graphs [53], as there exists only one clique decomposition induced by a given hyper-
graph, but possibly more hypergraphs corresponding to a given clique decomposition.
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Here, we provide a theoretical basis to this common intuition and find that, within our
framework, we can quantify the extra information carried by higher-order interactions.

For a given hypergraph H = (V ,E), edge (i,j) ∈ V 2 and hyperedge e ∈ E, we define
the probability distribution

pH ({i,j} ,e) =


1

E

2

|e|(|e| − 1)
if i,j ∈ e

0 otherwise .
(37)

This distribution represents the joint probability of drawing a hyperedge uniformly at
random among the possible E in the hypergraph and a dyadic interaction {i,j} out of

the possible
(|e|

2

)
within the hyperedge e. From equation (37) we can derive the following

marginal distributions:

pE (e) =
1

E
(38)

pC ({i,j}) =
1

E

∑
e∈E:i,j∈e

2

|e|(|e| − 1)
, (39)

for all e ∈ E and pairs of nodes i ̸= j. The distribution pE is a uniform random draw
of hyperedges. The distribution pC represents the probability of drawing a weighted
interaction {i,j} in the clique decomposition of H.

With equations (37)–(39) at hand, it is possible to rewrite γ1(D) in equation (35)
as

logγ1 (D) =H ({i,j} |f) , (40)

where H(· | ·) is the conditional entropy. This entropy is minimized when pC({i,j}) is
very different than pH({i,j}|f), i.e. when conditioning a pair {i,j} to be in f brings
additional information with respect to the interaction {i,j} alone. This happens when
{i,j} appears in several hyperedges and it is difficult to reconstruct the hypergraph
from its clique decomposition. As lower values of γ1 imply easier recovery, equation (40)
suggests that recovery is favored in hypergraphs where hyperedges overlap substantially
and that cannot be easily distinguished from their clique decomposition.

We obtain a similar result by rewriting equation (40) as

γ1 (D) =
expH (pH)

expH (pE)
=

PP(pH)

PP(pE)
, (41)

which is the ratio of two exponentiated entropies. In information theory, PP is referred
to as perplexity [54], and it is an effective measure of the number of possible outcomes in
a probability distribution [55]. Once we fix the number of hyperedges E (and therefore
PP(pE)), the number of effective outcomes is given by the number of likely drawn {i,j}
pairs. This number is minimized when there is high overlap between hyperedges, thus
confirming the interpretation of equation (40).

Finally, we set a different focus by rewriting γ1 as

logγ1 (D) =H (pC)−KL(pH ||pC⊗pE) , (42)
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where KL is the Kullback–Leibler divergence and ⊗ the product probability distri-
bution. Here, we pose the question: given a fixed clique decomposition and number
of hyperedges, what is the hypergraph attaining the highest detectability? From the
equation, such a hypergraph is that with the highest KL(pH ||pC⊗pE) = I({i,j},f). In
this case, the KL divergence between a joint distribution and its marginals, also called
the mutual information I [56] of the two random variables, describes the information
shared between pairwise interactions and single hyperedges. Hypergraphs with high KL
divergence, i.e. high information about a given {i,j} in a single hyperedge f, will yield
better detectability. In other words, it is preferable to choose hypergraphs that, while
still producing the observed clique decomposition (thus achieving low entropy H(pH)),
have largely overlapping hyperedges. The results discussed in this section provide the-
oretical guidance for the construction of hypergraphs that explain an observed graph
made of only pairwise interactions [57], a problem relevant in datasets where higher-
order interactions are not explicitly tracked.

5. Experiments on real data

Our model leads to a natural algorithmic implementation to learn communities in hyper-
graphs. In fact, alternating MP and EM rounds, our algorithm outputs marginal prob-
abilities qi(ti) for a node i to belong to a community t i , as well as the community ratios
n and the affinity matrix p. We illustrate an application of this procedure on a dataset of
interactions between high school students (High School) [58]. Here, nodes are students,
and hyperedges represent whether a group of students was observed in close proximity,
as recorded by wearable devices. The hypergraph contains N = 327 nodes and E = 7818
hyperedges. In figure 5(a) we show the communities inferred on the dataset where only
hyperedges up to size D = 2,3,4 are kept. We observe a clear progression in how the
nodes are gradually allocated into different groups when higher-order interactions are
progressively taken into account. This suggests that interactions beyond pairs carry
information that would get lost if only edges were to be observed.

To get a qualitative interpretation, we compare the communities inferred with the
nine classes attended by the students, an attribute available with the dataset. We illus-
trate the hypergraph of student interactions, coloring each node according to its class, in
figure 5(b). Previous studies have shown that in this dataset a number of interactions
occur with stronger prevalence within students of the same class [58]. In figure 5(c),
we compare the communities inferred with different maximum hyperedge size D with
the classes, and observe that there is a stronger alignment between them when lar-
ger hyperedges are utilized for inference. In figure 5(d) we show, at D = 2,3,4, the
Normalized Mutual Information between inferred communities and class attributes, the
area under the receiver operating curve (AUC) with respect to the full dataset, and
the fraction ρD of hyperedges with size equal to D. In addition, our algorithm detects
connection patterns that were previously observed between the different student classes
as captured by the affinity matrix p; see appendix G.2 for details.

A feature that sets MP apart from other inference methods is the possibility to
approximately compute the evidence Z = p(A |p,n) of the whole dataset, or, equival-
ently, the free energy F =− logZ. In appendix G we discuss how to make the free energy
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Figure 5. Experiments on the High School dataset. We infer the communities
via MP and EM on the High School dataset. In all cases, we run inference with
K = 10 communities. (a) Inferred communities on the High School dataset, only
utilizing hyperedges up to a maximum size D. Taking into account higher-order
information, up to D = 4, results in more granular partitions. (b) Graphical rep-
resentation of the students’ partition into classes. We draw only hyperedges of
size D. (c) We compare the inferred partitions with the ‘attended class’ covari-
ate of the nodes, i.e. the classes students participate in. We comment further on
this comparison in appendix G.2. (d) A quantitative measurement complement-
ing that of panel (b): the Normalized Mutual Information (NMI) between inferred
communities and attended classes, the AUC on the full dataset, as well as the
ratio ρD of hyperedges of size equal to D. (e) Free energy landscape. We con-
sider the parameters (p2,n2), (p3,n3) and (p4,n4) inferred from the dataset with,
respectively, D = 2,3,4. With these, we build the simplex of convex combinations
p=

∑
i∈{2,3,4}λi pi, where

∑
i∈{2,3,4}λi = 1 and 0 ⩽ λi ⩽ 1 (similarly for n). For

every point in the simplex, we compute the free energy on the full dataset, i.e. with
D = 5. More details on these computations are provided in appendix G.1.

computations feasible by exploiting classical cavity arguments, as well as a dynamic pro-
gram similar to that employed for MP. We present the results of these estimates on the
High School dataset in figure 5(e). Here, we take the values of n and p inferred by
cutting the dataset at maximum hyperedge sizes D = 2,3,4. Then, we compute the free
energy on the full dataset (D = 5) in the simplex of n,p parameters outlined by the three
vertices. We notice that interactions of size D = 5 seem to be less informative and lead
to suboptimal inference; see appendix G.3. Similarly to what was observed on graphs
[6], the energy landscape appears rugged and complex. EM converges to solutions that
are local attraction points, i.e. valleys of low-energy configurations. Moreover, the free
energy of the p,n parameters inferred with only pairwise interactions (i.e. D = 2, lower-
right) is higher than that inferred for D = 3 (upper-left), which is in turn higher than
the one of D = 4 (bottom-left).
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6. Conclusion

We developed a probabilistic generative model and an MP-based inference procedure
that led to several results advancing community detection on hypergraphs. In partic-
ular, we obtained closed-form bounds for the detectability of community configura-
tions, extending the seminal results of Decelle et al [6] to higher-order interactions.
Experimental validation of such bounds shows the emergence of a detectability phase
transition when spanning from disassortative to assortative community structures. With
these theoretical bounds at hand, we investigate the relationship between hypergraphs
and graphs from an information-theoretical perspective. Characterizing the entropy and
perplexity of pairs of nodes in hyperedges, we find that hypergraphs with many over-
lapping hyperedges are easier to detect. Besides these theoretical advancements, we
develop two relevant algorithmic ones. First, we derive an efficient and scalable MP
algorithm to learn communities and model parameters. Second, we propose an exact
and efficient sampling routine that generates synthetic data with the desired community
structure according to our probabilistic model in the order of seconds. Both of these
implementations have been released open source [42].

The mathematical tools we propose here to obtain our results are valid for standard
hypergraphs. We foresee that they could be generalized to dynamic hypergraphs where
interactions change in time, using intuitions derived for dynamic graphs [10]. Similarly,
it would be interesting to see how detectability bounds change when accounting for
node attributes, as results in networks have shown that adding extra information can
boost community detection [59–61]. Finally, from an empirical perspective, it would be
interesting to see how our theoretical insights in terms of entropy of hypergraphs and
clique expansion match measures that relate hypergraphs to simplicial complexes [62].
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Appendix A. Expected degree and choice of κd

As we commented in section 2, the choice of the normalizing constant κd , for d=
2, . . . ,D, controls the Bernoulli probabilities for all hyperedges e ∈ Ω via

P(e |p, t) =
πe
κ|e|

=

∑
i<j∈e pti tj

κ|e|
.
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Our theoretical analysis and results hold for general choices of κd , as long as these
respect the following conditions. First, for any choice of a symmetric 0 ⩽ pab ⩽ 1, we
need valid probabilities 0 ⩽ πe/κ|e| ⩽ 1. This implies that, necessarily,

κd ⩾
d(d− 1)

2
∀d= 2, . . . ,D . (A.1)

Second, we want the ensemble to consist of sparse hypergraphs, in expectation. A good
proxy for such a requirement is the average degree, which we can compute explicitly as

d0 =
1

N

∑
i∈V

∑
e∈Ω:i∈e

P(e |p, t)

=
1

N

∑
e∈Ω

∑
i∈e

P(e |p, t)

=
1

N

∑
e∈Ω

|e|P(e |p, t)

=
1

N

∑
e∈Ω

|e|
κ|e|

∑
i<j∈e

pti tj

=
C

N

∑
i<j∈V

pti tj

≈ C

N

∑
a⩽b∈[K]

pab (Nna)(Nnb)

1 + δab

=
C

2

∑
a,b∈[K]

cabnanb , (A.2)

where

C =
D∑
d=2

(
N − 2

d− 2

)
d

κd
.

We assume cab =O(1), i.e. it is in a sparse regime. Thus, the expected degree’s scale is
governed by C and, in turn, by the choice of κd , as

d0 =O (C) .

Additionally, but not necessarily, we wish our model to extend the classical SBM,
which imposes the additional condition κ2 = 1. There exist many choices of κd obey-
ing the constraints just discussed. A natural one is the minimum value satisfying
equation (A.1), i.e. κd = d(d− 1)/2. This gives

C =
2

N − 1

D−1∑
d=1

(
N − 1

d

)
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which, for D =N, returns d0 =O
(
2N/(N − 1)

)
, which is too high to yield sparse hyper-

graphs. Note that, in practice, we rarely use D =N. However, such considerations are
useful to evaluate how different κd values reflect on the properties of the hypergraph
ensembles of the model.

A more interesting choice is given by

κd =
d(d− 1)

2

(
N − 2

d− 2

)
.

This corresponds to taking the average among the d(d− 1)/2 interactions that yield πe ,

and
(
N−2
d−2

)
is a normalization: once an interaction is observed between two nodes i,j,

the remaining d − 2 are chosen at random. This gives

C = 2
D−1∑
d=1

1

d

= 2HD−1 , (A.3)

which is proportional to the (D− 1)th harmonic number, hence growing more mildly
at leading order as C =O(logD). Aside from having an interpretation in terms of null
modeling, the value in equation (A.3), which we utilize experimentally, was shown to
be a sensible choice in many real-life scenarios [17, 41].

Appendix B. MP derivations

MP equations have been developed in the case of general factor graphs, see for example
Murphy et al [35], section 22.2.3.2. We consider approximate messages from hyperedges
e to nodes i being q̂e→i(ti), and vice versa, qi→e(ti). The messages, for any e ∈ F , i ∈ ∂e,
satisfy the general updates

qi→e (ti)∝ nti
∏

f ∈∂i\e

q̂f→i (ti)

q̂e→i (ti)∝
∑

tj :j∈∂e\i

(
πe
κe

)Ae
(

1− πe
κe

)1−Ae ∏
j∈∂e\i

qj→e (tj) . (B.1)

The marginal beliefs are given by

qi (ti)∝ nti
∏
e∈∂i

q̂e→i (ti) . (B.2)

B.1. Message updates

First, we can distinguish the values of messages for function nodes e such that Ae = 0
or Ae = 1, i.e. if the hyperedge e is observed or not in the data.
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If Ae = 1, i.e. e ∈ E, then

q̂e→i (ti)∝
∑

tj :j∈∂e\i

πe
κe

∏
j∈∂e\i

qj→e (tj)

∝
∑

tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e (tj) . (B.3)

If Ae = 0, then e ∈ Ω \E. We start by computing

q̂e→i (ti)∝
∑

tj :j∈∂e\i

(
1− πe

κe

) ∏
j∈∂e\i

qj→e (tj)

=
∑

tj :j∈∂e\i

∏
j∈∂e\i

qj→e (tj)−
∑

tj :j∈∂e\i

πe
κe

∏
j∈∂e\i

qj→e (tj)

= 1−
∑

tj :j∈∂e\i

πe
κe

∏
j∈∂e\i

qj→e (tj)

= 1− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm
κe

∏
j∈∂e\i

qj→e (tj) . (B.4)

We indicate with Ẑe→i(ti) the convenient non-normalized rewriting of q̂e→i(ti) in
equation (B.4). Therefore, we find

qi→e (ti)∝ nti
∏

f ∈∂i\e

q̂f→i (ti)

=
nti

q̂e→i (ti)

∏
f ∈∂i

q̂f→i (ti) (B.5)

∝ nti

Ẑe→i (ti)

∏
f ∈∂i

q̂f→i (ti) (B.6)

=
qi(ti)

Ẑe→i (ti)
, (B.7)

where from equations (B.5) to (B.6) we used Ẑe→i(ti) introduced in equation (B.4).
We evaluate the expression in equation (B.7) for the limit N →+∞, which gives the
node-to-hyperedge messages for e ∈ Ω \E as

qi→e (ti) = qi(ti) +O

(
1

N

)
≈ qi(ti) , (B.8)

i.e. the nodes approximately (to leading order in O(1/N)) share their marginal belief
to hyperedges that are not observed in the data. Using equation (B.8), we can also
approximate equation (B.4) as
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q̂e→i (ti)∝ 1− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm
κe

∏
j∈∂e\i

qj→e (tj)

≈ 1− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm
κe

∏
j∈∂e\i

qj (tj) . (B.9)

In the assumed sparsity regime, the term of order O(1/N) in equation (B.9) is close to
zero. Since for x ≈ 0 the approximation 1−x≈ e−x is sufficiently accurate, we write

q̂e→i (ti)≈ exp

− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm
κe

∏
j∈∂e\i

qj (tj)

 . (B.10)

We can put the hyperedge-to-node updates together using the two results in
equation (B.3) and in equation (B.10). Specifically, we derive the following expression
for the message qi→e(ti), where e ∈ E:

qi→e (ti)∝ nti
∏
f ∈Ω:
f ∈∂i\e

q̂f→i (ti)

= nti
∏
f ∈E:
f ∈∂i\e

q̂f→i (ti)
∏

f ∈Ω\E
f ∈∂i

q̂f→i (ti)

≈ nti

 ∏
f ∈E:
f ∈∂i\e

q̂f→i(ti)


 ∏
f ∈Ω\E:
f ∈∂i

exp

− 1

N

∑
tj :j∈∂f \i

∑
k<m∈f ctktm

κf

∏
j∈∂f \i

qj (tj)




(B.11)

= nti

 ∏
f ∈E:
f ∈∂i\e

q̂f→i(ti)

exp

− 1

N

∑
f ∈Ω\E:
f ∈∂i

∑
tj :j∈∂f \i

∑
k<m∈f ctktm

κf

∏
j∈∂f \i

qj (tj)



≈ nti

 ∏
f ∈E:
f ∈∂i\e

q̂f→i(ti)

exp

− 1

N

∑
f ∈Ω:
f ∈∂i

∑
tj :j∈∂f \i

∑
k<m∈f ctktm

κf

∏
j∈∂f \i

qj (tj)


(B.12)

= nti

 ∏
f ∈E:
f ∈∂i\e

q̂f→i(ti)

exp(−hi (ti)) . (B.13)

In equation (B.11), we used the approximation introduced in equation (B.10). In
equation (B.12) we passed from summing over Ω \E to Ω. This approximation is sens-
ible as long as the expected degree of the nodes grows at most as N, which is satisfied
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in the assumed sparse regime, as discussed in appendix A. Finally, in equation (B.13)
we introduced a node-dependent external field hi(ti), whose definition naturally follows
from the argument of the exponential in equation (B.12).

B.2. External field updates

We simplify the external field to remove the node dependency of hi(a). The node-
dependent external field reads

hi (ti) =
1

N

∑
f ∈∂i

1

κf

 ∑
tj :j∈∂f \i

∑
k<m∈f

ctktm
∏
r∈f \i

qr (tr)


=

1

N

∑
f ∈∂i

1

κf

 ∑
tj :j∈f \i

∑
m∈f \i

cti tm
∏
r∈f \i

qr (tr)

+ const. (B.14)

The sum in parentheses in equation (B.14) can be simplified as

∑
tj :j∈f \i

 ∑
m∈f \i

cti tm

 ∏
r∈f \i

qr (tr)

=
∑

tj :j∈f \i

∑
m∈f \i

cti tm ∏
r∈f \i

qr (tr)


=
∑
m∈f \i

∑
tj :j∈f \i

cti tm ∏
r∈f \i

qr (tr)


=
∑
m∈f \i

∑
tm

cti tmqm (tm) . (B.15)

Plugging equation (B.15) into equation (B.14) we get, ignoring constants,

hi (ti) =
1

N

∑
f ∈∂i

1

κf

∑
m∈f \i

∑
tm

cti tmqm (tm)

=
C ′

N

∑
j∈V \i

∑
tj

cti tjqj (tj)

≈ C ′

N

∑
j∈V

∑
tj

cti tjqj (tj) , (B.16)

with C ′ =
∑D

d=2

(
N−2
d−2

)
1
κd

, and where in equation (B.16) we included i in the node sum-

mation. Since equation (B.16) does not depend on i, we define the node-independent
external field

h(a) =
C ′

N

∑
j∈V

∑
tj

catjqj (tj) ∀a ∈ [K] . (B.17)
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B.3. Marginal belief updates

Notice, that, in passing from equations (B.11) to (B.13) and then in equation (B.17),
we have shown that∏

f ∈Ω\E
f ∈∂i

q̂f→i (ti)≈ exp(−hi (ti))≈ exp(−h(ti)) . (B.18)

We use the same argument to treat the general expression of the marginal beliefs in
equation (B.2), yielding

qi (ti)∝ nti
∏
e∈∂i

q̂e→i (ti)

= nti
∏
e∈E:
e∈∂i

q̂e→i (ti)
∏

e∈Ω\E:
e∈∂i

q̂e→i (ti)

≈ nti
∏
e∈E:
e∈∂i

q̂e→i (ti)exp(−h(ti)) .

B.4. Summary: approximate MP updates

Putting all derivations together, the final MP equations read

Node-to-observed hyperedge: qi→e (ti)∝ nti

 ∏
f ∈E

f ∈∂i\e

q̂f→i(ti)

exp(−h(ti)) ∀e ∈ E, i ∈ e

Observed hyperedge-to-node: q̂e→i (ti)∝
∑

tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e(tj) ∀e ∈ E, i ∈ e (B.19)

External field: h(ti) =
C ′

N

∑
j∈V

∑
tj

cti tjqj (tj) (B.20)

Marginals: qi (ti)∝ nti

∏
f ∈E
f ∈∂i

q̂f→i(ti)

exp(−h(ti)) .

Notice that the MP updates cannot be naively implemented as presented. In fact,
the update in equation (B.19) for q̂e→i(ti) has cost O(K |e|−1), which does not scale with
the hyperedge size. In appendix D we present a dynamic programming approach to per-
form this computation exactly with cost O(K2|e|), and comment on further algorithmic
details to implement the MP updates in practice.
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Appendix C. EM inference

Updates of the community priors n. We take the derivative of the log-likelihood
in equation (4). By imposing the constraint

∑K
a=1na = 1, we obtain the update in

equation (13).
Updates of the affinity matrix p. We show here the updates in terms of c. These

easily translate to those in terms of the affinity matrix p as the expression we derive
below in equation (C.6) is invariant with respect to the substitution c=Np. Let xe =∑

i<j∈e cti tj/Nκe. Then, ignoring additive constants, the log-likelihood reads

L=
∑
e∈E

log

∑
i<j∈e

cti tj

+
∑
e∈Ω\E

log(1−xe)

≈
∑
e∈E

log

∑
i<j∈e

cti tj

− ∑
e∈Ω\E

xe

=
∑
e∈E

log

∑
i<j∈e

cti tj

− ∑
e∈Ω\E

∑
i<j∈e cti tj

Nκe
(C.1)

where equation (C.1) is the linearization of log(1−x)≈ x around x = 0, which is valid

at leading order O(1/N). We now take a variational approach to find a lower bound L̃
of the log-likelihood:

L ≈
∑
e∈E

log

∑
i<j∈e

cti tj

− ∑
e∈Ω\E

∑
i<j∈e cti tj

Nκe

⩾
∑
e∈E

∑
i<j∈e

ρeij log

(
cti tj
ρeij

)
−
∑
e∈Ω\E

∑
i<j∈e cti tj

Nκe

=
∑
e∈E

∑
i<j∈e

ρeij logcti tj −
∑
e∈Ω\E

∑
i<j∈e cti tj

Nκe
+ const.

= L̃(c) + const. , (C.2)

which is valid for any distribution ρeij such that
∑

i<j∈eρ
e
ij = 1. In equation (C.2), we

utilized Jensen’s inequality. The lower bound is exact when

ρeij =
cti tj∑

i<j∈e cti tj
=
cti tj
Nπe

. (C.3)
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We compute the derivative of the variational lower bound and approximate to leading
terms in N :

∂L̃
∂cab

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδti aδtjb−
1

N

∑
e∈Ω\E

1

κe

∑
i<j∈e

δti aδtjb

≈ 1

cab

∑
e∈E

∑
i<j∈e

ρeijδti aδtjb−
1

N

∑
e∈Ω

1

κe

∑
i<j∈e

δti aδtjb (C.4)

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδti aδtjb−
C ′

N

∑
i<j∈V

δti aδtjb

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδti aδtjb−
C ′

2N
(NaNb− δabNa)

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδti aδtjb−
C ′

2
(Nnanb− δabna) . (C.5)

where C ′ =
∑D

d=2

(
N−2
d−2

)
1
κd

. Notice that the approximations in equations (C.4) and (C.5)

hold valid only when considering cab in the expressions, as by assumption c=O(1).
Now, by setting equation (C.5) equal to zero, and substituting ρeij from equation (C.3),
we obtain the update

c
(t+1)
ab = c

(t)
ab

2
∑

e∈E #e
ab/πe

NC ′ (Nnanb− δabna)
, (C.6)

where #e
ab =

∑
i<j∈e δti aδtjb.

Appendix D. Algorithmic and computational details

D.1. Dynamic programming for MP

In this section, we explain how the MP updates for the q̂e→i(ti) messages can be per-
formed efficiently. In log-space, the messages can be compactly written as

log q̂e→i (ti) = log
∑

tj :j∈∂e\i

πe
∏
j∈e\i

qj→e (tj) + const.

= ψ (e, i, ti) + const. . (D.1)

Below, we focus on finding efficient updates for ψ as defined in equation (D.1), which
should be exponentiated and properly normalized to find the original messages q̂e→i(ti).
For this, we introduce an auxiliary quantity. For any subset g ⊆ f of nodes in f, where
i ∈ g, we define

η (g, i, ti) = log

 ∑
tj :j∈g\i

 ∑
l<m∈g

ptltm

 ∏
j∈g\i

qj→f (tj)

 .
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Hence, η(f , i, ti) = ψ(f , i, ti) + const.. This quantity is useful in that it allows us to obtain
an efficient recursion formula for ψ by computing the η values starting from subsets g
containing two nodes.

Without loss of generality, consider f = {1, . . . ,m− 1} and i = 1. Consider g =
{1, . . . ,n− 1} for some n⩽m. We want to compute η for the set {1, . . .n}. Its expo-
nential is given by

exp(η({1, . . . ,n},1, t1))

=
∑
tn

∑
t2

∑
t3

. . .
∑
tn−1

(pt1t2 + . . .+ ptn−2tn−1 + pt1tn + pt2tn + . . .+ ptn−1tn)

× (q2→f (t2) . . . qn−1→f (tn−1)qn→f (tn))

=
∑
tn

qn→f (tn)

(∑
t2

∑
t3

. . .
∑
tn−1

(pt1t2 + . . .+ ptn−2tn−1)

×(q2→f (t2) . . . qn−1→f (tn−1))

+
∑
t2

∑
t3

. . .
∑
tn−1

pt1tn(q2→f (t2) . . . qn−1→f (tn−1))

+
∑
t2

∑
t3

. . .
∑
tn−1

(pt2tn + . . .+ ptn−1tn)(q2→f (t2) . . . qn−1→f (tn−1))

)

=
∑
tn

qn→f (tn)

(
exp(η({1, . . . ,n− 1},1, t1)) + pt1tn

+
∑
t2

pt2tnq2→f (t2) + . . .+
∑
tn−1

ptn−1tnqn−1→f (tn−1)

)
= exp(η({1, . . . ,n− 1},1, t1))

+
∑
tn

qn→f (tn)

(
pt1tn +

∑
t2

pt2tnq2→f (t2) + . . .+
∑
tn−1

ptn−1tnqn−1→f (tn−1)

)
. (D.2)

The recursion in equation (D.2) allows us to compute the value of η({1, . . . ,n},1, t1)
from η({1, . . . ,n− 1},1, t1) in time O((n− 2)K2). However, we can further reduce the
cost. For any a ∈ [K], define

sn (a) =
∑
t2

pt2aq2→f (t2) + . . .+
∑
tn−1

ptn−1aqn−1→f (tn−1) .

https://doi.org/10.1088/1742-5468/ad343b 30

https://doi.org/10.1088/1742-5468/ad343b


Message-passing on hypergraphs: detectability, phase transitions and higher-order information

J.S
tat.

M
ech.(2024)

043403

Substituting the definition of sn(a) in equation (D.2), we obtain the final two-step
dynamic update:

sn (a) = sn−1 (a) +
∑
tn−1

ptn−1aqn−1→f (tn−1) (D.3)

exp(η ({1, . . . ,n} ,1, t1)) = exp(η ({1, . . . ,n− 1} ,1, t1))

+
∑
tn

qn→f (tn)(pt1tn + sn (tn)) . (D.4)

This yields a cost of O(K ) per recursion, and a total cost of O(K |f |) to compute the
final ψ(f ,1, t1). In practice, for any e, i pair, we compute ψ(e, i, ti) for all values ti ∈ [K],
which yields a total cost of O(K2 |f |).

D.2. Implementation details

In our implementation of the MP and EM routines, we take some additional steps to
ensure convergence to non-trivial local optima of the free energy landscape.

The initialization of the messages is performed taking into account the circular
relationships in equations (9)–(12). We perform them as follows: (i) randomly initialize
the messages qi→e(ti). For every i,e pair, the messages are drawn from a K -dimensional
Dirichlet distribution. (ii) Similarly, randomly initialize the marginal beliefs qi(ti). (iii)
We infer all the other quantities from the initialized qi→e(ti) and qi(ti); in fact, up to
constants

q̂e→i (ti) =
qi (ti)

qi→e (ti)
.

All values are then normalized to have unitary sum. (iv) Finally, the external field is
entirely determined by the marginals as per equation (12).

We check for convergence of the MP and EM inference routines by evaluating
the absolute difference between parameters in consecutive steps. We present complete
pseudocodes of the two routines in algorithms 2 and 3.
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Algorithm 2. Inferring communities (MP).

Inputs: convergence threshold ϵmp

maximum iterations itermp

prior n, rescaled affinity matrix c

randomly initialize all qi→e(ti), q̂e→i(ti),qi(ti),h(ti)

for step = 1, . . . , itermp do
// Perform updates
for all e ∈E, i ∈ e, ti ∈ [K] do

update messages qi→e(ti) ▷ equation (9)
end for
for all e ∈E, i ∈ e, ti ∈ [K] do

update messages q̂e→i(ti) ▷ equation (10)
end for
for all e ∈E, i ∈ e, ti ∈ [K] do

qoldi (ti)← qi(ti)
update marginals qi(ti) ▷ equation (11)

end for
for ti ∈ [K] do

update external field h(ti) ▷ equation (12)
end for

// Check for convergence

∆ =
∑N

i=1

∑K
ti =1 |qold

i (ti)− qi(ti)|
if ∆< ϵmp then

break
end if

end for

While algorithm 2 is presented as a completely parallel implementation of the MP
equations (9)–(12), in practice we proceed in batches. In fact, we find that applying
completely parallel updates, i.e. applying equation (9) for all i,e pairs, successively
equation (10) for all i,e pairs, and then equation (11) for all nodes i ∈ V , results in
fast convergence to degenerate fixed points where all nodes are assigned to the same
community. For this reason, we apply dropout. Given a fraction α ∈ (0,1], we select
a random fraction α of all possible i,e pairs, and apply the update in equation (9)
only for the selected pairs. We perform a new random draw, and update according to
equation (10), and similarly for equation (11). Finally, we update the external field in
equation (12). Empirically, we find that a value of α= 0.25 works for synthetic data,
where inference is simpler. Values below work as well. For real data we find that sub-
stantially lowering α yields more stable inference. On real data, where we alternate
MP and EM, and learning is less stable, we utilize α= 0.01. In practice, we also set a
patience parameter, and only stop MP once a given number of iterations in a row falls
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Algorithm 3. Inferring model parameters (EM).

Inputs: convergence threshold ϵem

maximum iterations iterem

randomly initialize c,n

for step = 1, . . . , iterem do
// Perform updates
perform Message-passing inference ▷ algorithm 2
nold← n
update n ▷ equation (13)
cold← c
update c ▷ equation (14)

// Check for convergence

∆ =
∑K

a=1 |na−nold
a |+

∑K
a,b=1 |cab− cold

ab |
if∆< ϵem then

break
end if

end for

below the threshold ϵmp in algorithm 2. For real datasets, we set the patience to 50
consecutive steps, and the maximum number of iterations itermp = 2000.

Appendix E. Sampling from the generative model

E.1. Computational complexity

For a fixed hyperedge size d, there are two parts to the computational cost: iterating
through the counts #, and sampling the hyperedges. The number of counts is fixed and
given by Kd/d!, i.e. the number of possible ways to assign d nodes to K groups, without
order. This cost corresponds to performing steps (ii) and (iii) of the sampling algorithm
in section 3.4, where one needs to enumerate all possible counts #, which are Kd/d! for
every dimension d, and sample from a binomial distribution for each count. The cost
of sampling the hyperedges in step (iv) in section 3.4 can also be precisely quantified.
Every d -dimensional hyperedge is sampled with a computational cost of d since it is
exactly the extraction of d nodes from V, and there are ωd of such hyperedges. Calling
Ωd the space of all d -dimensional hyperedges, we find
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E [ωd] =
∑
e∈Ωd

P(e |p, t)

=
∑
e∈Ωd

∑
i<j∈e

pti tj
κd

=
1

κd

∑
e∈Ωd

∑
i<j∈e

pti tj

=

(
N−2
d−2

)
κd

∑
i<j∈V

pti tj

≈
(
N−2
d−2

)
N 2

κd

K∑
a⩽b=1

pabnanb

=

(
N−2
d−2

)
N

κd

K∑
a⩽b=1

cabnanb .

Hence, the average computational cost is given by

D∑
d=2

(
Kd

d!
+ dE [ωd]

)
. (E.1)

Given the large size of Ωd, the cost in equation (E.1) tightly concentrates around
the expected value. In sparse regimes, the term Kd/d! dominates as the number of
hyperedges ωd is low, while the two terms both contribute to the cost when E[ωd]
grows.

Precisely, we quantify the cost in equation (E.1) in terms of asymptotic complexity.

The first summand
∑D

d=2
Kd

d! absolutely converges to a constant for diverging D, and
contributes to the complexity only as a constant relevant in sparse regimes. Defining
ad =Kd/d!, we can use the ratio test to assess convergence:

lim
d→+∞

∣∣∣∣ad+1

ad

∣∣∣∣= lim
d→+∞

Kd+1d!

Kd (d+ 1)d!
= lim

d→+∞

K

d+ 1
= 0. (E.2)

Substituting the value of κd = d(d−1)
2

(
N−2
d−2

)
that we utilize in our experiments, it is also

possible to quantify the second addend:

D∑
d=2

dE [ωd]≈
D∑
d=2

d

((
N−2
d−2

)
N

κd

K∑
a⩽b=1

cabnanb

)

=

(
K∑

a⩽b=1

cabnanb

)(
2N

D∑
d=2

1

d− 1

)
.
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Similar to the reasoning presented in equation (A.3), choosing the maximum possible

cost, given by D =N (which is higher than most practical use cases), the sum
∑D

d=2
1

d−1

grows like O(logN), therefore
∑D

d=2dE[ωd] =O(N logN), which yields an asymptotic
bound of the total sampling complexity.

Finally, we remark that since sampling from equation (17) is computationally costly,
we approximate the binomial with a Gaussian distribution4, or with a Poisson if N# is
large and π#/κd is small5. We use a Ramanujan approximation for large log-factorials
appearing in the calculations6.

E.2. Experiments

We employ the sampling algorithm to generate the hypergraphs used to study the phase
transition of section 4.2. Here, we set the affinity matrix to have all equal in-degree
caa = cin and out-degree cab = cout, so that equation (18) becomes cin + (K − 1)cout =Kc
for some K and c. In our experiments, we sample hypergraphs with N = 104 nodes by
fixing c = 10 and K = 4, we span across 65 values of cout in [0,500], and compute the
corresponding cin = cin(cout;K,c). For each experimental configuration cin,cout, we draw
five hypergraphs from different random seeds. This gives a total of 325 hypergraphs.

We use the expected number of d -dimensional hyperedges E[ωd] in equation (E.1)
and the average degree d0 in equation (A.2) to perform a sanity check between our
sampling algorithm and theoretical derivations. For constant in- and out-degree, these
two metrics evaluate to

E [ωd]≈
Nc

d(d− 1)
,

d0 ≈
Cc

2
.

The results in figure E1 show excellent agreement between theory and experiments.
We also highlight that the sampling method is extremely fast and has an average
sampling time of t= 32.7± 2.7(s) in the experimental setup considered here.

Appendix F. Phase transition: complementary derivations and additional results

F.1. Proof of proposition 1

First, we want to prove that all communities have the same expected degree. In order to
do that, we start by computing the expected degree d0i of a given node i ∈ V . Following
similar derivations to those for d0 in appendix A, we find

4 To deal with large N# and κd that cannot be stored in memory, we approximate the binomial in equation (17) with a Gaussian

N
(
π#

κd
N#,

π#

κd
N#

(
1− π#

κd

))
Crucially, the Gaussian’s mean and variance only involve the ratio N#/κd, which is numerically stable.

We adopt this approximation when the Gaussian’s variance exceeds 10.
5 A Poisson approximation of the binomial Pois

(
N#

π#

κd

)
is used if N# > 20 and N#π#/κd < 0.1, or if N# > 100 and N#π#/κd < 10.

6 For n > 5, we adopt the Ramanujan approximation [63] logn! ≈ n logn−n
log( 1

30
+n(1+4n(1+2n)))

6
+ logπ

2
,giving error of order O (1/n3).
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Figure E1. Sampling experiments. The expected number of |f |-dimensional
hyperedges returned by our experiments (blue) is in great accordance with the
theoretical prediction E[ω|f |] (black). Similarly, the experimental expected degrees
are distributed around the analytical d0. Shaded areas are standard deviations over
five random hypergraph extractions at each |f |.

d0i =
∑

e∈E:i∈e

P(e |p, t)

=
∑

e∈E:i∈e

πe
κe

= C ′
K∑
a=1

cti ana +
NC ′ ′

2

 K∑
b,d=1

cbdnbnd +
K∑
b=1

cbbn
2
b

 ,

where C ′ =
∑D

d=2

(
N−2
d−2

)
/κd, as previously defined, and C ′ ′ =

∑D
d=3

(
N−3
d−3

)
/κd. Therefore,

the average degree ⟨b⟩ of a community b ∈ [K] evaluates to

⟨b⟩=
1

Nb

∑
i∈V :ti=b

d0i

=
1

Nb

∑
i∈V :ti=b

C ′
K∑
a=1

cti ana +
NC ′ ′

2

 K∑
d,m=1

cdmndnm +
K∑
d=1

cddn
2
d


=

1

Nb

∑
i∈V :ti=b

C ′
K∑
a=1

cbana +
NC ′ ′

2

 K∑
d,m=1

cdmndnm +
K∑
d=1

cddn
2
d


= C ′

K∑
a=1

cbana +
NC ′ ′

2

 K∑
d,m=1

cdmndnm +
K∑
d=1

cddn
2
d


= C ′c+

NC ′ ′

2

 K∑
d,m=1

cdmndnm +
K∑
d=1

cddn
2
d

 ,
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which is independent of the specific choice of group b, from which we conclude that all
the groups yield equal expected degrees.

Second, we wish to demonstrate that MP’s fixed points are as in equations (19)
and (20). Notice that in the derivations here below, when convenient, we interchange
equivalent summations over the function nodes’ neighbors ∂e and hyperedge e. By
treating all quantities that are independent of ti in qi→e(ti), q̂e→i(ti) as a constant, we
evaluate equation (7) as

q̂e→i (ti)∝
∑

tj :j∈e\i

πe
κe

∏
j∈∂e\i

qj→e (tj)

∝
∑

tj :j∈e\i

∑
r<s∈e

ptrts
∏

j∈∂e\i

qj→e (tj)

=
∑

tj :j∈e\i

∑
r∈e\i

ptrti
∏

j∈∂e\i

qj→e (tj) +
∑

r<s∈e\i

ptrts
∏

j∈∂e\i

qj→e (tj)


=
∑
r∈e\i

∑
tr

ptrtiqr→e (tr) +
∑

r<s∈e\i

∑
tr,ts

ptrtsqr→e (tr)qs→e (ts)

=
∑
r∈e\i

∑
tr

ptrtintr +
∑

r<s∈e\i

∑
tr,ts

ptrtsntrnts

=
1

N

∑
r∈e\i

c+
∑

r<s∈e\i

c


=

c

N

(
(|e| − 1) + c

|e|(|e| − 1)

2

)
. (F.1)

Since messages q̂e→i(ti) are normalized to have unitary sum, equation (F.1) implies that
q̂e→i(ti) = 1/K. Substituting this result into equation (8), one also finds that qi(ti) = nti.
The variable-to-function node messages are updated with equation (9), which includes
equation (12) for the external field h(ti). The external field evaluated at fixed points is
also constant; in fact,

h(ti) =
C ′

N

∑
j∈V

∑
tj

cti tjqj (tj)

=
C ′

N

∑
j∈V

∑
tj

cti tjntj

=
C ′

N

∑
j∈V

c

= C ′c . (F.2)
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The result of equation (F.2) implies that the messages in equation (9) read

qi→e (ti)∝ nti

 ∏
f ∈E
f ∈∂i\e

∑
tj :j∈∂f \i

πf
∏

j∈∂f \i

qj→f (tj)



= nti

 ∏
f ∈E
f ∈∂i\e

∑
tj :j∈∂f \i

πf
∏

j∈∂f \i

ntj



∝ nti

 ∏
f ∈E
f ∈∂i\e

∑
r<s∈f

∑
tj :j∈∂f \i

ptrts
∏

j∈∂f \i

ntj



∝ nti

 ∏
f ∈E
f ∈∂i\e

∑
r<s∈f

∑
trts

ptrtsntrnts +
∑
r∈f \i

∑
tr

ptrtintr




∝ nti

 ∏
f ∈E
f ∈∂i\e

(
|f |(|f | − 1)

2
c+ (|f | − 1)c

)
∝ nti ,

which is exactly equation (20).

F.2. Transition matrix formula

In this section, we derive the expression for the transition matrix T̃ abr in equation (22).
To simplify the notation, we indicate the (variable node, function node) pairs at level
r as (ir,fr) = (i,e), and similarly, at level r + 1 we use (ir+1,fr+1) = (j,f). Hence, the
transition matrix becomes

T̃ abr =
∂qi→e (a)

∂qj→f (b)
.

In order to find a closed-form expression of T̃ abr , we claim that the two following lemmas
hold.

Lemma 1. Under the constant group degree assumption in equation (18):

(i) for any hyperedge e and nodes i ∈ e:∑
tj :j∈e\i

πe
∏
k∈e\i

qk→e (tk) =
c|e|(|e| − 1)

2N
; (F.3)
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(ii) for any hyperedge e and nodes i,j ∈ e:∑
tk:k∈e\i,j

πe
∏

m∈e\i,f

qm→e (tm) =
1

N

[
cti tj + c(|e| − 2)

(
2 +
|e| − 3

2

)]
. (F.4)

Lemma 2 (employing lemma 1). Under the constant group degree assumption in
equation (18):

(i) the derivative ∂ exp(−h(a))/∂qi→e(b) is negligible to leading order in N;

(ii) the external field is constant h(ti) = const.;

(iii) call Zi→e the normalizing constant of qi→e, then

Zi→e =
∏

g∈∂i\e

c
|g|(|g| − 1)

2N
(F.5)

∂Zi→e

∂qj→f (b)
=

c

N

 ∏
g∈∂i\e,f

c
|g|(|g| − 1)

2N

[1 + (|f | − 2)

(
2 +
|f | − 3

2

)]
. (F.6)

The claims allow us to derive the transition matrix. Particularly, we make explicit all
derivatives and variable-to-function node messages as in equation (9). By also ignoring
all terms relative to h(ti) thanks to lemma 2, we get

∂qi→e (a)

∂qj→f (b)
≈− 1

(Zi→e)2

∂Zi→e

∂qj→f (b)
nti

 ∏
g∈∂i\e

∑
tm:m∈∂g\i

πg
∏

m∈∂g\i

qm→g (tm)


+

1

Zi→e
nti

 ∏
g∈∂i\e,f

∑
tm:m∈∂g\i

πg
∏

m∈∂g\i

qm→g (tm)


×

 ∑
tm:m∈∂f \i,j

πf
∏

m∈∂f \i,j

qm→f (tm)

 .

The terms involving Zi→e are in lemma 2 (equations (F.5) and (F.6)), while the expres-
sions in parentheses are in lemma 1 (equations (F.3) and (F.4)). By performing all the
substitutions we get
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∂qi→e (a)

∂qj→f (b)
=−nti

 ∏
g∈∂i\e

c
|g|(|g| − 1)

2N

−2 ∏
g∈∂i\e,f

c
|g|(|g| − 1)

2N


×

 ∏
g∈∂i\e

c
|g|(|g| − 1)

2N

 c

N

[
1 + (|f | − 2)

(
2 +
|f | − 3

2

)]

+nti

 ∏
g∈∂i\e

c
|g|(|g| − 1)

2N

−1 ∏
g∈∂i\e,f

c
|g|(|g| − 1)

2N


× 1

N

[
cti tj + c(|f | − 2)

(
2 +
|f | − 3

2

)]
= nti

(
c
|f |(|f | − 1)

2N

)−1{
− c

N

[
1 + (|f | − 2)

(
2 +
|f | − 3

2

)]
+

1

N

[
cti tj + c(|f | − 2)

(
2 +
|f | − 3

2

)]}
=

2

|f |(|f | − 1)
nti

(cti tj
c
− 1
)

=
2

|f |(|f | − 1)
na

(cab
c
− 1
)

(F.7)

which is exactly the expression in equation (22).
What is left to complete all derivations is to prove lemmas 1 and 2, which is done

next.

F.2.1. Proof of lemma 1

1. Derivation of equation (F.3):∑
tj :j∈e\i

πe
∏
k∈e\i

qk→e (tk) =
∑

tj :j∈e\i

∑
r<s∈e

ptrts
∏
k∈e\i

qk→e (tk)

=
∑

r<s∈e\i

∑
trts

ptrtsqr→e (tr)qs→e (ts) +
∑
r∈e\i

∑
tr

ptrtiqr→e (tr)

=
1

N

∑
r<s∈e\i

∑
tr,ts

ctrtsntrnts +
1

N

∑
r∈e\i

∑
tr

ctrtintr

=
c

N

[
(|e| − 1)(|e| − 2)

2
+ (|e| − 1)

]
=
c(|e| − 1) |e|

2N
.
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2. Derivation of equation (F.4):

∑
tk:k∈e\i,j

πe
∏

m∈e\i,j

qm→e (tm) =
∑

tk:k∈e\i,j

∑
r<s∈e

ptrts
∏

m∈e\i,j

qm→e (tm)

= pti tj +
∑
r∈e\i,j

∑
tr

ptrtiqr→e (tr) +
∑
r∈e\i,j

∑
tr

ptrtjqr→e (tr)

+
∑

r<s∈e\i,j

∑
tr,ts

ptrtsqr→e (tr)qs→e (ts)

=
1

N

cti tj +
∑
r∈e\i,j

∑
tr

ctrtintr +
∑
r∈e\i,j

∑
tr

ctrtjntr

+
∑

r<s∈e\i,j

∑
tr,ts

ctrtsntrnts


=

1

N

cti tj +
∑
r∈e\i,j

c+
∑
r∈e\i,j

c+
∑

r<s∈e\i,j

c


=

1

N

[
cti tj + c(|e| − 2)

(
2 +
|e| − 3

2

)]
.

F.2.2. Proof of lemma 2

1. Using equation (12), we write

∂ exp(−h(a))

∂qi→e (b)
= exp

(
−C

′

N

∑
v∈V

∑
tk

catkqk (tk)

)(
−C

′

N

∑
k∈V

∑
tv

catk
∂qk (tk)

∂qi→e (b)

)
.

(F.8)

Only a few of the derivatives ∂qk(tk)/∂qi→e(b) entering equation (F.8) are non-zero.
Hence, the full derivative has negligible order O(1/N).

2. The fact that the external field is constant was already shown in equation (F.2)
during the proof of proposition 1.

3. As just proved, we can ignore the external field in the expression of Zi→e, and find

Zi→e ≈
∑
ti

qi→e (ti)

=
∑
ti

nti

 ∏
g∈∂i\e

∑
tj :j∈∂g\i

πg
∏

j∈∂g\i

qj→g (tj)

 . (F.9)
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Utilizing result equation (F.3) in lemma 1, equation (F.9) simplifies to

Zi→e =
∑
ti

nti

 ∏
g∈∂i\e

c
|g|(|g| − 1)

2N


=

 ∏
g∈∂i\e

c
|g|(|g| − 1)

2N

 .

which results in equation (F.5), as desired. Similarly, to compute the derivative
∂Zi→e/∂qj→f (b) we can ignore all appearing ∂ exp(−h(a))/∂qj→f (b) and h(ti) thanks
to the lemma’s first two points (just proved). Hence,

∂Zi→e

∂qj→f (b)
=

∂

∂qj→f (b)

∑
ti

nti

 ∏
g∈∂i\e

∑
tj :j∈∂g\i

πg
∏

j∈∂g\i

qj→g (tj)


=
∑
ti

nti

 ∏
g∈∂i\e,f

∑
tm:m∈∂g\i

πg
∏

m∈∂g\i

qm→g (tm)


×

 ∑
tm:m∈∂f \i,j

πf
∏

m∈∂f \i,j

qm→f (tm)

 ,

and using equations (F.3) and (F.4) from lemma 1, we conclude with

=
1

N

 ∏
g∈∂i\e,f

c
|g|(|g| − 1)

2N

[∑
ti

nticti tj + c(|f | − 2)

(
2 +
|f | − 3

2

)]

=
c

N

 ∏
g∈∂i\e,f

c
|g|(|g| − 1)

2N

[1 + (|f | − 2)

(
2 +
|f | − 3

2

)]
.

F.3. Elapsed time of MP

In figure F1, we plot the running time of MP when performing the synthetic experiments
of section 4.2. Elapsed times become prohibitively large when cout/cin increases. For this
reason, we threshold the maximum number of MP iterations and obtain the plateaus
of figure F1.
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Figure F1. Elapsed time for MP. For both D = 2 and D = 50, the elapsed times plat-
eau due to the threshold imposed on MP’s maximum number of iterations. Shaded
areas are standard deviations over five random initializations of MP. Vertical dotted
lines are theoretical detectability bounds derived from equation (29).

Appendix G. Calculations of the free energy

After MP, it is possible to approximate the log-evidence of the data, i.e. the log-
normalizing constant logZ, as per equation (5). The equivalent quantity F =− logZ,
called the free energy of the system, can be obtained via the following cavity-based
general formula:

F ≈−
∑
i∈V

fi +
∑
e∈Ω

(|e| − 1)fe , (G.1)

where

fi = log

∑
ti

nti
∏
e∈∂i

∑
tj :j∈∂e\i

(
πe
κe

)Ae
(

1− πe
κe

)1−Ae ∏
j∈∂e\i

qj→e (tj)


fe = log

 ∑
tj :j∈∂e

(
πe
κe

)Ae
(

1− πe
κe

)1−Ae ∏
j∈∂e

qj→e (tj)

 .

Assuming that MP has converged, all messages qj→e(tj) are available. Notice, however,
that naive computations of the fi and fe addends are unfeasible, due to the exploding
sums over tj : j ∈ ∂e. In the following, we show how such computations can be performed
efficiently.
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(i) Calculations of fi.
As one can observe from equations (B.1) and (B.2), the fi terms are the log-
normalizing constants of qi, therefore they can be computed similarly. In particular,
ignoring constants, by equation (B.13), the following simplification holds:

fi = log

∑
ti

nti
∏
e∈E
e∈∂i

∑
tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e (tj)exp(−h(ti))

 .

The single terms indexed by e ∈ E, i.e. the values
∑

tj :j∈∂e\iπe
∏

j∈∂e\i qj→e(tj), are

equivalent to the unnormalized messages q̂e→j(tj). For this reason, they can be
computed with the same dynamic program presented in appendix D.1.

(ii) Calculations of fe.
While the fi terms in equation (G.1) are computed singularly, we take a differ-
ent approach and calculate the whole sum

∑
e∈Ω(|e| − 1)fe without computing the

single fe, as this would be impossible due to their exploding number. First, we
separate the terms over Ω in equation (G.1) as follows.

∑
e∈Ω

(|e| − 1)fe =
∑
e∈Ω

(|e| − 1) log

 ∑
tj :j∈∂e

(
πe
κe

)Ae
(

1− πe
κe

)1−Ae ∏
j∈∂e

qj→e (tj)


= log

∏
e∈Ω

 ∑
tj :j∈∂e

(
πe
κe

)Ae
(

1− πe
κe

)1−Ae ∏
j∈∂e

qj→e (tj)

|e|−1


= log

∏
e∈E

 ∑
tj :j∈∂e

πe
∏
j∈∂e

qj→e (tj)

|e|−1


+ log

 ∏
e∈Ω\E

 ∑
tj :j∈∂e

(
1− πe

κe

)∏
j∈∂e

qj→e (tj)

|e|−1
+ const. .

This allows us to compute the last two addends separately.
Focusing on the second addend, and proceeding similarly as for the external field

calculations that brought us to equation (B.20), we get

log
∏

e∈Ω\E

 ∑
tj :j∈∂e

(
1− πe

κe

)∏
j∈∂e

qj→e (tj)

|e|−1

≈ log
∏

e∈Ω\E

exp

− 1

N

∑
tj :j∈∂e

(∑
k<m∈e ctktm
κe

)∏
j∈∂e

qj→e (tj)

|e|−1
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≈ log
∏

e∈Ω\E

exp

− 1

N

∑
tj :j∈∂e

(∑
k<m∈e ctktm
κe

)∏
j∈∂e

qj (tj)

|e|−1

= log
∏

e∈Ω\E

exp

1− |e|
N

∑
tj :j∈∂e

(∑
k<m∈e ctktm
κe

)∏
j∈∂e

qj (tj)


≈ log

∏
e∈Ω

exp

1− |e|
N

∑
tj :j∈∂e

(∑
k<m∈e ctktm
κe

)∏
j∈∂e

qj (tj)


=
∑
e∈Ω

1− |e|
N

∑
tj :j∈∂e

(∑
k<m∈e ctktm
κe

)∏
j∈∂e

qj (tj)

=
1

N

∑
e∈Ω

1− |e|
κe

∑
k<m∈e

∑
tj :j∈∂e

ctktm
∏
j∈∂e

qj (tj)

=
1

N

∑
e∈Ω

1− |e|
κe

∑
k<m∈e

∑
tktm

ctktmqk (tk)qj (tj)

=
C ′ ′ ′

N

∑
k<m∈V

∑
tktm

ctktmqk (tk)qj (tj)

where C ′ ′ ′ :=
∑D

d=2
1−d
κd

(
N−2
d−2

)
. We also define qV (a) =

∑
k∈V qk(a). Then,

log
∏

e∈Ω\E

 ∑
tj :j∈∂e

(
1− πe

κe

)∏
j∈∂e

qj→e (tj)

|e|−1

≈ C ′ ′ ′

N

∑
k<m∈V

∑
tktm

ctktmqk (tk)qj (tj)

=
C ′ ′ ′

N

∑
ab

cab
∑

k<m∈V

qk (a)qj (b)

=
C ′ ′ ′

2N

∑
ab

cab

 ∑
k,m∈V

qk (a)qj (b)−
∑
k∈V

qk (a)qk (b)


=
C ′ ′ ′

2N

∑
ab

cab

[
qV (a)qV (b)−

∑
k∈V

qk (a)qk (b)

]

which can be computed in linear time O(|V |K2).
The first addend requires different considerations. Since naive calculations of

every sum on tj : j ∈ ∂e cost O(K |e|), and thus are unfeasible, we design a dynamic
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program similar to that of D.1. For simplicity, consider a hyperedge e= 1, . . . ,m.
Proceeding as in appendix D.1, we define the quantities:

η̃ (e,n) =
∑

tj :j=1,...,n

πe
∏

j=1,...,n

qj→e (tj) (G.2)

s̃n (a) =
∑
t1

pat1q1→e (t1) + . . .+
∑
tn−1

patn−1qn−1→e (tn−1) . (G.3)

Notice that η̃(e,m) =
∑

tj :j∈∂eπe
∏

j:j∈∂e qj→e(tj) is the quantity we need to com-

pute. For equations (G.2) and (G.3), the following recursions hold:

η̃ (e,n) = η̃ (e,n− 1) +
∑
tn

qn→e (tn) s̃n (tn)

s̃n (a) = s̃n−1 (a) +
∑
tn−1

ptn−1aqn−1→e (tn−1) .

Here, computing the final η̃(e,m) costs O(K|e|), and computing it for all the
observed hyperedges costs

∑
e∈EO(K|e|). Note that utilizing the dynamic program

in appendix D.1 would cost
∑

e∈EO(K2|e|2), plus the processing needed to obtain
the η̃(e,m) value. Hence, the new recursions result in good computing savings with
minimal changes to the numerical implementation.

G.1. Computation of the free energy landscape on High School data

We explain further how to obtain the free energy landscape of the High School dataset
in figure 5. The three vertices are inferred using the dataset’s hyperedges whose size is
lower than or equal to D, with D = 2,3,4. After having performed inference on every
vertex, we obtain the parameters (p2,n2), (p3,n3), (p4,n4)—each pair is associated with
a value of D—for the affinity matrix and the community prior.

Every point in the simplex is generated with a convex combination of the three
vertices. Particularly, we define the parameters

psimplex = λ2p2 +λ3p3 +λ4p4

nsimplex = λ2n2 +λ3n3 +λ4n4 ,

where 0 ⩽ λi ⩽ 1 and
∑

i=2,3,4λi = 1. For any value of psimplex,nsimplex, we compute the
free energy on the whole High School dataset, i.e. taking all hyperedges. The free energy
approximations following equation (G.1) require the messages, marginals and external
field, which can be inferred via MP and in turn depend on psimplex,nsimplex. For every
point in the simplex, we fix psimplex,nsimplex and infer all the remaining quantities via
MP, to then compute the free energy displayed in figure 5.

G.2. Inference of class affinity on High School data

We expand on the community patterns detected in the High School data for D = 4,
which are represented in figure 5. The nine classes observed in the data are named after

https://doi.org/10.1088/1742-5468/ad343b 46

https://doi.org/10.1088/1742-5468/ad343b


Message-passing on hypergraphs: detectability, phase transitions and higher-order information

J.S
tat.

M
ech.(2024)

043403

Figure G1. Affinity patterns on the High School dataset. Colors of the matrices’
entries correspond to their log values, properly normalized to ease the figure’s read-
ability. (a) Edge density on the clique decomposition of the High School dataset.
As in Mastrandrea et al [58], the edge density between two classes X and Y cor-
responds to the number of observed edges between nodes of the classes, normalized
with respect to the total number of possible edges between X and Y. (b) Affinity
matrix p inferred by the EM-MP scheme with D = 4. The method detects five
classes, whose affinity values are as in the matrix’s entries. Colors of classes follow
the color coding of figure 5(c). (c) Inferred communities of nodes and the partition
in the classes of students. The panel is identical to figure 5(c).

their subjects of focus, and are: MP, MP*1, MP*2 (mathematics and physics), PC, PC*

(physics and chemistry), PSI* (engineering), 2BIO1, 2BIO2, 2BIO3 (biology) [58].
We compare the the edge density patterns computed on the data in Mastrandrea

et al [58], and shown in figure G1(a), with the affinity matrix p inferred on the High
School dataset fixing D = 4, shown in figure G1(b). Additionally, in figure G1(c), we
plot the partition of the nodes into communities with their labeling in classes.

We observe that classes that are inferred in the same community appear to also
belong to classes that have a larger number of external interactions with other classes in
the same inferred community. For instance, the BIO classes belong to two communities
that are disjoint from all others; see figure G1(c). Within the BIO classes, 2BIO2 and
2BIO3 are grouped in the same community as they have a slightly higher edge density
of 0.12, compared to the 0.11 and 0.09 observed for 2BIO1.

The affinity matrix shown in figure G1(b) aligns well with the inter- and intra-
community interactions. For instance, communities 1 and 2 (that contain the BIO
classes) have an upper diagonal block that isolates them from all others. Communities
3 and 5, which largely match students from classes MP and PC, are disassortative with
the remaining classes, grouped in community 4.

G.3. Further comments on higher-order interactions on High School data

The High School hypergraph contains interactions of orders ranging from 2 to 5. In our
experiments, we observe that optimal inference is reached at a maximum hyperedge
size of D = 4, while utilizing interactions of order 5 slightly degrades the performance.
We confirm this in various ways. The communities inferred (now shown) are less gran-
ular than those presented for D = 4. A similar trend is observed in the free energy
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Table G1. AUC scores from the High School dataset. We perform MP and EM
inference on the High School dataset utilizing hyperedges up to size D. Then, we
compute the AUC on the full dataset, i.e. on the hypergraph with all hyperedges up
to D = 5. The goodness of link prediction, represented by the AUC score, shows that
interactions up to size 4 improve the quality of inference, while utilizing interaction
of size 5 yields a slight drop in performance.

D AUC

2 0.710± 0.002
3 0.780± 0.003
4 0.843± 0.004
5 0.813± 0.003

(not shown), which slightly increases when performing inference on the whole dataset.
Finally, we measure the link prediction performances utilizing parameters inferred with
D = 2,3,4,5, and compute the AUC with respect to the full dataset, which we include
in table G1. Here again we observe a slight drop in the AUC when utilizing paramet-
ers inferred at D = 5, despite the AUC being computed with respect to all hyperedges,
including those not observed when training on lower values of D.

There could be various reasons for this result. A possible explanation is that the
interactions at D = 5 are noisier and/or less aligned with the data-generating process
assumed by our generative model. We recall that the data are collected via proximity
sensors, and that social interactions in larger groups are harder to detect, and may arise
from different types of link formation mechanisms.
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