mzuriCh ETH Library

Free Gait — An Architecture for the
Versatile Control of Legged Robots

Conference Paper

Author(s):
Fankhauser, Péter; Bellicoso, C. Dario; Gehring, Christian; Dubé, Renaud; Gawel, Abel; Hutter, Marco

Publication date:
2016

Permanent link:
https://doi.org/10.3929/ethz-a-010736751

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/HUMANOIDS.2016.7803401

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-a-010736751
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/HUMANOIDS.2016.7803401
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Free Gait — An Architecture for the Versatile Control of Legged Robots

Péter Fankhauser', C. Dario Bellicoso!, Christian Gehring?, Renaud Dubé?, Abel Gawel?, Marco Hutter!

Abstract— This paper introduces Free Gait, a software frame-
work for the control of robust, versatile, and task-oriented
control of legged robots. In contrast to common hardware
abstraction layers, this work focusses on the description and ex-
ecution of generic whole-body motions (whole-body abstraction
layer). The motion generation and motion execution algorithms
are connected through the Free Gait APIL This facilitates the
development and execution of higher level behaviors and motion
planning algorithms. The API is structured to accommodate
a variety of task-space control commands. With these, the
framework is applicable to intuitive tele-operation of the robot,
scripting of user defined behaviors, and fully autonomous
operation with motion planners. The defined motion plans
are tracked with a feedback whole-body controller to ensure
accurate and robust motion execution. We use Free Gait with
our quadrupedal robot ANYmal and present results for rough
terrain climbing, whole-body stair scaling, and special motions
such as push-ups and squad jumps. Free Gait is available
open-source and compatible with any type of legged robot,
independent of the number of legs and joints.

I. INTRODUCTION

Controlling robots with a high number of degrees of free-
dom (DOF) is a complex task and focus of active research. A
major challenge for legged robots is the generation of move-
ments through intermittent contact while ensuring stability
and avoiding collision with the environment and with the
robot itself. In addition, when implementing controllers for
real robots, one has to account for real-time performance,
safety, and robustness against uncertainties in actuation and
sensing. For these reasons, developing software for legged
robots is complex and coupled with significant development
overhead and learning curve for new developers.

Abstraction layers provide a tool to hide complexity when
systems become too difficult to efficiently work with. One
example are computer systems where hardware and appli-
cations are separated by a series of abstraction layers such
as firmware, kernel, libraries and more. Based on this idea,
we have developed Free Gait, a framework for the versatile
control of legged robots. The goal of Free Gait is to reduce
the complexity of developing software for the motion gen-
eration of legged robots. Free Gait consists of a whole-body
abstraction layer (Free Gait API) and several tools that are
designed to interface higher level motion goals with the lower
level tracking and stabilizing controllers. The separation
between motion generation and motion execution through the
Free Gait API enhances the ease of use, interoperability, and

IRobotic Systems Lab, ETH Zurich, Switzerland (pfankhauser@ethz.ch)

2 Autonomous Systems Lab, ETH Zurich, Switzerland

This work was supported in part by the Swiss National Science Founda-
tion (SNF) through project 200021.149427 / 1 and the National Centre of
Competence in Research Robotics.

EndEffector-
Trajectory

Trajectory

Trajectory

EndEffector-
Trajectory

Fig. 1: Free Gait provides the command structure to control legged robots
in various ways. a) The quadrupedal robot ANYmal localizes with laser
range sensors and climbs up a step based on a sequence of footholds. b)
While walking, the robot switches the leg configuration (from X- to O-
configuration) with help of a joint position trajectory. c) A whole-body
motion planner generates joint trajectories to climb steep stairs. d) Free
Gait is also applicable for dynamic motions such as a squad jump, which
we synthesize with base and feet trajectories. A video of these maneuvers
is available at https://youtu.be/EI1zBTYpXWO.

platform independence. The application of our framework
ranges from intuitive tele-operation of the robot, scripting of
user defined behaviors, to fully autonomous operation with
the help of motion planners. Figure [T provides an overview
of possible motions which can be executed with the building
blocks of the Free Gait API. Our Free Gait implementation
is available open-source as C++ library with interfaces to the
Robot Operating System (ROS)E| It is designed with general
legged robots in mind and compatible with existing whole-
body controllers.

Previous work on abstraction layers in robotics has often
focused on Hardware Abstraction Layers (HAL) [2} 3]. The
goal here is to separate the communication with sensors and
actuators from the perception and motion algorithms. From
the motion generation perspective, the HAL provides the in-
terface between the commanded joint states (position, torque,
etc. commands) and the underlying actuator controller for
electric, hydraulic, or other actuators. They are an important
tool in robotics and many robots such as the LittleDog [4]
provide such an interface. However, a HAL only captures

! Available at |http://github.com/leggedrobotics/free_gait

mailto:pfankhauser@ethz.ch
https://youtu.be/EI1zBTYpXW0
http://github.com/leggedrobotics/free_gait

g M .
L n Behavioral goals
o
% S Navigation goals
¥
S Whole-body motion commands > Free Gait API
T e § Actuator commands HAL
LR

Fig. 2: The Free Gait API is designed for motion commands involving
the entire structure of the robot (whole-body abstraction layer). This
differentiates it from more abstract task-level goals and from the more local
Hardware Abstraction Layer (HAL) on actuator level.

the local control on joint (or limb) level, whereas Free Gait
is designed as an interface for whole-body motions. As
illustrated in Fig. 2] the Free Gait API can be understood
as intermediate layer between a HAL and more abstract
navigation goals such as platform velocity commands as used
in [5. l6].

Several software packages exist for the intuitive generation
of robot motions, for example for the NAO robot [7, [§].
These tools provide complete development environments and
build up on pre-defined sequences for behaviors such as
‘stand up’ or ‘walk forward’. With these tools, whole-body
motions are executed as interpolation between robot pose
‘snapshots’, which are defined by the user as joint position
configurations. The designed motions are executed as open-
loop joint position trajectories, an approach that requires
highly controlled environments for successful motion exe-
cution.

A concept similar to our work has been discussed in
[9] and [10]. In the former the HAL has been extended
(and is limited to) to more abstract input types such as
feet and base velocities relative to the ground. The velocity
output of the different modules (gait generation, stability,
obstacle avoidance, body posture, etc.) was then combined
as weighted sum to command the robot. In the more recent
work [10], a structure for the intuitive remote control of a
Humanoid is proposed. It is based on the definition of desired
joint angles, Cartesian goals for the end-effector, and pelvis
poses. These commands are either directly executed on the
robot or used as target for the joint or footstep planner. This
work extends over these concepts by generalizing to the more
versatile definition of commands including position, velocity,
and force command types. Furthermore, Free Gait also
includes the definition of targets (time-independent), entire
trajectories (time-dependent), and automatized commands
such as footsteps and pose adaptation commands.

In this paper, we introduce the Free Gait architecture
(Section |m) address several issues that arise when working
with real robots (Section [[TI), and describe three applications
of the Free Gait framework (Section [[V) before concluding
our work (Section [V)).

II. FREE GAIT API

The Free Gait API connects the motion generation algo-
rithms with the motion execution control (Fig. [3). The motion
generation modules define the desired motion of the robot

< User Motion Footstep Motion
'.g Interface || Scripts Planning Planning
o
<
o
>
s .
S Free Gait APl . Motion definition
g .
s t
L . Transition from current state &
= Free Gait Core Iv\. . trajectory generation
A
Actual Desired Sampling for current time
robot state | | robot state Iﬁ. t
$ v
£
3 Real-Time Control Preview
3 Generation
5 I Adapter l
‘EE State Whole-Body Motor Adapter
Estimation Controller Control
User Interface

Sensor
signals

Actuator
commands

Robot

Fig. 3: Motion goals are commanded through the Free Gait API to the
whole-body motion controller. The API is suitable to be interfaced with
many motion generation sources such as user interfaces, motion behavior
scripts, or footstep and motion planners. During motion execution, the
desired robot state is sampled and tracked by the real-time whole-body
controller.

Base frame

Base motion

T]_(_)caﬁlaﬁon

Leg

Global frame <)
%, motion

Support legs ®

Fig. 4: Free Gait motions are based on a combination of (possibly multiple)
leg motions and a base motion per command (step). The base motion defines
indirectly the motion of the support legs. Both leg and base motions can be
defined a reference frame suitable to the task.

in terms of various base and leg motion commands (Free
Gait API). In the Free Gait Core module, these commands
are transformed to a robot desired state, which describes
the desired base pose and joint states for each time step
of the motion execution. The motion is typically executed
in a real-time controller that implements the tracking of the
desired robot state with help of the state estimation and motor
controllers.

In the following, we describe the structure and the ele-
ments of the Free Gait APIL.

A. Command Structure

A Free Gait command (or action) is composed of a list
of steps (of type Step), which are executed successively in
the specified order. During execution, continuous feedback
on the progress of the execution is provided to the sender
of the action. Once the command is successfully finished
(or in case it could not be executed or was intentionally
stopped), the according result is returned. At any time, the
sender has the possibility to stop the execution and to replace
it with new commands. In this case, the remaining steps are

discarded and the new commands executed. This enables the
implementation of receding horizon controllers with the Free
Gait APL

For the command definition, we differentiate between leg
motion and base motion commands (Fig.). Leg motions
describe the desired motion of the legs that do not contribute
to the stabilization of the base (non-support legs). Depending
on the application, leg motions can be expressed as joint
space commands or as Cartesian space commands of the end-
effector (foot). Base motions describe the desired motion of
the base, which will be executed with help of the legs in
contact with the environment (support legs). Both leg and
base motions can be defined in three different ways:

Target a single target state of a leg or the base,

Trajectory a series of target states each associated with a
timestamp,

Automatic a command to use online motion genera-
tion/optimization for the legs (footsteps) or the
base (pose adaptation).

An overview of the Free Gait commands is given in Table
Note that each step in the command’s list of steps can contain
a combination of different leg and base motion definitions.
This allows to express each command with the most suitable
motion definition for the task at hand.

In the following, we discuss the different types of motion
definitions of the Free Gait API in more detail.

B. Leg Motions in Joint Space

The joints of the robot’s non-support legs can be controlled
with the leg motion commands in joint space q(r) € R" with
n the number of joints per leg. In this case, a combination
of desired joint position, velocity, acceleration, and torque
can be defined for each joint of the leg. Combining different
modes of control allows to determine the desired behavior of
the leg. For example, specifying desired joint positions and
velocities enables smooth motions while the combination of
the joint position with a feed-forward torque is suited for
interacting with the environment.

In the simplest case, a target joint state is defined as
a JointTarget command type. Free Gait determines
the duration of the motion based on the current state the
joints, the desired state, and (optional) information about the
desired average rate of change (e.g. average joint velocity
in case of joint position commands). Building up on a rate
definition (instead of direct duration information) decouples
the resulting velocities and accelerations from the current
state of the robot. This makes the target definition in practice
more convenient and safer to work with.

For more complex joint motions, a full trajectory can
be specified as type JointTrajectory. This command
consists of a list of joint states each associated with a time
and supports variable durations between the states. Upon start
of the motion, Free Gait computes a spline that connects
the current state of the joints and the desired joint state
knot points (see Fig. [3). For each joint, we parameterize
the trajectory as a quintic polynomial spline. Similarly, the

JointTarget command is a joint trajectory with a start
and end knot point.

For convenience, the LegMode command is used to
determine if a leg should be used as support leg or not while
keeping the current control mode and set points.

C. Leg Motions in Cartesian Space

As an alternative to the joint space commands, the desired
foot motion of the non-support legs can be defined in
Cartesian space. In this case, one specifies a combination
of the desired position, velocity, acceleration, and force of
the end-effector (foot) in Cartesian space as f(t) € R3.

Conceptually similar to the joint space target defini-
tion, the EndEffectorTarget command specifies a tar-
get state of the foot together with (optional) information
about the desired average rate of change. Analogously, the
EndEffectorTrajectory type is used to command a
sequence of timed foot states. Importantly, both end-effector
target and trajectory are expressed in a coordinate frame
that can be chosen to suit the task at hand. On one side,
this makes it easy to specify leg configurations relative to
the base (base frame) which are independent of the robot’s
pose. On the other side, it is often useful to interact with the
environment and to specify the desired foot state relative in
a global frame. In the latter case, Free Gait tracks the state
in the specified frame during execution, enabling robust and
accurate motion execution even under external disturbances
(slipping, pushes etc.).

As a specialized version of a foot trajectory, Free Gait
implements a footstep command type for stepping to
desired footholds. A footstep is determined by the target
position (x-, y-, and z-coordinate) and the height and profile
form of the swing motion. Currently, we have implemented
triangle, square, and straight line swing profiles, which inter-
nally use three, four, and two spline knot points, respectively.

D. Base Motions

Base motion commands determine the motion of the
robot’s base/torso. The desired base motion is tracked with
help of the support legs (Fig. f). Similar to leg motions, a
combination of the desired pose in R x SO(3), twist and
acceleration in R®, and net feed-forward force and torque
at the base in R® can be commanded. The base motion
definition is independent of the number of support legs
and the position of the feet. Again, both single targets as
BaseTarget (timing determined through desired average
rate of change) and full trajectories as BaseTrajectory
are available. Internally, the base motions are parametrized as
cubic Hermite splines [11]. As with leg motions in Cartesian
space, both base targets and trajectories are associated with
a reference frame.

Base motions are practical for the general locomotion of
the robot where the center of mass has to be shifted to take
steps. Additionally, we have found great use of them for
stand up/lie down maneuvers and for positioning onboard
equipment (e.g. cameras) at specific locations. In these cases,
the desired base motions are intuitively defined and robustly

Target Trajectory Automatic
Leg motion in joint space JointTarget™ JointTrajectory LegMode
Leg motion in Cartesian space EndEffectorTarget*™ EndEffectorTrajectory* Footstep*T
Base motion BaseTarget*™T BaseTrajectory* BaseAuto™

* With frame definition

T With average rate of change definition

TABLE I: Free Gait commands are expressed as a combination of leg (in joint or end-effector Cartesian space) and base motions with definition of
position, velocity, and/or force/torque targets or trajectories. Some command types (*) are associated with a reference frame to match the task frame.
Certain command types () are based on the desired average rate of change (instead of duration) for convenience.

executed even from very different feet positions and leg
configurations. It is important to note that for the definition of
base target and trajectory commands, the motion generation
has to ensure stability and compatibility with the current
position of the feet.

Online motion generation for the base motion is provided
by the BaseAuto command type. It computes a base target
pose based on the current and, if available, next contact
situation. The computation bases on the notion of feet/legs
in support (given by current stance) and the feet/contacts
to reach (defined be the motion generation). While the
underlying pose adaptation algorithm should be adapted
for different types of robots, we have found the following
approach to work well with quadrupedal systems. For our
implementation, the pose optimization finds a target base
pose that minimizes the error to the nominal/‘default’ joint
positions for all support feet and feet to reach under a set
of constraints. The constraints include the stability constraint
(defined by the support legs), kinematic limits and optionally
collision constraints. The BaseAuto command is useful for
using before, together with, and after leg motion commands.
When using it as a preparation step before a leg motion
command, it moves the base to a position from which the
feet can be unloaded safely in the next step. The usage in
parallel with leg motions moves the base in the direction of
the anticipated target foothold, supporting the reachability
of the robot. Using the pose adaptation after a contact
change moves the base taking the new contacts into account,
distributing the load to all legs and hence increasing the
stability margin.

E. Output and Integration of Free Gait

While the Free Gait API is designed to support various
motions commands, the output consists of a simple descrip-
tion of the desired robot state such that it can be easily
integrated with existing robot control software (Fig. [3). The
desired robot state consists for the non-support legs of the
control mode (position, velocity, acceleration, and/or torque)
and the desired set points for each joint. Similarly, the state
also contains the control mode and set points for the base
motion. The set points of the base motion are converted by
the whole-body controller to joint commands of the support
legs. Additionally, the surface normal for each contact is
also contained in the robot state if it is given by the motion
generation.

The implementation of Free Gait with the robot specific

software is realized through adapters. An adapter is respon-
sible to provide the actual state of the robot and forward
the desired robot state to the robot controller. Through
the adapter, the execution of the Free Gait commands is
controlled with a free to choose sampling time At.

By separating the motion generation with the motion
execution, Free Gait is robot platform agnostic, enabling to
easily port motion generation methods and algorithms to a
different robot. As Free Gait is also independent of the under-
lying whole body controller, implementing different control
methods for the same control tasks requires only to write
a new adapter without additional overhead. Furthermore,
it is often useful to simulate or preview the motion plan,
which can be accomplished by writing adapters for each and
viewing the Free Gait commands before the execution on the
real robot.

III. IMPLEMENTATION CONSIDERATIONS

The motion generation dictates the desired motion of
the robot. In reality, the actual motion is never executed
perfectly as defined and we have to deal with the problems
that arise among others from inaccurate tracking, simplified
models, sensor noise, drifting state estimation, and external,
not modeled disturbances. To this end, we describe in the
following some of the strategies in Free Gait that enable a
robust motion execution with a real robot.

A. State Transitions

The desired/commanded state of the robot is often offset
to the actual/measured state of the robot. This tracking error
can be found for both leg and base motions and can range
from a few millimeters/degrees to multiple centimeter and
degrees. To enable a smooth transition from the actual state
to the desired motion, one can use the actual state as the first
knot point when generating the spline trajectories just before
they are needed for execution. However, strictly following
this strategy leads to the problem that a steady state error
is cancelled at the time of transition leading to a undesired
jump of the actuator reference value. To this end, Free Gait
employs the following strategy: In case the control mode is
the same before and after the transition from one step to the
next, the desired set point is used as starting point. In case
the control mode changes, the actual state is used.

B. Contact Transitions

A legged robot moves by changing the contact situation
at each step. Hence, it is important that a planned contact is

actually established before the leg can be loaded to support
the robot. Typically, contact sensors at the feet are employed
to sense the contact with the environment. In practice, a
contact change happens prior or after the planned transition.
In case a contact is established before the step change, our
implementation checks if the leg is planned to be a support
leg in the next step and allows the leg to become a support
leg prior to the step change. If no contact is expected (not
a support leg in the next step), the motion is continued as
planned. In case a contact is not established by the end of the
step, the transition to the next step is paused and a behavior is
triggered to gain contact. This behavior consists of a motion
of the foot from its current position towards the surface along
the surface normal. If the contact can be closed during this
maneuver, the transition to the next step is performed. If the
maximum extension of the leg is reached without contact,
the Free Gait command is stopped and the result return as
cancelled.

C. Reference Frames

The Free Gait commands for leg motions in Cartesian
space and the base motions are given relative to a ref-
erence frame, as illustrated in Fig. The pose of the
robot estimated basing on the kinematics and inertial sensors
is typically provided as a smooth trajectory with a high
update rate, but might accumulate drift relative to the real
motion of the robot.Other estimation methods, such as GPS,
vision, or laser-based localization, work often drift-free but at
lower rates and might undergo sudden discrete displacements
(jumps).

In Free Gait, we combine pose estimation methods with
the two different characteristics, the odometry methods
(smooth/drift-afflicted) and the localization methods (non-
smooth/absolute). We assume that the state estimation from
odometry does not undergo significant drift during one
step. When commands are to be executed in a localization
frame, the trajectories are transformed to the odometry frame
right before the execution. Hereby, we can execute motions
defined in a frame provided by localization methods, which
is important for accurate interaction with the environment.

IV. RESULTS

We have used Free Gait with the two quadrupedal robots
StarlETH [12] and ANYmal [1]. Both robot’s actuation is
based on Series Elastic Actuators (SEA), providing accurate
position and torque control. The state estimation (legged
odometry) is based on a Extended Kalman Filter (EKF),
fusing kinematic and inertial measurements at 400 Hz [13].
Localization is performed with rotating laser range sensors
and Iterative Closest Point (ICP) scan matching against a
reference map [[14]]. For the motion execution, we have relied
on two different whole-body controllers. One controller is
based on the virtual model control concept and uses an
optimization based contact force distribution (actuators in
torque control mode) [S]]. The other controller is based on
the kinematic motion tracking with gravity compensation
(actuators in impedance control mode).

Figure [T shows four different Free Gait examples and their
building blocks. In the following, we discuss three motion
tasks in more detail illustrating the variety of motions that
can be achieved with Free Gait. All maneuvers shown can
be executed with either the virtual model or the impedance-
based controller by simply switching the controller with no
additional change necessary.

A. Motion Scripting

The Free Gait API makes it easy to define various motions.
For example, simple Python scripts can be written to control
the behavior of the robot for certain tasks. To further facilitate
the generation of motion sequences, Free Gait includes a
framework to parse and execute motion descriptions from
YAML files [15]. We have used this framework to build up a
database of scripted motions such as standing up/lying down,
locking into the docking station, move joints to transport
configuration, recovery from a fallen state, switching leg
configurations (X- and O-configurations), and several pre-
defined stepping sequences and demo motions (e.g. squad
jump).

As an example, we discuss the following Free Gait YAML
motion definition which describes the motion of a three-
legged push-up:

1 steps:

2 - step:

3 - base_auto:

4 = Step:

5 - end_effector_target:

6 name: RF_LEG

7 ignore_contact: true

8 target_position:

9 frame: footprint

10 position: [0.39, -0.24, 0.20]
11 - step:

12 - base_auto:

13 height: 0.38

14 ignore_timing_of_leg_motion: true
15 — end_effector_target: &foot

16 name: RF_LEG

17 ignore_contact: true

18 ignore_for_ pose_adaptation: true
19 target_position:

20 frame: footprint

21 position: [0.39, -0.24, 0.20]
22 - step:

23 — base_auto:

24 height: 0.45

25 ignore_timing_of_ leg_motion: true
26 - end_effector_target: xfoot

27 - step:

28 - footstep:

29 name: RF_LEG

30 profile_type: straight

31 target:

32 frame: footprint

33 position: [0.32, -0.24, 0.0]
34 - step:

35 - base_auto:

The resulting motion is illustrated in Fig. [5] In the first step,
the BaseAuto command on Section moves the base
to a position that the leg in the next step can be safely
lifted off ground. In the next step on Section the
right front (RF) foot is moved to a target position with

Fig. 5: A three-legged push-up motion to demonstrate the ease of use of the Free Gait API (total 35 lines of code). The numbers on the top left indicate
the corresponding step command in the code example of Section

height 0.2 m defined in the footprint frameﬂ The statement
ignore_contact: true (Section [[V-A) instructs that
no contact is expected at the end of the step. Section
[A] describes the step to lower the base to a height of 0.38 m
(relative to the mean height of the feet) while keeping the
right front foot in the air at same positionEl The Section m
ignore_timing_of_leg_motion: true states that
the timing of the BaseAuto command is not adapted to
the leg motion, causing it the use the default average velocity
value to compute the duration of the motion. The statement
on Section m ignore_for_pose_adaptation:
true instructs the BaseAuto command to ignore the
right front leg in the pose adaptation, causing the base to
remain straight instead of tilting towards the elevated leg.
The upward motion of the push-up to a height of 0.45m is
described in the fourth step (Section [V-A). In this step, the
EndEffectorTarget is reused from Section [V-A] with
the YAML syntax for anchor & and reference «. Finally, the
right front leg is lowered again (Section and the base
is moved to the center of all four legs (Section [[V-A).

B. Stepping over Rough Terrain

Given a sequence of footholds from an operator or a
footstep planner, a combination of the Footstep and
BaseAuto commands can be used for walking over difficult
terrain. In the following example, the footholds are defined in
the global reference frame (given by the ICP localization) to
climb up a step of 12 cm as shown in Fig.[6] The robot climbs
up the step in four trials starting from different positions.
During execution, we have perturbed the robot by manually
pushing on the base. In one trial, we have blocked the foot
from reaching the desired footstep with an obstacle, causing
the foot to slip. Figure [6] shows the motion tracking of the
feet during the climbing maneuver for all trials, illustrating
the precision and robustness against disturbances of stepping.

Figure [7] depicts the foot trajectories of one trial in the
global frame from localization, in the odometry frame from
the legged state estimation, and in the combined approach as
executed by Free Gait (Section [[II-C). The trajectory of the
ICP localization is prone to undergo discrete jumps as shown
in Fig. [7A, which are problematic for control. While the

2The footprint frame is defined as the geometric center of the stance feet.

3If the EndEffectorTarget command (Section were not
included, the foot would not be moved relative to the base and move down
together with the base motion.

Start positions
right hind foot

Start positions
right front foot

Foot slips
due to obstacle

Fig. 6: To illustrate the precision and robustness of the Free Gait execution,
the robot was commanded to climb a step in four trials from different starting
positions. The robot localized itself with the onboard laser range sensors
and the sequence of footsteps was defined in the global coordinate frame.
During execution we pushed the robot several time for disturbance. In one
trial, the foothold was blocked by an obstacle causing the foot to slip.

0.4 T
— Localized
03F] ... Odometry |
€02 — Combined]
— ® Desired footholds
No.1-
0 Vo
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
x[m]

Fig. 7: Free Gait supports the motion definition in different frames. Inter-
nally, the movement is generated such that ‘jumps’ of low-frequency pose
updates from localization are rejected (A) to allow for smooth but accurate
motion tracking (combined approach) (B).

odometry based trajectories are smooth, they accumulate an
error of ~5 cm over the walked distance due to drift as shown
in Fig. [7B. The combined approach unifies smoothness and
accuracy and has shown to work to our satisfaction in our
experiments.

C. Whole-Body Motion Planning

For cases where stepping is not sufficient, we have devel-
oped a whole-body motion planner that takes contact of all
links into account [16]. This way, climbing maneuvers can

Fig. 8: ANYmal scales an industrial stair with an inclination of > 50°. A whole-body motion planner computes the joint trajectories to be executed.

be executed that allow the robot to overcome high obstacles
safely using support points on the base and knees. A high
level climbing strategy is specified by the operator which
consists of a sequence of contact situations. These contact
situations can contain arbitrary points on the robot’s body
as support points. Based on information on the geometry of
the environment, a motion planner finds the kinematic plan
to connect the contact situations. The planner is accounts for
collision with the environment, self-collision, static stability,
and the kinematic limits of the robot. After the kinematic
motion as been planned, gravity compensation is computed
taking all contact points into account. The planner finds
the motion at a time resolution of 10Hz and transmits the
motions as JointTrajectory with joint position and
torque command to Free Gait for execution. After each
contact situation, the whole-body motion planner computes
the next transition to account for the current position of the
robot.

Fig. [§shows the whole-body motion planner being applied
to climb industrial stairs (inclination > 50°) with ANYmal.
The robot approaches the stairs by relying on contact be-
tween the base and the stairs to move the legs to a crab-like
configuration. With help of hooks at lower part of the base,
ANYmal then climbs up the stairs by alternating between
base contact and contact at all feet to move the base to the
next step. At the upper part of the stairs, a similar maneuver
is performed to get off the stairs and stand up.

V. CONCLUSION

With Free Gait, we have realized a tool for the versatile
and platform-agnostic control of legged robots to support
the development of modular and robust motion generation
algorithms. The supported motion commands provide a range
of command types to solve different tasks robustly, effi-
ciently, and intuitively. In this paper, we have presented three
different applications and have discussed the implementation
details that allow for robust and safe motion execution in
difficult environments. We have so far used Free Gait on to
two different quadrupeds and found it to be a valuable tool
in our research and development. Notably, we’ve relied on
Free Gait in our participation in the Total ARGOS Challenge
to climb over steps and obstacles, scale stairs, and perform
various maneuvers for the industrial inspection tasksE|

In the future, we continue to improve Free Gait and
have several features in consideration. For example, we
would like to add more control over the control gains over

4Video available at https://youtu.be/SR50J-vkIIs,

the trajectories and work on smarter execution behavior
(execution delay and cancellation criteria) in case the motion
is blocked. Also, we are interested in extending Free Gait for
robotic manipulators and hand motions to enable full control
of humanoids.

REFERENCES

[1] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, “ANYmal - a Highly
Mobile and Dynamic Quadrupedal Robot,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016.

[2] T. J. Murray, B. N. Pham, and P. Pirjanian, “Hardware abstraction
layer for a robot,” US Patent 6,889,118, 2005.

[3] S. Jorg, J. Tully, and A. Albu-Schaffer, “The Hardware Abstraction
Layer - Supporting control design by tackling the complexity of
humanoid robot hardware,” in [EEE International Conference on
Robotics and Automation (ICRA), pp. 6427-6433, 2014.

[4] M. P. Murphy, A. Saunders, C. Moreira, A. A. Rizzi, and M. Raibert,
“The LittleDog robot,” The International Journal of Robotics Re-
search, vol. 30, no. 2, pp. 145-149, 2010.

[5] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and
R. Siegwart, “Control of Dynamic Gaits for a Quadrupedal Robot,”
IEEE International Conference on Robotics and Automation (ICRA),
2013.

[6] T. Kerscher, A. Roennau, M. Ziegenmeyer, B. Gassman, J. Zolelner,
and R. Dillman, “Behaviour-based control of the six-legged walking
machine Lauron IVc,” in International Conference on Climbing and
Walking Robots (CLAWAR), pp. 736-743, 2008.

[7]1 E. Pot, J. Monceaux, R. Gelin, B. Maisonnier, and A. Robotics,
“Choregraphe: A graphical tool for humanoid robot programming,”
in IEEE International Workshop on Robot and Human Interactive
Communication, no. November, pp. 46-51, 2009.

[8] G. Pierris and M. G. Lagoudakis, “An interactive tool for designing
complex robot motion patterns,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 4013—4018, 2009.

[9]1 D. Germann, M. Hiller, and D. Schramm, “Design and Control of the
Quadruped Walking Robot ALDURO,” International Symposium on
Automation and Robotics in Construction (ISARC), 2005.

[10] S. Kohlbrecher, A. Stumpf, A. Romay, P. Schillinger, O. von Stryk, and
D. C. Conner, “A Comprehensive Software Framework for Complex
Locomotion and Manipulation Tasks Applicable to Different Types of
Humanoid Robots,” Frontiers in Robotics and Al, vol. 3, p. 31, 2016.

[11] M.-J. Kim, M.-S. Kim, and S. Y. Shin, “A general construction
scheme for unit quaternion curves with simple high order derivatives,”
in Conference on Computer Graphics and Interactive Techniques,
pp. 369-376, 1995.

[12] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy,
and R. Siegwart, “StarlETH: A compliant quadrupedal robot for fast,
efficient, and versatile locomotion,” in International Conference on
Climbing and Walking Robots (CLAWAR), 2012.

[13] M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger,
and R. Siegwart, “State Estimation for Legged Robots on Unstable and
Slippery Terrain,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

[14] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing
ICP variants on real-world data sets,” Autonomous Robots, vol. 34,
no. 3, pp. 133-148, 2013.

[15] O. Ben-Kiki, C. Evans, and 1. dot Net, “YAML Ain’t Markup
Language Version 1.2,” tech. rep., 2009.

[16] G. Wiedebach, Whole Body Climbing with Legged Robots. Master’s
thesis, ETH Zurich, 2016.

https://youtu.be/SR5OJ-vklIs

