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Navigation of a Rolling Microrobot in Cluttered Environments For
Automated Crystal Harvesting

Samuel L. Charreyron, Roel S. Pieters, Hsi-Wen Tung, Maurice Gonzenbach, and Bradley J. Nelson

Abstract— We present a holistic system for automating the
motion of a rolling microrobot for protein crystal harvesting.
The RodBot, which was introduced in previous work, is able
to perform noncontact manipulation of microscopic objects
such as fragile crystals by trapping them in an induced vortex
fluid flow. Here, we are concerned with navigating the RodBot
autonomously in a liquid environment containing obstacles such
as crystals. A literature review shows existing approaches to
untethered microrobot control are limited and cluttered envi-
ronments are often not considered. We demonstrate real-time
tracking of the RodBot and surrounding obstacles, kinematic
obstacle-free path planning, and nonholonomic path following.
The system was evaluated in qualitative and quantitative
experiments, shows satisfactory performance, and presents itself
as a first step towards fully automated crystal harvesting.

I. INTRODUCTION

Microrobotics has seen significant strides in device char-
acterization, fabrication, and novel actuation methods such
as optical [1], chemical [2], or biological [3]. Such advances
allow for a better understanding of microrobots can func-
tion efficiently at small-scales, given the different balances
of forces they encounter. Simultaneously, new fabrication
techniques allow for increased device sophistication and
capability.

A promising application of micorobots is the manipulation
of objects that may be too small or too delicate for a human
to handle manually. Micromanipulation has been proposed
for such applications as micro-machining [4], cell manipula-
tion [1], and MEMS microassembly [5]. In [6], [7], a rolling
microrobot design called the RodBot was introduced for use
in x-ray crystallography X-ray crystallography concerns the
study of properties of biological molecules and proteins,
which are crystallized and analyzed by small-angle x-ray
scattering, and is used extensively in the pharmaceutical
industry [8].

Traditional methods for retrieving crystals from their
growth sites require skilled operators to manually extract
crystals with a precise tool. Protein crystals, which often have
dimensions of the order of 100 µm, are difficult to manipulate
manually, given that average human tremor for experienced
surgeons is of the order of 100 µm [9]. The RodBot enables
non-contact retrieval of the fragile crystals thus allowing for
easy and precise transportation, while limiting the potential
for damage during the extraction process.

An additionally attractive prospect is that of fully auto-
mated crystal harvesting. This would allow for considerable
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time and cost savings by enabling less-skilled operators to
oversee large-scale harvesting operations. Developing algo-
rithms for microrobot automation in general is still an open
and under-explored topic of research [10]. Many fundamental
automation topics to be addressed include but are not limited
to robust tracking of the microrobotic tool, perception of the
microrobot’s environment, automation of the microrobot’s
locomotion, automation of manipulation tasks, high-level
coordination and scheduling of manipulation tasks.

In this paper, we address the first three tasks outlined
above. We describe a complete vision-based motion control
system for the RodBot during automated crystal harvesting.
We show that its locomotion can be automated, even in clut-
tered environments containing obstacles such as air bubbles
or crystals. We show a strategy and functional methods for
detecting and mapping such obstacles in the environment,
planning of obstacle-free motion, and execution of motion
plans.

II. A BRIEF REVIEW OF EXISTING APPROACHES TO
UNTHETHERED MICROROBOT MOTION AUTOMATION

A. Motion Planning

Planning strategies including heuristic-search [11] and
sampling-based methods [12] can be found in microassembly
and cell-manipulation literature. For a review of planning and
control approaches to micromanipulation, refer to [13]. In
our review of the literature, we only found two attempts at
advanced kinematic path planning of untethered microrobots
other than simple waypoint selection. The first is in [14],
where an optimal path was generated to limit the control
effort required to move a microrobot through pulsing blood
flow. In [15], the fast marching method (FMM) was used
to solve the path planning problem between a start and end
position in a blood vessel.

B. Motion Control

Simpler point-to-point control strategies can be found in
[16], [17]. These require the microrobot to move to the
vicinity of a desired position and do not take into account
the path that the robot must take to reach the goal. Point-
to-point strategies may not be applicable to nonholonomic
systems such as Artificial Bacterial Flagella (ABF) [18],
rolling microrobots, or microjets, since there may not be a
feasible path between two adjacent waypoints.

Robust Control can be used with multiple-input multiple-
output (MIMO) systems to ensure guarantees on a plant’s
performance, given a bounded disturbance model and



bounded uncertainties in the plant model. In [19], the au-
thors used H∞ control to achieve 3D motion control for a
magnetic body actuated with magnetic field gradients. This
approach assumes linear drag forces in low Reynolds number
fluid regimes and a fully-actuated system and is therefore not
applicable to nonholonomic microrobots.

It can be difficult to develop accurate kinematic models
for a microrobot due to the uncertainty in model parameters.
Adaptive schemes can be used to simultaneously estimate
the parameter values online, and guarantee convergence to
an equilibrium or trajectory. In [20] time delay estimation
(TDE) was used to account for uncertainty in parameters
associated with nonlinear dynamics in the system model.
In [14], nonlinear adaptive control was considered for a
magnetically-pulled microrobot navigating through endovas-
cular blood vessels. Backstepping was used to generate a
control law that is Lyapunov-stable about a trajectory given
linear uncertain parameters in the dynamics. Convergence
was demonstrated in simulations, but not in practical exper-
iments. Additionally, not all parameters such as non-linear
drag force can be captured by such an approach.

In [15], model predictive control (MPC) was proposed to
add robustness to microrobot motion control. In this work,
the microrobot consisted of a magnetically-pulled magnetic
bead moving through the endovascular system and was both
actuated and tracked by magnetic resonance imaging (MRI).
MPC functions by predicting system outputs based on a
model of the dynamics and solving an optimization problem
over a finite time window projected into the future. It can
therefore be beneficial in anticipating sharp changes in the
control input such as those required to navigate through a
blood vessel bifurcation [21]. Nevertheless, the computa-
tional requirements associated with solving the optimization
problem at every time step may be prohibitively expensive
for fast control.

III. AUTOMATION SYSTEM DESIGN

A. Physical System

The physical system consists of 1) a torque driven sub-
mm rolling microrobot 2) a magnetic field generator (MFG)
and control box which generate the fields required to drive
the microrobot and comprises the actuation system 3) a
camera-mounted microscope providing visual feedback 4) a
computer platform which controls the MFG based on visual
feedback.

1) The RodBot: The RodBot is a 300 × 60 × 50µm
rectangularly shaped microrobot consisting of a biocom-
patible polymer SU-8 body and a number of transversally
magnetized CoNi posts evenly spaced along its body. When
a magnetic field is applied to the workspace, the magnetized
posts align with the applied field and rotate the robot’s body.
A rotating magnetic field causes the RodBot to rotate about
its long axis, allowing it to roll along a substrate surface sim-
ilar to a rolling-pin. The RodBot operates in low Reynolds
number liquid environments and its forward velocity depends
on the viscosity of the surrounding fluid. By setting the field
direction and rotation frequency, the orientation and speed of

(a) (b)

Fig. 1. (a) The RodBot, a rectangular rolling microrobot design (b) The
MFG, an 8-coil magnetic field generator designed for the actuation of sub-
mm and sub-µm devices.

the RodBot can be controlled respectively. Thus the RodBot’s
rolling kinematics can be represented with a nonholonomic
unicycle-like model. The RodBot is depicted in Fig. 1a.

2) The MFG: The RodBot is actuated by a multi-coil
magnetic field generator suited for sub-mm and sub-µm de-
vices. The latter was engineered so that it is easily integrated
with regular and inverted optical microscopes. The MFG can
generate fields in the mT range over a spherical working area
with a radius of 10mm and dynamic fields up to 2 kHz [22].
The MFG is shown in Fig. 1b.

3) The Automation Loop: The final portion of the physical
system is a desktop computer which runs the visual servo
automation loop. A Basler scA-780fm camera (Basler AG)
is mounted to the microscope and connected to the computer
via a Firewire interface. The automation loop is split into
three functional modules: a) computer vision for tracking
the microrobot and detecting obstacles in its environment
b) a motion planner to generate optimal obstacle-free path
between a start and goal pose c) a motion controller performs
visual servoing to drive the RodBot along the generated path.

B. Magnetic Actuation

Magnetic forces and torques can be applied independently
to magnetically functionalized microrobots by the controlling
the direction of magnetic fields and their spatial gradient
[23] using magnetic manipulation systems such as the MFG.
When immersed in a magnetic field B, a magnetic body
experiences a torque Tm which tends to align the material
magnetization with the applied field direction in (1).

Tm = M×B (1)

In a multi-coil setup, assuming ideal soft-magnetic coils
operating in their linear regions and negligible hysteresis, the
magnetic field flux density at position P : B(P ) can be de-
composed into linear terms B1(P ) · · ·Bn(P ) corresponding
to the magnetic field generation effect of each individual coil
at a unit current. Thus a 3×n field contribution matrix B(P )
exists for every multi-coil setup and relates the currents
running through each coil and the induced magnetic field.

B(P ) =
[
B1(P ) · · · Bn(P )

] i1...
in

 = B(P ) I (2)



One can induce dynamic magnetic fields such as stepping
and rotating fields over the workspace by varying the elec-
tromagnet coil currents over time [24].

C. Computer Vision

1) Tracking the RodBot: The RodBot is tracked in real-
time by detection of its dark magnetic posts. The input image
is first pre-processed by performing adaptive thresholding to
remove sensitivity to varying illumination over the image,
and morphological closing is used to split the posts into
disjoint blobs. Simple blob detection is used for feature
extraction, and blobs are filtered by size to reduce the number
of extracted features. Because the feature extraction step
generally produces a large number of features, heuristic-
based filtering is used for selecting relevant features. In the
case of the RodBot, two visual heuristics are used in the
feature selection step. The first is the number of magnetic
posts which is known a priori. The second is that the posts
should appear along a straight line and should be evenly
spaced, as shown in Fig. 2.

Fig. 2. Feature selection heuristics based on the RodBot appearance.
Features are rejected if they are not (a) colinear with other features or (b)
not equally spaced.

First a calibration step determines the spacing between
magnetic posts. Thereafter, features pk are given a score
penalizing orthogonal distance to the colinear line d⊥(pk)
and transversal distance to the supposed location d‖(pk).
Since only one feature can be kept per post, the feature with
a maximum score is kept in the consensus set χi. The total
score of the consensus set is shown in (3). In this equation
dx refers to the true spacing between magnetic posts, while
|χi| represents the cardinality of the consensus set.

C(χi) = |χi| −
∑
pk∈χi

d⊥(pk)

dx2
+ 2

d‖(pk)

dx
(3)

The previous also provides a confidence measure as to the
accuracy of tracking. If the confidence exceeds a certain
threshold, the RodBot is assumed to be tracked accurately.

2) Tracking Obstacles: It is considerably difficult to visu-
ally define what constitutes an obstacle, given they can take
on almost infinite appearances. Nevertheless, a general ap-
proach was considered to flexibly detect physical obstacles.
The detection scheme is implemented, as a proof of concept,
for two types of obstacles: air bubbles and protein crystals.

At microscopic scales, capillary forces between liquid-
air interfaces become much more dominant than at larger
scales. Due to such strong adhesive forces, microrobots may
not have enough propulsive force to detach themselves if
they happen to come into contact with bubbles. In Fig. 3a,

we show a group of air bubbles in the range of several
hundred µm in diameter formed in a solution of isopropyl
alcohol. They are easily detected by performing the following
sequence of image processing steps. Noise is reduced by
performing heavy blurring with a 5 pixel box filter. The box
filter has the added feature of being conservative since it
expands the obstacle-regions such that they cover slightly
more area than the bubbles do in reality. The image is
thresholded and the edges of the bubbles are detected with
a Canny filter [25].

In automated crystal harvesting, the RodBot would need
to sequentially retrieve crystals from a dish containing a
potentially large number of crystals and deposit them in a
retrieval site. Therefore accurate detection of the crystals
would be required, such that a path to the next crystal
to be retrieved could be planned, while avoiding the other
crystals in the dish. A similar procedure is used to detect the
crystals shown in Fig. 3d. Blurring is performed, followed
by adaptive thresholding to account for the varying intensity
of the crystal’s edges. The edges are grown using a mor-
phological closing operation to ensure that they form closed
contours. Finally, contours are extracted using OpenCV’s
contour detection algorithm [26] and are filtered by area
so that they are large enough to represent protein crystals
(minimum 0.05 µm2).

(a) (b) (c)

(d) (e) (f)

Fig. 3. Top: image processing steps performed in detecting sub-millimeter
diameter air bubbles. (a) original image (b) binary thresholding (c) canny
edge detection. Bottom: image processing steps for detecting protein crys-
tals in a dish of buffer solution. (d) original image (e) adaptive thresholding
and morphological closing (f) contour detection and filtering.

D. Motion Planning
Rather than use a sampling-based method such as proba-

bilistic roadmaps or rapidly exploring random trees - ran-
domized methods which are often resorted to in higher
dimensional problems [27] - a deterministic approach was
used. The planning strategy used was search or lattice-based
planning which is implemented in the search-based planning
library (SBPL) [28]. While the memory requirement of
lattice-based planning scales linearly with the discretization
size, the state-space dimensionality, and the size of the en-
vironment, it can yield optimal, complete, and kinematically
feasible solutions given an adequate discretization.



In lattice-based planning [28], the robot’s environment is
discretized and represented in a graph structure G(V,E)
where the vertices V represent discrete states in the configu-
ration or C-space and the edges E represent small kinematic
transitions between such states, also known as motion prim-
itives. Traditional graph-search algorithms such as Dijkstra’s
algorithm or A? can then be used to find a path between two
configurations. As with roadmap-based methods, there is an
inherent decoupling between the environment representation
and path planning queries. Thus, general search algorithms
at the query stage can be used in a vast variety of problems.

1) Defining the Environment: We introduce the following
discretization for the C-space. The portion of the workspace
that can be seen in the camera view is divided into square
cells of side length 25 µm. The upper-bound on the cell
size is that it must be fine enough to capture the geometry
of the obstacle regions. The orientation is discretized into
sixteen possible angles. The RodBot is given a rectangular
geometrical footprint of 300 µm x 50 µm in correspondence
with its real dimensions. The geometrical environment is
loaded from a binary image obtained by the obstacle tracker
unit. Configurations in which the the RodBot collides with
the obstacle region - where at least one of the footprint’s
points lay within the obstacle region - are marked as invalid
states.

2) Motion Primitives: Five possible forward motion prim-
itives were defined for the RodBot namely straight motion,
two large turning arcs, and two smaller turning arcs. Other
primitives such as backwards motion are possible but were
not investigated in this work.

3) Solving the Planning Problem: Performing heuristic
search on graphs containing millions of nodes can be a
computationally expensive and slow process. The weighted-
A∗ variation sacrifices optimality for faster computation by
inflating the heuristic lower bound by ε, a positive factor:
f(n) = g(n) + (1 + ε) h(n). Here f(n) is the heuristic for
node n, g(n) represents the accumulated cost of traveling
from the start node to node n, and h(n) a guaranteed lower
bound on the cost from n to the goal node.

We used the anytime dynamic variation of A∗ from [28],
performing a sequence of weighted-A∗ searches with an ε
decreasing towards 1. Thus, provided a small initial time has
elapsed, a solution can always be returned at the algorithm’s
termination.

E. Path-following Control

Path-following is done in closed-loop by visually tracking
the RodBot’s position and acting on the two available control
inputs, orientation and forward velocity.

1) RodBot Kinematics: The RodBot’s kinematics can be
approximated with the standard unicycle-model. The RodBot
has two controllable inputs which are its forward velocity v
and orientation θc, while it operates in the SE(2) space of
dimension 3, thus showing the nonholonomic nature of its
kinematics.

2) Virtual Target Based Path Follower: In our path-
following control strategy, nonholonomic control is ensured

by driving to a point P(s) along the kinematically feasible
preplanned path. Thus the RodBot is set to point towards
the target point by adjusting the orientation of the magnetic
field. The velocity can be adjusted proportionally to the goal
distance, such that the robot slows down near the goal. This is
shown in (4), where e represents a vector between the current
position R and target position P(s) along the parametrized
desired path τ(s), s ∈ [0, 1]. The forward velocity v is
proportional to the target distance by a tuned parameter kv
and set by the field rotation frequency ωm. Note that to
prevent input saturation, it is scaled by a arctan sigmoid
function such that it never exceeds vmax. v

θc
s̈

=
2/π vmax arctan(kv||e||)
6 e
kd(||e|| − d)

(4)

To overcome the problems associated with projecting the
RodBot’s position on the desired path, a moving virtual target
is used, as introduced in [29]. By driving to a point forward
along the path, one avoids the scenario shown in Fig. 4a,
where sideways motion is required. In this scheme, we define
the target to be a point or cart moving along the desired path.
The moving virtual target can be seen in Fig. 4b. An artificial
third input is introduced, the cart’s acceleration s̈, which is
controlled independently and is proportional to the difference
between d, a desired distance between itself and the robot,
and the actual distance as measured by the tracker.

Thus the cart attempts to maintain a constant separation
between itself and the RodBot while the RodBot tries to
move towards the target. An intuitive way to visualize this
is by imagining a cart that is connected to the RodBot via
an elastic rope and that drags it along the desired path.

P(s)

orthogonal
exclusion 
zone 

R
θc

e

O

(a)

P(s)
orthogonal
exclusion
zone

R
θc e

O

(b)

Fig. 4. In (a) the problem with driving to the nearest point on the path,
which may be physically unrealizable due to stiction. In (b) this is resolved
by instead driving to a point P(s) which moves forward along the path.

IV. EXPERIMENTAL EVALUATION

A. Quantitative Evaluation of Obstacle-free Motion

Because the presence of obstacles is decoupled from the
path-following task, an obstacle-free characterization of the
system performance was performed. In order to test the
motion performance of the system for both straight-line path
segments and tight turns, experiments were conducted at var-
ious magnetic field rotation frequencies ωm along the figure-
eight paths of Fig. 5. Different virtual target separations d
were also tested to show their effect on motion at higher
velocities.



300 μm

(a) ωm = 1 Hz, d = 75 µm

300 μm

(b) ωm = 5 Hz, d = 180 µm

300 μm

(c) ωm = 9 Hz, d = 180 µm

300 μm

(d) ωm = 10 Hz, d = 250 µm

Fig. 5. Motion experiments at varying velocities and virtual target distances on an obstacle-free figure 8 Path. The path was generated with four waypoints
with angles at multiples at π/4. The actual RodBot position was tracked manually frame-by-frame. The desired path is dotted and the traveled path is
shown in solid. The area between the desired and traveled paths is filled in grey.

Validation of the RodBot’s position was performed by
manual frame-by-frame inspection of the captured videos. As
a measure of performance, the area A between the desired
path ρ the actual path p traversed by the robot was calculated.
This area was normalized to the desired path length l(ρ)
to form a scoring metric S as shown in (5). The average
velocity was also calculated by measuring the time taken to
traverse the path p in seconds. Note that the distances were
calibrated by comparing pixel distances with the RodBot’s
long edge, assumed to be 300 µm long. Numerical data from
the experiments is listed in Table I.

S =
A(ρ, p)

l(ρ)
vavg =

l(p)

t
(5)

1) Results at Low Velocities: At low rotation frequencies
and low velocities, namely below ωm = 5Hz, precise motion
could be observed with relatively little deviation from the
desired path as can be seen in Fig. 5a and Fig. 5b. The
grey areas, showing the deviation between the desired and
actual motion, are relatively small. One can see a small
steady-state error in the straight-line segments and negligible
oscillation. Both can be attributed to errors when tracking
the RodBot’s center point, as well as some jagged motion
possibly due to irregularities in the manufacturing of the
RodBot and in the bottom surface smoothness. Using the
scoring function shown in (5), both experiments show very
similar performance in motion control.

2) Results at High Velocities: Note that for higher veloc-
ities in the second trial, the distance of the virtual target was
increased. This was done to increase robustness and ensure
that the virtual target always stayed a safe distance ahead of
the RodBot. If the RodBot came too close to or passed the
virtual target, it was prone to undesirable behavior such as
back and forth motion or rotation around the virtual target.

While the tracking and motion control of the RodBot was
quite satisfactory at velocities less than 600 µm/s, undesirable
motion became quite noticeable at higher velocities greater
than 900 µm/s. In Fig. 5c, one can see considerable overshoot

which induces oscillation following the sharp corner turns in
the path. Increasing the separation distance d between the
RodBot and virtual target increased robustness when nego-
tiating sharp corners. An explanation is that the increased
distance allowed the RodBot to better anticipate the sharp
turns. Because the tracker was further ahead, the RodBot
started turns earlier and was able to follow the tight arcs.
In the fourth experiment with an increased distance, the
RodBot demonstrated much smoother motion as can be seen
in Fig. 5d.

TABLE I
NUMERICAL RESULTS FROM THE MOTION EXPERIMENTS SHOWN IN

FIG. 5.

Trial ωm (Hz) d (µm) vavg (µm/s) S (µm)

1 1 75 187 19.6
2 5 180 629 19.4
3 9 180 943 65.6
4 10 250 820 32.9

B. Motion in Cluttered Environments

Experiments in cluttered environments containing crys-
tals were performed, showing the system’s ability to plan
obstacle-free, kinematically-feasible paths between crystals.
This would be required when sequentially retrieving crystals
from their growing dish and depositing them in a area
suitable for collection. One can see accurate detection of the
crystals, as well as tracking of the RodBot as it travels along
its desired path. Two representative examples are depicted in
Fig. 6.

V. CONCLUSION

We presented a system for automating the navigation of a
nonholonomic rolling microrobot for crystallographic appli-
cations. Kinematically feasible obstacle-free paths between
crystals are planned autonomously, and are executed by
performing visual closed-loop path following. A literature



Fig. 6. Composite images representing the motion of a RodBot in
environments containing crystals. The RodBot is marked with a blue
rectangle and the detected crystals are shown in red. The automatically
planned path is shown in blue. (a) Motion from the crystals 1,2 to crystal
3 (b) Motion to crystal 3 while avoiding crystals 1,2.

review showed limited approaches to motion planning and
nonholonomic control of untethered microrobots. This is
a first step towards full automation of crystal harvesting,
solving one of the lower-level tasks of navigation in cluttered
environments. Areas of future work include automating the
retrieval and transport of crystals and coordination of such
lower-level tasks.
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