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Abstract

The Riemann problem for two-dimensional gas dynamics with isentropic and polytropic
gas 1s considered. The initial data is constant in each quadrant and chosen so that only a
rarefaction wave, shock wave or slip line connects two neighboring constant initial states.
With this restriction sixteen (resp. fifteen) genuinely different wave combinations for isen-
tropic (resp. polytropic) gas exist. For each configuration the numerical solution is analyzed
and illustrated by contour plots. Additionally, the required relations for the initial data
and the symmetry properties of the solutions are given. The chosen calculations corre-
spond closely to the cases studied by T. Zhang and Y. Zheng, STAM J. Math. Anal. 21
(1990), 593-630, so that the analytical theory can be directly compared to our numerical
study.
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1. INTRODUCTION

The interaction of elementary waves for systems of hyperbolic conservation laws is
the key mechanism in determining the qualitative properties of solutions to more general
initial value problems. For the genuinely nonlinear case and one space dimension, these
basic interactions along with the Riemann problem can be worked out analytically at
least for small enough jumps in wave strength [15] and are often solvable for large jumps
as well [3], [17]. This knowledge is the basic building block in using techniques such
as the random choice method (RCM) to obtain partial existence results [8] as well as
information about the qualitative behavior of solutions [12], and this is especially the
case for certain systems which are derived from physical principles, e.g., gas dynamics.
Indeed, one can go further and conjecture that RCM with enough mesh points and
sufficient accuracy in the Riemann problem solution will almost always produce a very
close approximate to the exact solution for scalar conservation laws, gas dynamics and
certain other systems in the 1D planar case.

The idea of using elementary waves and Riemann problems as building blocks in
constructing solutions, being so successful in 1D, is natural to attempt in 2D (and 3D).
For the scalar case, a great deal of work has been done [10], [11], [16], [18] and much is
known about the analytic structure of solutions. However, even here it seems difficult
to work in analogy to the methods of [8], [12] and obtain deep results for general data;
also, finite difference schemes based directly on 2D Riemann problem solutions have not
appeared.

For gas dynamics and two space dimensions, the situation can be expected to be
quite complex and is certainly difficult — very few analytic results are available. Our
approach here is to use a high resolution finite difference scheme as an experimental tool
and try to catalogue the phenomenology of the 2D gas dynamic Riemann problem for a
restricted set of initial data; our choices have been strongly influenced by the conjectures
reported in [19]. A similar approach using the front tracking method is also possible
[9], but our results here indicate that such an effort would be awkward to implement.
However, the set of results obtained here, suitably augmented to account for a larger
data set, might be useful in constructing numerical methods along this line by supplying
the appropriate jump conditions at solution singularities.

The most important feature of elementary waves and Riemann problems is that their
solutions may be assumed to be self-similar; this reduces the number of dimensions by
one and this leads to the analytic theory for the 1D case. The dimensional reduction
in 2D is from three to two dimensions and the resulting system is still a PDE. A set
of interesting self-similar data for gas dynamics, from an historical point of view, is
the problem of oblique shock wave reflection which can be experimentally simulated by
situating a wedge in a shock tube downstream of the incident shock. Experimental,
analytic and numerical investigations of this problem go back to E. Mach and J. von
Neumann; the extensive literature is discussed in [5]. The numerical scheme used to
obtain the results in our work here has been implemented for this configuration as well
[6], [7]. It has been conjectured [19] and will be shown here that at least some of these
results also arise from 2D Riemann problems.

The collection of self-similar data in 2D is very diverse, as already illustrated by

the possible wedge configurations and their solutions. Actually, any collection of rays
centered at some point (always the origin here) and separated by constant states will
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lead to a self-similar solution. Our study here is restricted to the special case of four
constant states, one in each quadrant. We further restrict by insisting that the waves
separating each pair of adjoining states be a single elementary wave; this corresponds
to the set of conjectures proposed in [19] which partially inspired the work here.

We remark that even the case of a single planar shock wave situated in R? is not
necessarily trivial, at least numerically. Indeed, certain conditions must be satisfied by
the data and the equation of state in order that the wave be stable [13]. However,
stability is guaranteed for the genuinely nonlinear case and our work so far has been for
polytropic gases.

All computations are performed using the second order Eulerian Godunov method as
formulated in [1] along with the dissipative mechanisms discussed in [2]. The capabilities
of this scheme applied to a wide variety of applications are summarized in [4]. The
boundary conditions are trivial for this study, of course. The initial data is laid down on
the grid with the jumps at (the Cartesian) grid interfaces. The calculations are started
smoothly by taking the initial CFL constraint to be very severe and gradually relaxing
it. The (z,y)-plane is covered with a uniform mesh containing 400 cells in each direction
for all problems reported here. The calculations were performed on Sun workstations at

the ETH Zurich.

The equations of motion, the Riemann problem initial data and the resulting self-
similar equations are discussed in Section 2; this section also contains a summary of the
classification based on [19] and derived in [14].

In Section 3 the numerical solutions and their structures are presented and analysed.
Through observation of the time dependent solution, it is clear that our mesh is sufficient
for the solutions to relax to their pseudosteady states; thus, our illustrations may be
assumed to be situated in the (£,n)-plane. A few computations exhibit an unsteady
Kelvin-Helmholtz instability across slip surfaces. For these cases, one cannot assume
the existence of a true pseudosteady state although the overall structures are stable in
time; see [5] for further discussion. The results are illustrated by contour plots of the
density and self-similar Mach number. In the (£, 7n)-plane the pseudostationary flow
is transonic. The four elementary waves, extending from the boundary of the domain
parallel to the coordinate axes, interact and/or reach the region of subsonic flow. In
the cases with four shock waves the interaction of the shock fronts results in simple,
complex or double Mach reflections depending on the initial strength of the waves. Four
slip lines lead to large-scale vortex creation in one case. With some wave combinations
the region of subsonic flow is partly bounded by newly created shocks. Our conclusions
are presented in Section 4.

2. PROBLEM FORMULATION AND CLASSIFICATION

The Riemann problem for gas dynamics in two space dimensions, both for isen-
tropic and polytropic gas, is formulated. We start with the Euler equations of inviscid
compressible isentropic flow consisting of the equations for conservation of mass and
momentum. For polytropic gas we have an additional equation for the conservation of
energy. The conservation form of these equations in Cartesian coordinates is

(1) Ui+ F(U), +G(U)y =0
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where
P pu P
U=|pu)|. FU)=|pu’+p|. GU)=| puv
pU puv pv2—|—p

for isentropic gas and

p ,20u pU
_ | pu _ | puttp _ puv
v=\, |- FO= o > GO =1 2y,
pE u(pE +p) v(pE + p)

for polytropic gas. Here p is the density, u the z-velocity component, v the y-velocity
component, p the pressure, and E the total specific energy. The system is closed by
specifying an equation of state. For isentropic gas we take p = Ap” where A > 0 and
~ > 1 are constants. For polytropic gas we have instead

1 2 2
_ B-I-u + v
(v=1p 2

where 4 > 1 is constant. The number ~ is called the polytropic exponent and, since it
is assumed constant in the present study, may be interpreted physically as the ratio of
specific heats for the polytropic case.

The characteristic speeds of (1) in the - (or y-) direction, i. e., the eigenvalues of the
Jacobian matrix Vi F (or ViyG) are A =u—c¢, \g =uand \y =u+c(or A\ =v—e¢,
Ao = v and Ay = v + ¢). Here the sound speed c¢ is defined by ¢* = yp/p.

The Riemann problem in the (z,y)-plane is the initial value problem for (1) with
initial data

E

(2) (pyu,v)(x,y,0) = (piyui,v;), 1=1,....,4

for isentropic gas and

(27) (p7 ;07“7”)(1’7%0) = (Pi7pi7ui7vi)7 1= 17' .- 74

for polytropic gas where ¢ denotes the ¢th quadrant.
The solution is a function of the similarity variables ¢ = x/t and n = y/t. In these
new variables (1) becomes

(3) ~EUe — Uy + F(U)e + G(U), = 0.

Introducing the so-called pseudovelocities & = u — £ and © = v — 1, the system (3) is
equivalent to

(4) F(U)e +GU), +S(TU)=0

where
. P . 2p
U=|pu], SWU)=|3pu

po 3pv
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for isentropic gas and

p 2p
~ | pu oy 3pu
U=14 | sO= s

pE 2(pE +p) + p(a® + 0?)

with
1 p  @+d?

G —1p 2

for polytropic gas. The system (4) can be expressed in quasilinear form as

E =

Ve +AV,+B=0
where
av| [ov v
and V is an arbitrary set of characteristic coordinates such that det(A) # 0. Then the
eigenvalues of A are

[ [ el

~ v + evVu? 4+ 02 — 2 E—
and Ay = =

u? — c? Ud F eVu? + 02 — 2

U
The initial value problem becomes a boundary value problem at infinity:

Ao =

=] <

E>0,n>0,1=
£<0,n>0,i=2
£<0,n<0,i=3
E>0,n<0,1=

(107 u, v)(f? 77) - (;Oi7 Uy, vi)

or for 52 + 772 — oo and

(p7 p,u, ’U)(f, 77) - (pu Pi, Uy, vi)

The self-similar solution in the (£, n)-plane is called pseudostationary flow. Far enough
away from the origin the general solution consists of four planar waves, each parallel to
one of the coordinate axes, separating the four constant initial states; also, the eigen-
values \y are guaranteed to be real. In general, a planar wave is formed by up to three
elementary waves corresponding to the eigenvalues A_, A\g and A;: a backward rarefac-
tion wave R or shock wave <§, a slip line (resp. a contact discontinuity) for isentropic
(resp. polytropic) gas' J, and a forward rarefaction wave R or shock wave S. In our
study of the interaction of the four planar waves we restrict ourselves to situations where
each planar wave is a single elementary wave.

The Riemann problem is classified according to the combination of the four elementary
planar waves used to define it. Thus we assume that the initial data (2) or (2) are chosen
so that only a rarefaction wave, shock wave or slip line connects two neighboring constant
states. Under this assumption it was proved in [14] that sixteen (resp. fifteen) different

Mn the following the use of the term slip line always denotes a slip line for isentropic gas but should
be read to include the possibility of a contact discontinuity for polytropic gas.
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configurations for the Riemann problem for isentropic (resp. polytropic) gas in two space
dimensions exist (symmetric or rotated configurations are systematically eliminated):

4R: Ro1 Ry Ry Ry Ro1 Rso Ry Ry

45: S1 552 G54 S S1 552 554 S

2R+28S: ]?21 ?3;]?34 <§41 (only for isentropic gas)
4.J: Jo1 J32 J31 Jan Jo1 J32 31 Jan

2J+2R: Ro1 J32 J34 R Ror T2 Jsa Rax J21 R Jsa Rax
2J4+25: So1 T2 T4 San St J32 T34 S a1 Jo1 S32 T34 San
2J+R+S: Ro1 T2 Jsa San Rt J32 T34 S Jo1 S32 J3sRaa

In this table and in the following, E;; with E € {J, <E, E), <§, ?} and i, 7 € {1, 2, 3, 4}

denotes an elementary wave E between the ith and jth quadrant.

3. COMPUTATIONAL RESULTS

In this section we present the numerical solutions to the configurations one by one.
For each of them we give the relations which have to be satisfied by the initial data and
the symmetry properties of the solution. The formulas for one-dimensional elementary
waves between two constant states, which follow from the simple wave and Rankine-
Hugoniot relations [3], are stated in [14]. We use the formulas and the abbreviations
introduced there; that is, for a given left and right state (denoted by the indices [ and
r) we define

2 r - Mr - Fr
&, = 2V ( b /p_>7 ¥2 (p1 = pr)(p1 = pr) (T > 0),
vy—1 pi pr P1pr
(v—1) ﬁ)

me= (e 5m) /(G

Furthermore, we describe the main features of the solution in the (£, n)-plane. It

and

always contains a subsonic area (M < 1) which is separated from the supersonic area
(M > 1) by the sonic curve (M = 1). Here the self-similar Mach number M is defined
by M? = (u? + ©?)/c?. In the supersonic domain the curves given by dn/dé = Ay are
called the Ay characteristic lines. As in [19] we outline the behavior of these lines inside
the rarefaction waves. The numerical solutions are illustrated by contour plots of the
density and self-similar Mach number in the (£, n)-plane. In the Mach number plots the
subsonic contour lines are dashed. For some configurations containing rarefaction waves
the Ay (_) characteristic lines inside the fan are shown as solid (dashed) lines. The initial
data listed in the figure captions, together with the relations given for the corresponding
configuration, are always sufficient to uniquely define the solution.
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I. Cases not involving slip line initial data.

Four rarefaction waves.
In this case the flow is isentropic.
- = = =
Configuration 1:  Ro1 R332 R34 R 41 (Figures 1, 3a)

We have
P1 > P2, P4 > P3
and
Uz — Uy :(1)217 U3—U4:(I)347 Uz = Uy, Uqg = Uz,
vy — v = Py, v3 — vy = P39, vy = V1, V3 = V4.

This gives the so-called compatibility condition ®5; = ®34. For polytropic gas we have
to include the following equations:

pi/pi = (pi/p))"" for (i,j) € {(2,1), (3,4), (3,2), (4,1)}

For the case of a vanishing pressure jump in the 7-direction the sonic curve consists
of a circle behind the rarefaction fan and a straight line called the sonic stem extending
horizontally from the circle to the front of the wave. Inside the rarefaction fan the A4
characteristic lines are parallel to the contour lines between the boundary and the sonic
stem. There the lines turn downwind to end at the sonic circle.

For the general case the sonic circles of E) 39 and E) 34 jointly form the subsonic area
behind the interaction of the waves. The rarefaction waves E) 51 and E) 41 meet at a point
P in the first quadrant. The A_ characteristic through P forms the lower boundary of
the undisturbed E) 21 wave. It crosses E) 21, continues in the second quadrant, turns
downward, crosses R 32, enters the third quadrant and ends at the sonic curve. Anal-
ogously, the A characteristic through P forms the left boundary of the undisturbed
E) 41 wave. It crosses E) 41, continues in the fourth quadrant, turns left, crosses E) 34 and
ends at the sonic curve in the third quadrant. The A_ characteristic lines inside E) 34
are parallel to the contour lines inside the fan and turn downwind to end at the sonic
curve. The equivalent is true for the Ay characteristic inside E) 32. The traces of the
sonic stems in E) 39 and E) 34 are easily found in the Mach number plot (Fig. 1).

For an extensive range of initial data we found that an intersection of the Ay char-
acteristic lines at the lower left side of the subsonic area does not occur, compare [19,

Figs. 4.2 and 4.3].
Configuration 2: f—i)21<f_€32<f_€34f—€>41 (Figures 2, 3b)

We have
P1 > p2, pa < p3
and
Uz — Uy :(1)217 U4—U3:(I)347 U3z = Uy, Uqg = Uy,
vy — v = Py, vy — v = P39, vy = vy, V3 = 4

so that the compatibility conditions are ®5; = —P34 and &, = —P35. For polytropic
gas we include the same additional equations as in Configuration 1.
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Thus we must have p; = p3 and p; = py implying uy — ugs = v1 — vy and uy — uz =
vy —v3z. Consequently the solutions are symmetric to n—§ = vy —uy and {+1 = uz +v3.
Therefore the description focuses on the region £ + 1 > ug + v3 of the domain.

The nonconvex subsonic area lies between the four rarefaction waves. On the segment
of the sonic curve facing the first quadrant a shock wave appears. The rarefaction waves
]?21 and ]?41 meet at a point P in the first quadrant. The A_ characteristic through P

forms the lower boundary of the undisturbed E) 21 wave. It crosses E) 21 and turns slightly
downward ending at the sonic curve. Analogously, the A4 characteristic through P forms
the left boundary of the undisturbed E) 41 wave. It crosses E) 41 and turns slightly left
ending at the sonic curve. The other AL characteristic lines inside the fans are almost
parallel to the corresponding characteristics mentioned above.

The overall structure of our solution corresponds reasonably well with the prediction
of [19, Fig. 4.5], although the computed shock on the sonic curve is not present in the
prediction. Also, for the calculation presented here as well as for many others performed
by us, the Ay characteristic structure never exhibited tangential incidence with the sonic
curve and the behavior depicted in [19, Fig. 4.6] was not observed.

Four shock waves.
Configuration 3: S92 532534541 (Figures 4, 5)

We have
p1 > D2, pa > p3
and
ug —uy = Wy, uz — uy = Way, U3z = U, Uy = Uy,
vy — v = Uy, v3 — vy = Us3g, vy = vy, V3 = 4.

This gives the compatibility conditions W9y = W34 and ¥y = P35, For polytropic gas
the following equations are added:

Pi/ﬂj = Hij for (l7]) € {(27 1)7 (374)7 (372)7 (47 1)}

It has been proved in [14] that the pressure inequalities required for this configuration
and the compatibility conditions listed above can only be satisfied if py = ps assuming
that 1 < v < 3 for polytropic gas. Therefore we have to choose py = ps (which implies
p1 = p2) and we get us—uy = vy—vy. Hence the solutions are symmetric to n—& = vy —uy
and we can concentrate on the region n — £ > vy — uy of the domain.

For the shock speeds o;; of the shocks <§2 ; the following inequalities hold:

091 < O34 and 041 < 039

By definition, they are equivalent to

vy — p_l(pl—p2)<u3_ P41 (P4 —p3)
p2 (p1 — p2) p3 (pa — ps3)
and
vy — P_I(Pl—P4)<v3_ P_2(P2—P3).
pa(p1 — pa) p3 (p2 — ps3)
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Using ug = us, v = vy and the compatibility conditions, both inequalities become
P1ps < p2p4 which is equivalent to p1ps < Papa4-

Considering the symmetry (for a more general argument not using the assumption py =
P4, see [19]) we set

p1 =17Tps and P2 = P4 = 5pP3.
Then we have to prove that

r < s? for r>s>1

under the compatibility condition
(r—s) <3_1/7 — 7“_1/7> =(s—1) <1 — 3_1/7>

for isentropic gas and

(r=s/lv+Dr+ (v =1s] = (s =) /[(v + D + (v = 1)s]

for polytropic gas. The functions
filr)y=1(r—s) <3_1/7 — 7“_1/7> —(s—=1) <1 — 3_1/7>

and

By ==y + 1)+ (v =Dsl = (s = D*[(v + )r + (v — 1)s]

have the following properties:

Fils) = —(s — 1) (1 - 3—1/7> <0
fi(32) =(s—1) <1 — 3_1/7> <3(7_1)/7 — 1> >0
flr) =72 By = D 4 (4 1)s] > 0

fr(s) = —2ys(s —1)* < 0
() =(y=Ds(s —1)’(s* =1) >0
f]')'(r) =2>0

Thus the root r > s of f; or f, which is also the solution of the corresponding compati-
bility condition satisfies r < s2.

The shock <§21 intersects the sonic circle of the constant state in the first quadrant
before it meets <§32 as expected from the shock speed inequalities. <§21 bends toward
the subsonic area. The intersection of <§21 and S 39 creates a three-shock configuration.
The Mach shock and its symmetric counterpart join and bound the subsonic area. A
slip line reaches from the branch point into the subsonic area toward the symmetry
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axis. Depending on the strength of the shocks we observe the different types of Mach
reflections: the simple Mach reflection where the area between the reflected shock and
the slip line is subsonic, the complex Mach reflection (Fig. 5b) where a part of that
area is supersonic, and the double Mach reflection (Figs. 4, 5a) with another three-
shock configuration. Thus far, we have not observed regular reflection and for all cases
of Mach reflection studied the slip line rolls up into a vortex rather than intersecting
the symmetry line at a self-similar stagnation point. The prediction of [19, Fig. 5.2] is
remarkably accurate. We note that the extra slip lines at the interfaces of the quadrants
in Figure 4 are numerical artifacts which have been studied earlier [1], [6] and are due
to a ‘starting error’.
Configuration 4: <§21 ?32 ?34 <§41 (Figure 6)
We have
P1 > P2, pa < P3

and the same equations and compatibility conditions as in Configuration 3.

Necessarily we must have p; = p3 and p2 = py (which implies p; = ps and py = p4)
yielding us — uy = vy — vy and uz — uy = v3 — vo. Consequently the solutions are
symmetric to n — ¢ = vy — uy and £ + 1 = ug + vz. Therefore the description focuses on
the region n — £ > vy — uy of the domain.

It is easy to conclude from the equations that o9 < 034 and 041 < 033. Accordingly
the shock <§21 interacts with ?32. This interaction creates a pair of three-shock con-
figurations. The subsonic area is bounded by the joining Mach shocks and the reflected
shocks so that it has an oval shape. As in Configuration 3 we observe the different types
of Mach reflections determined by the strength of the shocks. Illustrated here is a case
of simple Mach reflection.

Two rarefaction and two shock waves.
. e .
Configuration 6: Ry S32R34 541 (Figure 7)

We have
P1 > P2, P4 < P3
and
Uz — Uy :(1)217 U4—U3:(I)347 U3z = Uy, Uqg = Uz,
Vg — U1 :\11417 V3 — V2 :\11327 Vg = V1, V3 = V4,

so that the compatibility conditions are ®97 = — P34 and Uy = Uss.
For polytropic gas the equations

)1/7

p3/p2 =132, pa/p1 =Ta1, p2/p1 = (p2/1 and p3/ps = (P:’>/P4)1/7

must be added. As mentioned in Section 2 this configuration is impossible for this case
[14].

For isentropic gas the pressure inequalities required for this configuration and the
compatibility conditions listed above can only be satisfied if p3 = py and py = p2 [14].
Consequently we have to choose p3 = p; and py = py (which implies ps = p; and
p1 = p2). Thus the solutions are symmetric with respect to the point (£,1) = (u1,v1)
and we can focus the description on the upper part of the domain.
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The shock ?32 bends downward before it dissolves inside the rarefaction fan of E) 21.-
Thus, the predicted intersection of the shocks ?32 and <§41 (see [19, Fig. 6.4]) does
not occur in our computations; as a consequence, the calculated results do not contain
any slip surfaces in contrast to [19, Fig. 6.4]. The rarefaction wave R 34 turns right in
front of the shock ?32. The subsonic area is centered about the point (uq,vy). The A4

characteristic lines inside E) o1 are parallel to the contour lines inside the fan and end at
the sonic curve.

I1. Cases involving slip line initial data.

Now we discuss the eleven possible configurations involving slip lines. Besides the
relations for the initial data listed for each configuration we have to include additional
relations for polytropic gas. For a rarefaction or a shock wave between the :th and jth
quadrant (7, j € {1,...,4}) we add

1
o pifpy =T,

pi/pj = (pi/p;

respectively.
The predicted results of [19] are considerably more speculative for these more difficult
cases. Consequently, a feature by feature comparison with the computed solutions will

not be attempted.

Four slip lines.
>
Configuration A:  JoyJ32. 034 41 (motion in opposite directions; Figure 8)
We have p; = ps = p3 = py and

U1 = Uy < Uz = Uyq, V1 =g < V3 = Va.

Only for isentropic gas the solutions are symmetric with respect to the point (£,n) =
(%(ul + us), %(vl + v2)>. The slip lines .Jo1 and J35 meet the sonic circle of the constant
state in the second quadrant and continue as almost straight lines so that a quarter of
the sonic circle lies in between. The equivalent is true for the slip lines .J34 and Jy4; in
the fourth quadrant. Inside the subsonic area the slip lines bend and end in spirals.
Centered about the point (%(ul + us), %(vl + v2)> there is an oval part of the subsonic
area bounded by shocks. These shocks form simple Mach reflections near the slip lines
(the contact surfaces emanating from the triple points are only barely discernible here).

-
Configuration B:  Ja1J32.J34. 41 (clockwise motion; Figure 9)

We have p; = ps = p3 = py and
U1 = Uy > Uz = Uy, V1 = g < V3 = Va.

The solutions have the same symmetry properties as in Configuration A. The structure
of the solutions is one of a vortex turning clockwise. The slip lines spiral around its center
and the subsonic area has the shape of a four-bladed propeller.

Two neighboring slip lines.
Configuration C: ]?21 J32J34§>41 (Figure 10)
We have p; > ps = p3 = py and
ug —uyp = Poy, Uz = Ugqg = U7, vy — v = Py, U3 = V2 = V1.
The solutions are symmetric to n — { = vy — uy. In the region £ + 1 > uz + v3 the
solution resembles that of Configuration 2. The slip lines J35 and J34 meet the sonic

circle of the constant state in the third quadrant and continue as almost straight lines
so that a quarter of the sonic circle lies in between.
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. = = .
Configuration D:  Ro1.J32.J34 R 41 (Figure 11)
We have p; < ps = p3 = py and

Ul—u2:(1)217 Uz = Ug = Uq, 01—04:(1)417 V3 = V2 = V1.

The solutions are symmetric to 7 — { = v1 — uy. The slip lines J35 and J3; meet the
sonic circle of the constant state in the third quadrant and continue slightly bent so that

a quarter of the sonic circle lies in between. The A (_) characteristic lines inside <E41
(<E21) are almost parallel to the contour lines inside the fan and end at the sonic circle.
Outside the rarefaction waves the subsonic area is bounded by a circular shock wave.
Configuration E: <§21 J32J34<§41 (Figure 12)

We have p; > ps = p3 = py and

u2_u1:\1/217 Uz = Ug = Uq, 04—01:\1’417 V3 = V2 = V1.

The solutions are symmetric to n—§ = vy —uy. The shocks <§21 and <§41 intersect the
sonic circle of the constant state in the first quadrant and end at the slip lines. Between
the slip lines J35 and Js4, which bend inside the subsonic area and end in spirals, the
subsonic area is bounded by an oval shock wave. This shock is connected to the shocks
— —

So1 and S 41 by two simple Mach reflections.
Configuration F: ?21 J39J34 §41 (Figure 13)

We have p; < p2 = p3 = ps and the same equations as in Configuration E.

The solutions are symmetric to 7 — { = v1 — uy. The slip lines J35 and J3; meet the
sonic circle of the constant state in the third quadrant and continue as almost straight
lines so that a quarter of the sonic circle lies in between. Inside the subsonic area the
slip lines bend and end in spirals. The shocks ?21 and §41 interact like the pair of
shocks in Configuration 4.

Configuration G: f—i)21 J39 J34<§41 (Figure 14)

We have p; > ps = p3 = ps and

u2—u1:<I>21, U3z = Uqg = Uq, 04—01:\1’417 V3 = V2 = V1.

The slip lines J32 and Js34 bend after entering the subsonic area and end in a spiral.
The rarefaction wave E) 21 turns backward in front of the shock <§41 which ends at the
slip line J34. The A4 characteristic lines inside E) 21 are almost parallel to the contour
lines inside the fan and end at the sonic circle.

Configuration H: <]?21 J39.J34 §41 (Figure 15)

We have p; < ps = p3 = ps and

Ul—u2:(1)217 U3z = Uqg = Uy, 04—01:\1’417 V3 = V2 = V1.

The slip lines J32 and Js3; bend after entering the subsonic area and end in a spiral.
The shock §41 bends downward before it dissolves inside the rarefaction fan of <]?21
which turns right after crossing the slip line J35. The A_ characteristic lines inside <f_€21
are almost parallel to the contour lines inside the fan and end at the sonic circle.
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Two non-neighboring slip lines.
= —
Configuration I Jy1 R32J34 R 41 (Figure 16)
We have py = py > p3 = py and

Ul = Uy = Uz = Uy, vy — v = Py, v3 — v = P39.

The slip lines Jo; and .J34 which bend and join inside the subsonic area divide the
solution into a left and right part. In general the rarefaction waves E) 39 and E) 41 move
with different velocities so that they are shifted against each other. Below these waves
the sonic curve is almost circular. Depending on the vertical velocities weak shocks are
formed below the raref(a_ction waves.

Configuration J:  Jo1 S32.J34 S 41 (Figure 17)

We have p; = ps > p3 = ps and

Ul = U = U3 = Uy, vy — v = Wy, v3 — v = Us3q.

The slip lines J31 and J34 separate the solution into a left and right section. Typically,
the shocks <§32 and <§41 are shifted against each other. Above these shocks the sonic
curve is nearly circular. <§32 and <§41 are connected by two simple Mach reflections.
Their slip lines as well as .JJo; and .J34 meet in a vortex inside the subsonic area.
Configuration K:  Joy <§32J34E>41 (Figure 18)

We have p; = ps > p3 = ps and

Ul = Uy = U3 = Uy, vy — v = Py, vy — vy = Us3q.

The slip lines J5; and J34 which bisect the solution into a left and right portion join in

a vortex inside the subsonic area. The shock <§32 ends at J34. Below R4 the subsonic
area is partly bounded by a shock wave.

4. CONCLUSIONS

The computational results presented here demonstrate the complex phenomenology
inherent in the 2D gas dynamic Riemann problem, despite the limitation that each of
the four jumps consists of a single elementary wave. The predictions of [19] are close to
our results in most cases where this is reasonable to expect. One consistent discrepancy
is that predicted shock waves do not exist or that we found unpredicted shock waves
and these changes can have further consequences for the overall solution. However, the
present work has led to the discovery of many new flowfield patterns; this is especially
so for cases involving slip line initial data. For such cases we remark that some of the
other cases appear as part of the flowfield pattern, as might be expected.

An important result is that many of the familiar oblique shock wave reflection
(OSWR) flowfields appear here. An interesting question is whether or not OSWR is
a subset of the 2D Riemann problem, i.e., given a wedge angle and shock wave Mach
number [5], can Riemann problem initial data be found so as to construct the given
OSWR case? Note that this is nontrivial only because of the restricted set of initial
data allowed.

We note here that if the four initial states were separated by two lines not necessarily
perpendicular, the number of allowable distinct initial configurations would increase



to

2D GAS DYNAMIC RIEMANN PROBLEM 13

77 (resp. 75) for isentropic (resp. polytropic) gas. Given the many other possible

generalizations, including a change of equation of state, it is easy to see that the 2D
Riemann problem contains many possibilities.

It would appear that this is a very negative result regarding the direct use of the 2D

Riemann problem in constructing an unsplit RCM (for analytic or numerical purposes)

or
su

finite difference schemes. However, the set of points in physical space-time involving
ch complex interactions is of high codimension and it still might be hoped that such

schemes are possible. Whether or not the present calculations will prove useful in this

endeavor, one can certainly expect that the results here can be used as test or reference
cases in the code development process.
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