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3D Localization, Mapping and Path Planning
for Search and Rescue Operations

R. Dubé*, A. Gawel*, C. Cadena, R. Siegwart
Autonomous Systems Lab - ETH Zurich, Switzerland

L. Freda*, M. Gianni
ALCOR Lab, DIAG - Sapienza University of Rome, Italy

Abstract—This work presents our results on 3D robot local-
ization, mapping and path planning for the latest joint exercise
of the European project “Long-Term Human-Robot Teaming
for Robots Assisted Disaster Response” (TRADR)1. The full
system is operated and evaluated by firemen end-users in real-
world search and rescue experiments. We demonstrate that the
system is able to plan a path to a goal position desired by
the fireman operator in the TRADR Operational Control Unit
(OCU), using a persistent 3D map created by the robot during
previous sorties.

I. INTRODUCTION
Teams of autonomous mobile robots have the potential

to reduce human risks during disaster response as well as
the associated costs [1]. Different levels of robot autonomy
are required in order to effectively support a rescue squad
performing high-level tasks such as exploring the disaster
area, detecting victims and taking chemical samples. More-
over, long-term operation of robotic platforms is desired for
humans and robots to collaborate over several days of disaster
intervention. To this end, building and maintaining a persis-
tent representation of the environment, accurate localization,
and efficient path planning are fundamental prerequisites.

Prior to this work, a SLAM strategy based on Iterative
Closest Point (ICP) for the robotic platform considered in
this work was proposed in [2]. While providing precise
local reconstruction of an environment, this technique can
not improve the map in the event of place recognition. The
localization algorithm presented in this paper is therefore
based on the pose-graph SLAM strategy as described in [3].

The 3D path planning and navigation methods presented
in this paper are based on the works [4, 5, 6]. The underlying
modules provide functionalities such as real-time point cloud
segmentation and traversability analysis. A randomized A*
approach is applied on the current terrain structure interpre-
tation.

In the remainder of this report, we concisely describe the
localization, mapping and path planning systems and present
the results of experiments with firemen end-users, at the latest
TRADR Joint Exercise (TJEx).

II. SYSTEM DESCRIPTION
While the TRADR system comprises an integrated frame-

work spanning from low-level perception functionalities to
high-level reasoning, in this work we focus on presenting the
latest advances in the integrated SLAM and path planning.
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Figure 1: Top-left: 3D laser map generated in a first sortie on mission
day 1. Bottom-left: Map generated during a second sortie on mission
day 2. Top-right: TRADR UGV equipped with multiple encoders,
an IMU and a rotating laser-scanner. Bottom-right: TRADR OCU
displaying the merged map.

A. Pose-graph based localization, mapping and map merging

The proposed SLAM system relies on a pose-graph op-
timization approach [3]. This framework computes a Maxi-
mum A Posteriori (MAP) estimate of a trajectory of robot
poses c(ti)∈SE(3) collected at times {ti}Ni=0 by optimizing
a negative log-posterior E (aka error function) which sums
over constraints Θ(ci,j)=eTi,jΩi,jei,j , with ei,j = zi,j −
z̃i,j(ci,j), and zi,j the observation, z̃i,j(ci,j) the prediction
and Ωi,j the information matrix. In the present system the
function E is obtained by combining together (i) odometry
constraints ΘO(ci,j), fusing wheel encoders and IMU data
along the lines of [7], and (ii) laser scan-matching constraints
ΘS(ci,j), from ICP matching the current scan against all pre-
vious scans within a sliding time window [t−w, t]⊂R where
t is the current time and w is the chosen fixed time width. Let
c(t1:t2) denote the sequence of robot poses acquired in the
time interval [t1, t2]⊂R and CO and CS respectively the set of
pairs of timestamps for which odometry and scan-matching
constraints exist over that time interval. The robot trajectory
c(t) is finally estimated by incrementally minimizing the
error

E(c (t− w:t)) =
∑

<ti,tj>∈CO

ΘO(ci,j)+
∑

<ti,tj>∈CS

ΘS(ci,j)

(1)
on the sliding window. This approach is flexible and allows
registration of further error terms, e.g., loop closure con-
straints.
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The global 3D map is the result of (i) projecting individual
laser scans from their respective recording locations c(ti)
into a world reference frame and (ii) optionally applying
point cloud post-processing filters, e.g., downsampling. For
removing dynamic objects in the map, the system offers a
probabilistic filtering based on octomaps.

The SLAM approach furthermore allows the reuse of
previously recorded maps in subsequent sorties. The current
approach for map merging aligns the robot’s previous world
reference frame with the current one at starting time and
loads the previous map. The robot then continues mapping
by constructing a new pose graph from its starting location.
Both the loaded map and the updates are accessible to other
robot modules, e.g., the path planner, giving rise to persistent
use of multi-sortie information.

B. Path planning on built maps

The navigation module accepts as input both online regis-
tered point clouds and maps built in past sorties. When new
sensory data is available and if substantial changes occurred
in the map, the structure interpretation of the point cloud
is updated. As a first step, the point cloud is filtered and
geometric features such as normals and surface curvatures are
computed. Then, segmentation is performed and clusters are
labeled according to geometrical constraints applied to sur-
face normal directions, mean curvatures and 3D-coordinates
of points. This results in a classification of the environment
in regions such as walls, terrain, surmountable obstacles and
stairs/ramps [4, 5]. Traversability is then computed as a cost
function taking into account the point cloud classification and
the local geometric features [4, 5] (such as obstacle clearance,
terrain roughness and point cloud density).

Path planning is performed both on global and local scales.
Given a set of waypoints as input, the global path planner
checks the existence of a traversable path joining them. Once
a solution is found, a local path planner drives the robot
towards the closest waypoint by continuously replanning a
feasible path in a local neighbourhood in order to take into
account possible dynamic changes in the environment. On
both global and local scale, the connectivity of the traversable
terrain is captured by using a sampling-based approach. In
particular, a tree is expanded in the configuration space by
using a randomized A* approach [4, 5].

III. INTEGRATED SCENARIO EXPERIMENTS

The full system was evaluated at the latest TJEx experi-
ments where firemen end-users performed a search and res-
cue mission by teleoperating two TRADR UGVs. Amongst
other sensors, these skid-steered vehicles are equipped with a
360◦ spherical camera and a rotating laser scanner as shown
in Fig. 1, top-right.

An initial sortie was executed during the first mission
day resulting in the map depicted in Fig. 1. On the second
mission day, a second sortie was performed with a different
robot, extending the map generated during the first sortie.

Figure 2: Left: Segmentation of the merged map into obstacles (red)
and traversable regions (blue); a globally planned path (green line)
is shown on the traversable region. Right: An example of planned
path (green line) joining a set of waypoints (green traffic cones)
selected by the end-user, directly on the traversability map.

The resulting merged map was displayed to the end-users in
the command post through the TRADR OCU.

During each mission, the end-users were able to identify
points of interest and mark them as navigation waypoints
on the traversability map (Fig. 2, left). Each set of selected
waypoints was fed into a task queue managed by the global
path-planner, which was always able to successfully compute
a traversable path (Fig. 2, left). At execution time, the
local path-planner and the trajectory control safely drove the
vehicle along the planned paths (Fig. 2, right) by performing
a continuous replanning in order to manage possible low-
dynamic changes occurring in the environment. Autonomous
waypoint inspection was successfully performed allowing
end-users to detect victims and possible gas leaks.

IV. CONCLUSION

In this report we have shown the results of the mapping
and path planning systems on the latest TJEx. A full map
was obtained from different sorties by tele-operating the
robots for exploration of the disaster area. This allowed
to reduce the level of tele-operation in posterior sorties by
automatically planning suitable paths on the built map for
further inspection of interest points. Remarkably, the firemen
were able to fully operate the robots by using the TRADR
OCU which demonstrated the robustness and reliability of
our 3D localization, mapping, and path planning systems.
These results bring the goal of effective human-robot teaming
closer to reality.
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