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Article

Quantitative variability of 342 plasma proteins in a
human twin population
Yansheng Liu1,*,†, Alfonso Buil2,†, Ben C Collins1, Ludovic CJ Gillet1, Lorenz C Blum1, Lin-Yang Cheng3,

Olga Vitek3, Jeppe Mouritsen1, Genevieve Lachance4, Tim D Spector4, Emmanouil T Dermitzakis2 &

Ruedi Aebersold1,5,**

Abstract

The degree and the origins of quantitative variability of most
human plasma proteins are largely unknown. Because the twin
study design provides a natural opportunity to estimate the rela-
tive contribution of heritability and environment to different traits
in human population, we applied here the highly accurate and
reproducible SWATH mass spectrometry technique to quantify
1,904 peptides defining 342 unique plasma proteins in 232 plasma
samples collected longitudinally from pairs of monozygotic and
dizygotic twins at intervals of 2–7 years, and proportioned the
observed total quantitative variability to its root causes, genes,
and environmental and longitudinal factors. The data indicate that
different proteins show vastly different patterns of abundance
variability among humans and that genetic control and longitudi-
nal variation affect protein levels and biological processes to
different degrees. The data further strongly suggest that the
plasma concentrations of clinical biomarkers need to be calibrated
against genetic and temporal factors. Moreover, we identified 13
cis-SNPs significantly influencing the level of specific plasma
proteins. These results therefore have immediate implications for
the effective design of blood-based biomarker studies.
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Introduction

The effects of genomic variation, modulated by lifestyle and envi-

ronment, orchestrate the extensive phenotypic variability found in

human populations. The quantification of narrow-sense heritability,

that is, the proportion of phenotypic variance attributable to addi-

tive genetic effects, provides important information for basic and

disease biology (Lichtenstein et al, 2000; Stranger et al, 2007;

Emilsson et al, 2008; Visscher et al, 2008). Within the human

population, the narrow-sense heritability of traits can be determined

in twin cohort studies. Monozygotic (MZ) twins are genetically iden-

tical and thus provide a natural and extremely valuable opportunity

to estimate the relative importance of genes and environment by

benchmarking MZ phenotype discordances to those of dizygotic

(DZ) twins which, on average, share one half of the identical by

descent genetic variability (Martin et al, 1997).

To date, such studies have been performed at the organismal

phenotype, transcript (Grundberg et al, 2012; Wright et al, 2014),

epigenetic (Grundberg et al, 2013) and metabolic levels (Nicholson

et al, 2011; Shin et al, 2014), respectively. Proteins predominantly

determine the biochemical state of biological specimens and proteo-

mic variation is therefore thought to be closely associated with

phenotypic variation, adding a complementary component to the

corresponding nucleic acid-based indicators (Aebersold et al, 2005;

Picotti et al, 2013; Wu et al, 2013). To date, the reproducible and

quantitatively accurate mass spectrometric measurement of proteins

across longitudinally collected proteome samples from MZ and DZ

pairs of a twin cohort study has been technically challenging due to

the high complexity and large dynamic range of human proteome

samples, particularly the plasma proteome.

Human blood plasma is the prime source of protein biomarkers

and one of the most intensely studied clinical specimens because it

can be obtained by minimally invasive methods and contains

protein biomarkers that indicate physiological and pathological

changes associated with disease (Zhang et al, 2007). However, in
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spite of an enormous number of studies, the clinically important

properties of the plasma proteome remain largely unexplored.

Specifically, the variability of plasma protein levels in a population,

the heritability of protein levels and their longitudinal stability over

time remain largely unexplored. Previous relevant population-based

proteomic studies have either not been focused on the plasma prote-

ome (Wu et al, 2013), or had limited analytical depth (Melzer et al,

2008; Kato et al, 2011; Lourdusamy et al, 2012; Johansson et al,

2013) [from 10s to 163 plasma proteins (Johansson et al, 2013)] or

analytical preference (Enroth et al, 2014) and/or limited quantifica-

tion robustness and outcome reproducibility (Melzer et al, 2008;

Kato et al, 2011).

Here, we used SWATH-MS, an emerging high-throughput target-

ing mass spectrometry method (Gillet et al, 2012; Liu et al, 2014;

Rost et al, 2014), to quantify 342 plasma proteins across 232 plasma

samples that were collected with 2- to 7-year intervals from MZ and

DZ twin pairs. SWATH-MS essentially combines the analyte

throughput of the traditional shotgun or discovery proteomics with

the exquisite quantitative accuracy and reproducibility of selected

reaction monitoring (SRM), the prototypical quantitative mass spec-

trometry technique. The data indicate that inherent variability of

protein levels varies significantly for different plasma proteins and

that the regulation of specific protein levels and biological processes

is under tight genetic and/or temporal control. To the best of our

knowledge, this is the first study that applies the current, quantita-

tively accurate mass spectrometric approaches to a twin study for

analyzing protein heritability determinants in the (clinically relevant)

plasma samples with the unique design of longitudinal sampling.

Results

The reproducible quantification of plasma proteins across a
longitudinal twin cohort by SWATH-MS

To quantify the levels of human plasma proteins, we applied the

newly developed SWATH-MS technique (Gillet et al, 2012) in a

longitudinal twin cohort. The cohort consisted of 44 DZ and 72 MZ

twins from the Twins UK Adult Twin Registry where blood samples

were drawn at two different time points (Fig 1). Twins were

selected at an average age of 57.8 years at the first visit, ranging

from 38 to 74 years of age. The time interval between the two

samplings was 5.2 � 1.4 years. The twins had an average age of

63.1 at the time of second visit, ranging from 44 to 78 years of age

(see Supplementary Fig S1 for the distribution of actual age in the

cohort at the two visits). Fasted plasma samples were collected at

identical conditions (see Materials and Methods and Supplementary

Table S1). Females were chosen to simplify the experimental design

by excluding the gender variance.

The data-independent acquisition (DIA) mass spectrometric

quantification method of SWATH-MS essentially converts all the

peptides ionized from a biological sample into a high-resolution,

digital map of fragment ion signals (Gillet et al, 2012; Liu et al,

2013a) (Fig 1). In these maps, specific proteins were monitored via

a targeted data analysis strategy, where fragment ion signal groups

uniquely identifying a targeted peptide were detected and quantified

in each of the 232 SWATH-MS maps. The parameters of the signal

group for each peptide, including the fragment ion masses, their

relative intensity and chromatographic concordance, the peptide

retention time and precursor mass range, constituted a specific

assay for each targeted peptide that was prepared a priori from a

spectral library of the human plasma proteome (Fig 2A). Specifi-

cally, to generate this spectral library, we deployed comprehensive

shotgun proteomic sequencing of the plasma digest of a mixed

plasma sample, which was firstly depleted of the 14 most abundant

proteins and then fractionated by strong anion exchanger at the

peptide level, yielding specific assays for 652 proteins. Further, we

included in the library additional MS assays for plasma proteins

(Farrah et al, 2011) from an in-house SWATH assay compendium

for the human proteome (Rosenberger et al, 2014). The final

combined library contained more than 43,000 peptides, representing

1,667 unique plasma proteins, which represents, as of to date, the

largest SWATH-ready spectral library for the human plasma prote-

ome (freely provided with raw data), and therefore maximized the

number of identified proteins from the SWATH maps.

Using this library and the OpenSWATH software framework

(Rost et al, 2014), we confidently identified 4,271 unique peptides

at an FDR of 1%, corresponding to 534 distinct proteins in all the

unfractionated and non-enriched plasma samples (Fig 2A and

Supplementary Table S2). Their levels in plasma were estimated to

cover six orders of magnitude according to human plasma Peptide-

Atlas database (Farrah et al, 2011), reaching, for some proteins, to

levels as low as several nanograms per milliliter (Supplementary Fig

S2A). On average, 3,520 peptides and 425 proteins were identified

from each twin sample. We further filtered these data to select the

1,904 peptides that unambiguously associated with 342 UniProt

proteins (Mallick et al, 2007) and that were consistently quantified

among samples. These peptides constituted a data matrix with only

10.07% missing values across 232 samples and approached 0%

missing values after applying the abundance re-quantification

algorithm of OpenSWATH (Rost et al, 2014) (see Materials and Meth-

ods). The dataset contained 42 (that is, about 40% of) protein biomar-

ker analytes whose measurement has been approved by US Food and

Drug Administration (FDA) for clinical purpose (hereafter, clinically

assayed proteins) assayed in blood (Anderson, 2010). It compares

favorably to prior multisample human plasma studies regarding

analytical depth (Melzer et al, 2008; Kato et al, 2011; Lourdusamy

et al, 2012; Johansson et al, 2013), particularly considering that the

analytical time was a mere 2.5 h per sample and consumed only

0.015 ll of plasma per SWATH injection, and significantly exceeds the

previous studies in terms of reproducibility and quantitative accuracy.

We next sought to assess the properties of the SWATH data.

First, we calculated the coefficient of variance (CV) of protein level

for each protein. Overall, 84.5 and 76.0% of the proteins quantified

in technical and whole-process experimental replicates had CVs of

< 25%. The median CV for technical replicates was 7.2% (Fig 2B)

and for whole-process experimental replicates 14.2%. Second,

we compared the quantitative data of SWATH-MS to SRM

measurements where we spiked the samples with heavy stable

isotope-labeled reference peptides and performed SRM analyses

using established SRM assays (Huttenhain et al, 2012). As expected,

the ratios between light and heavy versions of 41 peptides detected

in all the 232 SWATH maps were generally well correlated with SRM

results among the samples, with a mean of R = 0.85 (Supplementary

Fig S2B and C). Third, we performed unsupervised hierarchical

clustering analysis (HCA) among SWATH maps (Fig 2C). HCA found
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that 137 (i.e. 59.1% of 232) plasma samples from either the twin pairs

or longitudinally sampled individuals (96 samples from 144 MZ twins

and 41 from 88 DZ twins) were directly clustered as adjacent nodes,

indicating the global proteomic similarity between these samples.

Substantial variability in plasma protein levels was observed

among individuals. Overall, 174 (i.e. 50.8% of 342) proteins showed

more than tenfold change of SWATH signals between the extremes

of the entire cohort. The standard deviation of the fold change of one

protein intensity from its average level ranged from 0.1403 for anti-

thrombin III and 0.1465 for vitamin D-binding protein to 1.1936 for

apolipoprotein(a) and 1.6871 for serum amyloid A-1 protein, respec-

tively (Fig 2D), indicating that protein-level variability is an impor-

tant feature for different plasma proteins within human population.

Variance decomposition in the quantitative human plasma
protein dataset

We took advantage of the longitudinal twin design and utilized a

linear mixed model (Nicholson et al, 2011) to systematically

partition the variance observed for 342 protein levels. The

phenotype variance was decomposed into the biological variance

(heritable, shared/individual environmental and longitudinal

contributing factors) and the unexplained variance (Fig 3A). Even

though the twins are adult females who normally do not live in the

same household, they generally share more habits and lifestyles

than non-twin siblings, which are reflected by the term “shared/

common environment”. The unexplained variance generally

accounts for 50% of the detected variance in our data and can be

associated with variance not reflected by the experimental design

(e.g. short-term protein concentration fluctuations, diet effects, etc.)

and technical/experimental variations. The mean proportion of

heritability, common environment, individual environment and

longitudinal process across all the proteins were estimated to be

13.6, 10.8, 11.6 and 13.6%, respectively, of the total phenotypic

variance, that is, 25.4, 20.8, 23.0 and 30.8%, respectively, of the

biologically stable variance (the total fraction that is explained by

the four biological variance origins under our experimental design).

The determined heritability (h2) showed good agreement with the

protein abundance correlations in MZ and DZ twins. Examples of

apolipoprotein(A), fibrinogen beta chain and serum paraoxonase/

arylesterase 1 are illustrated in Fig 3B. Notably, heritability and

common environment are sometimes combined in twin studies as a

72 MZ twins 44 DZ twins

2-7 years

 RT (2hrs)

m/z (400-1200)

DIA Mass Spectrometry 

 Digitized SWATH maps
             (N = 232)

2-7 years

Plasma Sample Collection

Protein I.D. & variance decomposition 

Targeted data extraction 

time
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Q1 CID
TOF
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Figure 1. Experimental design.
The plasma proteomic survey of a longitudinal twin cohort was performed with SWATH-MS, an emerging mass spectrometry technique providing high quantitative accuracy
and reproducibility. The observed overall variance of protein abundance was partitioned into four biological contributing factors (heritable, common environmental,
individual environmental and longitudinally contributing factors) and unexplained effects using a linear mixed model.
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“family component”, which explains almost half (i.e. 46.2%) of the

biological variance in our results. Table 1 lists the five proteins most

strongly affected by each biological component (see Supplementary

Table S3 for variance decomposition results of all proteins). For

example, the plasma level of apolipoprotein(A) was determined

to be the most strongly heritable (h2 = 0.6633), a finding that is

consistent with previous reports (Boerwinkle et al, 1992; Lopez

et al, 2008; Cenarro et al, 2014).

We checked if possible modifications of peptides of the identified

proteins could affect the variance decomposition results. We found

that only < 5% of the peptides included in our model as protein

quantitative evidence could be possibly modified according to the

Swiss-Prot database with any type modification site reported in

the human proteome (Supplementary Table S2 and Supplementary

Fig S3A). Even if only these possibly modified peptides were

included in the analysis, identical results to those mapped proteins
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Figure 2. Proteomic identification and reproducible quantification among the twin cohort.

A The establishment of a comprehensive, specific spectral library of human plasma proteome that is ready for SWATH-MS analysis. The reference spectra were
generated a priori by extensive shotgun proteomic sequencing of fractionated plasma peptides and complemented with spectra of additional known plasma proteins
(Farrah et al, 2011).

B The coefficient of variance (CV) analysis at technical, whole-process experimental and cohort levels.
C Heatmap of hierarchical clustering analysis of the protein vs. sample matrix indicates that plasma proteins were reproducibly quantified by SWATH-MS across the

sample cohort.
D The distribution of the fold changes of protein SWATH-MS intensities from their average abundance levels across the cohort is shown as box plots. Antithrombin III

(ANT3) and vitamin D-binding protein (VTDB) are shown as examples of the most stable proteins, whereas apolipoprotein(a) (APOA) and serum amyloid A-1 protein
(SAA1) are shown as examples of the most variable proteins. The red bars show the positions of the protein analytes whose measurement has been cleared or
approved by FDA in human blood.
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were achieved with respect to determining the contribution of

family components to the total variance (R = 0.83, Supplementary

Fig S3B). This analysis thus suggests that the peptides included in

our model for protein quantification are dominated by their naked

forms and the peptide-level modification status has an undetectable

and negligible effect on our results.

We then compared our results to the only one previous twin

study of the similar design, in which 58 plasma proteins were

analyzed by using also a female twin cohort from Twins UK but an

antibody bead-based technology (Kato et al, 2011). The SWATH-MS

yielded heritability values for an additional 284 proteins, extending

the scope of the study by a factor of six. Most importantly,

compared to the antibody technique applied, SWATH-MS achieved

a higher degree of reproducibility, obviating the need to remove

any outlying samples (Kato et al, 2011) (Supplementary Fig S4A–D)

and translating into a significantly higher fraction of total pheno-

type variance that can be explained by biologically stable

factors (P = 5.19e-7, Wilcoxon rank-sum test, Supplementary

Fig S4E–G).

Intriguingly, in our result the longitudinal factor could explain

13.6% of the phenotype variance, compared to 2.9% reported by

Kato et al (2011) where the same conceptual variance model as that

of our study was used. This discrepancy may be mainly ascribed to

the much shorter temporal intervals of sampling used in their study

(around 3 months), indicating that the natural aging process

together with other longitudinally unstable factors during the

~5-year period tested in the present study in total uncovered a

profound impact of a relatively long-term, temporal changes on

human plasma proteomic dynamics. We also carefully checked the

existence of other longitudinal factors besides an aging effect

(Supplementary Table S1). We found two individuals (i.e. 1.7% of

116 twins) in the cohort who developed cancer between the two

visits, and at least 6.9–17.2% of the samples had changed meno-

pausal status at the time of the two visits. A total of 15 (i.e. 12.9%

of 116) twins had confirmed type II diabetes before visit one. No

individual developed new diabetes type II at visit 2 in this cohort.

According to the usage of four types of common medications (corti-

costeroids, thyroxine, statins and antihypertensives), we found that
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the twins tended to take more medications at the second visit

(an average of 0.38 medications per person at visit 1 versus 0.53

medications per person at visit 2, P = 0.0125). This is consistent

with the report from Enroth et al (2014) who found a Spearman rho

equals 0.29 for the correlation between age and number of medica-

tions. In summary, the longitudinal nature plus the twin structure of

our sample allowed us to give a quantification of the main causes of

variation in protein levels in plasma.

Differential biological processes preferably regulated by
heritability and other biological factors

Statistically significant heritability was observed for 80 proteins (i.e.

23% of 342, h2 > 0.25 or P < 0.01). This percentage is close to the

result of Johansson et al (2013) who measured plasma samples in

the parent–children context and thereby determined the abundance

levels of 19% of the plasma peptides to be heritable. We confirmed

the high heritability of protein level for 21 of the proteins discovered

by Johansson et al (2013). Additionally, we determined 60 plasma

proteins, the level of which was closely associated with longitudinal

changes, 52 with familial environment and 47 with individual envi-

ronment. Among these, 17 proteins appeared to be regulated by

both familial and individual environments. To discern the biological

processes associated with the four biological sources of variability,

we annotated the protein lists by Gene Ontology (GO) and pathway

enrichment analysis. This analysis identified several protein func-

tional clusters that are significantly affected by either heritability,

environment or the longitudinal effects (Fig 4A). For example, a

cluster of immune response proteins, consisting of proteins related

to the innate immune response and inflammatory regulation

(P-values between P = 0.00032 and P = 2.60e-6 for the enrichment

significance in all relevant functional processes), the blood coagula-

tion cluster (P-values between P = 0.035 and P = 0.00019) and a

protein-processing cluster (P-values between P = 0.040 and

P = 1.33e-6), were found to be more strongly heritable or familial

than associating with individual environment and aging factors.

Moreover, the clusters of proteins related to body fluid regulation

(P-values between P = 0.053 and P = 1.16e-5), lipid metabolism

(P-values between P = 0.065 and P = 0.00050) and protein secretion

(P-values between P = 0.021 and P = 1.53e-12) were found to be

not only heritable but also heavily interacting with individual

environment. Interestingly, the functional cluster of hormone

response was under tight regulation of the longitudinal effects

(P-values between P = 0.030 and P = 0.016). These results are

consistent with and extend previous literature reports. For example,

Souto et al (2000) showed that the blood coagulation and fibrino-

lysis pathways are strongly determined by genetic factors in Spanish

families, and Snieder et al (1999) noted the importance of genetic

dependency of lipid system. Taken together, the twin proteomic

data reveal that different biological processes are regulated by

genetic control, and environmental or longitudinal factors to

different degrees.

The biological variance dissected for proteins of different
plasma concentrations

The systematic dissection of the origins of variance of plasma

proteins may provide opportunities for new biological insights. For

example, using the estimated concentration levels of plasma

proteins from PeptideAtlas (Farrah et al, 2011), we investigated if

the total variability (represented by standard deviations of the fold

change of protein signals relative to the average level) and the

relative contributions of the four biological components globally

depended on the plasma concentration. The result suggests that

most of low abundant proteins are more variable; however, there

are a few high abundant proteins whose levels were also highly

variable among the cohort, which in turn makes the statistical

correlation between variability and protein concentration insignificant

(Supplementary Fig S5). Importantly, by analyzing the relative

contributions of factors explaining total biological variance, we

found that the correlation between plasma protein levels and herita-

bility values was low (R = 0.087, P = 0.178 for the correlation,

Fig 4B), suggesting that the concentration levels of more abundant

proteins are not necessarily more strongly determined by genes. The

variability from both common and individual environmental compo-

nents has no detectable associations with the protein concentra-

tions. In contrast, concentration variability of more abundant

proteins is generally less affected by longitudinal factors such

as aging (P = 0.0165, Fig 4B). This novel finding could thus indicate

the limited regulation power of, for example, longitudinal

aging processes on highly abundant plasma proteins or that

the longitudinal factors preferably control the levels of low

abundant proteins.

The heritability of circulating levels of high-density lipoproteins
and other protein classes

We next analyzed the source of variation in a clinically and biologi-

cally related set of proteins, those associated with high-density lipo-

proteins (HDL) (Shah et al, 2013). HDL represents a complex,

bioactive particle in human plasma that can be isolated by density

gradient ultracentrifugation and has been shown to minimally

consist of 85 proteins (Shah et al, 2013). HDL has a range of roles,

such as the promotion of reverse cholesterol transport and modula-

tion of inflammation. Here, we quantified the circulating levels of

92% of putative HDL proteins (that is, 78 out of 85). The data indi-

cate that HDL proteins showed a markedly higher heritability

compared to the non-HDL protein quantified in this study

(P = 0.00011, Fig 4C), suggesting that the biological roles (e.g.

cardioprotective effect) of HDL in humans might be under high

genetic control (Hegele, 2009).

We repeated the heritability analysis for proteins containing

different types of modifications according to human Swiss-Prot data-

base and different domains according to Pfam database. Interest-

ingly, proteins annotated as “Glycoproteins” (Fig 4D, P = 0.00071)

and as containing “Disulfide bond” were more strongly regulated by

genetics and less affected by longitudinal factors compared to other

proteins, while the proteins denominated “Phosphoprotein” or

containing “Acetylation” showed a reversed regulation trend

(Supplementary Fig S6, P < 0.01 or P < 0.05). We further found that

proteins with “V-set domains” seemed to be highly regulated by

family component (the combination of heritability and shared

environment). These observations might be associated with the

protein class functions; for example, proteins with V-set domain

in blood are mainly immune proteins that are more strongly

heritable (Fig 4A). Furthermore, considering the overlapping
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proteins between annotation classes and the fact that we did not

directly measure any protein modification and structure in the

current study, we suggest that further direct studies are crucial

to conclude whether different protein modifications or structures

indeed harbor diverse genetic or longitudinal regulation

dependency.

Genetic contribution to plasma protein-level control between
the two longitudinal visits

To study the question whether the genetic contribution to the

control of plasma protein concentration levels varied over time, we

firstly separated the dataset according to the two longitudinal time
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Figure 4. Biological and biomedical insights derived from twin proteomic data.

A Enrichment analysis of pathways and biological processes regulated by the four biological components was performed. The results were compiled into clusters
according to the functional annotation of proteins.

B Low correlation between plasma protein levels extracted from PeptideAtlas (www.peptideatlas.org) and their heritability contributing percentages in biological
variance indicating the lack of an abundance bias. In contrast to that, concentration variability of more abundant proteins is generally less affected by longitudinal
factors. The light red dashed line indicates the protein concentration of 1 lg/ml, which separates the proteins into two abundance classes.

C Comparison of high-density lipoproteins (HDLs) and other proteins, using the heritability contributing percentages in biological variance of the plasma protein levels.
D Comparison of heritability contributing percentages in biological variance between those proteins annotated as glycoproteins and other proteins. P-values are

determined by Wilcoxon rank-sum test.
E Decreasing trend of heritability control in plasma protein levels along with 5-year longitudinal process.
F Clinically assayed proteins generally show lower quantitative variability compared to other plasma proteins with few exceptions, for example, CRP and APOA.
G Examples of previously reported protein biomarker candidates, the plasma abundance levels of which were highly regulated by longitudinal effects. These include

hexokinase-1 (HXK1), triosephosphate isomerase (TPIS), 14-3-3 protein zeta/delta (1433Z), platelet basic protein (CXCL7), monocyte differentiation antigen CD14
(CD14), biotinidase (BTD), serotransferrin (TRFE) and thyroxine-binding globulin (THBG).

Data information: P-values are determined by Wilcoxon rank-sum test.
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points which were on average 5 years apart and then compared the

heritability values of all the proteins quantified at the two sampling

points. The results indicate (Fig 4E) that heritability generally

decreased over time during the 5-year process, for the proteins

tested (P = 4.90e-07). To corroborate this result, we included all the

informative peptides of our proteins (instead of top abundant ones)

for the statistical test and obtained the same global trend for

majority of the peptides (P < 2.2e-16 based on 1,904 peptides,

Supplementary Fig S7A). We then added together the heritability

and the common environment factor as family component and

observed that the family component still had a decreased trend of

contribution to the protein variability between two time points

(P = 0.0008, Supplementary Fig S7B). To further investigate this

phenomenon, we factored the real age of each individual into the

model and observed that the real age had a minimal effect in deter-

mining the heritability (correlation of 99%) and in explaining the

variance (only explained 0–1% of the variance for most proteins)

(Supplementary Fig S7C–H). It is worth mentioning that the real age

could consistently explain > 4% of the total variance for only two

proteins, fibrinogen beta chain (FIBB) and lumican (LUM), at both

visits. Altogether, these results suggest that in these relatively old

individuals tested (average age of 57.8 at visit 1), the genetic regula-

tion of many (but not all) plasma proteins decreased along with

longitudinal processes or that the environmental factors and other

factors unexplained by the linear mixed model have an increased

contribution in proteomic variability during the 5-year temporal

process.

Insight for biomarker discovery studies derived by protein
variability analysis

We next interrogated the plasma-level variability for the 42 proteins

whose clinical assays have been approved by FDA (Anderson, 2010)

and that were quantified in the dataset. We observed that generally,

their overall variability was lower than that of the other proteins

across the cohort (P = 0.0001, Figs 4F and 2D). We partially ascribe

the lower variability of clinically assayed proteins to their higher

heritability (P = 0.0133, Supplementary Fig S8) and to the fact that

it is desirable for biomarkers to have relatively stable expression

levels. Strikingly, we found that the plasma levels of a few reported

biomarkers are strongly and preferably affected by a longitudinal

effect (> 30%) compared to the heritability and environmental

components (Fig 4G). These include biomarkers whose measure-

ments have been already cleared or approved by FDA (e.g. biotin-

idase (Kang et al, 2010), platelet basic protein, thyroxine-binding

globulin, etc.) and candidate proteins not yet cleared. For exam-

ple, triosephosphate isomerase (TPIS) was discovered as a prom-

ising blood biomarker for metastatic non-small cell lung cancer

(Patel et al, 2011), especially lung squamous cell carcinoma

(Zhang et al, 2009). 14-3-3 protein zeta/delta (1433Z) was

discovered as a putative prognostic marker for renal cell carci-

noma (Masui et al, 2013) and for monitoring chemotherapy in

breast cancer (Hodgkinson et al, 2012). And plasma level of

soluble CD14 was indicated to be an independent predictor for

human immunodeficiency virus infection. Our data therefore indi-

cate that for the application of these proteins as predictive

biomarkers, the longitudinal factors (such as aging) dependent

variability should be considered. The incorporation of variability

over time with stochastic variability of protein biomarkers

will enable the refinement of risk scores estimated by such

biomarkers.

Identification of cis-protein quantitative trait loci (pQTL)
influencing plasma protein levels

Finally, we carried out association analysis to identify cis-SNPs

regulating the levels of 303 (of the 342 measured) proteins that we

could uniquely map to known genes. We first selected a total of

113 out of 116 individuals which passed the genotyping data

quality control step. Second, we used the twin proteomic data to

map the protein quantitative trait loci, or pQTLs by determining

the statistical significance of the association between SNPs 1 Kb up

and down the transcription start site for each gene and protein

expression values. The final number of tested SNPs was 758. We

found 13 genes with at least a statistically significant pQTL

(Fig 5A). Among them, four plasma proteins (ficolin-2, coagulation

factor XII, complement component C8 gamma chain and complement

C5) were annotated with the “innate immune response” process.

The close association between genotype alleles and protein levels is

shown in Fig 5B. Similar distributions were obtained for all identi-

fied pQTLs (Supplementary Fig S9). We observed that most of the

discovered pQTLs lie in regulatory regions and only 2 of them are

in the coding region, but synonymous (Supplementary Table S4).

To explore the functional role of the pQTLs, we assessed whether

they have an effect on gene expression. We checked the association

of the pQTLs with gene expression in four tissues (fat, skin, blood

and lymphocyte cell lines (LCL)) in a cohort of about 800 female

twins of the same population that are part of the Twin UK cohort

with an identical age range. We called gene expression QTLs

(eQTLs) in the four tissues by using gene expression measured

by RNA-seq and genotype information (Buil et al, 2015). We could

measure the gene expression of 9 of the 13 proteins with

pQTLs, and we found that 5 of the 9 pQTLs are associated with

eQTLs in at least one of the four tissues (Fig 5A and Supplementary

Table S4).

We also compared our pQTLs to those published previously by

Johansson et al (2013) which were not significant in our sample.

This fact might be partially explained by the distinctive sample

cohorts used. To further investigate if the difference in detection

was just a matter of power, we checked at the P-values of Johans-

son’s pQTLs in our study. If the Johanson’s pQTLs were present in

our sample, even if they were not statistically significant, we would

expect to see an enrichment of small P-values in our sample. We

estimated the mean of the P-value of the Johanson’s pQTL associa-

tions in our sample, and compared this mean value with the distri-

bution of means expected if there were no signal in our sample.

Supplementary Fig S10 shows the expected distribution of mean

values under the null hypothesis (no signal of Johansson’s pQTLs in

our sample) and the actual observed mean. From there, we calcu-

lated a P-value equals 0.0035 that supports the notion that with a

larger sample, we would find some of the pQTLs described by

Johansson et al (2013).

To estimate the relative contribution of the pQTLs to protein vari-

ability, we estimated the proportion of protein variance explained

by each pQTL. We observed that these pQTLs explained between 3

and 19% of the protein’s variance with an average of about 8.5%.
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To compensate the fact that heritability might be not well separated

with the estimates of common environment, we then estimated the

contribution of the pQTL to the total family component consisting of

both heritability and common environment component. We

observed that pQTLs explain between 6 and 68% of the family

component, with an average of about 25% (Supplementary Table

S5). Finally, we used the online annotation tool SnpNexus (Dayem

Ullah et al, 2012) to annotate the pQTLs as disease SNPs. We found

that two of the pQTLs are associated with the following diseases:

rs1801020 on gene F12 with cardiovascular disease (Santamaria

et al, 2004; Cochery-Nouvellon et al, 2007) and rs2071042 on gene

ITIH4 with hypercholesterolemia (Fujita et al, 2004). In summary,

we found pQTLs for 13 proteins that explained about 8.5% of the

protein-level variance.

Discussion

The variability of human proteins within a population lays a basal-

level foundation for relating protein expression patterns to disease

(Nedelkov et al, 2005). The knowledge of the protein variability

therefore stands to have an immediate impact in the field of clinical

proteomics. In this study, we present the first study that addresses

the degree of human protein variability and its origins using a quan-

titatively accurate proteomic approach and the rigorously controlled

biological samples. Specifically, we used SWATH-MS (Gillet et al,

2012) to robustly and systematically dissect the generic and genetic

variance within a cohort of 232 healthy twins by focusing on the

proteome of the most intensely studied clinical samples, the human

plasma. This analysis has become possible by the development of

new mass spectrometric techniques that generate quantitatively

accurate and highly reproducible datasets across large sample

cohorts. Herein, by combining the extensive shotgun analysis

presented in this study and the recently published SWATH-MS assay

compendium for the human proteome (Rosenberger et al, 2014), we

also configured the to-date most comprehensive spectral library

for quantifying 1,667 human plasma proteins. We now provide

this high-quality spectral library as a transferrable resource

deposited in ProteomeXchange, which can be easily downloaded as

a stand-alone MS assay repository to support those future targeted

proteomic studies focused on the human plasma. Using this library

and a targeted data analysis strategy, we identified on average 425

plasma proteins in each individual. This number is 3.3 times higher

than that reported in the previous large-scale plasma proteomic
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Figure 5. pQTL discovery in human plasma.

A Manhattan plot of the best P-value per gene, highlighting the 13 statistically significant pQTL associations. The asterisks indicate that the corresponding eQTLs were
found in human tissues. The cutoff of the P-value is 6.166e-3.

B Examples of pQTLs: plasma protein levels among the cohort of four proteins associated with innate immune response distributed by distinct genotypes of the SNPs
(see Supplementary Table S3 for all abbreviations of protein names).
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survey by Johansson et al (2013). Further, in comparison to an

extensive SRM analysis of body fluids that targeted more than 1,000

cancer-associated proteins (CAPs) and detected 73 proteins in the

crude plasma digest (Huttenhain et al, 2012), herein we identified

99 CAPs and these were quantified across the whole twin cohort.

Besides the high proteome coverage achieved, we consistently quan-

tified 342 unique plasma proteins (assigned by 1,904 informative

peptides) among the whole cohort with a highly completed data

matrix facilitated by OpenSWATH framework (Rost et al, 2014).

Most importantly, the technical variability of our SWATH-MS profil-

ing was indeed extremely low (an average CV of 7.2%), which, in

essence, significantly reduced the technical variance and allowed

for the rigorous decomposition of biological variances that can be

relatively small.

In our longitudinal twin strategy, we used samples from twins

at an older age (an average of 57.8 and 63.1 at two donations)

for the practical consideration that many systematic diseases such

as cancer occur more frequently at this age range. For example,

over half (53%) of all cancers are diagnosed in adults aged 50–74

and over a third (36%) of all cancers are diagnosed in the elderly

aged > 75 in UK, 2009–2011. Our biological variability analysis at

this similar age range is thus beneficial to the further understand-

ing of the plasma protein profiles reported from those biomarker

discovery studies focusing on such diseases. Females were chosen

to simplify the experimental design by excluding the gender vari-

ance component in the dissection model due to the limited

sample size.

The same trait measured over an individual’s lifetime can have

different genetic effects influencing it (Visscher et al, 2008). There-

fore, compared to a parent–children-based approach (Johansson

et al, 2013) which normally needs to remove the aging effect as a

confounding factor, twin studies based on the longitudinal sampling

of the same individuals are preferable to uncover the traits specifi-

cally regulated during a temporal period. We herein employed rela-

tively longer longitudinal intervals of sampling, so that the

controlling mechanism of plasma dynamics along with aging

process during an average of 5.2 years could be investigated. We

found the 5-year span was long enough to cause significant quanti-

tative variability for 17.5% (that is, 60 out of 342) of plasma

proteins. For slowly progressing diseases such as prostate cancer,

5 years might be not long enough to reveal the whole disease

process. However, for many other general diseases, a span of

5 years is clinically relevant. For example, for ovarian cancer, the

serum biomarkers were reported to provide evidence of the cancer

3 years before clinical diagnosis (Anderson et al, 2010). Also for

diabetic nephropathy, the urinary levels of collagen fragments were

demonstrated as prominent biomarkers 3–5 years before onset of

macro-albuminuria (Zurbig et al, 2012). Previously, a 4-year differ-

ence in long-term storage was tested with no effect on plasma

protein levels (Mitchell et al, 2005). This is consistent with our

result where decreased genetic control along with the 5-year span

can be successfully revealed. The biological confounding factors

along with the 5-year span could include cancer, diabetes and other

diseases developed, a change in medications consumed and meno-

pausal status in elder women, as listed in Supplementary Table S1

as well as other temporal factors of unknown origin. With the

limited cohort size, we could not dissect the variance contributed by

these factors from the aging process in the present study. Of note,

the relative longitudinal process explained much more variance than

the real age of each individual (Supplementary Fig S7), demonstrat-

ing the necessity of the longitudinal strategy applied on the same

individuals. With higher sample throughput rendered by the fast-

developing proteomic instruments and workflows, a further, larger

scale twin survey involving multiple longitudinal sampling points, a

longer term age span that extends the age range investigated and

both genders, would be ideal in the future to reinforce the under-

standing of genetic and longitudinal regulations of plasma protein

expressions.

Additionally, the pQTLs we observed in the cohort may explain

just a fraction of the genetic effects that control protein level. Other

genetic variants in the cis-region around the functional gene plus

genetic variants in trans-, far from the gene, are expected to explain

the remainder of the observed heritability. The identification of

these variants would require much larger sample sizes.

Moreover, we did not adopt the affinity depletion or enrichment

approaches (which may bring more protein identifications) except

for the step of spectral library generation, so that protein-dependent

technical variation between individuals in the sample preparation

step can be minimized to increase the power for our proteomic vari-

ance investigations. For future comparative studies, the relative

variability derived from this study for certain plasma proteins (e.g.

those interacting with albumin) might need to be adjusted by

factoring in the technical variations, for example, those from

immunodepletion (Dayon et al, 2014) or protein isolation steps, if

indeed these steps are used.

Until now, biomarker discovery studies have almost entirely been

focused on the comparison of the protein levels between disease and

normal cases and were severely limited in sample size. However, the

inherent (in)stability of proteins is biologically associated with its

genetic architecture and thus, resultant confounding factors might

obscure the biomarker analyses. Here, we show that the roles of the

heritable, environmental and longitudinal determinants in control-

ling plasma protein levels are different for different proteins and

functional clusters, and we noted that longitudinal effects might

decrease the genetic control of protein levels and reduce the regula-

tion power in controlling the variability of high abundant plasma

proteins. All such valuable information will increase the ability of

future studies to assign statistical significance to potential protein

biomarkers.

Understanding the underlying genetic determinants of biomar-

kers can be useful in diagnosis or prognosis of diseases in two

different ways. First, for biomarkers known to be causal for a

disease, genetic variants associated with a biomarker become

themselves genetic biomarkers for the disease. In this case, the

quality of the genetic biomarker will depend on the association

with the original biomarker. Second, for biomarkers that are not

causal for a disease, the information about the disease that is

carried by the biomarker does not come from itself but from

unknown marker associated with, and causal for, the diseases. In

this case, removing the effect of genetic variants that affect the

biomarker abundance should increase the relative information of

the unknown causal marker, making the biomarker more infor-

mative, that is, more associated with the disease. As examples,

two identified plasma proteins, lipoprotein A (LPA) and C-reactive

protein (CRP), were previously established as biomarkers for

indicating coronary artery disease (CAD) risk (Jansen et al,
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2014). LPA was reported as a causal risk factor for CAD (Jansen

et al, 2014), and pQTLs for LPA are also associated with CAD

(Kamstrup et al, 2009). That means that these pQTLs could be

genetic biomarkers for CAD. On the other hand, pQTLs for CRP

showed no association with CAD (Elliott et al, 2009); in this case,

removing the effect of the genetic variants associated would result

in a better scrutiny of CRP as a CAD biomarker.

In conclusion, the large-scale establishment of the heritability

dimension of plasma proteins (or other subproteomes of human, or

even the entire human proteome in the future) and the identification

of pQTLs explaining a fraction of protein-level variation will

sharpen our understanding of protein expressions, functions and

temporal dynamics from the heritability perspective and aid the

more efficient biomarker discovery. Our study serves as a first step

in understanding the population-level variance components and

eventually incorporating them in disease risk assessment.

Materials and Methods

Sample recruitment and collection

A total of 116 twins, comprising 22 DZ and 36 MZ pairs, were ascer-

tained from the Twins UK Adult Twin Registry at King’s College

London of approximately 11,000 twins (http://www.twinsUK.ac.uk)

(Moayyeri et al, 2013) and invited to participate in this study.

Eligible twins were healthy, Caucasian females of north European

descent and aged between 38 and 78 years. They provided written

informed consent. Zygosities were confirmed by genotype. We

applied a longitudinal twin strategy to recruit samples. These

healthy twins were selected at an average age of 57.8, and the time

intervals between two donations range from 678 to 2,718 days, with

a mean of 1,910 days (i.e. 5.2 years). This study was approved by

St. Thomas’ Hospital Research Ethics Committee. The twins have

been shown to be generalizable to the general singleton population

(Andrew et al, 2001). Fasting blood samples were collected at all

visits under identical conditions (all twins fasted overnight for 10 h

before the scheduled visits). Plasma was obtained from each sample

by centrifuging at 2,000 g for 10 min at room temperature, aliquoted

and instantly stored at �80°C. Complete Protease Inhibitor Cocktail

(Roche) was added upon thawing. None of the samples were

thawed more than twice before analysis.

Sample preparation and protein digestion

Crude plasma samples were centrifuged at 18,400 g for 10 min at

4°C. The following sample preparation steps were performed with

96-well format plates with five whole-process experimental repli-

cates distributed in different plates. 5 ll of plasma from each

sample was diluted to 50 ll and filtered by G-10 gel filtration

cartridges (Nest Group Inc.). Three external proteins were spiked

(bovine alpha-1-acid glycoprotein with the targeted plasma level at

85 lg/ml, bovine fetuin-B at 8.5 lg/ml and human prostate-

specific antigen at 0.85 lg/ml) before 80 ll of 10 M urea in

100 mM ammonium bicarbonate was added into each sample for

denaturing at 37°C, 30 min. After reduction and alkylation with

10 mM tris(carboxyethyl)phosphine (Sigma-Aldrich) and 20 mM

iodoacetamide (Sigma-Aldrich), the samples were diluted to 1 M

urea and were digested with sequencing-grade porcine trypsin

(Promega) at a protease/protein ratio of 1:50 overnight at 37°C

(Huttenhain et al, 2012). Digests were purified with Vydac C18

Silica MicroSpin columns (The Nest Group Inc.). An aliquot of

retention time calibration peptides from iRT-Kit (Biognosys) was

spiked into each sample at a ratio of 1:30 (v/v) before all LC-MS

analysis, to correct relative retention time differences between runs

(Escher et al, 2012). Selected, heavy isotope-labeled internal stan-

dard peptides according to our previous study were synthesized

(Huttenhain et al, 2012) (JPT Peptide Technologies and Thermo

Fisher) and spiked into each sample for SRM and SWATH-MS

measurements.

Plasma depletion and SAX fractionation

For the comprehensive shotgun analysis, crude plasma mixture

from all the samples was firstly depleted of the 14 most abundant

proteins with the multiple affinity removal system (MARS Hu-14

spin cartridge; Agilent Technologies) according to the manufac-

turer’s instruction. Depleted samples were exchanged with Vivaspin

500 concentrators with a 5,000 molecular weight cutoff (Sartorius

Stedim Biotech), denatured in 6 M urea and then diluted and

digested with trypsin as above (Huttenhain et al, 2012). 50 lg of

the resulting peptides was then separated into six fractions by strong

anion exchanger (SAX) and purified on C18 StageTips as previously

described (Wisniewski et al, 2009). The depleted sample was also

directly digested and analyzed without SAX fractionation.

Shotgun proteomic measurement

The depleted and fractionated peptides were all measured by

an AB Sciex 5600 TripleTOF mass spectrometer operated in

data-dependent acquisition (DDA) mode. The mass spectrometer

was interfaced with an Eksigent NanoLC Ultra 2D Plus HPLC system

as previously described (Gillet et al, 2012; Collins et al, 2013; Liu

et al, 2013b). Peptides were directly injected onto a 20-cm PicoFrit

emitter (New Objective, self-packed to 20 cm with Magic C18 AQ

3-lm 200-Å material) and then separated using a 120-min gradient

from 2 to 35% (buffer A 0.1% (v/v) formic acid, 2% (v/v) acetoni-

trile, buffer B 0.1% (v/v) formic acid, 90% (v/v) acetonitrile) at a

flow rate of 300 nl/min. MS1 spectra were collected in the range

360–1,460 m/z. The 20 most intense precursors with charge state

2–5 which exceeded 250 counts per second were selected for

fragmentation, and MS2 spectra were collected in the range

50–2,000 m/z for 100 ms. The precursor ions were dynamically

excluded from reselection for 20 s.

SWATH-MS measurement

SWATH-MS measurements were performed with peptide mixtures

generated by digesting crude plasma samples. The unfractionated,

total peptide samples were analyzed to minimize confounding

factors introduced by sample handling. The same LC-MS/MS system

used for DDA measurements was used for SWATH analysis (Gillet

et al, 2012; Collins et al, 2013; Liu et al, 2013b). Specifically,

in SWATH-MS mode, the instrument was specifically tuned to

optimize the quadrupole settings for the selection of 25-m/z wide

precursor ion selection windows. Using an isolation width of
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26 m/z (containing 1 m/z for the window overlap), a set of 32 over-

lapping windows was constructed, covering the precursor mass

range of 400–1,200 m/z. The effective isolation windows can be

considered as being 399.5–424.5, 424.5–449.5, etc. SWATH-MS2

spectra were collected from 100 to 2,000 m/z. The collision energy

(CE) was optimized for each window according to the calculation

for a charge 2+ ion centered upon the window with a spread of

15 eV. An accumulation time (dwell time) of 100 ms was used for

all fragment ion scans in high-sensitivity mode, and for each

SWATH-MS cycle, a survey scan in high-resolution mode was also

acquired for 100 ms, resulting in a duty cycle of ~3.4 s. Six repeated

SWATH-MS measurements were performed on one of the samples

to access the technical variability.

SRM measurement

For SRM analysis, peptide samples were analyzed on a hybrid triple

quadrupole/ion trap mass spectrometer (5500QTRAP, AB Sciex)

equipped with a nanoelectrospray ion source. Chromatographic

separation of peptides was performed by a nanoLC ultra 1Dplus

system (Eksigent) coupled to a 15-cm-fused silica emitter. Peptides

were separated in a 35-min gradient of 5–35% acetonitrile in 0.1%

formic acid (v/v) at a flow rate of 300 nl/min (Huttenhain et al,

2012; Liu et al, 2013b). Both Q1 and Q3 operated at unit resolution

and a cycle time of 3 s at scheduled mode (4 min window). CEs

were calculated according to previous studies (Lange et al, 2008;

Liu et al, 2013b). SRM data were analyzed using Skyline (MacLean

et al, 2010) and normalized based on the external proteins spiked

and the heavy peptide standards.

Spectral library generation for SWATH-MS

Profile-mode.wiff files from shotgun data acquisition were centroided

and converted to mzML format using the AB Sciex Data Converter

v.1.3 and converted to mzXML format using MSConvert v.3.04.238.

The MS2 spectra were queried against the reviewed canonical

Swiss-Prot complete proteome database for human (Nov. 2012)

appended with common contaminants and reversed sequence

decoys (Elias & Gygi, 2007) (40,951 protein sequences including

decoys). The SEQUEST database search (Yates et al, 1995) through

Sorcerer PE version 4.2 included the following criteria: static modifi-

cations of 57.02146 Da for cysteines and variable modifications of

15.99491 Da for methionine oxidations. The parent mass tolerance

was set to be 50 p.p.m, and mono-isotopic fragment mass tolerance

was 0.5 Da (which was further filtered to be < 0.05 Da for building

spectral library); semi-tryptic peptides and peptides with up to two

missed cleavages were allowed. The identified peptides were

processed and analyzed through Trans-Proteomic Pipeline 4.5.2

(TPP) (Keller et al, 2005) and were validated using the Peptide-

Prophet score (Keller et al, 2002). All the peptides were filtered at

a false discovery rate (FDR) of 1%. The raw spectral libraries

were generated from all valid peptide spectrum matches and then

refined into the non-redundant consensus libraries (Collins et al,

2013) using SpectraST (Lam et al, 2007). For each peptide, the

retention time was mapped into the iRT space (Escher et al, 2012)

with reference to a linear calibration constructed for each shotgun

run, as previously described (Collins et al, 2013). The MS assays,

constructed from Top six most intense transitions with Q1 range

from 400 to 1,200 m/z excluding the precursor SWATH window,

were used for targeted data analysis of SWATH maps.

A published high-confidence list of 1,929 human plasma proteins

complied from PeptideAtlas (Farrah et al, 2011) was merged with

an in-house compendium of MS assays for the targeted detection of

any of more than 10,000 human proteins in SWATH-MS datasets

(Rosenberger et al, 2014), and correspondingly, the highly specific

MS assays of 1,550 plasma proteins were extracted. The spectral

library from our shotgun analysis was then combined with the

library of these 1,550 proteins at the peptide level, whereas the

assays coming from the latter case were only accepted if the corre-

sponding peptides were not identified by our shotgun effort.

Targeted data analysis for SWATH maps

SWATH-MS.wiff files were first converted to profile mzXML using

ProteoWizard (Kessner et al, 2008). The whole process of SWATH-

targeted data analysis was carried out using OpenSWATH (Rost

et al, 2014) running on an internal computing cluster. OpenSWATH

utilizes a target-decoy scoring system like mProphet to estimate the

identification of FDR (Rost et al, 2014). The best scoring classifier

that was built from the sample of most protein identifications was

utilized in this study. Based on our final spectral library for human

plasma proteome, OpenSWATH firstly identified the peak groups

from all individual SWATH maps at a global peptide FDR = 1%

(enabled by the strict FDR cutoff of 0.0307% at the level of total

peak groups) and aligned them between SWATH maps based on the

clustering behaviors of retention time in each run with a non-linear

alignment algorithm (Weisser et al, 2013). Specifically, only those

peptide peak groups identified in more than 1/3 samples were

reported and considered for alignment with the max FDR quality of

0.1 (quality cutoff to still consider a feature for alignment) and/or

the further constraint of < 100 s RT difference in LC gradient after

iRT normalization.

Next, to obtain a high-quality quantitative data at the protein

level, at the first step, we only accepted those proteins whose

peptides had been identified in at least 90% of all the samples for

proteomic profiling. Moreover, peptides that were shared between

different proteins [non-proteotypic peptides (Mallick et al, 2007)]

were discarded for quantification. The re-quantification option by

OpenSWATH (Rost et al, 2014) was then enabled to re-quantify the

missing values. Secondly, to retrieve the protein quantification

information from those peptides identified in more than 1/3 but

< 90% of the samples, we firstly enabled the re-quantification

option of OpenSWATH to re-quantify the missing values by the local

MS2 noise, then we fit our model at peptide-level, accepted those

peptides whose residual variance (see below section of variance

decomposition) was < 65% (so that an equal average of residual

variance was achieved when compared to the first step). To quantify

the protein abundance levels across 232 samples, we summed up

the most abundant identified peptides (that is, 595 peptides) for

each protein (Top three peptides, if > 3 peptides identified). This

allows for reliably estimating global protein-level changes as shown

in previous studies (Cima et al, 2011; Ludwig et al, 2012; Liu et al,

2013b, 2014; Weisser et al, 2013). The re-quantification in both

steps totally retrieved signals for 10.07% of the missing cells in the

protein-level data matrix. The two-step filtering strategy essentially

discarded those peptides that were not detected in majority of the
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samples (but got imputed by highly variable noisy background using

re-quantificaton algorithm) and therefore filtered the consistent,

high-quality protein signal groups among samples so that enough

data points could be used for further variance decomposition. In

total, quantification data of 342 unique Swiss-Prot proteins across all

the 232 twin plasma samples were used for subsequent analyses.

Genotyping and imputation

Our samples are a subset of the Twins UK dataset. SNP genotyping

of the Twins UK dataset (N = 6,000) was done with a combination

of Illumina HumanHap300, HumanHap610Q and 1M-Duo chips

and was performed by The Wellcome Trust Sanger Institute and

National Eye Institute via NIH/CIDR. Similar exclusion criteria

were applied to each of the three datasets separately. Sample

exclusion criteria were (i) sample call rate < 98%, (ii) heterozygos-

ity across all SNPs ≥ 2 SD from the sample mean, (iii) evidence of

non-European ancestry as assessed by PCA comparison with

HapMap3 populations and (iv) observed pairwise IBD probabilities

suggestive of sample identity errors. We corrected misclassified

monozygotic and dizygotic twins based on IBD probabilities. SNPs

exclusion criteria were: (i) Hardy–Weinberg P-value < 10�6,

assessed in a set of unrelated samples; (ii) MAF < 1%, assessed in

a set of unrelated samples; and (iii) SNP call rate < 97% (SNPs

with MAF ≥ 5%) or < 99% (for 1% ≤ MAF < 5%). Prior to

merging, we performed pairwise comparison among the three data-

sets and further excluded SNPs and samples to avoid spurious

genotyping effects, identified as follows: (i) concordance at dupli-

cate samples < 1%; (ii) concordance at duplicate SNPs < 1%;

(iii) visual inspection of QQ plots for logistic regression applied

to all pairwise dataset comparisons; (iv) Hardy–Weinberg

P-value < 10�6, assessed in a set of unrelated samples; and (v)

observed pairwise IBD probabilities suggestive of sample identity

errors. We then merged the three datasets, keeping individuals

typed at the largest number of SNPs when an individual was typed

at two different arrays. Samples were genotyped on a combination

of the HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M

Illumina arrays. Samples were imputed into the 1,000 Genomes

Phase 1 reference panel (data freeze, 10/11/2010) (Abecasis et al,

2012) using IMPUTE2 (Howie et al, 2009) and filtered

[MAF < 0.01, IMPUTE info value < 0.8 and HWE (P < 1e-5)]. We

ended with 3,552,380 SNPs in 113 of our 116 individuals.

Variance decomposition of protein and peptide level

It is known that variance components models are sensitive to traits

that have a distribution different from normal. To get robust results,

we transformed the protein quantifications using a rank normal

transformation. To estimate the variance components of plasma

protein level, we used a linear mixed model with two fixed effects

and four random effects:

yi ¼ l þ b1 platei þ b2timei þ gi þ ci þ idi þ wi þ ei

where plate and time are fixed effects representing the sample plate

and the time interval between the two time points (time is 0 in

time point 1 and the actual time interval in time point 2) and the

rest are random effects:

g is the polygenic effect.

c is the shared environment effect.

id is the effect the individual environment.

w is effect of the visit (longitudinal effects, or aging effect in this

study).

e are the residuals.

These data present a complex structure of correlation because we

have related individuals measured twice. The expected correlation

structure between a twin pair can be represented as:

X ¼ 2Ur2g þ Cr2c þ IDr2id þ Wr2w þ Ir2e

where r2X represent the variance of the X component:

2Φ is the expected kinship coefficient based on the observed

relationships—that is, 1 for MZ twins, ½ for DZ twins and 0 other-

wise.

C is the shared environment matrix, 1 per all the twin pairs.

ID is the individual matrix, it takes into account that the same individ-

ual is measured in time point 1 and in time point 2. It is 1 for samples

of the same individual in time points 1 and 2, and 0 otherwise.

W is the visit matrix, it takes into account the fact that the two

sisters of a twin pair went together to the visit. It is 1 for the two

sisters at each visits, 0 otherwise.

I is the identity matrix.

Heritability was defined as h2 ¼ r2g=r
2
total, and the rest of the

variance components were defined in the same way. The statistical

analyses were carried out using SOLAR v 6.5.8 software package

(Almasy & Blangero, 1998).

It is worth to note that, due to the limited samples size, it is diffi-

cult to separate perfectly the heritability and the common environ-

mental effects components. The sum of these two components

interpreted as a family effect, however, estimates more robustly

(Kato et al, 2011; Nicholson et al, 2011).

pQTL determination

High-throughput experiments can generate batch effects that

are difficult to control. In the transcriptomics field, it is widely

acknowledged that removing the first principal components of the

expression dataset removes unknown batch effects and increases

the power to find eQTLs. We borrowed this technique, and before

the pQTL analysis, we regressed out the first 10 principal compo-

nents of the protein data. Since our data samples are twins, they are

not independent observations and we need to take that into account

in our models. We used the approach previously described

(Aulchenko et al, 2007a) to keep the residuals of a mixed model

that removed the effects of the family structure using the implemen-

tation in GenAbel R package (Aulchenko et al, 2007b). We then

transformed those residuals using a rank normal transformation to

avoid undesired outlier effects of the associations.

To identify pQTL associations, we performed a linear regression

of the transformed residuals on all the SNPs in a 1-Kb window

around the transcription start site for each gene and kept the best

association per gene. To assign statistical significance of our associ-

ations, we run 20,000 permutations for each protein to estimate a

null distribution. We shuffled the sample name in the protein data

and repeated the association analysis keeping the best association

for each permutation. Using this null distribution, we calculated an
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empirical P-value per each protein. This approach is better than

having a uniform threshold for all the proteins because we take into

account that for some proteins, we test more SNPs than for others

and then, the chances for spurious association are larger too. We

performed the SNP significance analysis separately for time points 1

and 2 and then combined the P-values from the two time points

using the Fisher method for those SNPs influencing protein

abundance in the same direction. In this way, we got a single

P-value per each protein. Finally, we call significant pQTLs based on

a 10% FDR using the R package q-value (Storey & Tibshirani, 2003).

Overlap with eQTLs

To check if the effect of our pQTLs on protein level was due to a

change in gene expression, we looked for associations of the pQTL

SNPs with gene expression measured using RNAseq technology in

four tissues (fat, LCLs, skin and blood) in about 800 female twins

(Buil et al, 2015). We analyzed each tissue and each gene

separately. For each gene, we used a linear model to estimate the

association between the pQTL and a normalized expression of each

exon. We kept the best P-value per gene and estimated its statistical

significance by comparison with a null distribution obtained by

permuting the gene expression labels 10,000 times.

Other bioinformatic analyses

Hierarchical clustering analysis (HCA) was performed by Cluster 3.0

on the log-transformed, 2-dimensional-centered and normalized

peptide intensities and visualized by Treeview. R software was used

for plotting histograms. All the P-values indicating the significance

of the data distribution difference were also reported by R using the

Wilcoxon rank-sum test with continuity correction (the command is

wilcox.test). The paired Wilcoxon test was used to compare the

contribution of heritability and family component between two time

points. The proteins significantly affected by the four biological

components were filtered based on either a P < 0.01 or the fact that

the corresponding component explains more than 25% of total

variance. The annotation of biological pathways and functional

processes was done using David bioinformatics resource (Huang da

et al, 2009), where the enrichment analysis was performed by taking

all the proteins in our human plasma spectral library as background.

The HDL protein list was extracted based on consensus summary of

published HDL studies (Shah et al, 2013), whereas the non-HDL

protein list contains those proteins that have not been supported as

HDL protein in either of the studies (Shah et al, 2013).

Data availability

All the raw data of mass spectrometry measurements (SWATH-MS

and shotgun), together with the input spectral library for human

plasma proteome and OpenSWATH results can be freely down-

loaded from ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner repository (Vizcaino

et al, 2014) with the dataset identifier PXD001064. SNP genotyping

data can be accessed with the permission of the TREC committee.

Supplementary information for this article is available online:

http://msb.embopress.org
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