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Large-scale 3D geoelectromagnetic modeling using
parallel adaptive high-order finite element method

Alexander V. Grayver1 and Tzanio V. Kolev2

ABSTRACT

We have investigated the use of the adaptive high-order
finite-element method (FEM) for geoelectromagnetic mod-
eling. Because high-order FEM is challenging from the
numerical and computational points of view, most published
finite-element studies in geoelectromagnetics use the lowest
order formulation. Solution of the resulting large system of
linear equations poses the main practical challenge. We have
developed a fully parallel and distributed robust and scalable
linear solver based on the optimal block-diagonal and aux-
iliary space preconditioners. The solver was found to be
efficient for high finite element orders, unstructured and non-
conforming locally refined meshes, a wide range of frequen-
cies, large conductivity contrasts, and number of degrees of
freedom (DoFs). Furthermore, the presented linear solver is in
essence algebraic; i.e., it acts on the matrix-vector level and
thus requires no information about the discretization, boun-
dary conditions, or physical source used, making it readily
efficient for a wide range of electromagnetic modeling prob-
lems. To get accurate solutions at reduced computational cost,
we have also implemented goal-oriented adaptive mesh re-
finement. The numerical tests indicated that if highly accu-
rate modeling results were required, the high-order FEM in
combination with the goal-oriented local mesh refinement
required less computational time and DoFs than the lowest
order adaptive FEM.

INTRODUCTION

Electromagnetic (EM) methods of geophysics aim at studying
subsurface electric conductivity distribution. Because the latter de-
pends on rock composition, fluid content, temperature, and pres-

sure, among others, these methods are widely used in academic
and industry environments (Key, 2012; Muñoz, 2014). For a fea-
sibility study or an inversion, EM fields governed by Maxwell’s
equations need to be calculated for a given 3D electric conductivity
distribution. Very often, a large number of such calculations are re-
quired (Haber, 2014). Therefore, to accommodate the complexity of
the earth and keep the required simulation time feasible, numerical
methods capable of delivering accurate solutions and harnessing
computational power provided by modern computers are essential.
In this work, we have used the finite-element method (FEM) to

calculate EM fields for an arbitrary 3D distribution of electric con-
ductivity. Much research in recent years has gone into developing
FEM codes for geoelectromagnetic modeling (Börner, 2010; Far-
quharson and Miensopust, 2011; Schwarzbach et al., 2011; Ren
et al., 2013; Um et al., 2013; Grayver and Bürg, 2014). They all
make use of the so-called Nédélec finite elements, which permit
a well-posed representation of EM fields taking into account dis-
continuities of the normal components (Jin, 2002). In addition to
the well-established theory (Monk, 2003), FEM provides elaborated
methods for a posteriori error estimation (Ainsworth and Oden,
2000). In combination with adaptive mesh refinement, also known
as h-refinement, this approach allows us to obtain accurate numeri-
cal solutions at decreased computational cost. Of particular interest
in geoelectromagnetics is a class of techniques called goal-oriented
error estimators (Bangerth and Rannacher, 2003). Goal-oriented
error estimators steer local mesh refinement in a way that facilitates
accurate EM fields at the specified receiver locations using as few
degrees of freedom (DoFs) as possible. Recently, Key and Ovall
(2011) and Ren et al. (2013) demonstrated the efficacy of this ap-
proach in the context of geoelectromagnetic modeling.
In this work, we consider a 3D modeling domain split into a set of

hexahedra finite elements with a Nédélec basis attached to them.
Within each finite element, the solution is typically described by a
specific vector polynomial. Similar to the h-refinement aimed at in-
creasing the solution accuracy by refining a mesh, one can perform
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p-refinement by increasing the polynomial degrees of the finite
element. It is well known that for smooth solutions, p-refinement
is advantageous and that combining it with h-refinement (the so-
called h-p FEM) can lead to exponential convergence rates (Guo
and Babuska, 1986; Bürg, 2013). Although h-refinement has been
applied in geoelectromagnetic applications (Schwarzbach et al.,
2011; Ren et al., 2013), little work has been performed to investigate
advantages of higher polynomial degrees for 3D geoelectromagnetic
modeling. Most existing FEM modeling codes in this area use the
lowest order Nédélec finite elements, often called edge-based finite
elements. The notable exception is the work of Schwarzbach et al.
(2011), who demonstrate that high-order finite elements require
fewer DoFs to achieve a certain level of accuracy when compared
with the lowest order case. This was shown for the case of a half-
space model with the largely smooth solution. High-order Nédélec
elements have also been beneficial in EM simulations in other areas,
for example, Rieben et al. (2004) and Luo et al. (2011).
The accuracy achieved using high polynomial degrees, however,

comes at a cost. First, high-order Nédélec elements are more tech-
nical to implement (Zaglmayr, 2006; Bürg, 2012a). To facilitate p-
refinement, one also typically needs a hierarchical basis, which is
the case we consider in this paper. When using high-order finite
elements, the number of DoFs per element gets larger. Some of
the DoFs are associated with edges and faces of the element. Hence,
they are coupled with DoFs of the elements that share the same edge
or face. This extra coupling incurs additional nonzero elements in
the system matrix (Šolín et al., 2004). Therefore, higher order poly-
nomials generally decrease sparsity: The stencil size for a method of
order p in 3D is Oðp3Þ with p being the polynomial degree of the
Nédélec element. Furthermore, when building a system matrix or
estimating solution error, it is necessary to numerically calculate
integrals over elements. This is performed by using quadratures.
The order of a quadrature used for integration needs to be propor-
tional to the order of the finite element polynomial. As a result,
higher polynomial orders also increase the time spent in building
a system matrix, right-side vectors, and estimating solution errors.
If implemented naively, a matrix assembly, for example, could re-
quire Oðp9Þ operations, although with better algorithms the cost
can be reduced (Ainsworth et al., 2011; Kirby and Thinh, 2012).
However, the largest part of the computational time is typically
spent in solving the resulting large and sparse system of linear equa-
tions. Construction of robust and scalable solvers is challenging and
requires elaborated methods (Grayver and Bürg, 2014; Ren et al.,
2014). High polynomial degrees create an additional challenge
here. Ainsworth and Coyle (2003) show that in 3D the condition
number of a system matrix grows as Oðp8Þ. Therefore, for a large
p, the system matrix not only gets denser but also more ill condi-
tioned, rendering the problem of developing an efficient solver
extremely difficult and important.
The above considerations bring up the question: Is using high-

order FEM for geoelectromagnetic modeling justified? On one
hand, we are interested in having fast modeling codes, and h-refine-
ment together with a fully automatic goal-oriented error estimator
already offers a highly efficient tool. On the other hand, we know a
priori that the sought solution will exhibit smooth behavior in large
parts of a modeling domain (e.g., air or padding cells) due to its
diffusive nature (Løseth et al., 2006). In this case, adaptive h-refine-
ment in combination with high polynomial degrees is expected to
provide more accurate solutions within a shorter time than h-refine-

ment alone. The purpose of this paper is to address this question.
The challenges mentioned earlier are mitigated by using a fully dis-
tributed implementation with a robust and scalable solver. To the
best of our knowledge, this work is the first study that develops
a robust and scalable numerical scheme for 3D geoelectromagnetic
modeling using high-order FEM.
It is worth mentioning that the numerical methods and results

derived below are essentially independent of the type of physical
source. In other words, the presented methods remain valid for the
total and secondary field formulations, plane wave or point dipole
sources, and the isotropic and anisotropic electric conductivities.
These factors do not change the nature of the underlying equation,
and as a result, the presented numerical machinery remains valid.
Still, to preserve brevity and focus on the topic, we will use mag-
netotellurics (MT) (Berdichevskii and Dmitriev, 2008; Chave and
Jones, 2012) for all numerical experiments.

PROBLEM FORMULATION

Governing equations

We work with the following partial differential equation (PDE)
derived from the Maxwell’s equations with the time dependence
expressed by eiωt

∇×ðμ−1∇× ~EsÞþiωσ ~Es¼−iωðσ−σ0Þ~E0
inΩ; (1)

where Ω ⊆ R3 is a bounded modeling domain, ω is the angular fre-

quency, μ is the magnetic permeability, ~Es ∈ C3 is the complex-val-

ued scattered electric field, and σ∶Ω~R denotes the real electric
conductivity; i.e., we neglected the displacement currents because
they are irrelevant at frequencies of interest. Furthermore, σ0 is a
background model conductivity represented by a horizontally lay-

ered medium and ~E0 ¼ ~E0ðω; σ0; zÞ is an incident electric field cal-
culated analytically.
Equation 1 needs to be augmented with predefined boundary

conditions to guarantee uniqueness (Monk, 2003). Conventionally,
Dirichlet boundary conditions are used. In this case, tangential
components of the scattered field are prescribed to be zero at boun-
daries; i.e.,

n × ~Es ¼ 0 on Γ; (2)

where n is an outward-pointing normal vector on Γ ¼ ∂Ω. Alterna-
tively, Neumann boundary conditions can be prescribed, which
constrain tangential components of the curl of the scattered electric
field as

n ×
1

μ
∇ × ~Es ¼ 0 on Γ: (3)

From our experience, Neumann boundary conditions often require
fewer padding cells because they constrain variations in the field
rather than the field itself. In this case, smaller modeling domains
can be used without big accuracy deteriorations. Our approach
works with both types of boundary conditions, but for simplicity,
in the rest of this section, we focus on the Dirichlet case.
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The total electric and magnetic fields are calculated as

~E¼ ~E0þ ~Es

~H¼ ~H0−
1

iωμ
∇× ~Es; (4)

where in the latter equation, we made use of Faraday’s law.
By splitting ~Es ≔ ~Es

R þ i ~Es
I and ~E0 ≔ ~E0

R þ i ~E0
I into real and

imaginary parts and inserting into equation 1, we get a system of
two coupled real-valued equations:

∇ × ðμ−1∇ × ~Es
RÞ − ωσ ~Es

I ¼ ωðσ − σ0Þ~E0
I

∇ × ðμ−1∇ × ~Es
IÞ þ ωσ ~Es

R ¼ −ωðσ − σ0Þ~E0
R; ð5Þ

with the corresponding boundary conditions split accordingly.
In the rest of the paper, we work with equations 5 because they

permit us to develop an efficient solver as described in the following
sections.

Discretization using finite elements

First, we define the space of the 3D vector functions with curl in
L2 as

Hðcurl;ΩÞ ¼ fu ∈ ðL2ðΩÞÞ3j∇ × u ∈ ðL2ðΩÞÞ3g: (6)

Furthermore, H0ðcurl;ΩÞ denotes the functions u ∈ Hðcurl;ΩÞ,
which also satisfy the homogeneous Dirichlet boundary conditions;
i.e., n × u ¼ 0 on Γ.
Then, system 2 is multiplied by test functions ψ ∈ H0ðcurl;ΩÞ.

Using integration by parts, we obtain the weak formulation that

aims at finding ~Es
R; ~E

s
I ∈ H0ðcurl;ΩÞ such that

hμ−1∇ × ~Es
R;∇ ×ψi − ωhσ ~Es

I;ψi ¼ ωhðσ − σ0Þ~E0
I ;ψi

hμ−1∇ × ~Es
I ;∇ ×ψi þ ωhσ ~Es

R;ψi ¼ −ωhðσ − σ0Þ~E0
R;ψi

(7)

for all ψ ∈ H0ðcurl;ΩÞ. Here, the inner product is given by

ha; biL2ðΩÞ ≔
Z
Ω
a · b: (8)

Let the continuous domain Ω be split into a set T of nonoverlap-
ping hexahedral cells. To meet the physics of the EM phenomena,
we permit normal components of the electric field to be discontinu-
ous, but we require continuous tangential components. It turns out
that the functional space H0ðcurl;ΩÞ consists of functions that sat-
isfy these continuity constraints (Monk, 2003). Now, we need to
discretize this functional space on our mesh T. In EM modeling
with FEM, Nédélec elements are conventionally adopted because
they are a natural finite dimensional subspace of H0ðcurl;ΩÞ. Most
geoelectromagnetic modeling codes use Nédélec elements of order
one (Bossavit, 1998; Monk, 2003) also known as edge-based ele-

ments. This finite element has 12 shape functions associated with
edges of a hexahedron. For higher polynomial degrees, more shape
functions appear also on the faces and in the interior part of the
element. The total number Ns of Nédélec shape functions for
the d-dimensional hexahedral element of order p can be calculated
as (Bürg, 2012a)

Ns ¼ ð2d−1dþ 12ðd − 2Þðp − 1Þ þ dðp − 1Þd−1Þp: (9)

Because we used a real-valued formulation (equation 5), half of
the DoFs in an element correspond to the real part and another half
to the imaginary part of a field. Table 1 lists the number of DoFs per
element for the polynomial degrees that we used in this work. As
more DoFs on edges and faces are generated, the coupling between
elements increases. Furthermore, to approximate the integral in
equation 8, quadratures are used (Šolín et al., 2004). To integrate
high-order shape functions with sufficient accuracy, we have to use
large quadrature orders. Accordingly, the last column in Table 1
shows the number of points in the constructed quadrature for cor-
responding polynomial degree.
Let VðTÞ be a high-order finite-dimensional Nédélec approxima-

tion subspace ofH0ðcurl;ΩÞ defined on T. Then, we seek Es
R;E

s
I ∈

VðTÞ such that

hμ−1∇ × Es
R;∇ ×ψi − ωhσEs

I ;ψi ¼ ωhðσ − σ0Þ~E0
I ;ψi

hμ−1∇ × Es
I ;∇ ×ψi þ ωhσEs

R;ψi ¼ −ωhðσ − σ0Þ~E0
R;ψi

(10)

for all ψ ∈ VðTÞ. In this case, the solutions Es
R;E

s
I of equation 10

are expanded using the Nédélec basis:

Es
R ¼

Xn
i¼1

αiφi and Es
I ¼

Xn
i¼1

βiφi: (11)

Inserting these into formulation 10 with ψ ¼ φj for any
j ¼ 1; : : : ; n yields

Table 1. Numbers of real-valued DoFs per Nédélec finite
element and corresponding number of points for quadrature
used to approximate the integral in equation 8 versus
polynomial order p. Note that due to the real-valued
formulation 5, there are two sets of DoFs for Es

R and Es
I. The

total number of DoFs is shown in the table.

Polynomial degree p Number of DoFs Quadrature size

1 24 27

2 108 64

3 288 125

4 600 216

5 1080 343

6 1764 512

EM modeling with high-order FEM E279
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Xn
i¼1

αihμ−1∇×φi;∇×φji−ω
Xn
i¼1

βihσφi;φji

¼ hωðσ − σ0Þ~E0
I ;φjiXn

i¼1

βihμ−1∇×φi;∇×φji þω
Xn
i¼1

αihσφi;φji

¼ −hωðσ − σ0Þ~E0
R;φji: (12)

Rewriting the above equations in a matrix-vector form, we obtain a
discrete system of linear equations:

�
C −M
M C

��
Ēs
R

Ēs
I

�
¼

�
s̄R
−s̄I

�
; (13)

where the high-order Nédélec DoFs, Ēs
R ¼ ðα1; : : : ; αnÞT and

Ēs
I ¼ ðβ1; : : : ; βnÞT , are the solution vectors of this linear system

of equations. The entries of the sparse, symmetric, positive semi-
definite (SPSD) matrix C ∈ Rn×n and the sparse, symmetric, pos-
itive-definite (SPD) matrix M ∈ Rn×n are given by

½C�ij ¼ hμ−1∇ × φj;∇ × φii and ½M�ij ¼ ωhσφj;φii;
(14)

respectively. The right-side vectors are simply

½s̄R�j ¼ hωðσ − σ0Þ~E0
I ;φji and

½s̄I�j ¼ hωðσ − σ0Þ~E0
R;φji: (15)

Multiplying the second row in equation 13 by minus one yields a
symmetric system of linear equations:

�
C −M
−M −C

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

�
Ēs
R

Ēs
I

�
|fflffl{zfflffl}

Ēs

¼
�
s̄R
s̄I

�
|fflfflffl{zfflfflffl}

s̄

: (16)

The efficient solution of the above linear system with high-order
finite elements on locally refined nonconforming meshes is the ma-
jor challenge that we address in this paper.

Goal-oriented error estimator

Adaptive mesh refinement is a powerful technique to obtain ac-
curate solutions for boundary-valued problems at a reduced com-
putational cost. This is done by choosing an initial coarse mesh
T0 and solving equation 5 on a series of subsequently refined
meshes. On every subsequent mesh Ti, a subset of cells in which
the solution is most inaccurate is refined. A posteriori error estima-
tor (Bürg, 2012b; Zhong et al., 2012) was used to define those cells.
For a solution F ¼ FR þ iFI ∈ VðTÞ and all cells K ∈ Ti, error
indicators ηKðFÞ are calculated as follows:

ηKðFÞ2 ¼ ηR;KðFÞ2 þ ηJ;KðFÞ2; (17)

where the residual- and jump-based terms are given by

ηR;KðFÞ2 ¼
h2K
p2

k∇ × ðμ−1∇ × FÞ þ iωσF − sk2L2ðKÞ; (18)

and

ηJ;KðFÞ2 ¼
1

2

X6
f¼1

hf
p
ðk½nf × ðμ−1∇ × FÞ�k2L2ðfÞ

þ k½nf · ðiωσF − sÞ�k2L2ðfÞÞ: (19)

Here, hK ≔ diamðKÞ is the diameter of the hexahedra K and f is an
interior face of Ti and hf ≔ diamðfÞ. Square brackets ½·� denote the
jump of the quantity across the element boundaries with respect to
the fixed face normal nf.
Having error indicators calculated for all cells, a subset of cells

with the most inaccurate solution can be identified and refined. This
strategy reduces the global error of a solution (Binev et al., 2004),
but more efficient techniques can be derived for geoelectromagnetic
methods. We are mostly interested in getting accurate solution at
receiver locations. Therefore, even if a part of the domain can sig-
nificantly affect the global error, its contribution to the accurate sol-
ution at a measurement point can be negligible. Therefore, no
refinement is likely needed there. Because similar approaches
are favorable in many different areas, generic methods have been
developed to steer mesh refinement accordingly (Ainsworth and
Oden, 2000; Bangerth and Rannacher, 2003). These methods,
known as dual-weighted or goal-oriented error estimators, have
been recently applied in geoelectromagnetic modeling (Key and
Ovall, 2011; Ren et al., 2013). In addition to the numerical solution
of equation 5, a dual problem with fictitious sources at the receiver
locations is solved. Let the dual solution be denoted by ED (see
equation 32 in Ren et al. [2013] for the exact formulation), the
weighted error indicator that we used to mark cells for refinement
is then expressed as

ηgoK ¼ ηKðEsÞηKðEDÞ; (20)

with

ðηgoÞ2 ¼
X
K∈Ti

ðηgoK Þ2 (21)

being the global goal-oriented error estimator.
For automatic adaptive mesh refinement, the fixed fraction strat-

egy (Dörfler, 1996) was used and the smallest subset T ⊆ Ti of
cells that satisfies X

K∈T
ðηgoK Þ2 ≥ ðθηgoÞ2 (22)

was selected for a predefined 0 < θ ≤ 1. The selected cells are split
in all three dimensions, and the procedure is repeated until η is small
or the initial error has been sufficiently reduced.

Nonconforming meshes

It is practically impossible to obtain a conforming hexahedral 3D
mesh during local refinement. A mesh is called conforming if all
cells share the whole edge or face. To avoid this limitation, we al-
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lowed nonconforming meshes (Šolín et al., 2004). Figure 1 shows a
simple nonconforming hexahedral mesh. In this case, additional
constraints need to be imposed for a solution to conform with
the continuity requirements of theHðcurl;ΩÞ functional space. Spe-
cifically, all fine DoFs on fine-coarse interfaces are linearly inter-
polated from the coarse DoFs on the interfaces. Note that the
constrained DoFs are eliminated, so linear system 16 is ultimately
posed only on the unconstrained conforming unknowns. A detailed
description of the arbitrary-order FEM on nonconforming meshes
can be found in Bangerth and Kayser-Herold (2009).

EFFICIENT SOLVER

The resulting system of linear equation 16 is quite difficult to
solve numerically. Such factors as the low frequencies required in
geoelectromagnetic methods, high-dimensional null space of the
curl operator, large conductivity contrasts (e.g., across the air-
ground interface), and nonuniform and locally refined meshes all
make the system matrix very ill conditioned. Furthermore, the con-
dition number of the system matrix grows as Oðp8Þ making high
polynomial degrees more challenging. Taking into account the fact
that solution of this system typically comprises most of the model-
ing time, development of a robust and scalable solver plays a vital
role. In this context, the robustness of a solver means the ability to
preserve fast convergence for a wide range of model parameters
(e.g., frequency and material contrasts) and number of unknowns,
whereas (strong) scalability means that when run in parallel, the
required computational time can be reduced proportionally with the
number of processes used.
Developing a robust and scalable solver for EMmodeling is a non-

trivial task even for the lowest order Nédélec elements. One could
apply direct solvers that are very robust, but they do not scale well
(Grayver and Bürg, 2014). Therefore, for large problems, the iterative
Krylov solvers are the only viable alternative. The performance of
these methods largely depends on a preconditioner used. Some of
the most general, robust, and user-friendly preconditioners in current
practice belong to the family of algebraic multigrid (AMG) methods,
which couple a simple relaxation scheme with a hierarchy of alge-
braically constructed, coarse-grid problems. Parallel implementations
of AMG methods have been under intensive research and develop-
ment in the past few decades, and several scalable software libraries
are currently available (Henson and Yang, 2002; Gee et al., 2006)
with some support for definite Maxwell problems (Hu et al., 2006;
Kolev and Vassilevski, 2009). In geoelectromagnetic applications,
multigrid and domain-decomposition preconditioners have been
shown to be extremely efficient in handling large-scale problems
(Grayver and Bürg, 2014; Ren et al., 2014). These works, however,
consider only the lowest order Nédélec elements and do not discuss
complications related to nonconforming meshes. Generally, much
less work has been done in developing efficient preconditioners for
high-order Nédélec elements (Zaglmayr, 2006). In this work, we have
extended the approach from Grayver and Bürg (2014) to the arbitrary
order Nédélec elements and nonconforming hexahedral meshes. This
approach is based on the auxiliary-space Maxwell solver (AMS) (Ko-
lev and Vassilevski, 2009) from Hypre (2014), which is discussed in
the following subsection.
To solve the indefinite symmetric system (equation 16), we have

applied flexible generalized minimal residual (FGMRES) Krylov
subspace method (Saad, 2003). To precondition this system, we
used a real, SPD block-diagonal matrix:

PA ¼
�
B 0
0 B

�
; (23)

where B ¼ CþM. In Appendix A, we prove that the condition
number of P−1

A A is ≤
ffiffiffi
2

p
, independent of the finite element order,

matrix size, frequency, and conductivity contrasts; see lemma 4.1 in
Chen et al. (2010). Because of that, FGMRES requires a small num-
ber of iterations to converge to the solution of equation 16.
Although optimal, in the sense that applying, e.g., MINRES to

equation 16 with a preconditioner PA will require a bounded num-
ber of iterations, preconditioner 23 is not yet practically useful until
we find a way to apply its inverse to a vector quickly. A product of
P−1
A with a vector requires solving two linear systems:

Bx ¼ b: (24)

Note that B is a discretization of a second-order definite Maxwell
problem; i.e., we have reduced the inversion of the operator 1 with a
mass matrix coefficient iωσ to inverting the same operator with the
real coefficient ωσ. Because FGMRES requires one matrix-vector
product per iteration, Niter iterations will therefore incur the solution
of 2Niter problems 24. We have calculated the approximate solution
of this system efficiently using the conjugate gradients (CG) method
with the auxiliary space preconditioner AMS, as described below.
Note that the inner system is solved by using a predefined tolerance
value. This causes preconditioner 23 to change at every iteration.
Hence, we need to use Krylov methods that permit this, and
FGMRES is one of them.

Auxiliary space preconditioner

In this section, we provide a general overview of the theory and
implementation of AMS in the low-order conforming case, and its
extensions to the high-order nonconforming case. Defining the
AMS components in the latter case is nontrivial, and we consider
it to be one of the main contributions of this paper.

Figure 1. Nonconforming hexahedral mesh. The DoFs associated
with the edges and faces marked with the dashed line need to be
constrained to fulfill the continuity requirements of the HðcurlÞ
functional space that is used.
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Consider first the case of low-order elements on a conforming
mesh T of size h. Let SðTÞ be the space of linear continuous nodal
finite elements on the same mesh as VðTÞ, and let SðTÞ ¼ SðTÞd be
its vector counterpart. Denote with Gh and Πh the matrix represen-
tations of the mapping φ ∈ SðTÞ ↦ ∇φ ∈ VðTÞ and the nodal Né-
délec interpolation from SðTÞ to VðTÞ. The matrix Gh has as many
rows as the number of edges in the mesh, with each row having two
nonzero entries: þ1 and −1 in the columns corresponding to the
edge vertices. Furthermore, Πh can be computed based only on
Gh and the coordinates of the vertices of the mesh. For example,
the x-component of Πh is

Πx
h ¼

1

2
DGhxjGhj; (25)

where x is the vector of x-coordinates of the mesh vertices, DGhx is a
diagonal matrix with the diagonal given by the vector Ghx, and j · j
denotes componentwise absolute value of a matrix.
In these settings, the auxiliary space AMG preconditioner for B is

a subspace correction method using the subspaces VðTÞ, GhSðTÞ,
and ΠhSðTÞ. Its additive form reads (Xu, 1996)

Λ−1
h þ GhB−1

h GT
h þΠhB−1

h ΠT
h ; (26)

where Λh is a smoother for B, whereas Bh and Bh are efficient pre-
conditioners for the variational auxiliary-space matrices GT

hBGh

and ΠT
hBΠh, respectively. Because these matrices come from nodal

elliptic forms, they can be handled efficiently by the classical AMG,
which is especially efficient on unstructured problems with large
coefficient jumps. The AMS implementation in hypre is a parallel
version of this algorithm, using the AMG solver BoomerAMG
(Henson and Yang, 2002) in the auxiliary subspaces.
The theoretical foundation for equation 26 is the HX decomposi-

tion (Hiptmair and Xu, 2007) of finite-element functions uh ∈ VðTÞ
in the form

uh ¼ vh þΠhzh þ ∇φh; (27)

with vh ∈ VðTÞ, zh ∈ SðTÞ, and φh ∈ SðTÞ satisfying the stability
estimates

h−1kvhk0þkzhk1 ≤Ck∇×uhk0 and k∇φhk0 ≤Ckuhk0:
(28)

These estimates are critical for efficient preconditioning because they
imply that the nonnodal component vh has a small relative norm, and
therefore it can be handled by simple pointwise smoothing.
In the high-order conforming case, we can still define the spaces

SðTÞ and SðTÞ using nodal elements of the same order asVðTÞ, and
the HX decomposition (equation 27) continues to hold. However,
the structure of the Gh matrix is more complicated in this case, and
although it is still independent of the mesh geometry, its evaluation
is more technical. Furthermore, matrix Πh cannot be determined
without additional information about the high-order bases in VðTÞ
and SðTÞ, and in practice it has to be computed by evaluating the
Nédélec DoFs of the nodal vector basis functions on each element,
instead of equation 25. Specifically, let

F ¼
Xn
i¼1

αiðFÞφi ∈ VðTÞ (29)

be the Nédélec interpolant of a given (sufficiently smooth) vector
field F. In the low-order case, αiðFÞ are the integrals of the tangen-
tial components of F over the edges of T, whereas in the high-order
case, they depend on the choice of the high-order basis (but they
typically involve integral moments over the edges, faces, and the
element volumes). Let fφkg be the basis functions in SðTÞ, then

ðGhÞik ¼ αið∇φkÞ and ðΠx
hÞik ¼ αiððφk; 0; 0ÞÞ: (30)

These computations can be parallelized and automated in general
finite-element libraries (Bangerth et al., 2011; MFEM, 2014).
We now consider the general settings of high-order elements on a

nonconforming mesh. In this case, each finite element space has
two versions: a conforming one, e.g., VcðTÞ, in which the hanging
DoFs are constrained by the conforming (real) DoFs, and a non-
conforming one, e.g., VncðTÞ, in which the nonconforming DoFs
(hanging and real) are unconstrained. The matrix representation PV

of the embedding operator E ∈ VcðTÞ ↦ E ∈ VncðTÞ is precisely
the conforming interpolation; see the section on nonconforming
meshes. One can similarly define the matrices PS and PS represent-
ing the conforming interpolation between the nodal spaces ScðTÞ
and ScðTÞ and SncðTÞ and SncðTÞ, respectively. We also introduce
the matrix representations, RV, RS, and RS of the restriction oper-
ators from the nonconforming to the conforming space, which
ignore the nonconforming components of their input. Note that with
these definitions, RVPV, RSPS, and RSPS are just the identity ma-
trices on the conforming DoFs.
As mentioned in the section “Nonconforming meshes,” the definite

Maxwell matrix B in equation 24 is defined on the space VcðTÞ, i.e.,
B ¼ Bc ¼ PT

VBncPV, where Bnc is the VncðTÞ version of B, as-
sembled without interpolatory DoFs constraints. Therefore, to apply
AMS toB, we need to construct a “conforming discrete gradient”matrix
Gc;h that corresponds to the gradient mapping from ScðTÞ toVcðTÞ. To
obtain an appropriate definition for Gc;h, we consider the diagram

ScðTÞ !Gc;h
VcðTÞ

PS ↓↑ RS PV ↓↑ RV

SncðTÞ !Gnc;h
VncðTÞ

(31)

where Gnc;h is the matrix representation of the gradient mapping
φnc ∈ SncðTÞ ↦ ∇φnc ∈ VncðTÞ, which can be computed element
by element, as before, without imposing any constraints on the
hanging DoFs. We now require that this diagram commutes from
ScðTÞ to VncðTÞ; i.e.,

PVGc;h ¼ Gnc;hPS: (32)

This means that Gc;h and Gnc;h are compatible when computing the
gradient of a conforming nodal function. Because RVPV ¼ I, this
implies the conforming discrete gradient definition

Gc;h ¼ RVGnc;hPS; (33)

which is what we pass to AMS. Note that by commutativity, the
variational auxiliary space matrix for Gc;h is the constrained version
of the variational auxiliary space matrix for Gnc;h:
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GT
c;hBcGc;h ¼ GT

c;hP
T
VBncPVGc;h ¼ PT

S ðGT
nc;hBncGnc;hÞPS:

(34)

Similar considerations imply that the conforming Nédélec inter-
polation matrix should be defined as

Πc;h ¼ RVΠnc;hPS: (35)

In the high-order case, Πnc;h and consequently Πc;h can be com-
puted elementwise by evaluating the Nédélec DoFs of the nodal
vector basis functions as discussed earlier. We note, however, that
for low-order elements on quadrilateral/hexahedral meshes, matrix
Πc;h can still be computed based only on Gc;h and the conforming
vertex coordinates as in equation 25. Indeed, the entries of RV and
PS are positive in this case, so

jGc;hj ¼ RVjGnc;hjPS: (36)

Furthermore, the conformity of the mesh implies Gnc;hxnc ¼
Gnc;hPSxc ¼ PVGc;hxc, so

RVDGnc;hxnc ¼ DGc;hxcRV: (37)

Therefore,

Πx
c;h ¼ RVΠx

nc;hPS ¼
1

2
RVDGnc;hxnc jGnc;hjPS

¼ 1

2
DGc;hxc jGc;hj; (38)

which is in agreement with equation 25.

NUMERICAL EXPERIMENTS

The numerical scheme described in the previous section has been
implemented in a fully distributed fashion using message passing
interface (MPI). Several third-party libraries have been used for this
purpose: deal.II for FEM machinery (Bangerth
et al., 2011), p4est for distributed mesh handling
(Burstedde et al., 2011), and PETSc for distrib-
uted linear algebra (Balay et al., 2014). Finally,
the open-source implementation of AMS precon-
ditioner from the hypre library was used (Kolev
and Vassilevski, 2009; Baker et al., 2012).
In this section, we run a series of numerical

tests with high-order FEM using MT modeling
as an example. Calculating the impedance tensor
in MT requires solving system 16 for two
orthogonal source polarizations. Because we
used the secondary field formulation and homo-
geneous boundary conditions, the system matrix
remains the same for the polarizations and for the
dual problems. This eliminates expensive recal-
culation of the system matrix entries in equa-
tion 16. Denoting the horizontal components
of the electric and magnetic fields for the two
source polarizations by Ex1; Ey1; Hx1; Hy1 and
Ex2; Ey2; Hx2; Hy2, the MT impedance tensor Z
reads (Berdichevskii and Dmitriev, 2008)

�
Ex1 Ex2

Ey1 Ey2

�
¼

�
Zxx Zxy

Zyx Zyy

��
Hx1 Hx2

Hy1 Hy2

�
: (39)

In practice, one typically plots apparent resistivity and phase calcu-
lated from an impedance tensor component in the following way:

ρappij ¼ 1

ωμ
jZijj2 and ϕij ¼ arg ðZijÞ: (40)

The results presented in this section are divided into two parts as
follows: first, we perform a series of tests to study robustness and
scalability of the implemented numerical scheme for different poly-
nomial orders of the Nédélec element, followed by a convergence
study aimed at investigating which polynomial order and refine-
ment strategy perform best.

Robustness and scalability of the solver

To study robustness of the solver, we calculated solutions for a series
of models. For all tests shown, the electric conductivity of the air was
set to 10−9 S∕m. The outer FGMRES solver was stopped once the
normalized relative residual attained the value of ε ¼ 10−8; i.e.,

kAĒs − s̄k2
ks̄k2

< ε: (41)

A much higher relative residual of 10−2 was used for the inner CG
solver. Recall that equation 24 is solved whenever a product of the
inverse preconditioner 23 with a vector is needed. Experiments
showed that solving this system with a low tolerance does not im-
prove convergence of the outer solver significantly. Therefore, the
value 10−2 was found sufficient to preserve robustness and keep the
computational time low. The conductivity model we used for this
test is shown in Figure 2. This model poses several challenges: First,
a large conductivity contrast across the air-ground interface. Sec-
ond, we used a stretched grid, which may deteriorate convergence
of some preconditioners (Mulder, 2006). Initially, the model was

Figure 2. The conductivity model and the initial mesh used to study the robustness and
scalability of the solver. The vertical and horizontal sections at x ¼ 0 and z ¼ 0 are
shown. The corresponding conductivity values are given in the text.
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split into 1320 cells. In each subsequent cycle, the model is uni-
formly refined in one or more spatial dimensions. This approxi-
mately doubles the number of DoFs. Note that we show the
number of real-valued DoFs, which is twice the number of corre-
sponding complex-valued DoFs. The numbers of outer and the aver-
age numbers of inner iterations for some of the models and p ¼ 1

are given in Table 2. The degree p ¼ 1 corresponds to the conven-
tionally used lowest order Nédélec elements. We see that for
frequencies ranging from 0.01 to 1000 Hz and a wide range of prob-

lem sizes, the solver performs in a robust way. The number of outer
iterations stays virtually constant, and the inner iteration counts
slightly increase with the problem size. Tables 3 and 4 present
the results for higher polynomial degrees of p ¼ 2 and p ¼ 3,
respectively. The solver performed remarkably well for these prob-
lems. The number of outer iterations does not show any dependence
on the degree p, whereas the inner solver required on average more
iterations for higher polynomial degrees. This is anticipated because
the condition number of matrix B grows as Oðp8Þ. However, the

Table 2. Numerical results for the model shown in Figure 2 and variable frequencies for Nédélec elements of degree p � 1. The
number of outer FGMRES and the average numbers of inner CG iterations are denoted by Niter and �NCG

iter , respectively.

MPI processes Number of DoFs

Frequency (Hz)

0.01 0.1 10 1000

Niter N̄CG
iter Niter N̄CG

iter Niter N̄CG
iter Niter N̄CG

iter

2 9434 8 2 11 2 18 1 16 1

4 69,284 9 3 12 3 19 1 18 1

8 530,312 9 4 13 3 20 2 18 1

32 4,148,240 9 5 13 4 20 2 18 1

128 32,812,064 9 7 13 6 20 3 20 2

224 130,729,664 10 7 13 6 20 3 20 2

Table 3. Same as Table 2, but for Nédélec elements of degree p � 2.

MPI processes Number of DoFs

Frequency (Hz)

0.01 0.1 10 1000

Niter N̄CG
iter Niter N̄CG

iter Niter N̄CG
iter Niter N̄CG

iter

2 69,284 9 5 12 4 18 2 17 4

8 530,312 9 6 13 5 18 2 18 3

16 2,088,368 9 9 12 9 20 4 18 4

48 8,265,408 9 8 13 8 20 4 18 4

64 16,462,688 10 10 13 10 20 5 18 4

Table 4. Same as Table 2, but for Nédélec elements of degree p � 3.

MPI processes Number of DoFs

Frequency (Hz)

0.01 0.1 10 1000

Niter N̄CG
iter Niter N̄CG

iter Niter N̄CG
iter Niter N̄CG

iter

4 227,070 9 6 12 5 18 3 17 3

16 1,763,244 9 7 12 7 19 3 18 3

48 6,979,464 9 11 12 11 20 5 18 4

128 13,895,064 9 7 13 7 20 4 18 4

E284 Grayver and Kolev

D
ow

nl
oa

de
d 

01
/2

3/
18

 to
 1

95
.1

76
.1

10
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



growth in iterations is rather moderate and overall the solver re-
mains robust. Of particular importance for large-scale problems
is the fact that the number of MPI processes used to solve a
problem does not affect convergence of the solver for any polyno-
mial degree.
To test the robustness of the solver on nonconforming unstruc-

tured and locally refined meshes, we constructed a model with un-
dulated topography. Specifically, we used the topography of the
Kronotsky volcano located at the Kamchatka peninsula. In this ex-
ample, the electric field was calculated at the frequency of 1 Hz
using Nédélec elements of degree p ¼ 2. The initial mesh was
adaptively refined using goal-oriented error estimator with
θ ¼ 0.65. Figure 3 displays the initial and refined meshes with po-
sitions of the receivers. Table 5 summarizes the number of outer and
inner iterations that were required to solve the resulting systems at
different refinement steps. Clearly, the solver remains robust and the
number of iterations is virtually constant despite the unstructured
mesh and local refinement that we used.
Then, we investigated the strong scalability of the solver. To this

end, a uniformly refined version of the model shown in Figure 2
with 8,265,408 DoFs was taken and the solution at the frequency
of 0.1 Hz was calculated using p ¼ 1 and p ¼ 2. The model con-
sisted of 1,351,680 and 168,960 cells for p ¼ 1 and p ¼ 2, respec-
tively. Figure 4 illustrates computational time versus the number of
MPI processes used to calculate the solution. In addition to the time
required by the solver, we have also plotted the time spent on the
system matrix and the right-side vector assembly. These two oper-
ations comprise most of the total required CPU time. Quadratic el-
ements (p ¼ 2) have roughly four times more DoFs per elements
than lowest order p ¼ 1 elements. This increases the coupling be-
tween elements and results in more nonzero entries in the system
matrix. Therefore, given the same number of DoFs, higher polyno-
mial degrees incur more computational time because of lower spar-
sity. Evidence for this is seen in Figure 4a and 4b with quadratic
elements being roughly three times more expensive. At the same
time, better scalability is observed for p ¼ 2 because of the higher
computation-to-communication ratio. This can be seen when com-
paring time required by the solver for p ¼ 1; 2 in Figure 4a and 4b.
For the lowest polynomial degree, the time does not decrease pro-
portionally to the number of MPI processes used, indicating sub-
optimal scalability.

Convergence study

Having confirmed that the presented solver is robust and scalable,
we have not yet answered the question of whether higher polyno-
mial degrees are advantageous for geoelectromagnetic modeling. In
this section, we study the convergence of several different discre-
tization strategies. We considered four scenarios:

1) Uniform h-refinement — At each subsequent step, a mesh is
globally refined in all three dimensions.

2) Uniform p-refinement — At each subsequent step, the poly-
nomial degree is globally increased by one.

3) Adaptive h-refinement — The mesh is locally refined using a
goal-oriented error estimator and fixed fraction strategy de-
scribed in the section on error estimation. The lowest order
edge-based elements were used; i.e., p ¼ 1.

4) Adaptive h-refinement and uniform p-refinement — The same
as the previous, but with higher polynomial degrees p > 1.

For this test, we have chosen the COMMEMI 3D-2 model (Fig-
ure 5). This model contains two extensive 3D anomalies that cause
the solution to have large gradients and be discontinuous in the
vicinity of the conductivity contrasts. It is important to use a model
that has nonsmooth solution with discontinuities because this
behavior occurs in many practical scenarios. Because no analytic
solution exists for this model, the solution error was estimated using
equation 17. This error estimator was shown to represent the sol-
ution error well (Chen et al., 2010; Bürg, 2012b; Zhong et al.,
2012). The goal-oriented error estimator was run for 64 receivers
uniformly spaced along the x-direction from −40 to 40 km (see Fig-
ure 5) and θ ¼ 0.75. In what follows, the error for x polarization is
shown. Among the two polarizations, this one is more challenging
to resolve accurately due to the geometry and position of the anoma-

Figure 3. (a) Initial and (b) adaptively refined meshes of the Kro-
notsky volcano model with 11,752 and 169,966 cells, respectively.
Receivers are depicted with white rectangles. The air layer on the
top is not shown.

Table 5. Numerical results for the model shown in Figure 3
and 18 refinement steps. The number of outer FGMRES and
the average numbers of inner CG iterations are denoted by
Niter and �NCG

iter , respectively.

Refinement step Number of DoFs Niter N̄CG
iter

0 647,544 22 3

6 786,436 22 3

12 2,044,156 23 3

18 9,291,488 24 4
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lous objects with respect to the incident field. Neumann boundary
conditions were adopted for this test.
Figure 6a plots convergence curves for the aforementioned re-

finement strategies. Adaptive h-refinement was performed for poly-
nomial degrees up to three using goal-oriented error estimator. It is
evident from the figure that uniform h-refinement is the worst strat-
egy. Although the error decreases steadily, the convergence rate is
small: We expect at most first-order convergence in the energy norm
(Monk, 2003), thus requiring too many DoFs to reduce the solution
error sufficiently. Despite that the solution is largely nonsmooth in
some areas around anomalous objects, much better convergence is
attained by using uniform p-refinement. Note that each marker on
the magenta line essentially corresponds to a solution error obtained
for increasing polynomial degrees p. Once we resort to adaptive
h-refinement, convergence is further improved. The dramatic
improvement in the convergence rate is achieved by going from
Nédélec elements of degree p ¼ 1 to the elements of degree
p ¼ 2. Using quadratic elements, we need roughly 10 times fewer
DoFs to achieve the same error. This ties well with the theoretical
predictions. Increasing the polynomial degree further and using
p ¼ 3 improves the convergence rate, but for the considered prob-
lem the benefit is rather moderate, which can probably be ex-
plained by the lack of smoothness in the solution.
The convergence study in which the estimated solution error is

plotted against the number of DoFs does not reveal one important
practical aspect. Namely, how long does it take to attain a certain
error level? In the end, we are interested in having a fast numerical
method. To demonstrate this, we thus also plotted errors versus
CPU time in Figure 6b. Before interpreting these results, a few com-

ments on methodology are needed. All tests were run using 48 MPI
processes, and the shown runtimes include time spent in the follow-
ing operations: building the system matrix and right-side vectors,
solving three systems (two for orthogonal source polarizations
and a dual problem), and estimating errors. For adaptive h- and
p-refinements, the cumulative time to achieve the corresponding
error is shown. In other words, to achieve a certain level, we need
to go through several refinement cycles. Therefore, runtimes spent
on all previous refinement cycles need to be included. This is in
contrast to the uniform h- and p-refinements in which independent
times for each of the refinement cycles are shown. As is evident
from Figure 6b, the results take a different shape when seen in terms
of runtime. It turns out that uniform h- and p-refinement strategies
require the same time to achieve a specified solution error, even
though the latter results in a system with significantly fewer un-
knowns. This smaller system, however, is much denser and ill con-
ditioned, thereby making higher polynomial degrees more resource
demanding. At the initial stages, the lowest order Nédélec elements
appear to be the fastest. However, due to the better convergence rate,
quadratic elements soon outperform, whereas the efficiency gain
provided by the cubic elements is not substantial. Therefore, at least
for the model considered, the optimal strategy from the com-
putational point of view is to use adaptive h-refinement with the
Nédélec elements of degree p ¼ 2. Of note is that our results stay
in a good agreement with similar studies from other areas (Wang et
al., 2009).
Figures 7–9 illustrate the estimated solution errors, i.e., ηKðEsÞ2,

K ∈ T for the initial coarse mesh and adaptively refined meshes
obtained after 14 refinement steps, and different polynomial de-

Figure 5. The initial discretization of the COM-
MEMI 3D-2 model (Zhdanov et al., 1997) used
for the convergence test. The vertical and horizon-
tal sections at y ¼ 0 and z ¼ 0 are shown. In total,
64 receiver stations are marked with white crosses.
The corresponding conductivity values are given
in the text.
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Figure 4. The time required to assemble the sys-
tem matrix and the right-side vector and to solve
the resulting system with 8,265,408 DoFs for pol-
ynomial degrees of (a) p ¼ 1 and (b) p ¼ 2 versus
the number of MPI processes used.
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grees. All figures have the same color scale. As anticipated, the ini-
tial errors are the largest in the vicinity of conductivity contrasts. At
the final stages, the errors were reduced substantially and exhibit
more uniform behavior. When comparing results obtained for dif-
ferent polynomial degrees, several observations can be made: First,
for higher polynomial degrees, fewer cells are sufficient to achieve
the same or often better accuracy. Second, in regions where the sol-
ution is smooth, e.g., in the air, using higher polynomial degrees
proves particularly efficient. Even though the mesh remains coarse
there, the solution errors decrease when using higher p. In contrast,

in the vicinity of conductivity contrasts, solution is nonsmooth and
h-refinement is the best choice in this case.
Finally, in Figure 10, we show the apparent resistivity and phase

at receivers for the initial and refined meshes and different polyno-
mial degrees. Remarkably, even for the initial coarse mesh, the sol-
ution obtained with polynomial degree p ¼ 3 already gives quite
accurate results. The results for the adaptively refined meshes
are almost identical, indicating the efficiency of our error estimator,
although much fewer DoFs were required for higher p to attain the
same accuracy.

Estimated error

a)

b)
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Figure 7. Estimated solution error ηKðEsÞ2 on the
(a) initial mesh and (b) mesh obtained after 14
steps of adaptive mesh refinement for the Nédélec
element of polynomial degree p ¼ 1. The
positions of 64 receivers are shown with white
rectangles.
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Figure 6. Normalized estimated global solution
errors ηgo (see equation 21) versus the (a) number
of DoFs and (b) runtimes for different refinement
strategies. Each marker corresponds to a different
forward problem.
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a)

b)

Estimated error
11e-11 0.00011e-8

Figure 9. Same as Figure 7, but for Nédélec ele-
ments of polynomial degree p ¼ 3.

a)

b)

Estimated error
11e-11 0.00011e-8

Figure 8. Same as Figure 7, but for Nédélec ele-
ments of polynomial degree p ¼ 2.
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CONCLUSIONS

We have presented a numerical scheme for geoelectromagnetic
modeling using high-order FEM. To date, Nédélec elements of
the lowest degree have been mostly used to model time-harmonic
EM phenomena, although the FEM permits using arbitrary polyno-
mial degrees to represent solution in each element. Although being
favorable from a theoretical point of view, Nédélec elements of
higher polynomial degrees are very challenging from a numerical
perspective. They are inherently more expensive to deal with, and
they affect the condition number of the resulting system of linear
equations. To overcome these challenges, we have developed a fully
distributed modeling code with a robust and scalable solver. We
have presented the solver in very generic settings that make it valid
for a large variety of problems and formulations. The solver was
shown to be robust for different polynomial degrees of the finite
element, wide range of frequencies, and various problem sizes.
In addition, this solver scales well, rendering our method suitable
for large-scale problems with 108 unknowns. Of high practical im-
portance is the fact that because the solver heavily relies on
multigrid methods, new developments in this active area will readily
allow a reduced required computational time.
For a further efficiency gain, we have implemented a fully auto-

matic adaptive mesh refinement approach. Accurate EM responses
at the receiver positions were obtained by using highly efficient

goal-oriented error estimator, which steers the mesh refinement
in such a way that an accurate solution at the receivers is obtained
using as few DoFs as possible. By performing a series of conver-
gence tests on a model with a solution that has discontinuities, we
have found that using adaptive mesh refinement in combination
with Nédélec elements of higher polynomial degrees provides
the highest accuracy with respect to the number of DoFs. Still, be-
cause higher polynomials degrees are more resource demanding,
they may be less attractive from a computational point of view.
For the cases studied here, quadratic elements together with adap-
tive local mesh refinement delivered the optimal combination. Be-
cause many models of practical interest share the properties with the
model we have used, we expect this conclusion to hold for a wider
range of relevant problems.
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Figure 10. Apparent resistivity and phase for off-
diagonal components of Z at the receivers (see
Figure 5) and different polynomial degrees of
the Nédélec finite element for the (a) initial coarse
mesh and (b) adaptively refined meshes.
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APPENDIX A

CONDITIONNUMBEROF THE BLOCK-DIAGONAL
PRECONDITIONER

In this appendix, we evaluate the condition number for the block-
diagonal preconditioner 23 of the 2 × 2 real reformulation 16. This
result holds for any matrix Cþ iM, in which the stiffness part C is
real and SPSD with a nontrivial kernel, whereas the mass part M is
real and SPD. The 2 × 2 real system corresponding to Cþ iM has a
matrix

A ¼
�

C −M
−M −C

�
: (A-1)

We define

P ¼
�
CþM 0

0 CþM

�
: (A-2)

Because CþM is SPD, matrixP is also SPD, and it is in particular
invertible. Matrix A, however, is symmetric but indefinite, so to
control its negative eigenvalues, we introduce the “squared” precon-
ditioned operator S ¼ ðAP−1Þ2, which is SPSD in the P−1 inner
product:

ðSz1; z2ÞP−1 ¼ ðP−1AP−1AP−1z1; z2Þ
¼ ðP−1z1;AP−1AP−1z2Þ
¼ ðz1;Sz2ÞP−1 ; (A-3)

and ðSz; zÞP−1 ¼ kAP−1zk2P−1 ≥ 0. Now, P will be a good pre-
conditioner for A if the condition number κðSÞ is bounded, i.e.,
if there are positive constants c and C, independent of the problem
size, such that

jðAz; zÞj ≤ CðPz; zÞ (A-4)

and

cðPz; zÞ ≤ ðAP−1Az; zÞ (A-5)

for all vectors z ¼ ð x y ÞT . The first inequality is a bound on the
spectral radius ofAP−1, in which the spectral radius is given by the
largest (in magnitude) eigenvalue. The second inequality estimates
the eigenvalue of S that is closest to the origin.
Starting from ðAz; zÞ ¼ ðCx; xÞ − ðCy; yÞ − 2ðMx; yÞ and ap-

plying the triangle, Schwarz, and 2ab ≤ a2 þ b2 inequalities we get

jðAz; zÞj ≤ ðCx; xÞ þ ðCy; yÞ þ 2kxkMkykM
≤ ðCx; xÞ þ ðCy; yÞ þ kxk2M þ kyk2M; (A-6)

which is the first estimate above with C ¼ 1. This estimate is sharp
for any vectors x ¼ �y in the kernel of C.
For the second inequality, note that by writing C ¼

ðCþMÞ −M, we get

CðCþMÞ−1M ¼ M −MðCþMÞ−1M ¼ MðCþMÞ−1C:
(A-7)

Therefore, it can be verified that

AP−1A ¼
�
U 0

0 U

�
and P ¼

�
U þ V 0

0 U þ V

�
;

(A-8)

where U ¼ CðCþMÞ−1CþMðCþMÞ−1M and V ¼
2CðCþMÞ−1M. This means that the second estimate above,
cðPz; zÞ ≤ ðAP−1Az; zÞ, is equivalent with the bound
cððU þ VÞx; xÞ ≤ ðUx; xÞ.
Using the symmetry of C and M and the Schwarz inequality in

the ðCþMÞ−1 inner product we obtain

ðVx; xÞ ¼ 2ððCþMÞ−1Mx;CxÞ
≤ kMxk2ðCþMÞ−1 þ kCxk2ðCþMÞ−1 ¼ ðUx; xÞ: (A-9)

Therefore, we get the second estimate with c ¼ 1∕2. This estimate
is sharp for any x and y that are nonzero eigenvectors of M−1C.
Combining the two estimates and using the fact that they are

sharp, we get that the block-diagonal preconditioner leads to the
following (optimal) condition number:

κðP−1AÞ ¼ κðAP−1Þ ¼
ffiffiffiffiffiffiffiffiffiffi
κðSÞ

p
¼ Cffiffiffi

c
p ¼

ffiffiffi
2

p
: (A-10)
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