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Abstract
Purpose: Effectiveness of image-guided radiation therapy with precise dose deliv-
ery depends highly on accurate target localization, which may involve motion during
treatment due to, e.g., breathing and drift. Therefore, it is important to track the mo-
tion and adjust the radiation delivery accordingly. Tracking generally requires reliable
target appearance and image features, whereas in ultrasound imaging acoustic shad-
owing and other artifacts may degrade the visibility of a target, leading to substantial
tracking errors. To minimize such errors, we propose a method based on so-called
supporters, a computer vision tracking technique. This allows us to leverage infor-
mation from surrounding motion for improving robustness of motion tracking on 2D
ultrasound image sequences of the liver.
Methods: Image features, potentially useful for predicting the target positions, are in-
dividually tracked and a supporter model capturing the coupling of motion between
these features and the target is learned on-line. This model is then applied to predict
the target position, when the target cannot be otherwise tracked reliably.
Results: The proposed method was evaluated using the Challenge on Liver Ultra-
sound Tracking (CLUST)-2015 dataset. Leave-one-out cross validation was performed
on the training set of 24 2D image sequences of each 1-5 minutes. The method was
then applied on the test set (24 2D sequences), where the results were evaluated by
the challenge organizers, yielding 1.04 mm mean and 2.26 mm 95%ile tracking error
for all targets. We also devised a simulation framework to emulate acoustic shadow-
ing artifacts from the ribs, which showed effective tracking despite the shadows.
Conclusions: Results support the feasibility and demonstrate the advantages of using
supporters. The proposed method improves its baseline tracker, which uses optic-flow
and elliptic vessel models, and yields the state-of-the-art real-time tracking solution
for the CLUST challenge.
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Computer-assisted Applications in Medicine Group, Computer Vision Lab, ETH Zurich
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1 Introduction

Ultrasound (US) imaging is a low-cost, real-time, and non-ionizing method, which
makes it an appealing choice for image-guided computer-assisted interventions in ra-
diation therapy. Treatments of liver tumors using high-intensity focused ultrasound,
intensity-modulated radiation therapy, or proton therapy enable precise dose delivery
to the desired location. However, the target region during the treatment is affected by
internal body motion, such as breathing, which is a major drawback in effectiveness
of these treatments. Not taking the respiratory motion into account would cause devi-
ations of the delivered dose distribution from the intended one, and increase radiation
exposure of healthy tissue while lowering dose to the target volume, which would
reduce efficiency and aggregate complications [1].

One of the strategies to reduce breathing-induced organ motion during radiation
treatment is deep inspiration breath hold method [2], where a patient performs a su-
pervised breath hold during therapy, which requires active support and the ability of
the patient to maintain such a breath-hold. Another possible approach to compensate
for breathing motion that does not require patient compliance, is to track the position
of the target region during therapy and dynamically adjust the radiation accordingly.

To use motion tracking algorithms for radiation therapy interventions, real-time,
accurate, and robust localization of the target region for the entire procedure is re-
quired. US imaging being non-ionizing and real-time makes it an ideal choice for
this aim [3]. There are numerous studies focusing on tracking of liver motion in US
image sequences using different approaches, such as image registration [4], block
matching [5], and optic-flow [6]. However, these methods are generally affected by
limitations of US imaging such as low signal-to-noise ratio (SNR) and large appear-
ance changes of the tracked landmarks caused by e.g. acoustic shadowing due to poor
transducer-skin contact or highly reflecting anatomical structures like the ribs.

In this work, we propose to use supporters, a computer vision technique [7], to
improve optic-flow based tracking. This relies on tracking additional image features,
potentially beneficial for predicting the target position. To that end, a supporter model
is built based on motion coupling observed on some frames between these tracked
features (supporters) and the target. Using this model, the tracking can then be made
robust to changes in target appearance, where a consensus voting of several supporter
estimations can be used to infer target location.

Considering motion tracking in medical images, supporters were used earlier for
determining two orthogonal MR acquisition planes through the heart valve [7]. In-
stead of the valve itself, which may leave the image, four annotated points (sup-
porters) on a plane perpendicular to the valve were tracked to define the acquisi-
tion planes. A supporter model based on squared Euclidean distances was used to
downgrade distant supporters. In [8], supporters were used for tracking abnormalities
in video capsule endoscopy. First, the supporters were matched between successive
frames by considering a triangular constraint, where the triangle shape is maintained
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while allowing weak deformations. Then, affine transformations calculated from the
supporter triplet help determine abnormal positions, where the precise position is
estimated from the features of the target itself. In [9], cells were tracked in spatio-
temporal optical images from densely packed multilayer tissues. The tight spatial
topology of neighboring cells were exploited as contextual information by applying
spatio-temporal graph labeling. In [10], 600 supporters were detected in fluoroscopy
images by using Kanade-Lucas-Tomasi feature tracker for automatic motion compen-
sation. An autoregression model and motion clustering was employed for learning the
relationship between supporter and target motion. Supporters were also used in many
other typical computer vision applications, e.g. in [11–15]. Supporters have not been
studied for motion tracking in US images. We hereby show that this method is par-
ticularly beneficial in cases where the target cannot be observed directly, such as due
to occlusions from shadowing artifacts.

Note that, particular challenges of US tracking are poor image quality and the
relatively small number of landmarks suitable for tracking. Nevertheless, relative lo-
cations of liver landmarks stay stable during radiation therapy of liver tumors, which
motivates the use of supporters in this work for 2D US tracking of the liver. We hereby
devise an approach for effective supporter model creation from few supporters and
evaluate this on a standard public dataset.

2 Methods

Motion tracking is the process of estimating the trajectory of an object over time
by predicting its position in every frame of an image sequence. For image-guided
computer-assisted applications, targets in moving organs such as the liver, prostate,
and the heart are commonly tracked. Tracking an object position can be challeng-
ing, e.g. due to the appearance change over time, low SNR, or occlusions. In US
images, tracked target can temporarily disappear by going out of the field-of-view or
by being covered by a shadow due to poor transducer-skin contact or highly reflect-
ing anatomical structures such as the ribs. To improve robustness of a conventional
tracking algorithm for such cases, we propose combining it with a supporter model,
which takes advantage of correlated surrounding motion.

2.1 Tracking with a Supporter Model

Grabner et al. [7] proposed a method for tracking the invisible using a set of local
image features, called supporters, by exploiting the visual context and relative spa-
tial relations to improve target tracking. Good supporters were defined as the image
features whose motion are correlated to that of the target and, thus, might be useful
for predicting the position of the target. For example, a wristwatch on a hand hold-
ing a target object is a good supporter for the position of that target (even when the
target is not directly visible or trackable), since their motions are strongly correlated.
Below we first summarize the supporter model [7] for sake of completeness and then
describe our methods for its adaption in this work.
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Overview of Supporter Modeling. Tracking with supporters has two main modes:
learning the model and applying the model. The model captures the statistical rela-
tionship between the target and supporter positions, and thereby provides a measure
of how strongly the motion between each supporter and the target is coupled. This
measure can then be used for adjusting the contribution of each supporter in the over-
all supporter prediction.

The overall goal is to learn and apply a probability density function (pdf) model,
P(x|I), for predicting the position of target object, x = (x,y), in image I via the help
of S tracked supporter positions {xs|s = 1,2, ...,S}. For this aim, the relationship
between supporter positions {xs} and the target position x is learned, providing con-
ditional pdf P(x|xs) for supporter s. Each supporter s then votes for potential target
positions x via pdf P(x|xs). These votes are combined by accounting for the reliabil-
ity of the supporter position estimates xs from I with probability P(xs|I) using the
law of total probability, which results in pdf

P(x|I) ∝

S

∑
s=1

P(x|xs)P(xs|I). (1)

The final target position is then determined by finding the position that has the highest
likelihood in the voting space.

Learning a Supporter Model. Let I0,I1, . . . ,IF−1 be an image sequence consisting
of F image frames, {x0

s |s = 1,2, ...,S} be the set of S supporter positions of the first
frame I0, and x0 be the target position of I0. The goal of the model is to estimate
for frame I f the most likely target position x f from the observed supporter positions
{x f

s }. Assuming a translational relationship, this is based on learning per supporter s
the conditional pdf of the relative target position us = x−xs for a given xs. For on-
line learning during tracking, the exponential forgetting principle between the so-far
learned pdf model P f−1(·) and the current pdf p(·) is used:

P f (us|xs) = α P f−1(us|xs)+(1−α) p(u f
s |x f

s ), (2)

P f (xs|I) = α P f−1(xs|I)+(1−α) p(x f
s |I f ), (3)

where forgetting factor α ∈ [0,1] weights the contribution of past and current pdfs.
P f (us|xs) is the model learned from frames 1 to f and provides the pdf of supporter
position xs voting for relative target position us. p(u f

s |x f
s ) is the corresponding pdf

derived only from the tracked positions in the current frame f . P f (xs|I) is the reliabil-
ity model of the supporter position estimation learned from frames 1 to f . p(x f

s |I f )

defines the reliability of supporter position x f
s . We next explain how P f (·) and p(·)

are defined in practice in Section 2.2.

Applying the Supporter Model. Given image I f and tracked supporter positions
{x f

s }, the learned supporter models P f (us|xs) and P f (xs|I) are evaluated for xs = x f
s

and I = I f . From this the target position x f is estimated by using Eq. (2) and Eq. (3)
in Eq. (1), where the pdfs for the relative target positions are brought into the target
space via P f(x = us +x f

s |x f
s ) = P f(us|x f

s ), i.e.

x f = argmax
x

P(x|I f ) with P(x|I f ) =
S

∑
s=1

P f(x|x f
s )P

f(x f
s |I f ). (4)
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2.2 Robust Motion Tracking by Estimating the Target Position Using Supporters

Tracking with supporters requires another tracking method to compute supporter
locations and their reliability. Supporters can then assist and correct such a baseline
method to achieve improved tracking results. We first summarize our method for
a generic object tracker (see also Alg. 1), and then instantiate it with a particular
tracking method later below.

Input Data. Our method uses a given initial target position x0, a fixed set of ini-
tial supporter positions {x0

s}, and reference patches around the target, B0, and each
supporter, {B0

s}, where positions and reference patches are manually annotated in
the first image frame I0. Note that the reference patches are manually chosen to con-
tain distinct image appearance compared to their surrounding. For the current frame
f > 0, we obtain target and supporter position estimations from the conventional ob-
ject tracker, which are denoted as x f

t and {x f
s } respectively.

Tracking Reliability. Assuming that the feature appearance changes only linearly
during tracking, we use the correlation coefficient measure between image patches
for estimating the tracking reliability. For this, we extract patches B f and B f

s , of the
same size as B0 and B0

s , centered around the tracked positions x f
t and x f

s , respectively.
Then, we calculate the correlation coefficient between the corresponding patches, i.e.
ρ f =CC(B0,B f ) and ρ

f
s =CC(B0

s ,B
f
s ). We employ reliability measure ρ f to decide

whether to rely on the current target position for tracking and updating the model.
Specifically, if ρ f ≥ θCC, which is a learned threshold, we assume to have reliable
object tracking and use this position, i.e. x f = x f

t . Furthermore, for another threshold
θupdate > θCC, if ρ f ≥ θupdate, then the supporter model is updated as described next.

Supporter Model Learning. The supporter model P f (us|x f
s ) from Eq. (2) is approx-

imated with a 2D Gaussian distribution by

P f (us|x f
s ) ∝

1

2π

√
|C f

s |
exp
(
−1

2
(us−µµµ

f
s )(C

f
s )
−1(us−µµµ

f
s )

ᵀ
)
, (5)

Algorithm 1 Robust Motion Tracking

1: for each frame f do
2: if f = 0 then
3: annotate x0, {x0

s}, B0 and {B0
s}

4: else
5: get x f

t and x f
s from object tracker

6: extract B f and {B f
s }

7: compute ρ f between B0 and B f

8: if ρ f ≥ θCC then
9: use object tracker: x f = x f

t
10: if ρ f ≥ θupdate then
11: update supporter model: (6-7)

12: end if
13: else
14: compute target probability P(x f

t )

15: if P(x f
t )≥ θP then

16: use object tracker: x f = x f
t

17: else
18: use supporter model x f

p: (9)
19: end if
20: end if
21: end if
22: end for
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(a) (b)

Fig. 1 (a) Illustration of a supporter voting for a target position (arrow) with a probability distribution
(image intensities) defined by mean µµµ and covariance Cs. (b) Illustration of a 1D Gaussian Mixture Model
(red) from two individual distributions (green and blue), with mean values indicated by vertical lines.

where µµµ
f
s and C f

s denote the on-line learned mean and covariance matrix, respec-
tively, of the relative target positions u f

s across frames, i.e.

µµµ
f
s = α µµµ

f−1
s +(1−α) u f

s , (6)

C f
s = α C f−1

s +(1−α) Cs, (7)

where the covariance matrix Cs captures the variance contribution of the current rel-
ative target position u f

s = [u f
s ,v

f
s ] with respect to the current mean µµµ

f
s = [µ f

s,u,µ
f

s,v]:

Cs =


(

u f
s −µ

f
s,u

)2
0

0
(

v f
s −µ

f
s,v

)2

 . (8)

An illustration of such a distribution is shown in Fig. 1(a).

Supporter Model Application. We use the supporter model to predict the target
position x f if the tracked target position x f

t is not reliable (i.e. ρ f < θCC). The most
likely relative target location per supporter s is mean µµµ

f
s = argmaxu P f (u|x f

s ), with

corresponding probability P f (µµµ f
s |x f

s ) = 1/(2π

√
|C f

s |). Instead of predicting the tar-
get from the peak of the resulting Gaussian Mixture Model (GMM) distribution (see
Fig. 1(b) for a 1D illustration) we use a weighted average of the mean values from
all mixture components [16], and incorporate the reliability of the supporter position
predictions, i.e. P f (x f

s |I f ) = ρ
f

s . The prediction from all supporters is then

x f
p =

∑s(µµµ
f
s +x f

s )P f (µµµ f
s |x f

s )P f (x f
s |I f )

∑s P f (µµµ f
s |x f

s )P f (x f
s |I f )

=
∑s(µµµ

f
s +x f

s )ρ
f

s /

√
|C f

s |

∑s ρ
f

s /

√
|C f

s |
. (9)

Finally, if the applied supporter model and the main object tracker agree on the target
position estimation, i.e. P(x f

t ) = ∑s P f (x f
t −x f

s |xs)ρ
f

s ≥ θP, then the estimation from
the main tracker is used: x f = x f

t . Otherwise, we use the supporter prediction x f = x f
p.

An example for target position estimation using supporter model is shown in Fig. 2.



Robust Motion Tracking in Liver from 2D US Images Using Supporters 7

(a) (b)

Fig. 2 Example of tracker and supporter predictions. Target position from main object tracker x f
t (green),

individual supporter predictions µµµ
f
s + x f

s (blue) and weighted mean using Gaussian Mixture Model x f
p

(red) overlaid on (a) US image and (b) log transformed probability density.

3 Experiments and Results

We evaluated our method using the 2D liver US image sequences provided by the
Challenge on Liver Ultrasound Tracking (CLUST)-2015 [17]. A main advantage of
supporters is the robustness to feature appearance in tracking, for instance, when a
target is occluded by acoustic shadowing. Since such disappearing target locations are
not (and cannot reliably be) annotated in the given dataset, we devised a simulation
framework to emulate acoustic shadowing artifacts from the ribs on the images and
evaluated this scenario. As the baseline object tracker, we employed [6] such that
motion tracking with and without using the supporter model can be compared.

3.1 CLUST-2015 Dataset

The CLUST-2015 dataset includes 2D liver US image sequences and consists of two
subsets, namely training and test set. The sequences in the dataset have a duration
between 60 and 330 seconds. The training set has 24 image sequences with manual
annotations in 10% of all frames. The annotations are mostly for vessel cross-sections
in the liver, which are reliable landmarks for liver motion. The test set contains 24
image sequences with no public annotations apart from the reference positions x0,
and the submitted results are evaluated by the challenge organizers. For the evalua-
tion, the Euclidean distance between each manual annotation and the corresponding
tracked point is computed, where summary error statistics including mean, standard
deviation, and 95%ile errors are reported to the participant. In this work, we are par-
ticularly interested in reducing 95%ile errors to minimize large errors for a robust
tracking performance throughout all sequences.

For parameter optimization and sensitivity analysis, we used the training set.
Our method has four parameters to optimize, which are forgetting factor α , corre-
lation coefficient threshold θCC, supporter model update threshold θupdate, and target
probability threshold θP. We optimized these parameters for minimizing 95%ile er-
ror with leave-one-out-cross validation using grid search. Optimal parameters range
from [α,θCC,θupdate,θP] = [0.90,0.3,0.3,0.5] to [0.95,0.3,0.4,0.7] and hence are
relatively insensitive to the left-out case. The mean parameters were found to be
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Fig. 3 Tracking error distributions [in mm] for baseline (TMG) and proposed method (RMTwS) for 24
training sequences. (a) Mean tracking error. (b) 95%ile tracking error. (c) Maximum tracking error.

Overall Performance for Training and Test Set
Training Set Test Set

Method Mean σ 95%ile Max Mean σ 95%ile Max
TMG 1.17 0.89 2.61 21.78 1.09 1.75 2.42 25.55

RMTwS 1.12 0.81 2.19 21.78 1.04 1.48 2.26 21.41
(a) (b)

Table 1 Comparison of mean, standard deviation, 95%ile and maximum of tracking errors (in mm) of
baseline (TMG) and proposed (RMTwS) method after pooling all results from (a) training and (b) test set.

[α,θCC,θupdate,θP] = [0.9479,0.3000,0.3021,0.6625]. Fig. 3 shows the mean, 95%ile,
and maximum tracking error distributions from the 24 sequences of the baseline
method (abbreviated as TMG for Tracking by Makhinya and Goksel) and our pro-
posed tracker (denoted as RMTwS for Robust Motion Tracking with Supporters). Ta-
ble 1a compares overall performance for the mean, standard deviation, 95%ile, and
maximum error after pooling all training results into one distribution. Note that our
proposed method yields a 16% improvement for the 95%ile error. Average error of
the worst 5% tracking results across all training annotations is 10.70 mm with TMG.
Our proposed technique yielded 4.7 mm, improving the baseline over 50%.

We then applied our method on the test set using the optimal parameters found
above. Test set results were evaluated by the challenge organizers. Fig. 4 compares
tracking error distributions of the baseline tracker, TMG, and our proposed tracker,
RMTwS, for the 24 test sequences, and Table 1b lists the overall performance after
pooling all results. RMTwS yields 1.04 mm mean and 2.26 mm 95%ile error, improv-
ing the baseline method by 4.6% and 6.6%, respectively. The 95%ile error of the 62
individual test landmarks was improved by more than 30% for 5 landmarks, whereas
for 55 landmarks the improvements were less than 2%.

We also evaluated the time needed to run our proposed method. Learning and
applying the supporter model takes between 20 and 60 ms per frame in the given
sequences on an Intel Core i7-4770K CPU @ 3.5GHz.

3.2 Evaluating Tracking under Shadowing

Since the target points which disappear in the acoustic shadow are not annotated in
the CLUST-2015 dataset, we conducted a simulation, where we emulated acoustic
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Fig. 4 Tracking error distribution [in mm] for baseline (TMG) and proposed method (RMTwS) for 24 test
sequences. (a) Mean tracking error. (b) 95%ile tracking error. (c) Maximum tracking error.

shadowing artifacts from a simulated rib on the images and evaluated this scenario.
For this purpose, we manually placed a structure of size 12.4 mm × 7.2 mm, repre-
senting a rib cross-section in accordance with [18], close to the skin.

We augmented each frame in a US image sequence from the training data with
new ultrasound bone shadows by multiplying the input US images with a signal in-
tensity map. For each pixel of an ultrasound image, this map stores the accumulated
intensity of the ultrasound signal induced by reflection at the bone surface and en-
ergy loss (attenuation) within the bone structures. It is between [0,1], with 1 for the
original signal intensity and 0 for a complete signal loss. The signal intensity map is
generated in a multi-stage process. In the first step, we create a map of attenuation
coefficients Z of bone cross sections, given by intersection of the bone tissue with the
transducer plane. To create a bone segment j, we simply rasterize a circle with radius
r j at position p j in Z. Inside each circle, we store attenuation coefficients Z(x,y) = β j
corresponding to bone segment j, and Z(x,y) is zero otherwise. Typical values of β

for bone are used from literature [19].
In the next step, we use ray marching to traverse Z and create a (pre-scan-converted)

signal intensity map A, in a simplified and task-specific variation of more complex
ultrasound simulation method [19]. In particular, we traverse the columns (scanlines)
of Z from top to bottom (y-direction). During this, we record a reflected signal in-
tensity at the bone surface and energy loss thereafter, and accumulate the attenuation
coefficients in Z. At each step of the ray marching process, the current pixel A(x,y)
is computed as A(x,y) = A(x,y−1)exp(−Z(x,y)).

The resulting signal intensity map is finally filtered with a Gaussian function to
emulate the blurring due to convolution with the ultrasound point spread function
(PSF). Since the input images are from a convex probe, the map is scan-converted
from a radial domain into a Cartesian frame, using the the scan-conversion parameters
estimated geometrically from the original image. This yields the typical ultrasound
shadow appearance in convex probe images, where the shadows become softer and
wider in the far field of the images. This provides simulated image data with ground-
truth for evaluating tracking under shadowing. Example images of a signal intensity
map, an original image, and the resulting shadowed image are shown in Fig. 5.

After generating a 2D US image sequence containing shadow, we applied the
baseline and our method to the new sequence. For that, we used the same optimal pa-
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(a) (b) (c)

Fig. 5 Shadow simulation example with (a) signal intensity map, (b) original image, (c) shadowed image.

Frame: 1

Ground truth

TMG

RMTwS

(a)

Ground truth

TMG

RMTwS

(b)

Ground truth

TMG

RMTwS

(c)

Ground truth

TMG

RMTwS

(d)

Fig. 6 Example of tracking performance (a)(c) without and (b)(d) with shadowing for (a)(b) inhale and
(c)(d) exhale breathing phase, showing improved robustness of the proposed method, RMTwS, in (d).

rameters as for the CLUST-2015 test set, obtained by leave-one-out-cross validation.
The mean errors for TMG and RMTwS were 2.79 mm and 2.61 mm, with 95%ile er-
rors of 12.11 mm and 10.29 mm. This indicates a 6.5% (15%) improvement of mean
(95%ile) error. Examples of tracking performance with and without shadowing for
inhale and exhale phases of the breathing cycle are shown in Fig. 6.

4 Discussion and Conclusions

We have demonstrated an ultrasound tracking method using supporters, RMTwS,
where image locations other than the target are also tracked in order to exploit motion
consistency with such surrounding tissue for improving tracking robustness. We em-
ployed an optic-flow and vessel-model based tracker, TMG, as our baseline as well
as for tracking the target and supporter locations to then learn and apply the supporter
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model using these initial estimations. In this work, we are particularly interested in re-
ducing 95%ile errors to ensure effective tracking performance throughout all frames
in order to minimize 95%ile therapy margins for more focal therapies and reduced
collateral damage to healthy tissue.

Our evaluations using the training and test sets show that the proposed method,
RMTwS, can track targets more accurately than the conventional object tracker, TMG.
The resulting performance is 1.04 mm mean and 2.26 mm 95%ile errors. This 95%ile
tracking performance is relevant in liver motion tracking for radiation and focused
therapy applications, when compared to 1.23 mm mean inter-observer 95%tile vari-
ability reported for a similar dataset in [17].

The accuracy improvements seem to be small for mean and 95%ile error, when
taking all trajectories into account. This is because the main object tracker already
performs quite well in most cases and fails only in certain situations such as under
shadowing. All the same, to enable a satisfactory therapy for every patient, a tracking
method should be robust for all scenarios.

Optimal thresholds for updating the supporter model, θupdate, and the reliability
of the tracking performance, θCC, were found to be very close. A supplementary
experiment showed that the tracking performance difference using θupdate = θCC is
insignificant. Thus, one can use the same parameter for θCC and θupdate.

Our proposed method applies the learned supporter model in 12% of the frames,
which indicates that the reliability of the tracking performance by TMG is not always
high. The main advantage of using supporters for tracking is the robustness in scene
or target appearance changes over time, such as due to acoustic shadowing. Since
there exist no annotations for such cases in the given dataset and this scenario cannot
be evaluated using the current setting, we devised a simulation framework to imitate
acoustic shadowing artifacts on the images in a 2D sequence. This simulated exper-
iment showed that without additional optimization for such a scenario, the proposed
method improves the 95%ile tracking performance of the baseline by 15%.

On each sequence 2 to 3 supporters were used, which is not a large number since
there are only a few easily identifiable landmarks in these images. We aim to study
automatic landmark detection in the future to automatically identify a (potentially
larger) number of supporters, also yielding a interaction-free framework. Addition-
ally, with more supporters available, we plan to conduct a sensitivity analysis regard-
ing their number and locations.

We currently use the Gaussian position prior model with individual translational
motion assumptions between the target and each supporter. Nevertheless, the combi-
nation of several supporter estimates can indeed lead to relative positions that are not
purely translation between supporter locations and the target. Although more com-
plex relative (e.g., elastic) motion models could be employed, these could, however,
complicate extrapolating target locations further away from the supporters.

This study is the first demonstrating the benefits of employing supporters for US
tracking. Given the target and supporter position estimations from the main object
tracker, learning and applying the supporter model takes less than 20 ms, where cor-
relation coefficient calculation takes most of it. The resulting tracking technique has
a near real-time tracking performance with 22.5 frames per second (fps) on average.
As such, it is the state-of-the-art in the CLUST2015 challenge for real-time tracking
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of liver motion in 2D ultrasound sequences, as the winner of this challenge achieved
a mean (95%ile) error of 0.91 mm (2.20 mm) while running on average at 4.8 fps;
hence, our method being more than 4 times faster in comparison.

In a practical application of our method in radiation therapy, a 2D convex trans-
ducer can be used to image the liver reaching below the ribs. On an initial (reference)
frame, an operator would then mark the target location, as well as a few other easy-
to-track locations (supporters). Tracking would then run during the treatment, while
the target location estimates are used to gate or compensate for patient motion.

Appendix: Baseline Method - Tracking by Makhinya and Goksel (TMG)

Our previously developed tracker [6], which is runner up of the Challenge in Liver
Ultrasound Tracking (CLUST)-2015 challenge and is based on optic-flow and elliptic
vessel model, is employed as object tracker for tracking the supporters and target.
The method is summarized below for completeness. Note that, this method can track
several landmarks together real-time and works faster than US acquisition.

Overview The method decides in the initial frame, if the target is vessel-like or not by
matching with ellipsoid vessel templates and integrates then several tracking strate-
gies. It involves reference tracking (RT) when the local appearance on the initial, I0,
and the current frame, I f , are similar. Meanwhile, it uses model-based iterative track-
ing (IT) when RT fails and local appearance of consecutive frames, I f−1 and I f , are
similar. A robust motion tracking is applied in either case. For vessel-like structures
this is improved further by model-based tracking.

Motion Tracking Lucas-Kanade-based tracking [20] was applied on a set of regularly-
spaced grid points around each target. RT is then used for exploiting the repetitive
breathing motion characteristic, while IT is used for tracking the motion during the
rest of the cycle, i.e. when RT fails. Each tracking strategy yields several motion vec-
tors, which are then filtered for outliers. Finally, from the remaining motion vectors,
an affine transform is computed to provide a robust motion estimate for the target.

Model-based Tracking For vessel-like structures, model-based tracking is done us-
ing an axis-aligned ellipse representation of vessels. For each frame I f , first the center
is transformed by the affine transform determined by motion tracking, see above, and
then the center and radii are re-estimated as in [21] using the Star Edge detection,
dynamic programming, model fitting, and binary template matching. The center of
the resulting ellipse is then used as the estimated target position at frame I f .
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