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Major advance of South Georgia glaciers during
the Antarctic Cold Reversal following extensive
sub-Antarctic glaciation
Alastair G.C. Graham1, Gerhard Kuhn2, Ove Meisel2,w, Claus-Dieter Hillenbrand3, Dominic A. Hodgson3,

Werner Ehrmann4, Lukas Wacker5, Paul Wintersteller6, Christian dos Santos Ferreira6, Miriam Römer6,

Duanne White7 & Gerhard Bohrmann6

The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate

surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic

South Georgia in particular. Here, using sea-floor geophysical data and marine sediment

cores, we resolve the record of glaciation offshore of South Georgia through the transition

from the Last Glacial Maximum to Holocene. We show a sea-bed landform imprint of

a shelf-wide last glacial advance and progressive deglaciation. Renewed glacier resurgence in

the fjords between c. 15,170 and 13,340 yr ago coincided with a period of cooler, wetter

climate known as the Antarctic Cold Reversal, revealing a cryospheric response to an

Antarctic climate pattern extending into the Atlantic sector of the Southern Ocean. We

conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its

glaciers to climate variability during the last termination more significant than implied by

previous studies.
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S
ince at least the late Miocene (B9 Ma (refs 1,2)),
Antarctica’s ice sheets have oscillated between states
of relative deglaciation and full glacial conditions on

orbital timescales3. Although much is known about these
patterns of ice-sheet waxing and waning4,5, the history of
glaciations on sub-polar islands is, by comparison, exceptionally
poorly understood6. The extent and dynamics of ice masses
peripheral to the Antarctic ice sheets, although minor in any
contributions to sea level change, can provide useful data for
optimizing simulations of the Antarctic Peninsula and West
Antarctic ice sheets during glacial stages and their sensitivity
to atmosphere and ocean warming. In addition to offering
up useful boundary conditions, there is an emerging interest
in the record of glacial activity on submarine parts of
sub-Antarctic islands, which may have served as refuges for
marine benthos during past glaciations7. There is still
considerable debate over the location and duration of
terrestrial8 and marine refugia during Pleistocene glacials in
Antarctica, and one hypothesis is that sub-Antarctic islands
served as ice-free shelters as well as evolutionary ‘stepping
stones’ for benthic life9, that has led to the development of
a distinctive modern-day Southern Ocean species distribution
and diversity.

South Georgia is the largest of the Atlantic-Pacific
sub-Antarctic islands, lying south of the Antarctic Polar Front
(APF) (Fig. 1a,b). Isolated in the Southern Ocean, South Georgia
is considered as a ‘sentinel’ of change: an area sensitive to regional
climate, where future environmental change would be first
detected. Glacier change is currently dramatic on South Georgia,
with significant retreat recorded in 490% of its glaciers over
the past B60 years10,11. Observations that current and former
ice-cap configurations were marine-terminating, glacier systems
exhibit rapid throughflow and thus respond quickly to
environmental changes10, and the island’s maritime climate
reflects regional forcings, make it equally likely that past
environmental change on South Georgia was highly sensitive to
wider climatic influences. Specifically, complex ocean water mass
circulation influences the island’s climate (Fig. 1), which is
susceptible to latitudinal variations in the position of the APF,
and to changes in the intensity and location of the Southern
Westerly Winds whose core belt (50–60 �S) supplies significant
amounts of moisture to the island. It is reasonable to assume,
therefore, that glacier behaviour on the island was strongly
coupled to Southern Hemisphere (Antarctic) climate variability
in the past, as it is today. It follows that an improved
understanding of South Georgia’s glaciations can shed light on
ice mass response to climate variability in an under-sampled
but regionally-important Southern Ocean sector, and can provide
as yet unknown long-timescale context for changes in the
sub-Antarctic cryosphere over recent decades.

Despite being the most well studied of the sub-Antarctic
islands the number and timing of past glaciations on South
Georgia remains unclear12. Lagging significantly behind
reconstructions of palaeo-ice sheets in the mid-latitudes13–16

and at the poles6,17,18; we do not even have an understanding of
the maximum ice-sheet configuration at the Last Glacial
Maximum (LGM; 19–26 ka), let alone the subsequent deglacial
history. Previous studies have inferred two conflicting
LGM models: the first inferring extensive shelf-wide glaciation
and subsequent retreat to present limits19; the second suggesting
ice-cap extents restricted to near-coastal20 or inner-fjord21 limits,
with cross-shelf troughs and offshore sea-floor geomorphology
mapped from coarsely-gridded regional bathymetry22 relating to
older, more expansive preceding glaciations. While most
investigations to-date have favoured the latter restricted
hypothesis, recent modelling23 and biodiversity studies24 have

both inferred a larger LGM ice-cap. Crucially, however, neither
model has yet been comprehensively tested.

The debate over LGM extent is mirrored in the lack of
consensus over glacier variability during the ensuing deglaciation
(Termination 1). Rosqvist et al.25 suggested that deglaciation of
the island commenced before B18.6 ka B.P.26 based on the
onset of accumulation of lake sediments at Tønsberg Point.
The authors’ radiocarbon dates have since formed key evidence
used to argue in favour of a restricted LGM hypothesis suggesting
ice-free conditions on land at the LGM. Other studies
have dated deglaciation from the onset of peat and lake
sediments as significantly younger, for example at Dartmouth
Point, where a minimum age for deglaciation is constrained to
B10.8–10.2 cal ka B.P. (ref. 27). A notable period absent in most
geological records from South Georgia is the phase of warming
that brought about the deglaciation of Antarctica, from B18 ka to
the start of the Holocene. During this deglaciation conditions
were interrupted by a period of renewed cooling from about
14,540 to 12,760 kyr ago28. This chronozone, known as the
Antarctic Cold Reversal (ACR), is documented in Antarctic ice

13.9

14.7

14.2
14.8 PS2090-1

South Georgia

Atlantic
Ocean

Fig.2

Weddell
Sea

14.1

WEST
ANTARCTIC
ICE SHEET

EAST
ANTARCTIC
ICE SHEET

(3)

14.09

South
America

Antarctic
Peninsula

40°Wb

a

40°W60°W

Polar Front

Southern ACC Front

Southern boundary
of the ACC

Sub-Antarctic Front
(SAF)

Sub-tropical Front
(STF)

40°S

60°S

70°S

20°W

(1)

(2)

(4)

(5)
(6)

Figure 1 | Map of South Georgia. (a) Southern Hemisphere map showing

sites where advances of glaciers during the Antarctic Cold Reversal have

been recorded. Bold text are maximum ages (in ka B.P.) for the timing of

maximum advance in each location. (1—ref. 28), (2—ref. 30), (3—ref. 31),
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cores, but understanding of the spatial extent of this cooling in
the Southern Hemisphere is limited to only a handful of sites29.
Glacier advances have been reported from the tropical Andes30,31,
Patagonia32–34 and New Zealand28, but the spatial footprint of
glacier response to the ACR, at South Georgia and other Southern
Ocean islands, is not known (Fig. 1a). A critical reason for the
lack of progress in determining the glacial evolution, including
the LGM extent and dynamics of the last termination, is
a dearth of geophysical and stratigraphic data from the marine
environment12, where changes through these intervals are most
likely to be recorded21.

This study uses sea-floor geophysical data and new marine
sediment cores to constrain the glacial history of South Georgia
from a unique offshore perspective. Multibeam swath bathyme-
try, acoustic sub-bottom profiler data, and gravity cores were
collected on two recent cruises to the island: JR257 (RRS James
Clark Ross) in 2012, and ANT-XXIX/4 (RV Polarstern PS81) in
2013. We use these data to firstly map and analyse glacial features
from the shelf sea-floor to reveal landforms recording former
ice-cap flow and extent. Second, we use two sediment cores from
the glacial troughs to constrain the landform record, and
document changes in the sedimentary environment. Our findings
reveal an extensive last glaciation during which an expanded ice
cap covered a substantial proportion of the continental block, and
a major readvance into the fjords during the ACR.

Results
Landform observations from multi-beam echo-sounder data.
We combined and analysed newly-acquired and existing sea-floor

bathymetric datasets to reveal the imprint of former glaciations
for an entire sub-polar ice cap on South Georgia (Supplementary
Fig. 1). Figure 2 shows a detailed map of glacial landforms on the
continental block. In total, we have mapped 4770 moraine ridges
and 41,750 streamlined landforms which we interpret were
formed at the margins of, and beneath, former expanded
grounded ice caps, respectively.

At a broad scale, the new data set shows systematic patterns of
submarine glacial features indicative of multiple former glacia-
tions of the shelf (Fig. 2, Supplementary Fig. 2). Large outer shelf
banks, 50–120 m in relief and 10–20 km wide, are interpreted,
based on their morphology, as moraine banks, and occur in
association with at least three of the cross-shelf troughs north of
the island, flanking the troughs to their west. These banks are
mantled by successions of smaller amplitude moraine ridges
recording former ice limits, with the largest and most continuous
found at or near to the shelf break in almost all areas for which we
have data coverage (Fig. 2). The orientation of the smaller ridges
is consistently sub-parallel to the axes of the main troughs, and
cluster within northwardly-trending secondary troughs that
clearly offshoot the primary (Supplementary Fig. 2). Lobate
geometries characterize the termini of these secondary troughs,
and are consistent morphologically with the switching of palaeo-
ice flow within, or between, glacial periods35. Only a few moraine
ridges occur within the primary troughs themselves (Fig. 2).
Trough dimensions with excavation of several 10 s m can only be
explained as long-term phenomena, while secondary troughs are
graded to a similar depth, and display comparable landform
assemblages from the most recent retreat, all of which implies
a common history of landscape development. We suggest the
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scale and complexity of this shelf morphology trough-to-trough
can only be explained as a product of long-term development as
a consequence of repeated glaciations that frequently reached
outer-shelf limits.

West of the island, swath bathymetry datasets image in more
detail the distinct outer moraine ridge (B30 m high, 4 km wide)

and corresponding suite of sub-parallel smaller sharper-crested
ridges inshore (2–15 m high, 200–600 m wide) that we interpret
as recessional ice-marginal moraines36–38 (Fig. 3a–c). Beyond the
outer ridge, water depths increase gradually seaward, where the
sea floor is pitted (possibly fluid or gas-escape pockmarks39) but
otherwise featureless (Fig. 3c). It is clear that there is no sea-bed
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imprint of ice grounding beyond this limit, and thus we have
confidence in the outermost ridge marking a maximum limit of
former glaciations.

Subglacial streamlined bedforms occur within and at the
flanks of many of the cross-shelf troughs (Fig. 2), and are also
mapped across zones of flatter sea-floor topography south of the
island (Figs 3d and 4). Bedforms are imaged in areas of little
overlying sediment cover, and range in amplitude from B1 to
15 m, have wavelengths on the order of 100–250 m, with lengths
of 150–1,000 m providing elongations of B2–10:1 in one sub-set
of the data we studied (Fig. 3d,e). On the floor of many of the
troughs bedforms are likely present, but are covered by
sedimentary infills that have presumably accumulated through
Holocene and pre-Holocene times (for example, Fig. 4a,f).
Viewed across a number of examples (Fig. 4), bedforms exhibit
the characteristics of drumlins (Fig. 4b,g), roche moutonées
(Fig. 4c) and occasionally mega-scale glacial lineations that
have commonly been associated with zones of past ice-stream
flow on the Antarctic shelf (Fig. 4d)40–50. Convergent patterns of
streamlined bedforms that become progressively more elongated
down-flow (for example, Fig. 4d–f) indicate that former
configurations of the ice cap contained faster-flowing sectors51,
analogous to, but forming smaller equivalents of, ice streams in
Antarctica today. Some zones of the streamlined topography are

not constricted to troughs and suggest that fast flow may
have been laterally-extensive near the margins of the ice cap.
Other sets of bedforms, for example those in the trough NW of
Church Bay (Figs 2 and 4d), are highly-elongated lineations
(410:1) and extend across the entire shelf. On the basis of
observations of modern ice-stream beds52, these can be linked
with some certainty to faster-flowing ice tributaries. In Arctic
ice caps, today, isolated outlet glaciers are shown to flow at
speeds 7–10 times faster than that of the surrounding ice53. By
analogy to modern ice-cap surface morphology, and to
reconstructed54 and modelled surface profiles of the Antarctic
ice sheets at glacial maxima55, we thus interpret outer portions of
the ice cap to have had fast-flowing concave ‘low-slung’ profiles,
as opposed to convex surfaces normally associated with the
margins of domed slower-flowing ice caps53. In turn, we suggest
that many outlets were only lightly grounded at thicknesses close
to the threshold of flotation, with corresponding low-elevation
lines of equilibrium.

For one system north of South Georgia, we have completely
mapped the sequence of moraine ridges extending from the
tidewater front of Nordenskjöld Glacier to the shelf break
(Fig. 5a). New multibeam swath bathymetry data were collected
in 2013 in a northward branching outlet of the Cumberland
Trough (Fig. 5b), which extends for B70 km from coast to
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margin in its entirety (Fig. 5d). In this location we observe
a suite of pristine (unweathered) and sub-parallel ridges forming
a large ‘outer shelf moraine belt’ (Fig. 5b,d—prominent moraine
features marked and numbered from the coast seaward).
The largest moraine occurs once again near to the shelf break,
but is associated with more than one ridge crest (M4 and M5)
and clearly dissects one or more arcuate, older moraines (M6).
A smaller B10-m high ridge also forms a ‘lip’ to the shelf edge
(M7; Fig. 5d).

The presence of a number of significant cross-cutting ridges
on the outer shelf provides support for more than one ice advance
to the shelf edge. The ‘outer shelf moraine belt’ is mainly made
up of smaller, lower amplitude ridges landward of M4 although
a pronounced 30-m high ridge occurs on the mid-to-outer shelf
(M3). Significantly, the ridge set as a whole arcs progressively
to the south back into Cumberland Trough, indicating that
the majority of ridges track the gradual evolution of a single
receding ice margin through time.

Two moraines (M1 and M2) form the most prominent
features of the Cumberland Bay fjord, marking the boundaries
of a shallow inner (IB) and deep outer sedimentary basin (OB),
respectively (Fig. 5a,d). Both basins are sediment filled, as typical
for mid-to-high latitude fjords where postglacial and modern
accumulation rates are exceptionally high. This is interpreted to
be a result of their proximity to tidewater glaciers; in ice-proximal
settings in Alaska, sedimentation rates reach metres per year,
while in comparable fjords with more modest detrital input
in East Greenland, Holocene sediments accumulated at rates of
110–340 cm kyr� 1 (ref. 56). M2 resides at the mouth of
Cumberland Bay, 416 km from the present-day ice margin
(Fig. 5c) adjacent to the farthest extents of the island’s northward-
jutting peninsulas. It is 30–60 m high and forms a distinct glacial
limit across the breadth of the fjord floor. A comparably
positioned and sized moraine is known to exist at the mouth of
the majority of major fjord outlets around South Georgia21

forming part of a consistent fjord-basin-moraine sequence that
repeats from location to location (Fig. 2; Supplementary Fig. 3).

Sediment cores and chronology. Core PS81/265-1 was collected
through moraine M2 immediately south of its crest and recovered
a sedimentary sequence comprising three lithological units
(Figs 5c,d and 6a). Facies analysis (Fig. 6a–d) and physical
properties data (Fig. 6e), together with x-radiographs (Fig. 6i)
confirm that the gravity core sampled a massive sandy diamicton
at its base (2.55–3.74 m; Unit I). The presence of angular to
sub-angular clasts (diameter up to 9 cm) and homogeneity of
the surrounding muddy matrix indicates that the unit constitutes
a sample of the body of the moraine ridge itself (Fig. 6j).
It is interpreted to have formed by sediment delivery at and
beneath a tidewater glacier margin. A similar sediment recovered
from moraine units in front of Kongsvegen, Svalbard,
was interpreted as a combination of supraglacial and englacially-
thrusted basal debris57.

The overlying unit between 2.05 and 2.55 m (Unit II) is a sandy
gravelly mud with muddy inter-beds indicating ice-proximal
glacimarine sedimentation, typical for grounding-line fan or
subaqueous glaciofluvial systems58, that represents a transition
from glacial marginal to distal glacimarine conditions.
Stratification in the lower part of the unit is interpreted as
a result of melt out of debris near to and away from the ice
margin or the runout of debris flows sourced subglacially
(Fig. 6c). Gradual reduction in stratification, clast content
and shear strength upward within the unit indicates an
increasing dominance of deposition of suspended detritus
as the ice-margin retreated from the core site. This gradual

pull-away of the glacier is supported by steadily declining
Illite/Chlorite ratios through the unit, which show a transition
from high chlorite content in the underlying diamicton to
low chlorite concentration in the overlying open marine facies
(Fig. 6g). This change in clay mineral assemblage is characteristic
of similar transitional sequences recording ice-sheet deglaciation
on the West Antarctic shelf59,60. The upper B2 m of the core
(Unit III) is a bioturbated diatom-bearing mud interbedded
with discrete 1–20 cm thick gravel layers. Unit III records open
marine sedimentation in an ice-distal environment with phases
of iceberg rafting, debris flows, or possibly minor glacier
readvances recorded by the coarse-grained sub-units.

To constrain the age of the M2 moraine at the fjord mouth
we dated shell fragments recovered from the matrix of the
moraine unit (Unit I at 3.055 m) (Fig. 6a). We suggest that the
presence of shell material within the diamicton can only be
explained by the reworking of existing fjord sediments into
the ice-basal material, that were deposited in the fjord prior to
ice advance, or directly at the margin of a tidewater glacier.
There is no evidence for burrowing in x-ray images, so the shell
is interpreted to be related to the primary deposit that has
subsequently been reworked. Thus, we interpret the moraine as
the product of a frontal advance rather than as a feature formed
during a pattern of overall ice retreat. Following similar studies
that used shell fragments as indicators for the age of glacial
sediments61, the age of the shell material provides a reliable
age for the formation of the moraine ridge, suggesting it
was deposited sometime after 14.8–15.4 cal ka B.P. (Table 1).
A second age from the very top of Unit I (2.56–2.60 m;
9,891 cal yr B.P.) is excluded from the core age-model as an
outlier; the only one of five radiocarbon ages that otherwise lie in
stratigraphic order. The anomalously young age is interpreted as
the result of dissolution in the sample62, with chamber damage
and external corrosion evident on some of the largest
foraminiferal specimens.

The overlying transitional unit (II) is reliably dated in two
places using foraminifera (Fig. 6a,b). An age from the base of the
unit shows the transition from subglacial to ice-proximal
sedimentation to have occurred immediately before 13,340 cal yr
B.P (Fig. 6). A further date from the unit indicates nearby glacier
sources until at least 10,637 cal yr B.P. with a reducing glacial
influence thereafter. The boundary between the base of the
open marine Unit III and very top of the transitional unit II in
PS81/265-1 was dated to 2,228 cal yr B.P. revealing that the onset
of open marine conditions is surprisingly late. To explain this, we
suggest a hiatus between retreat from the moraine and the onset
of marine conditions at the core site. This break in sedimentation
likely resulted from sediment focussing in the basin behind the
moraine, and subsequent infill. In other basins offshore South
Georgia, sediments clearly accumulate at faster rates in depres-
sions compared with moraine crests (Fig. 7a, arrowed), which
implies that breaks in the continuity of the sedimentary record
can be expected in areas where the underlying till or bedrock
shallow. Thus, it is suggested that the onlap of marine sediments
at PS81/265-1 initiated in the late Holocene, well after
deglaciation inshore.

Gravity core GC666 was collected in Royal Bay Trough, an
adjacent glacier system southeast of Cumberland Bay (Fig. 2).
The Royal Bay Trough is up to B260 m deep and extends from
the Ross-Hindle glaciers northeastwards. Sub-bottom profiler
data through the core location show a B20 m thick stratified
sedimentary sequence within the trough that overlies transparent
acoustic units interpreted as either glacial diamictons or
sub-cropping lithified sediments/bedrock (Fig. 7a). GC666
recovered B8 m of diatomaceous muds to the west of the trough
axis (Fig. 7b–h). The core is comprised of two lithological units.
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Lower Unit I consists of laminated diatomaceous oozes alternat-
ing with fine-grained, more terrigenous diatom-rich muds,
interpreted to record inter-annual or even seasonal deposition
in an open marine setting. Individual laminae can be detected in
the variability recorded by core wet-bulk density data (Fig. 7e).
Radiocarbon ages at the base of Unit I indicate the onset
of marine sedimentation at the site before B14.6–15.1 cal ka
BP. Two ages of B14.0 and 14.1 cal ka B.P. near the top of Unit I

suggest rapid sedimentation rates through the lower part of
the core (Fig. 7i). By contrast, lithological Unit II (above B4.6 m)
is a homogeneous diatomaceous mud, with a higher terrigenous
sediment fraction. Radiocarbon dates document its deposition at
sedimentation rates lower than those for Unit I.

Although the sedimentary record in GC666 suggests open
marine conditions throughout, a distinct facies change can be
seen in acoustic profiles, which corresponds to the change in
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lithological units down-core (Fig. 7a,i). An initially biologically-
productive glacially-influenced marine environment character-
ized by high sedimentation rates (Unit I) was replaced by a less
productive hemipelagic shelf environment (Unit II). Higher
terrigenous sediment content in the upper unit may be due to
a dilution effect, rather than an indicator of supply. A regional
break or unconformity forms the boundary between the two
units, at B4.6 m below sea floor, in acoustic profiler data
and marks the main change in depositional environment as
well as an erosional event that removed sediments from the
trough. We interpret this change to correspond principally to the
degree of glacial influence (that is, to a decrease in glacier
proximity and thus reduction in productivity across the
boundary, together with a short-lived phase of marine erosion).
Above the unconformity, acoustic facies remain weakly stratified.
Based on radiocarbon dates below the corresponding boundary
in GC666, the prominent change in deposition likely occurred
shortly after B14 ka B.P. Rates of deposition were moderate
from B14.1 ka B.P. but had slowed considerably by, and after,
12.6 ka B.P.

Discussion
Today, a significant sea-floor landform and sedimentary record of
past ice-cap change is preserved on the South Georgia continental
block. Within this record, there is evidence for multiple extensive
glaciations of the island. This evidence takes the form of:
(i) submarine morainal banks, overprinted by stratigraphically
younger moraine ridges, (ii) diverging trough systems with
repeated complex geomorphic patterning between adjacent
systems, suggesting a common history of glacier modification
(Supplementary Fig. 2), (iii) shelf-edge ridges truncated by further
moraines created by subsequent glacier advances (for example,
Fig. 5; M6 and M7). Nevertheless, if the sea-bed geomorphology
inshore of the shelf edge recorded multiple glaciations
(cf. the moraine sequences onshore at the margins of the
Patagonian Ice Sheet63–66) we would expect to observe a network
of overprinting and cross-cutting ridges comprising of a mixture
of degraded and fresher moraines. Instead, in almost all locations
we have imaged only one distinct outer moraine ridge and
a suite of smaller recessional moraines (Figs 2, 3a and 5b). The
continuity of forms, the lack of degradation on the ridge surfaces,
and their modern-day sea-floor exposure (they are neither buried
nor heavily eroded) suggests strongly that the latter record,

predominantly, a single phase of recent ice cap deglaciation38.
Two previous models were proposed for LGM extent on South
Georgia and the majority have favoured a restricted
interpretation20,21,25. Contrary to most studies, our observations
suggest that the mapped limits of moraines around the island
relate to a ‘recent’ advance-retreat cycle, which we propose
corresponds to expansion at the Last Glacial Maximum and the
ensuing deglaciation.

If the ‘outer moraine belt’ relates to the LGM ice advance and
deglaciation, then one would expect the quantity of subsequent
trough sediment infill to be consistent with expected rates of
accumulation over that timeframe. To test the above hypothesis
of extensive shelf glaciation, we used sedimentation rates
calculated from radiocarbon determinations on GC666 to
estimate the age of the entire trough infill (Fig. 7c; Table 2).
Two slightly different core basal ages suggest rates of deposition
ranging between 306 and 632 cm kyr� 1 for the period
corresponding to the latter part of the last termination (Fig. 7i).
GC666 only recovered the upper 8 m of c. 20 m of trough
deposits, but acoustic facies suggest that Unit I extends from the
core base to the trough floor and that the depositional regime has
remained unchanged (Fig. 7a). If Unit I relates to marine
sedimentation during deglaciation, as seems likely from our
dating, it would be plausible that sedimentation rates remained
high for the duration of the period. Thus, we are confident
in extrapolating these high-sedimentation rates downwards
through the section. Even with the most conservative rates
of deposition, we estimate that trough sediments began
accumulating B17,900 yr ago (Fig. 7c). On the inner parts of
Antarctic ice-stream troughs, deglacial-to-Holocene sediments
overlie subglacial diamicton or bedrock directly, with ice having
stripped away pre-existing fill, advecting this sediment to the
margin49,67,68. The apparent absence of older deposits within
the mapped troughs suggests that the South Georgia shelf records
a similar shallow stratigraphic architecture to many Antarctic
glacial systems. Thus, combined dating and geophysical analysis
supports the interpretation of ice advance beyond the fjord
mouths at the peak of the last glaciation, and onset of trough
sediment fill at the beginning of the last deglaciation.

To provide an independent chronological test of LGM extent
beyond the coastal limits, we dated sediments recovered
from moraine M2 at the mouth of Cumberland Bay. According
to our previously posed model (limited extent model),
this moraine should date to pre-LGM times, possibly having

Table 1 | Radiocarbon age determinations for cores PS81/265-1 and GC666, from the South Georgia shelf.

Sample details Conventional ages Marine13 calibration

Core Depth
(cm)

Carbonate
Source

Age
(yr)

±Age
Error (yr)

Reservoir
Effect (yr)

Min (cal yr BP) Max (cal yr BP) Median (cal yr BP) Lab Code

GC666 0 benthic forams 1,186 65 1,108±61 0 266 124 ETH-51517.1
GC666 0 benthic forams 1,030 56 1,108±61 0 259 122 ETH-51517.2
GC666 388 gastropod 11,926 80 1,108±61 12,557 12,912 12,712 ETH-51518.1
GC666 388 gastropod 11,726 109 1,108±61 12,114 12,756 12,527 ETH-51518.2
GC666 490 benthic forams 13,370 89 1,108±61 13,885 14,758 14,231 ETH-51519.1
GC666 490 benthic forams 13,105 136 1,108±61 13,477 14,226 13,874 ETH-51519.2
GC666 510 shell fragments 13,301 135 1,108±61 13,734 14,799 14,145 ETH-51520
GC666 510 benthic forams 12,005 275 1,108±61 12,275 13,455 12,865 ETH-51521
GC666 815 benthic forams 13,572 211 1,108±61 13,918 15,321 14,628 ETH-51522
GC666 815 planktic forams 13,896 492 1,108±61 13,702 16,589 15,143 ETH-51523
PS81/265-1 204–207 benthic forams 3,270 30 1,108±61 2,040 2,392 2,228 BETA-402960
PS81/265-1 228–238 benthic forams 10,440 40 1,108±61 10,437 10,867 10,637 BETA-449408
PS81/265-1 251–254 benthic forams 12,590 40 1,108±61 13,195 13,491 13,344 BETA-444223
PS81/265-1 256–260 benthic forams 9,840 40 1,108±61 9,645 10,140 9,891 BETA-444224
PS81/265-1 305.5 gastropod 13,850 40 1,108±61 14,857 15,432 15,174 BETA-402961

Bold text highlights the median age used in the text.
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formed during Marine Isotope Stage 6 (130–191 ka)21. Thus
any 14C dates from sediments within or directly on top of the
moraine unit should give radiocarbon ‘dead’ ages. On the
contrary, our dating clearly shows that the M2 relates to an
advance after B15.2 cal ka B.P. An age younger than B15.2 ka
B.P. for M2 rejects the hypothesis that the last glaciation reached
only inner fjord limits. It is very unlikely that a post-LGM
readvance overrode a less extensive LGM limit. More
significantly, there are no major moraine limits on the
continental block outside of the fjord mouths until the outer
shelf moraine belt, some 35 km from the modern glacier fronts

(Fig. 5b). This implies that the LGM advance was significant and
extensive. The lack of discernible erosion or geometric differences
in the M3 to M5 ridges suggests that this complex marks the
LGM terminus (Fig. 5b,d). If these interpretations are correct,
then our findings seemingly resolve a long-standing debate
concerning the extent of the LGM on South Georgia, identifying
an extensive last glaciation for the first time, and confirming
recent results from ice-load modelling23 and biodiversity
surveys24 that inferred a larger LGM ice-cap on the island.

The maximum age for moraine M2 of 15.2 ka B.P. immediately
pre-dates the onset of the ACR, and subsequently constrains
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a significant advance of South Georgia’s glaciers to this period of
cooling. A study of lake sediments adjacent to Cumberland
Bay fjord revealed that climate cooled during an interval between
14.8 and 14.2 ka B.P., coincident with the ACR (ref. 25). Notably,
a wetter regime was also inferred from the higher grey-scale
density values and silica isotope depletion during this interval
when more minerogenic deposition was input to the lake25.
Wetter, cooler climates would provide conditions favourable for
glacier advance, whilst the timing of the period is consistent with
the phase of ice advance suggested by our dating. Importantly,
other fjords around South Georgia contain fjord-mouth moraine
ridges which, based on the common gross fjord morphology and
geometry21, are likely to be equivalents to the M2 moraine in
Cumberland Bay (Fig. 2). Thus, following similar moraine
classification approaches terrestrially20 we suggest that the
ACR advance was not simply restricted to just one outlet
system but rather a response across the entire ice cap (Suppleme-
ntary Fig. 4). The nature of the readvance during this interval can
be constrained by lake sediments from Tønsberg Peninsula which
indicate that any expanded ice cap had already retreated
substantially from mainland promontories by B18.6 ka B.P.,
likely inshore of the outer-fjord positions. We infer that the
ACR readvances can, therefore, only have been restricted to
discrete fjords in many places, and did not override the
intervening peninsulas. We cannot be certain about the true
extent of the retreat up-fjord prior to the ACR, but our
interpretation that the ACR saw renewed resurgence rather
than a stillstand during long-term retreat is upheld by the
presence of truncated moraines at shallow depths on the fjord
flanks. Previously interpreted as remnant landforms of pre-LGM
glaciations21, these can now be explained as ice retreat features
formed during the early phase of post-LGM deglaciation to
coastal or inner fjord limits that were subsequently dissected by
fjordal re-advance during the ACR (See Fig. 4a in ref. 21). In
Cumberland Bay, this implies a readvance of at least 8 km down-
fjord based on the most southerly position of a set of eroded
promontories (Supplementary Fig. 5).

We were also able to directly date the timing of retreat
following the ACR advance from PS81/265-1 which suggests ice
had ungrounded from M2 by 13.3 ka B.P. In addition, core
GC666 can provide constraints on changes in the nearby ocean
during and after the proposed ACR advance (Fig. 7). The core
shows a switch in sedimentation shortly after B14.0 ka B.P that is
mirrored in an acoustic mid-sequence unconformity. The
apparent unconformity is difficult to explain. Glacial erosional
processes are ruled out given the lack of sedimentary evidence for
ice grounding and absence of chronological evidence for a hiatus
in the core (Fig. 7c). We suggest instead bottom current erosion
associated with a latitudinal shift in oceanographic fronts might
be responsible, concomittent with climate amelioration and
glacier retreat from ACR advance limits. At least in the vicinity

of GC666, the event appears not to have removed a significant
amount of material, meaning we can interpret downcore
changes across this boundary with confidence. One plausible
explanation for the high sedimentation rates observed for
Unit I is that these reflect enhanced production during the
transition out of the last glacial stage. A local cause of the
high productivity is suggested, which we infer resulted from
glacier proximity to the core site. In Antarctic troughs, analogous
varved couplets consisting of diatomaceous oozes and muds
were deposited during intervals of high primary productivity
generated by seasonal diatom blooms within ice-proximal
embayments enriched with iron-laden meltwater54,69. In this
setting, sedimentation rates were strongly linked to the pattern
of ice retreat. Accordingly, if we use the timing of the major
shift in sedimentation as an indicator for glacier retreat,
then 14.0 ka B.P provides a likely minimum age on ice
recession from coastal waters. Thus, combining observations
and dating from both cores, we suggest an ACR advance and
culmination between 15.2 and 14.0 ka B.P, with grounding-line
retreat from the outer-fjord moraine by 13.3 ka B.P; hence,
bracketing the ACR advance on South Georgia to a B1,900 year
interval of time (Fig. 8).

If the moraine M2 corresponds to the ACR advance then the
inner fjord moraine M1 must have formed during a younger ice
advance, analogous to the category ‘a’ moraines mapped onshore
in Moraine Fjord by Bentley et al.12,20,21. The A3 moraines are
the outermost of a set of three suites of moraines forming a wide,
low amplitude ridge deposited during the lateglacial. The lack of
older moraines beyond on the valley sides was previously
considered as evidence that these ridges relate to the
LGM limit. Dated to 12.2±1.5 ka (ref. 20), the A3/M1 moraine
may instead represent a secondary advance or stillstand of
Nordenskjöld Glacier as climate reorganized at the start of the
Younger Dryas. Similar two-stage advances have been noted for
New Zealand glaciers at the ACR (ref. 28), and while we cannot
yet offer the precision of other studies, the geomorphic
prominence of the two moraines supports a hypothesis for
a broadly comparable two-stage lateglacial history (Fig. 8b).
Importantly, core PS81/265-1 retains evidence for relatively
proximal glacimarine sedimentation either side of B10.7 cal ka
B.P. which suggests that the fjords were still heavily influenced by
glacimarine processes at this time. Thus the M1 moraine
formation may date towards the younger part of the lateglacial,
perhaps reflecting glacier response to increasing temperatures
following ACR cooling, or pointing to a role of fjord geometry in
stabilising recession. Whether a single or two-step event, the
moraine chronology presented here extends the geographic
footprint of the ACR into the Atlantic sector of the Southern
Hemisphere for the first time (Fig. 1a)29, and offers further
direct confirmation of advance of glaciers at the mid-latitudes
during this chronozone.

Table 2 | Calculated sedimentation rates for dated intervals in core GC666, from Royal Bay Trough.

Depth range (cm) Accumulation (cm) Age range (yr) Time period (kyr) Sedimentation rate (cm kyr� 1)

0–388 388 0–12,620 12.62 30.7
0–490 490 0–14,053 14.053 34.9
0–815 815 0–14,628 14.628 55.7
0–815 815 0–15,143 15.143 53.8
388–490 102 12620–14,053 1.433 71.2
388–510 122 12,620–14,145 1.525 80.0
510–815 305 14,145–14,628 0.483 631.5
510–815 305 14,145–15,143 0.998 305.6

For several core depths, two ages have been recovered and thus a range of sedimentation rates are calculated for some of the depth intervals.
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By comparison to other records of Southern Hemisphere
glaciation, our proposed record of Late Quaternary glacier
fluctuations appears similar to that of both New Zealand and
Patagonia (Fig. 8). The ice cap that expanded across the South
Georgia shelf at the LGM is comparable to the expansion of the
northern Antarctic Peninsula Ice Sheet70 and South Orkney Ice
Cap71 which were both significantly advanced up to B19 cal ka
B.P.6,17. Our estimates from fjord sediment infills seem to
indicate that ice had already retreated to at least fjord mouth
locations by B18 cal ka B.P., consistent with lake records which
indicate that adjacent peninsulas became ice free B18.6 cal ka
B.P.25 (Fig. 8a). To reconcile these apparently early ice-free
conditions requires a relatively early and rapid shelf deglaciation,
alongside considerable thinning of the ice-surface profile in order
to maintain fjord glaciers while leaving the present-day
peninsulas deglaciated. We suggest that the ice cap that formed
at the LGM which, based on the distribution of submarine
landforms, had marine margins around its entirety, may not have
been sustainable for long; the limited supply of moisture from the
presence of winter sea ice72, and widespread ablation by iceberg
calving and ocean melting would have required sustained
nourishment to maintain balance. Early and moderately rapid
retreat after the LGM may have been forced by a combination of
early deglacial warming at lower latitudes and elevations, the
‘low-slung’ profile which we have inferred for the outer margins
of the ice cap, the sensitivity of the ice-cap to external forcing,
and limits on precipitation supply, which is likely to have
been transient and shifted with the latitudinal position of the
Southern Westerlies.

Boex et al. recently showed that the rapid thinning and retreat
of the Patagonian Ice Sheet initiated at 18.1 ka and reached
near-present limits by 15.5 ka (ref. 73) (Fig. 8b). The mechanism
to explain this rapid demise was warming associated with a
southward isotherm shift, coupled with the poleward migration of
the Southern Westerlies which had sustained the LGM ice field.
Given that initial retreat around South Georgia was apparently
slightly earlier than at more northern latitudes, deglaciation may
not have been forced atmospherically but instead ocean-led
driven by warming seas or rising sea-levels. Meltwater pulses
sourced from Antarctica are one plausible trigger for initiating
landward ice-cap retreat, with a significant iceberg rafting event
(AID8) dated at B19 cal ka B.P. recorded in marine sediments
from the nearby Scotia Sea74.

By contrast, our records for the subsequent ACR appear
remarkably in phase with those of Patagonian mountain glaciers.
Glacier advance in Torres del Paine culminated at 14.2±0.56 ka
and deglaciation had occurred by 12.5 ka (ref. 33), consistent with
our proposed chronology (Fig. 8). Conditions responsible for the
early lateglacial expansion are thought to be atmospheric, linked
to northern migration of the south westerly wind belt to the
latitude of Torres del Paine at the onset of the ACR. At 51�S,
the latitude is near coincident with South Georgia to the east.
A stronger precipitation-bearing Southern Westerlies influence
at this latitude is therefore likely for the ACR on South Georgia
too. In marine sediment cores recovered from south of the APF,
surface water temperatures were actually warmer during the
ACR than in the period prior to it (earlier than B15.5 ka B.P.;
Fig. 8f)75 while sea ice was at a minimum during this time period
in the Southern Ocean (Fig. 8d)75. We consider that this unusual
high precipitation, warm maritime ocean and sea-ice minimum
configuration is likely to have pre-conditioned South Georgia
glaciers to respond sensitively and rapidly to the temperature
drop that accompanied the ACR. Frontal shifts and migration of
cool Southern oceanic waters are alternative drivers for the glacier
expansion but the thermal reversal in the ocean is thought to
lag behind the ACR by B800 years76 and is therefore unlikely to

be a key driver based on our interpreted chronology of events.
Sea ice re-growth and reduction in precipitation supply around
B13.5 ka, may be subsequent triggers for the initial post-ACR
retreat prior to the temperature increases seen at the end of the
chronozone (Fig. 8e).

Irrespective of the principal driver, in the context of Andean,
New Zealand and South American observations of ACR glacier
advance, our results from South Georgia provide further support
to the notion that the cooling was broadly synchronous across the
southern mid-latitudes and induced a similar response in
Southern Hemisphere glacial systems, whether in high mountain
regions, or in oceanic regimes at sea level as suggested by
this study.

Finally, a short glacial maximum and observations of regions of
moderately shallow sea bed retaining no expression of glacial
disturbance (Fig. 3a) reconcile our new interpretations of
an expansive LGM with evidence for the persistence of
shelf-inhabiting taxa on South Georgia, including the giant sea
spider Colossendeis megalonyx, the limpet Nacella concinna77 and
Southern Ocean shrimps78, through multiple glaciations. Our
findings also have implications for the resilience of terrestrial
biota which appear to have survived through at least one
significant cycle of ice-cap advance and retreat8.

Methods
Multibeam and sub-bottom profiler data acquisition. New multibeam swath
bathymetry data were acquired on cruise ANT-XXIX/4 of RV Polarstern in 2013
using a hull-mounted Atlas Hydrographic Hydrosweep DS III. The system was
operated in hard-beam mode with a frequency of 15.5 kHz, 320 depth points per
ping (across the swath track) at 2� 2� beam resolution, with a maximum swath
width of B100�, leading to a swath width a little over twice the water depth.
Vertical resolution is better than B1% of the water depth. Sound velocity profiles
collected using a sound-velocity probe were used to calibrate the sensor data. Rail
tracks running along the nadir in the data set in Fig. 5b result from problems with
the instrument’s bottom detection algorithms during acquisition. Rather than
remove the centre tracks entirely (and in-doing-so compromise visual coverage),
we leave the artefacts intact whilst acknowledging their presence.

Existing but unpublished multibeam data, often comprising of single swaths
across the continental block, were also assembled from a number of past cruises
and gridded together with new data to form one coherent dataset for the regional
mapping of landforms. The majority of datasets comprised cruises of the
RRS James Clark Ross (British Antarctic Survey) acquired from 2000–2012. We
used the software MB-system for the processing and output of gridded data.
Bathymetry data were gridded at resolutions appropriate for the water depth of the
working area and the quality/generation of echo sounder used during acquisition:
normally equating to grid cell sizes between B20 and 5 m. The coverage of data is
non-uniform across the shelf, with greater coverage in the west and northern areas,
as well as localized data surveys to the south. Few data exist from the east of the
continental shelf (Supplementary Fig. 1).

For regions lacking multibeam coverage, we made use of the Olex data set,
which provides gridded singlebeam echo-sounder bathymetry data, collected by
fisheries and commercial vessels, at nominal spatial resolutions up to B5 m
(ref. 79). Coverage with Olex is relatively good along the outer shelf, north of
South Georgia, where a commercial fishery is active.

Sub-bottom profiling data were acquired additionally on RV Polarstern
using the parametric hull-mounted ATLAS PARASOUND P70 system. Primary
operating frequencies were 18.75 and 22.95 kHz with a secondary frequency of
4.2 kHz. Vertical resolution is better than 0.2 m. Data visualization and processing
were carried out using SeNT software (developed by H. Keil, University of
Bremen). The vertical scale on profiles has been converted from travel time to
metres using a constant sound velocity of 1,500 m s� 1.

Landform mapping. Sea-floor landforms were digitized as shapefiles from the
acoustic datasets described above in ArcGIS. Moraines and bedforms were mapped
as populations of polylines, following the crests of geomorphic elements, typically
at a 1:25000 scale. Bedform amplitudes and geometry were extracted and assigned
to individually mapped landforms across the shelf. We interpreted a number of
sub-types of subglacial streamlined bedform from the mapped population. These
have been broadly characterized and distinguished based on the following criteria:
(i) roches moutonnées: streamlined ridge, with a smooth ice-moulded stoss face
and contrasting irregular lee (inferred as the result of plucking). The landforms
are assumed to be formed within indurated sedimentary rock or bedrock and
have low elongations relative to other streamlined subglacial landform types.
(ii) drumlins: low relief, ovoid hill or ridge, with a distinctive larger blunt end and
narrowing, tapered lee. Elongated to stubby in relief. (iii) Mega-scale glacial
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lineations: highly elongated (410:1) parallel ridge-grooves, sometimes with a more
prominent higher-relief head (seed). These are relatively infrequent on the South
Georgia shelf but are clearly sediment-formed features where mapped.

Core logging and analyses. Two gravity cores used in this study were collected in
2012 and 2013 in Royal Bay and Cumberland Bay, respectively. Multi-proxy
analyses included investigation of lithology, physical properties, grain counts and
size distribution, clay mineral assemblages, facies succession, and radiocarbon
dating of marine macrofossils. GC666 was acquired on cruise JR257
(35�44.48880W, 54�25.2360S). The core was subsequently logged on a GEOTEK
multi-sensor core logger at BOSCORF (NOC Southampton, UK), split, visually
described, X-rayed and subsampled for analyses on discrete samples. X-rays were
conducted on an NTB EZ240 scanner. Core PS81/265-1 was collected on ANT-
XXIX/4 (36�26.59020W, 54�14.17020S). The core was analysed with a GEOTEK
core logger and split onboard. It was subsequently described and sub-sampled for
further analyses. Shear strength was measured using a hand-vain at 10 cm intervals.
Counts on grains 42mm per centimetre of core were conducted from the
X-radiographs80. Grain size was determined by sieving and settle tube separation of
silt and clay. The r2 mm sediment fraction was used to determine the relative
contents of the clay minerals smectite, illite, chlorite and kaolinite using a
diffractometer system (Rigaku MiniFlex with CoKa radiation (30 kV, 15 mA)) at
the Institute for Geophysics and Geology (University of Leipzig). The clay mineral
identification and quantification followed the standard X-ray diffraction methods
described by Ehrmann et al.59. C-org contents were analysed using an ELTRA CS-
2000 after removal of carbonate with HCl. Biogenic opal was determined using
established methods81, and calculated with 10% (weight) water within the opal.

Radiocarbon geochronology. AMS 14C dating on samples from GC666 was
performed at the Ion Beam Laboratory, ETH Zurich, Switzerland, using a ‘mini
radiocarbon dating—accelerator mass spectrometry’ system (‘MICADAS–AMS’)
equipped with a gas ion source. This array allows dating of exceptionally
small sample quantities of carbonate material (refs 82,83). AMS 14C dating on
PS81/265-1 was carried out at BETA Analytic, in Miami, using an equivalent
micro-AMS service. Dates were analysed on picked specimens of foraminifera, shell
or shell fragments across the two cores (Table 1). The conventional AMS dates
were calibrated to calendar ages using the Calib 7.01 program and the Marine13
calibration data set. A marine reservoir correction of 1108±61 yr was applied to all
ages (determined using the mean of two surface ages measured on core top sedi-
ments from core GC666), taking into account that Calib operates with
a standard global reservoir correction of 400 years (DR¼ 708±61 yr). We present
calibrated ages as a range, and as median values (95.4% confidence, 2s).

Data availability. Gridded multibeam swath bathymetry for Cumberland Bay
Trough are available online via PANGAEA (doi https://doi.pangaea.de/10.1594/
PANGAEA.870752). Other geophysical and geological data sets generated during
and/or analysed during the current study are available from the corresponding
author on reasonable request.
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