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Model Predictive Control of a Magnetically Guided
Rolling Microrobot

Roel Pieters, Sievi Lombriser, Alejandro Alvarez-Aguirre, and
Bradley J. Nelson

Abstract—In this work, we present a model predictive control
(MPC) approach to the motion control of a nonholonomic
rolling microrobot. The mobile microrobot is designed to follow
a rotating magnetic field such that it rolls on a supporting
surface in a low Reynold’s number liquid environment. The MPC
framework takes the nonholonomic and kinematic constraints
of the microrobot and the actuation limitations of the system
into account for the task of trajectory tracking and obstacle
avoidance. We verify our approach by presenting a simulation
study and experimental results with an 8-coil electromagnetic
actuation system.

I. INTRODUCTION

Manipulation and control at the microscale is characterized
by the microrobot’s local surrounding environment and the
constraints that apply due to this. Because of the difference
in scale compared to macroscale robotics, surface effects
have a bigger influence when objects scale down and when
submerged in a fluid viscous forces dominate over inertial
forces [1]. The advantage that microscale robotics has over
macroscale is the relatively minor force necessary for actua-
tion, and the capability of non-contact actuation principles. A
general separation of actuation techniques for microrobotics
divides approaches in either electrostatic [2], electromagnetic
[3] or optical [4] techniques, among others. Despite this dif-
ference in actuation techniques the general problem of motion
control for microscale robotics involves effects negligible in
macroscale robotics. Surface and environmental effects and
limitations in actuation disturb the motion control system,
while at the same time being difficult to model and compensate
for. The reason for this is the complexity of the interaction
forces and the uncertainty in estimating their real contribution
[5], [6].

Microrobotics research ranges from fundamental
force/motion principles [7] to real (future) applications
such as targeted drug delivery [1] and industrial automation
solutions [8]. Unfortunately much research mainly provides
a proof of concept for an actuated microrobotic device by
simply moving an agent in an open environment with little
disturbance over a predefined path. The real world however is
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Fig. 1. The motion control problem is represented by trajectory tracking and
obstacle avoidance while at the same time considering the constraints on the
system and its inputs. A model predictive controller (MPC) is developed that
solves this with a single cost function optimization routine.

more complex than this, as paths might be blocked, actuation
and environmental constraints will limit the motion system
and the actual task usually consists of more than just moving
the actuated micro device.

We consider the motion control problem as represented in
Fig. 1. A microrobot, the RodBot, must follow a desired
trajectory (solid line) while avoiding obstacles in its envi-
ronment (e.g. dirt or air bubbles, depicted as a grey circle).
The RodBot’s rolling motion is nonholonomic and limited by
kinematic constraints. This effectively means that it cannot
move directly sideways and cannot rotate on the spot without a
forward velocity. Moreover, the environmental conditions (low
Reynolds number) and the actuation limits enforce a minimum
and maximum forward and rotational velocity of the robot. The
control system should take all these constraints into account
and generate motion as represented by the dashed trajectory.
With model predictive control (MPC) the optimization prob-
lem, which computes the optimal control action for a finite
horizon, is subject to these constraints and limitations. In this
work we present the development of a discrete-time, linearized
model of the RodBot, define the constraints due to the system
and the environment, and present the model predictive control
framework that solves the motion control problem. Simulation
and experimental results show that all constraints are taken into
account and that obstacles can be avoided with MPC.

A. Related work

Much research is carried out in the field of microrobotics. A
general overview of planning and control in micromanipula-
tion can be found in [9]. In this, a separation is made between
microrobotic actuation, navigation and feedback control. MPC
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combines these into a single cost function optimization rou-
tine. Other work considering MPC for microrobotic motion
control is as follows. In [10] generalized predictive control
(GPC) was used to control the motion of a microbead driven
by dielectrophoresis force. Predictive control is of particular
interest due to the non-linearity and the high dynamics of
the system, which induces high speed motion of the bead
compared to the low image capture speed. Results are shown
with simulations for the positioning of the microbead on a 2D
plane. In [11] an external magnetic field is used to control the
direction of motion of live microbial cells (T. pyriformis). A
MPC approach is taken to make the cells follow a reference
track. While experimental results show that tracking can be
achieved, this also demonstrates the complexity of controlling
live biological systems. More recent results are shown in [12]
where multiple cells are to be controlled simultaneously while
avoiding an obstacle. Experimental results however are shown
with wheeled mobile robots and not the live microbial cells.
A final similar approach on GPC is proposed in [13] and [14],
where a ferromagnetic microcapsule is actuated by a MRI
system for endovascular navigation. The controller however
is proposed for navigation along a 2D path in the presence of
pulsative flow as major disturbance and only simulation results
are presented.

While all three approaches exemplify the benefits of pre-
dictive control, they only take the position error into ac-
count for optimization, with additional constraints on the
system or its motion mostly being ignored. In this work,
we present a MPC approach that deals with the constraints
of the microrobotic system, the limitations of the actuation
system and the disturbances due to the environment. The
microrobot itself was introduced in [15] and analysed in [6].
This latter work showed that with a model-free controller,
satisfactory tracking performance can be achieved (i.e. 50 µm
peak error for a 300 µm wide robot). In this work we achieve
a similar result. A performance comparison to other systems
is difficult to make due to differences in actuation technique,
motion generation and even size and shape of the microrobot.
More importantly, the main contribution of this work is the
integration of all mentioned constraints for trajectory tracking
while avoiding obstacles.

In the remainder of this article, we present in Section II
the MPC framework, the linearized and discretized model
of the microrobot, as well as the constraints MPC has to
take into account. Section III describes the microrobot, the
magnetic control system and the practical implementation.
Results are presented in Section IV in the form of simulations
and experiments. In Section V we conclude the approach.

II. MODEL PREDICTIVE CONTROL

MPC is an advanced control technique that uses on-line
optimization performed over a receding horizon to calculate
the best control actions. While the minimization of the cost
function takes a finite receding horizon into account, only the
first step of the control strategy is implemented. After that the
optimization routine is re-evaluated [16]. The advantage that
MPC has over traditional control techniques is the integration

of constraints and limitations of the system into a single
controller. This enables trajectory tracking, obstacle avoidance
and bounds on actuation to be combined in a single cost
function optimization routine. Similar work regarding MPC
for 1:43 scale RC race cars and for a group of unicycle mobile
robots can be found in [17] and [18], respectively.

Following we introduce the linearized discrete-time model
of the RodBot and the constrained cost function optimization
problem for trajectory tracking and obstacle avoidance.

A. Discrete-time Model of the RodBot

We define the state vector of a system as x(t) and its input
as u(t). With this we can then write the steady-state equations
of the system as ẋ(t) = f(x(t),u(t)). Similarly, the reference
state and input are defined as xr(t) and ur(t), respectively.
The deviation from the reference values is defined as x̃(t) =
x(t)− xr(t) and ũ(t) = u(t)− ur(t).

As the RodBot is a nonlinear dynamical system it is
first linearized about the reference, a concept also used for
trajectory control with MPC in [17]. The linearized system of
equations can be expressed as

˜̇x(t) = A(t)x̃(t) +B(t)ũ(t). (1)

Due to the robot’s design and the method of actuation (i.e.
a rolling motion induces a forward velocity), the RodBot is
limited to non-holonomic motion corresponding to motion of
a unicycle mobile robot. Differences, however, include the
inability to rotate on the spot and the drag force and drag
torque due to the low-Reynolds number liquid environment.
Moreover, a step-out frequency exists where the rotating
RodBot cannot keep up with the input to the system (i.e.,
rotation frequency of the magnetic field). All these differences
make it necessary to include constraints into MPC, in addition
to the kinematic model of a unicycle

ẋ =

 ẋR
ẏR
θ̇R

 =

 vR cos θR
vR sin θR
ωR.

 , (2)

where the inputs of the system, vR(t) and ωR(t), are the
forward and steering velocity (see Fig. 2). The variables xR(t)
and yR(t) describe the position of the RodBot in the plane and
θR(t) its orientation.

Linearization and discretization of (2) leads to the exact
discrete-time model of the RodBot as x̃i+1

ỹi+1

θ̃i+1

 =

 1 0 −Tsvr,i sin θr,i
0 1 Tsvr,i cos θr,i
0 0 1


︸ ︷︷ ︸

A

 x̃i
ỹi
θ̃i



+


Ts cos θr,i −

1

2
T 2
s vr,i sin θr,i

Ts sin θr,i
1

2
T 2
s vr,i cos θr,i

0 Ts


︸ ︷︷ ︸

B

[
ṽi
ω̃i

]
, (3)

with Ts the sampling time of the control system. Exact
discretization takes into account that the control input re-
mains constant on the interval between two sampling instants
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ti = t ∈ [iTs, (i+ 1)Ts] as occurs for discrete-time control
systems [19]. In the matrices A and B the forward velocity
vr,i is derived from a reference trajectory as

vr,i =

√(
xr,i+1 − xr,i

Ts

)2

+

(
yr,i+1 − yr,i

Ts

)2

. (4)

Likewise, the reference steering velocity is derived as

ωr,i =
θr,i+1 − θr,i

Ts
. (5)

Both are used to define the constraints for the inputs in the
optimization routine described in Section II-C.

B. Optimization Problem

The MPC problem can be formulated as [20]

min
ũ

1

2
x̃T
Np

Px̃Np
+

1

2

i+Np−1∑
k=i

x̃T
kQx̃k + ũT

kRũk (6)

subject to:

x̃k+1 = Akx̃k +Bkũk k ∈ {i, . . . , i+Np − 1},
x̃k ∈ X k ∈ {i, . . . , i+Np − 1},
x̃Np
∈ Xf ,

ũmin ≤ ũk ≤ ũmax k ∈ {i, . . . , i+Np − 1},
x̃0 = x̃(0).

with P = PT � 0, Q = QT � 0, R = RT � 0, ũmin ∈ R2,
ũmax ∈ R2, X ⊆ R3 and Xf ⊆ X . P, Q and R are full
column rank matrices penalizing the entries in the optimization
function. In particular, R penalizes the input deviations, Q
penalizes the state deviations and P penalizes the terminal
state deviation of the control horizon. X denotes the set of
states from which the optimization solver is allowed to select
values, and should be convex. A separate set is defined for the
deviation of the final state x̃Np

, and marked as Xf . This is
necessary to ensure closed loop stability [20]. The optimization
problem returns ũ = [ũi, ũi+1, . . . , ũi+Np−1]

T , where Np is
the prediction horizon.

C. Constraint Definition

The optimization problem can be solved considering several
equality and inequality constraints. The constraint in (6) that
describes the model of the system is described by the matrices
A and B defined in (3), and includes the nonholonomic
properties of the system. This allows predicting states over
the horizon by computing the next state from the current state
and input.

The second constraint in (6) gives restrictions on the states.
This includes bounding the position of the RodBot as imposed
by the borders of the camera image and the avoidance of
obstacles (e.g. dirt or air bubbles). The obstacle-free region,
as defined by excluding circular obstacles, is non-convex.
Therefore, the constraint on obstacle avoidance is included
by restricting the position of the RodBot to lie only in one
half of a plane as described by the reference and potential
obstacles. Let the center of the jth circle to be avoided be

rR

rO,j

ak

xr,k xO,j

yO,j
yr,k

θR

vR

ωR

y∗r,k

x∗r,k

k + 1

Fig. 2. Mechanism to avoid a circular obstacle: At each point of the
reference path (gray), a half space is defined by connecting the reference
point (xr,k, yr,k) with the obstacle center (xO,j , yO,j). At the point where
the resulting line touches the circle an additional distance of half the RodBot
length rR = lR/2 is added. This is the border of the half space at time k.
The second set of lines (top) shows the same procedure at time k + 1.

defined as (xO,j ,yO,j) and its radius as rO,j . This radius is
chosen such that interaction forces with nearby obstacles can
be ignored. Instead of defining the circle as a forbidden region,
the allowed region is defined as a half space that changes at
each time step. A description of the half space is developed by
defining the vector ak as a normal vector pointing from the
reference point (xr,k,yr,k) towards (xO,j ,yO,j), the obstacle
center (see Fig. 2). The half space is then given as the set
[21]

Qk =
{
q ∈ R2

∣∣aTk q ≤ bk} , (7)

where q = [x∗r,k, y
∗
r,k]

T is a two-dimensional vector with the
allowed future positions and where the normal vector ak is

ak =
1√

(xO,j − xr,k)2 + (yO,j − yr,k)2
[
xO,j − xr,k
yO,j − yr,k

]
,

(8)
and the scalar bk is the distance between the reference point
and the border of the half space

bk =
√

(xO,j − xr,k)2 + (yO,j − yr,k)2 − rO,j − rR, (9)

where rR = lR/2, half the width of the RodBot. For every
time step k ∈ {i, . . . , i+Np−1}, the inequality (7) introduces
another half space Qk such that X ⊆ Qk × R.

The constraints in (6) on the inputs are imposed as lower
and upper bounds on the forward and steering velocity of the
RodBot and are chosen by the two-element vectors ũmin =
[ṽmin, ω̃min]

T and ũmax = [ṽmax, ω̃max]
T . These constraints

correspond to the limitations of the actuation system and to the
low Reynolds number liquid environment. As the microrobot
is submerged in a fluid the properties of this fluid (i.e., the
viscosity) prescribe the amount of slip that occurs when rolling
[15]. This affects the forward and steering velocity of the
device. Moreover, as a rectangular cuboid the RodBot cannot
rotate on the spot with zero forward velocity.

The last entry in (6) defines the initial state deviation as the
current measured (or simulated) state deviation.



4

III. EXPERIMENTAL SYSTEM

A. The RodBot

The microrobot, named the RodBot, is a wireless mobile
device with a typical size of 50 × 60 × 300 − 600 µm. The
polymer body of the robot contains several soft-magnetic posts
(perpendicular to the long axis) which align with an external
magnetic field (see Fig. 3). When this field changes, the Rod-
Bot realigns with it. If the RodBot rolls without slipping, the
forward velocity equals the rod perimeter times the rotational
frequency. The deviation of the experimental data from this
ideal forward velocity indicates slip of the RodBot. At higher
forward velocity and higher viscosity of the surrounding liquid
the fluidic drag force and drag torque increase, and the slip
increases [15]. In low viscosity solutions, e.g. isopropanol,
the maximum velocity of the RodBot is 1 mm/s (≈ 17 body
lengths/s). The RodBot rolls on a substrate in a low Reynolds
number liquid environment (isopropanol) and generates flows
to manipulate objects. In particular, objects can be manipulated
by either a pushing strategy or a fluidic trapping technique.
The RodBot was introduced in [15] and its capabilities was
analysed in [6].

B. Magnetic Control System

The magnetic control system includes the eight-coil Mag-
netic Field Generator (MFG) as described in [22] and com-
mercialized by MagnetbotiX AG1, a microscope with camera
for visual feedback, and a container enclosing the RodBot
(see Fig. 4). The system is controlled through C++ by a
single computer running Ubuntu Linux and is capable of
5-DOF wireless control of micro- and nano-structures (3-
DOF position, 2-DOF pointing orientation), within a spherical
workspace with a diameter of approximately 10 mm. This
allows for magnetic fields and field gradients up to 20 mT
and 2 T/m at control frequencies up to 4 kHz. The motion
of the RodBot is controlled at 100 Hz (magnetic field), where
visual feedback returns the pose of the micro agent at 30 Hz
as described in [6].

A rotating magnetic field enables a forward velocity vR
proportional to the rotational frequency of the magnetic field
and the steering angle θR corresponds to the orientation of the
magnetic field (see Fig. 2). The magnetic field is generated
by a set of static electromagnets at any desired point in the
workspace as explained in [23].

Fig. 3. The RodBot has a polymer body (SU-8) and soft-magnetic posts
(CoNi) that align with an external magnetic field.

1http://www.magnebotix.com

C. MPC Solution with FiOrdOs

For the optimization routine the FiOrdOs code generator
toolbox [21], [24] is used which accepts an optimization
problem in the form of

min
z

{
1

2
zTHz+ c(x̃0) | Aiz ≤ bi,Aez = be

}
, (10)

where z =
[
ũT
0 ũT

1 . . . ũT
Np−1 | x̃T

1 x̃T
2 . . . x̃T

Np

]T
∈

RNp(nu+nx), H = diag(R,Q, I), and c(x̃0) = 1
2 x̃

T
0 Qx̃0,

where nu and nx is the size of the input and state vector,
respectively. The matrices Ae and be describe the system
and form an equality constraint for all future time steps. For
obstacle avoidance the inequality constraints as described by
(7) are passed to the solver in form of the matrix inequality
Aiz ≤ bi, which integrates (8) and (9) for all future time
steps. As FiOrdOs cannot handle ellipsoids as sets for the
inequality constraints a change of variables is made and the
last state of the horizon in z is replaced by ˆ̃xNp

= P1/2x̃Np
.

The change of variables is the reason for the identity matrix as
the last block of H [21]. In FiOrdOs the first-order primal-dual
approach is used which can handle equality and/or inequality
constraints, and where H � 0, and H = 0 is allowed
[21]. This was used for both the simulation and experiments
presented in the following section.

IV. RESULTS

In order to evaluate the MPC framework several simulations
and experiments are carried out. This includes the following of
a loop-shaped trajectory and the following of a circular-shaped
trajectory while avoiding a simulated circular obstacle. For the
experiments a RodBot with 8 soft-magnetic posts and a width
of lR = 500 µm is used.

A. Loop Following

Fig. 5 shows the simulation and experimental results for
the following of a loop-shaped trajectory with the RodBot.
Fig. 6 shows the reference and measured forward and steering
velocity for experiment 1. With P = Q = diag(1, 1, 1000) a
higher penalty was given for the orientation deviation than

Fig. 4. The experimental system contains the eight-coil magnetic field
generator (MFG, white box), a microscope with camera for visual feedback,
and a laptop computer for processing.
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for deviations in position. The constraints on the forward
vR and steering velocity ωR are considered as inequality
constraints in z with 0 mm/s ≤ vR ≤ 1 mm/s, and
−π/8 rad/s ≤ ωR ≤ π/8 rad/s (red lines in Fig. 6), and
therefore R = 02×2. The reference velocities stay within
these bounds. Due to measurement noise the measured steer-
ing velocity rises slightly above the input constraint. These
parameters are used for both the simulation and experimental
results and, as shown, give a similar response. For the three
experiments the average root mean square (RMS) error is
87 µm with a standard deviation (SD) of 57 µm. The peak
lateral steady state error stays within 160 µm.

x [ µm]
2 4 6

y
 [
µ

m
]

2

4

MPC loop following

Reference

Simulation

Experiment 1

Experiment 2

Experiment 3

Fig. 5. Simulation (solid blue) and experimental (dotted) results for the
following of a loop-shaped trajectory with MPC. The RodBot has 8 soft-
magnetic posts and is 500 µm wide. The penalty matrices are defined as
P = Q = diag(1, 1, 1000), R = 02×2. For the three experiments the
average root mean square (RMS) error is 87 µm with a standard deviation
(SD) of 57 µm. The peak lateral steady state deviation stays within 160 µm.
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[r
a

d
/s

e
c
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-0.4
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0.4

Steering velocity
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Fig. 6. Reference and measured velocities for experiment 1. The con-
straints on the input are defined as 0 mm/s ≤ vR ≤ 1 mm/s, and
−π/8 rad/s ≤ ωR ≤ π/8 rad/s for the forward velocity and the steering
velocity, respectively (solid red lines).

B. Obstacle Avoidance

Fig. 7 shows the experimental results for the following
of a circular trajectory with the RodBot while avoiding a
static circular obstacle. The solid brown circles in the figure
represent the boundary that the RodBot should avoid: the outer
circle for the center of the RodBot, the inner circle for the outer
limits of the RodBot. The executed motion of the center of the
RodBot (experiment 5 and 6) stays outside of the obstacle’s
boundary. Experiment 4 (yellow) shows the RodBot slightly
inside the obstacle region, explained by the fact that the real
system gives a slightly different result than what the model can
predict. To be sure to not collide with an obstacle, an additional
security distance can be added to the circle radius. Moreover,
oscillatory behaviour can be seen, which is likely due to
the tight tuning between tracking performance and obstacle
avoidance. This unwanted behaviour shows the complexity
in tuning the MPC controller. Fig. 8 shows the reference
and measured forward and steering velocity for experiment
6. For the circular trajectory the reference velocities vR and
ωR are constant. The same penalties as for the loop trajectory
experiments are used. Due to measurement noise the measured
steering velocity rises slightly above the input constraint.
Outside the obstacle region the tracking performance is similar
to the tracking performance of loop-following. During obstacle
avoidance, the tracking error is 2 to 3 times larger. The reason
for this is that the obstacle changes the reference position quite
drastically, and, in order to comply with all constraints, the
RodBot is forced to avoid the obstacle with more distance.

C. Discussion

Because of the low velocity of the RodBot and the con-
siderable damping due to the low Reynolds number fluid, the
reaction to changing inputs is rather slow. Therefore, for all
simulations and experiments the MPC controller was set to
replan the trajectory at 1 Hz, and the prediction horizon was
set to Np = 4, enabling to ’look ahead’ for four seconds.
These results show that constraints on the forward and steering
velocity are taken into account and that obstacles can be
avoided with MPC.

V. CONCLUSIONS

In this work we considered the motion control of a mi-
crorobot, the RodBot, submersed in a fluid and rolling on a
supporting surface. As such the constraints the controller has
to take into account are the nonholonomic properties of the
microrobot, the limitations due to the actuation system and
the low Reynolds number liquid environment, as well as the
avoidance of potential obstacles on a desired trajectory. The
task of trajectory tracking with aforementioned constraints is
achieved by utilizing MPC. For this, a discrete-time, linearized
model of the RodBot is developed and an optimization routine
is defined to solve the motion control problem. Simulation and
experimental results are presented with an 8-coil electromag-
netic actuation system.
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x [mm]
2 4 6

y
 [
m

m
]

2

4

MPC obstacle avoidance

Reference

Obstacle

Experiment 4

Experiment 5

Experiment 6

Fig. 7. Experimental results for the following of a circular trajectory while
avoiding a static circular obstacle with MPC. The RodBot has 8 soft-magnetic
posts and is 500 µm wide. The penalty matrices are defined as P = Q =
diag(1, 1, 1000), R = 02×2. The outer solid brown circle represents the
boundary for the center of the RodBot, while the inner solid brown circle
represents the boundary for the outer limits of the RodBot.
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Fig. 8. Reference and measured velocities for experiment 6. The con-
straints on the input are defined as 0 mm/s ≤ vR ≤ 1 mm/s, and
−π/8 rad/s ≤ ωR ≤ π/8 rad/s for the forward velocity and the steering
velocity, respectively (solid red lines). By definition, the reference does not
include obstacle avoidance.
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