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Robust Parametrically Varying Attitude

Controller Designs for the X-33 Vehicle

Roy Smith∗ Asif Ahmed†

Abstract

Robust linear parameter varying (LPV) control de-
sign techniques are applied to the attitude control of
the X-33, a single-stage to orbit prototype vehicle.
The focus of the research is to develop techniques
which will allow for a variety of trajectories without
significant redesign of the control system. The LPV
design method is described, and applied to a repre-
sentative problem: control of the pitch axis dynamics
during ascent. The work is on-going and this paper
details the design problem formulation.

1 Introduction

This paper reports on research into the design of at-
titude controllers for the X-33; a single-stage-to-orbit
prototype vehicle. The X-33 is equipped with a novel
thrust vectoring aerospike engine, as well as aerody-
namic surfaces and reaction control thrusters.

The flight path typically goes from lift-off at the
Earth’s surface to an altitude of 54 km (180,000 feet)
and back to ground level for a runway landing. At-
titude control is a challenging problem because of
the wide variation in the dynamic behavior along the
flight path. The traditional gain scheduling approach
involves selecting a large number of operating points
along the flight path and designing a fixed structure
linear controller for each. The final control is imple-
mented by interpolating between the controllers at
each point on the flight path. This design approach
is time consuming and does not lend itself to rapid
trajectory redesign.

The Marshall Space Flight Center (MSFC) is sup-
porting a research program investigating alternative
attitude control design methods for the X-33 vehicle.

∗Senior member AIAA, Dept. Electrical & Computer En-
gineering, University of California, Santa Barbara, CA 93106.

†Guidance and Control, MS 198–326, Jet Propulsion Lab-
oratory, California Institute of Technology, 4800 Oak Grove
Drive, Pasadena, CA 91109.

Our work under this program involves the application
of the robust linear parametrically varying (LPV)
methods to the attitude control problem. Such meth-
ods have been developed in recent years by several
research groups. See [1, 2, 3, 4, 5] and the references
therein.

The LPV design approach gives controllers which
can be viewed as being continuously scheduled as a
function of measured (or estimated) variables. The
methodology also has the advantage of enabling the
control problem (trajectory tracking and disturbance
rejection) to be cast in a robust control framework,
which also gives a means of analyzing robustness with
respect to unmodeled dynamics. Examples of typical
unmodeled dynamics in this application domain in-
clude: fuel sloshing, structural vibration modes, aero-
dynamic coefficients, and thrust. Section 3 gives a
more detailed description of the LPV design method,
and Section 4 formulates a specific design problem
for the X-33 vehicle. For prior applications of this
approach to flight control problems see [6, 7] and [8].

2 X-33 Attitude Control

2.1 Overview

The trajectory is divided into two distinct modes.
The ascent mode starts at lift-off and continues to
the main engine cut-off in the upper atmosphere. The
transition and entry mode begins at main engine cut-
off and ends just prior to the final landing approach.
The current design has separate guidance and atti-
tude controllers for each mode.

In ascent mode the aerosurfaces and the main en-
gine thrust vectoring are the actuators for the atti-
tude maneuvering. During the transition and entry
mode the main engine is shut off and attitude ma-
neuvering is available through the reaction control
system—consisting of ten 500 pound reaction jets—
and the aerosurfaces. Figure 1 illustrates the X-33
vehicle and aerosurface actuators.

© 2000 American Institute of Aeronautics and Astronautics (AIAA)
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Figure 1: Illustration of the X-33 vehicle showing the
aerosurface actuators

The trajectory guidance and attitude control are
handled by separate modules in the flight control sys-
tem. In ascent mode the guidance module generates
the engine thrust commands and a reference attitude,
which is passed to the attitude controller in the form
of an inertial to body quaternion and reference roll,
pitch, and yaw rates. The body axis rate commands
can be used to implement velocity or derivative feed-
back.

A navigation module provides estimates of the in-
ertial to body quaternion, as well as estimates of the
roll, pitch, and yaw rates. Estimates of the angle-of-
attack, α, and the side-slip angle, β, are also avail-
able. For portions of the flight, an air-data system
provides measurements of these quantities.

2.2 LPV Application Issues

In common with the existing design methodology, the
LPV approach leads to a gain scheduled controller.
However the scheduling parameters are based on en-
vironmental, vehicle, and guidance variables, rather
than the flight path. This means that the LPV design
will be applicable to an envelope of flight conditions
rather than a particular trajectory. Redesign is not
required for trajectories that remain in the parameter
design envelope.

The LPV controller is calculated as an algebraic
function of the measured/estimated scheduling vari-
ables. This contrasts with the standard approach of
using table lookups for scheduled gains and provides
a reduction in the memory requirements. Computa-

tional requirements are similar to existing method-
ologies.

It is important to note that the LPV methodology
requires a (possibly nonlinear) differential equation
based model. The system dynamics are not difficult
to handle in this context; a more challenging problem
arises with the aerodynamic coefficients. Wind tun-
nel testing and CFD code are used to produce lookup
table based coefficients, typically as a function of α,
β, Mach number, and in the case of aeroactuator sur-
faces, deflection angle. To apply the LPV method-
ology the coefficients must be modeled as nonlinear
functions of these parameters. This involves the ap-
plication of multi-dimensional curve fitting, and gives
a trade-off between model fidelity and model com-
plexity.

The parametric approximation of the aerodynamic
database represents a significant investment in time.
However the approximation is explicit and the ap-
proximation errors can be quantified and their effects
analyzed via the robust control analysis.

2.3 Design problem

A representative problem was chosen to illustrate the
application of LPV techniques. This was selected
to be pitch axis control during ascent for velocities
greater than Mach 2. The existing ascent controller
has independent pitch axis and lateral axis control,
which means that the LPV design can be integrated
into the existing controller for testing. The veloc-
ity range begins at approximately 125 seconds after
take-off. There is less aerodynamic coefficient varia-
tion for velocities above Mach 2 which simplifies the
aerodynamic parameter fitting aspects of the prob-
lem. Section 4 describes the problem in detail.

The restricted pitch axis problem is still represen-
tative of the difficulties that will be encountered in an
LPV design for the complete attitude controller. The
issues addressed here include: parametric modeling
on the aerodynamic coefficients; wide variation in ef-
fective actuator gain due to the variation in dynamic
pressure; and significant center-of-mass and inertia
variation over the operating range.

3 LPV Design Methodology

The discussion given here follows the approach pre-
sented by Helmersson [5]. Figure 2 illustrates the
manner in which the design problem is formulated.

The system, G̃(Θ̃), is a parametrically dependent
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Figure 2: Block diagram illustration of the equivalent
non-linear model frameworks. G̃(Θ̃) is a nonlinear
input-output representation and G is an LTI system.

interconnection, with parameter vector Θ̃, specify-
ing the design problem. The input vector, w, repre-
sents unknown, bounded inputs; in our case, guidance
commands, sensor noise, thrust and environmental
disturbances. The error signals, e, are those quan-
tities which are required to be small, in a weighted
sense: tracking errors, attitude deviations and ac-
tuation effort. The formal specification of the con-
troller performance requirement is that the norm of
closed-loop transfer function from w to e (denoted by
Fl(G̃(Θ̃), K̃), where l indicates that the lower loop is
closed) is small,

sup
‖w‖2≤1

‖e‖2 = ‖Fl(G̃(Θ̃), K̃)‖∞ < 1.

Weighting functions can specify frequency domain
performance requirements and are included within
G̃(Θ̃).

The system is a nonlinear function of a parame-
ter vector, Θ̃. We can also include in Θ̃ unknown
bounded parameters (or perturbations) which repre-
sent modeling uncertainty.

Known or estimated parameters—for exam-
ple Mach number, angle-of-attack, and dynamic
pressure—are denoted by ηi, i = 1, · · · , r. This nota-
tion assumes r such parameters. Each parameter, ηi,
may appear repeatedly in the representation and the
values ni, i = 1, · · · , r, denote the respective number
of occurrences of ηi in Θ̃. The repetition of param-
eters allows for the modeling of polynomial depen-
dence of the parameters. For example, if η1 = V , and
V 2 appears in the nonlinear model, then we would
require n1 ≥ 2. In practice we normalize the param-
eters so |ηi| ≤ 1 in the range of desired operation.

Unknown, but bounded perturbations may also
appear in Θ̃ and are denoted by δj , j = 1, · · · , s. The
δj may also appear repeatedly, and we denote the

number of repetitions of δj by mj . The unknown per-
turbations are typically used to model the effects of
dynamic uncertainty. Examples include the effects of
unmodeled slosh or flex modes. The model is again
normalized so that |δj | ≤ 1. Determining this nor-
malization amounts to estimating the level of uncer-
tainty we have about the unmodeled dynamics.

There is a clear distinction between ηi and δj .
Under operation, the controller will have access to
a measurement of ηi and these will in effect be the
scheduling variables. In contrast the δj are unknown;
the controller must be able to operate satisfactorily
for all possible δj with |δj | ≤ 1.

The nonlinear model, G̃(Θ̃), is reformulated as the
linear fractional transformation (LFT) illustrated in
the right hand diagram of Figure 2. The notation
used to separate Θ into an upper closed-loop block is,
G̃(Θ̃) = Fu(G,Θ). In this case, G is now a linear time
invariant (LTI) system, and Θ is a block diagonal
matrix of parameters,

Θ = diag (η1In1, · · · , ηrInr, δ1Im1, · · · , δsIms).

The design objective is to find a controller,
K̃, using measurements, y, and actuators, u,
to ensure that Fl(Fu(G,Θ), K̃) is stable and
‖Fl(Fu(G,Θ), K̃)‖∞ < 1 for all Θ, ‖Θ‖ ≤ 1. In
the standard robust control framework, K̃ is a single
LTI controller. In the LPV framework we allow K̃
to depend on the known (or estimated) parameters
η1, · · · , ηr. The controller dependence on η, is again
in the LFT framework,

K̃ = Fl(K, ηK),

where K is now an LTI system. The notation ηK
reflects the fact that the controller maintains an esti-
mate of the system parameters, η (or ηG in the sub-
sequent discussion). The complete interconnection is
illustrated in Figure 3. The controller, Fl(K, ηK),
can be interpreted as a continuously gain scheduled
controller where ηK (which are estimates of ηG) are
the scheduling parameters.

This representation has the advantage that both G
and K are LTI systems with state-space representa-
tions, allowing the design problem to be formulated
in terms of the state-space matrices of G. The pa-
rameters, ηG, ηK , and the perturbations, δ, can be
represented as either real or complex valued.

To simplify the discussion, we will initially assume
that there are no perturbations, δ. The state-space
representation for G, with state vector xG, can be
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Figure 3: Closed-loop LPV design framework with
LFT representations of the plant, Fu(G, (ηG, δ)), and
the controller, Fl(K, ηK)

written as,


xG(k + 1)
z(k)
e(k)
y(k)

 =

[
A B
C D

]
xG(k)
v(k)
w(k)
u(k)

 .

with B = [B1, B2, B3 ], C = [C1, C2, C3 ]T , and

D =

 D11 D12 D13

D21 D22 D23

D31 D32 0

 .
The zero term for D33 is without loss of generality
and can be removed via a loop shifting operation.
The model, Fu(G,Θ), is completely specified by the
additional equations which effectively close the up-
per loop, giving a discrete-time input-output transfer
function.

xG(k) = z−1xG(k + 1)

v(k) = ηG z(k).

To proceed augment the state-space interconnec-
tion to create inputs and outputs (including the state
equations) for the controller. Define the matrices, Q,

U , and V , by

xG(k + 1)
xK(k + 1)
z(k)
p(k)
e(k)
xK(k)
y(k)
q(k)


=

[
Q U
V 0

]


xG(k)
xK(k)
v(k)
q(k)
w(k)

xK(k + 1)
u(k)
p(k)


,

where

Q =


A 0 B1 0 B2

0 0 0 0 0
C1 0 D11 0 D12

0 0 0 0 0
C2 0 D21 0 D22

 ,

U =


0 B3 0
I 0 0
0 D13 0
0 0 I
0 D23 0

 ,
and

V =

 0 I 0 0 0
C3 0 D31 0 D32

0 0 0 I 0

 .
Now the problem can be formulated as the search

for a constant matrix, K̄ with the closed-loop given
by, 

xG(k + 1)
xK(k + 1)
z(k)
p(k)
e(k)

 = [Q+ UK̄V ∗]


xG(k)
xK(k)
v(k)
q(k)
w(k)

 ,
and

xG(k) = z−1xG(k + 1),

xK(k) = z−1xK(k + 1),

v(k) = ηG z(k)

q(k) = ηK p(k)

The controller equations are also evident from the
partitioning, xK(k + 1)

u(k)
p(k)

 = K̄

 xK(k)
y(k)
q(k)

 ,
xK(k) = z−1xK(k + 1), and q(k) = ηK p(k).



In the controller implementation, ηK is measured, or
estimated, from the environmental parameters. Ide-
ally ηK = ηG, although it is possible to model mis-
match in the parameter estimates by the inclusion of
an additional δj term.

The existence of a K̄ giving a stable closed-loop
system, and satisfying

‖Fl(Fu(G, ηG),Fl(K, ηK))‖∞ ≤ 1

for all |ηG| = |ηK | ≤ 1, is equivalent to the existence
of positive definite matrices,

R = diag(Rx, Rη, I),

and

S = diag(Sx, Sη, I),

such that[
Sx I

I Rx

]
≥ 0,

[
Sη I

I Rη

]
≥ 0,

[
V ⊥ 0

0 I

] [
ΓSQ−Q∗ΓS−PS Q∗PS

PSQ −PS

] [
V ⊥ 0

0 I

]∗
< 0,

[
U⊥ 0

0 I

] [
ΓRQ

∗−QΓR−PR QPR

PRQ
∗ −PR

] [
U⊥ 0

0 I

]∗
< 0,

where we have expressed S and R as,

S = PS + ΓS , P ∗S = PS > 0, Γ∗S = −ΓS ,

and

R = PR + ΓR, P ∗R = PR > 0, Γ∗R = −ΓR.

In the problem formulated here, we have implicitly
chosen dim(xK) = dim(xG) which gives linear matrix
inequality (LMI) expressions for the existence of K̄,
leading to a convex optimization problem.

If we include unmodeled dynamics (s 6= 0) then
we must further partition the identity matrices in-
cluded in the definition of S and R, and include rank
constraints on these matrices. The rank constraints
are not convex, which significantly complicates the
search for a solution. This situation is analogous to
that occurring in the robust control design problem
with structured uncertainty and it can be handled in
a similar manner. A convex upper bound problem is
formulated by applying scaling matrices on the sys-
tem inputs and outputs. An iterative procedure, con-
sisting of a controller design for the rescaled system,
and a recalculation of the scaling matrices, is used to
search for a matrix K̄ meeting the above conditions.
This iteration is equivalent to the D-K iteration ap-
plied in the linear robust control case.

4 Pitch Axis Control Problem
Formulation

4.1 Nonlinear pitch axis model

An LPV model of the vehicle longitudinal axis dy-
namics is developed and used to create a control de-
sign interconnection (Fu(G, η) in the above). For
simplicity, we initially assume that the side-slip angle,
β, is zero. Three actuators are available for pitch axis
control: ueng (engine thrust in z-body direction); ubf
(body flaps); and uel (elevons). The model equation
development follows that in Etkin [9]. The particu-
lar formulation of the aerodynamic effects is based on
that provided in the MSFC simulation.

The simplified pitch dynamics are expressed dif-
ferentially for α and q, the pitch rate, as follows,

α̇ = q +
FzW
mV

+
g

V
cos ΘW cos ΦW ,

q̇ =
τy
Iyy

+ d1,

where FzW is the force in the wind frame z-direction,
ΘW and ΦW are the wind frame elevation and bank
angles respectively. The higher order inertial terms
are included in d1 as,

d1 = Izx(r2 − p2) + Ixy(ṗ+ qr)

+Iyz(ṙ − pq) + (Izz − Ixx)rp.

As these are small and can be estimated they will
be treated as a measured disturbance. We can also
replace the gravity term in the α̇ equation in the same
manner:

d2 =
g

V
cos Θw cos ΦW .

The X-33 aerodynamic model is expressed in body
frame coordinates, and the pitch axis z direction
forces are given by,

FzB = FaerozB −
QSc

2V
Cnq(α,M) q + ueng,

where S is the aerodynamic reference area, c is the
reference length, and Q = ρV 2/2 is the dynamic pres-
sure. Note that the engine thrust vectoring input,
ueng, is simply TzB , the engine thrust in the z-body
direction. The z-body aerodynamic force is given by,

FaerozB = −QS (CL(α,M) + CLbf (α,M, ubf )

+ CLel(α,M, uel)) ,

Note that the aerodynamic coefficients are functions
of α and Mach number, M .



The x-body force is given by a similar equation,

FxB = FaeroxB + TxB ,

where TxB is the engine thrust in the x-body direc-
tion, and the x-body aerodynamic force is given by,

FaeroxB = −QS (CD(α,M) + CDbf (α,M, ubf )

+ CDel(α,M, uel)) .

The relationship between the body frame forces and
the FzW force is,

FzW = cosαFzB − sinαFxB .

The pitch torque, τy, is given by,

τy = QSc(Cpm(α,M) + Cpmbf (α,M, ubf )

+Cpmel(α,M, uel)) +
QSc2

2V
Cpmq(α,M)q

+xeng(m)ueng + zeng TxB

−Rx(m)FaerozB +Rz FaeroxB .

The engine force moment arms are xeng and zeng.
Note that xeng moves as fuel is expended and so is
expressed here as a function of mass, m. Rx and
Rz are the moment arms between the center-of-mass
and center-of-pressure. Again, Rx varies with mass,
and over the flight regime we are considering, changes
sign.

4.2 LFT model approximation

To apply the LPV approach, we must first approxi-
mate the above equations, including the aerodynamic
coefficient look-up tables, CL(α,M), etc., by linear
fractional models on the scheduling parameters. This
is a time consuming procedure, however it does not
need to be repeated unless an aerodynamic surface is
modified. Figure 4 shows an example of this approxi-
mation procedure. For simplicity we show only a rep-
resentative actuation coefficient, C(α, u), assumed to
be independent of M , for M > 2. Two approxima-
tions are shown to illustrate the trade-off between
complexity and fidelity. The first, shown in Fig-
ure 4b), is

C(α, u) ≈ (c1 + c2α)u,

and can be expressed as an LFT on α. The second—
simpler—approximation, shown in Figure 4c) is linear
in u;

C(α, u) ≈ c3 u.

a) Angle-of-attack, α

Actuator

deflection, u

C(α,u)

b) Angle-of-attack, α

Actuator

deflection, u

(c  + c  α) u1 2

c) Angle-of-attack, α

Actuator

deflection, u

c   u3

Figure 4: Aeroactuator coefficient approximation: a)
C(α, u) look-up table values; b) LFT approximation;
c) linear approximation



The scheduling parameters are m, V , ρ, and α.
Note that as α is also a state variable we must check
closed-loop stability of the nonlinear interconnection
after performing the design. In each case we normal-
ize the parameters to fit in the LPV framework. For
example, we replace each occurrence of V by an LFT
on ηV ;

V =
(Vmax + Vmin)

2
+

(Vmax − Vmin)

2
ηV ,

= Fu(Vlft, ηV ), −1 ≤ ηV ≤ 1,

where

Vlft =

[
0 (Vmax−Vmin)

2

1 (Vmax+Vmin)
2

]
,

and where V ranges between Vmin and Vmax under
the specified operating conditions. Note that 1/V
occurs in the model and it too can be expressed in
LFT form,

1

V
= Fu(iVlft, ηV ), −1 ≤ ηV ≤ 1,

with

iVlft =

[ −(Vmax−Vmin)
(Vmax+Vmin)

−(Vmax−Vmin)
(Vmax+Vmin)

2
(Vmax+Vmin)

−2
(Vmax+Vmin)

]
.

This approach was applied to the nonlinear effects
of ρ, V , and m. The aerodynamic coefficients were
approximated by LFTs based on α. The variation of
Iyy, xeng, and Rx was approximated by LFTs based
on m. Many of the approximations are based on the
fact that α is typically close to zero during this flight
regime.

The resulting LFT model has the form,

FzW = −QS(CL + CLαα+ CLbfubf

+CLeluel),

α̇ =
(

1 +
ρ

4m
Cnq

)
q +

1

mV
FzW + d2,

q̇ =
1

Iyy

[
QSc2

2V
Cpmq q −Rx FzW

+QSc(Cpm + Cpmeluel + Cpmbfubf )

+xeng ueng + d3

]
+ d1.

The torque bias due to the x-body direction thrust is
modeled as a measured disturbance,

d3 = zeng TxB .

P

Θ

� d1,d2,d3
� uel,ubf ,ueng

�α
�q

-

�

Figure 5: LFT model of the pitch axis dynamics

LFT approximations are used to model the terms,
Q = ρV 2/2, 1/m, 1/Iyy, 1/V , ρ, Rx, Cpmq, and
Cpmel. The resulting model is illustrated in Figure 5.
The parameter block, Θ, has the structure,

Θ = diag (ηαI2, ηmI4, ηV I4, ηρI2).

Note that P is linear, time-invariant, and expressed
in state-space form.

4.3 Design interconnection model

The LPV control design problem has been formulated
for limited operating conditions (pitch axis control for
M > 2), and must be integrated into the existing con-
troller for testing and verification. This places several
constraints on the controller configuration, illustrated
in Figure 6.

The upper two vector inputs in Figure 6 are the
estimated values required to reconstruct the nonlin-
ear disturbance terms, d1, d2, and d3. The next set of
inputs are the scheduling parameters. The reference
command inputs are specified by a pitch rate refer-
ence, qref , and a reference inertial to body quater-
nion, QIBref . The measurement variables are q and
QIB , the estimated inertial to body quaternion. Un-
der some flight conditions a measurement of α is avail-
able from a air-data system.

The pitch axis controller is divided into several
parts, and the controller structure is illustrated in
Figure 7. The Cpe block uses a small angle approx-
imation to derive a pitch angle error from QIBref
and QIB . Driving this error to zero is a primary de-
sign objective. The pitch angle error is passed to the
Cp block, along with the guidance system generated
pitch rate reference, qref , and the actual pitch rate,
q. The Cp block combines these objectives and gen-
erates a modified pitch rate reference, q̃ref . The Cp
control block has the effect of adding integral control
with respect to pitch angle and is relatively simple.
It is not detailed further here.
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Figure 6: Controller configuration. The negative
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Figure 7: Multi-loop controller arrangement
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Figure 8: LPV design interconnection

The pitch rate tracking controller, Cq, is required
to handle the nonlinear pitch axis dynamics and is
designed via LPV methods. The remainder of the
discussion focuses on Cq.

Figure 8 illustrates the LPV design interconnec-
tion for the design of the controller Cq. The input
and output labels match the signals illustrated in Fig-
ure 2.

The error signals are weighted angle-of-attack
(specified via Wα), weighted pitch rate error (spec-
ified via Wq), and weighted actuation (specified via
Wa). The disturbance inputs, w, correspond to the
nonlinear disturbance terms d1, d2, d3; the pitch
rate reference, q̃ref , and a vector valued noise signal
(weighted via Wn). The direct inclusion of a weighted
angle-of-attack component in the error output is ap-
plicable only if the desired angle-of-attack is close to
zero. This is the case for X-33 ascent control. For
descent control the angle-of-attack is significant and
the controller performance should be specified with
respect to a reference α.

The controller measurements, y, are pitch rate, q,
plus noise, nonlinear disturbances, w1, plus noise, and
the pitch rate reference, q̃ref . The controller access
to w1 will effectively create a disturbance feedforward
cancelation of the drift nonlinearities. The addition
of bounded noise to this signal will prevent the con-
troller from depending on an exact cancelation.

The LPV design methods outlined in Section 3 can



be applied directly to the state-space structure, G,
illustrated in Figure 8. The resulting LMI problems
can be solved via optimization code provided in the
Matlab LMI toolbox.

5 Discussion

Attitude controllers which are scheduled on the basis
of the trajectory may require redesign for subsequent
trajectory modifications. The LPV methods investi-
gated here attempt to overcome this problem by bas-
ing the scheduling on environmental and vehicle pa-
rameters, effectively giving a design which is suitable
for an operational envelope. The use of the robust
control framework allows for the specific inclusion of
a level of uncertainty in the design framework. It
also provides computationally based robustness tests
which allow the designer to assess the stability mar-
gins with respect to the nonlinear model. This con-
trasts with more standard approaches which consider
the margins of linearized versions of the system along
the trajectory.

A significant difficulty encountered in using the
LPV approach is the formulation of the design model.
The extensive lookup table based model must be re-
formulated in a more analytic framework; specifically
LFTs on the scheduling parameters. This involves de-
veloping approximations for each of the aerodynamic
coefficients. There is a trade-off between the com-
plexity and the fidelity of these approximations. The
consequences of the trade-off can only be investigated
by running through the design procedure and com-
paring the resulting controllers’ performance levels.

It is important to note that the aerodynamic ap-
proximations are explicit, and can be revisited if
greater performance is required or there is a configu-
ration change in the aerosurfaces. The explicit nature
of the approximations is a significant advantage in re-
viewing the design prior to flight qualification.

The control problem formulated here considers
only a portion of the X-33 flight conditions (ascent
for M > 2), and addresses only the pitch axis control.
The problems encountered here are representative of
other parts of the operating envelope, although the
designs and performance trade-offs will vary.
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