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Abstract

We consider the small-area estimation problem in forest inventories with two-phase sam-

pling schemes. We propose an improvement of the synthetic estimator, when the true

mean of the auxiliary variables over the small-area is unknown and must be estimated,

likewise for the residual corrected small-area estimator. We derive the asymptotic design-

based variances of these new estimators, the pseudo-synthetic and pseudo small-

area estimators, by incorporating also the design-based variance of the regression co-

efficients. We then propose a very simple mathematical device that transforms pseudo

small-area estimators into pseudo-synthetic estimators, which is very convenient to derive

asymptotic variances. The results are extended to cluster and two-stage sampling at the

plot level. To illustrate the theory we consider the case of post-stratification and a case

study.

Résumé

Nous considèrons le problème de l’estimation pour petits domaines dans le contexte

d’inventaires forestiers en deux phases. Nous proposons une amélioration simple de

l’estimateur synthétique quand la moyenne des variables auxiliaires dans le petit do-

maine doit être estimée en premier lieu , de même pour l’estimateur pour petit domain

basé sur les résidus. Nous calculons la variance sous le plan de sondage de ces nouveaux

estimateurs en tenant compte de la variance des coefficients de régression. De plus, nous

proposons un artifice mathématique qui permet de transformer un estimateur pour petit

domaine en un estimateur synthétique, ce qui simplifie le calcul de la variance asympto-

tique. L’extension aux sondages par satellites et deux degrés au niveau de la placette est

aussi traitée. La théorie est illustrée par la post-stratification et par une étude de cas.



1 Introduction

There is an extensive literature on the problem of small area estimation (or small domain

estimation in general sampling). In this paper we shall investigate the properties of some

estimators in the model-assisted framework, in which prediction models are used to

improve the efficiency but are not assumed to be correct as in the model-dependent

approach. The validity of the statistical procedures is ensured by the randomization

principle: i.e. we are in the design-based inference framework, which has a definite

advantage in official statistics. The reader is referred to (Koehl et al. (2006), section 3.8)

for a good review of small-area estimation in forest inventory that presents alternative

techniques, in particular Bayesian. Let us now define the sampling scheme.

The first phase draws a large sample s1 of n1 points that are independently and

uniformly distributed within the forest area F . At each point x ∈ s1 auxiliary informa-

tion is collected, very often coding information of qualitative nature (e.g. following the

interpretation of aerial photographs) or quantitative (e.g. timber volume estimates based

on LIDAR measurements). We shall assume that the auxiliary information at point x is

described by the column vector Z(x) ∈ <p.

The second phase draws a small sample s2 ⊂ s1 of n2 points from s1 according

to equal probability sampling without replacement. In the forested area F we

consider a well-defined population P of N trees with response variable Yi, i = 1, 2 . . .,

e.g. the timber volume. The objective is to estimate the overall spatial mean

Ȳ = 1
λ(F )

∑N
i=1 Yi, where λ(·) denotes the surface area (usually in ha) and the mean

over a small area G ⊂ F , defined as

[1] ȲG =
1

λ(G)

N∑
i=1

IG(i)Yi =:
1

λ(G)

∑
i∈G

Yi

where the indicator variable IG(i) is 1 if the i-th tree lies in G, and 0 otherwise.
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For each point x ∈ s2 trees are drawn from the population P with probabilities πi, for

instance with concentric circles or angle count techniques. The set of trees selected at

point x is denoted by s2(x). From each of the selected trees i ∈ s2(x) one determines Yi.

The indicator variable Ii is defined as

[2] Ii(x) =


1 if i ∈ s2(x)

0 if i 6∈ s2(x)

At each point x ∈ s2 the terrestrial inventory provides the local density Y (x)

[3] Y (x) =
1

λ(F )

N∑
i=1

Ii(x)Yi
πi

=
1

λ(F )

∑
i∈s2(x)

Yi
πi

The term 1
λ(F )πi

is the tree extrapolation factor fi with dimension ha−1. One must include

possible boundary adjustments, λ(F )πi = λ(F ∩Ki), where Ki is the inclusion circle of

the i-th tree. In the infinite population or Monte Carlo approach one samples the function

Y (x) (Mandallaz (2008)) for which the following important relation holds:

[4] Ex(Y (x)) =
1

λ(F )

∫
F

Y (x)dx =
1

λ(F )

N∑
i=1

Yi = Ȳ

Where Ex denotes the expectation with respect to a random point x uniformly distributed

in F . This establishes the link between the infinite population (continuum) {x ∈ F |

Y (x)} and the finite population of trees {i = 1, 2 . . . N | Yi}.

Usually boundary adjustments are performed only with respect to F and not with

respect to the small area G. However, we shall assume that we also have

[5] ȲG =
1

λ(G)

∫
G

Y (x)dx
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The afore mentioned randomization principle assume that we have uniformly indepen-

dently distributed points or clusters in the forested area F , whereas in practice system-

atic grids are used. There is reasonable theoretical and empirical evidence that treating

systematic grids as simple random samples is acceptable for point estimation and also for

variance estimation (which will be in most instances slightly overestimated) for extensive

forest inventories. From a mathematical point of view the only correct, and also most effi-

cient, procedure, is the geostatistical Kriging technique (see Mandallaz (2008), chapter 7

for a brief introduction and further references), which, however, is difficult to use and not

uncontroversial in some aspects (e.g. choice of spatial correlation models and stationarity

assumptions).

2 The model

We consider the linear model (the upper script on vector or matrices denotes thereafter

the transposition operator)

[6] Y (x) = ZZZt(x)βββ +R(x)

In the model-dependent approach the point x is fixed and R(x) is a random vari-

able with zero mean and a given covariance structure. In the design-based approach

Y (x),ZZZ(x), R(x) are random variables because x is random. The true regression coeffi-

cient βββ is by definition the least squares estimate minimizing

∫
F

R2(x)dx =

∫
F

(Y (x)−ZZZt(x)βββ)2dx
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It satisfies the normal equation

[7]
(∫

F

ZZZ(x)ZZZt(x)dx
)
βββ =

∫
F

Y (x)ZZZ(x)dx

and the orthogonality relationship

[8]

∫
F

R(x)ZZZ(x)dx = 000

We shall assume that ZZZ(x) contains the intercept term 1, or, more generally, that the

intercept can be expressed as a linear combination of the component of ZZZ(x), which then

insures that the mean residual is zero, i.e.

∫
F

R(x)dx = 0

The important case of stratification amounts to taking ZZZt(x) = (IF1(x), IF2(x), . . . IFL
(x)),

where F = ∪Lk=1Fk and IFk
(x) is the zero-one indicator variable of the k-th stratum Fk.

We emphasize the fact that in the design-based model-assisted approach the model [6] is

not viewed as an adequate description of the complex stochastic process generating the

Y (x), but, more pragmatically, simply as a tool to reduce the variance of estimators of

Ȳ , ȲG. Of course, ideally, the model should capture qualitatively the main features of the

underlying natural phenomenon.

To simplify the notation let us set AAA = ExZZZ(x)ZZZt(x), UUU(x) = Y (x)ZZZ(x). The normal

equation then reads

AAAβββ = ExUUU(x) := UUU

Of course, only a sample-based normal equation is available, i.e.

AAAs2β̂ββs2 =
1

n2

∑
x∈s2

UUU(x) = UUU s2

4



where we have set

AAAs2 =
1

n2

∑
x∈s2

ZZZ(x)ZZZt(x)

and

UUU s2 =
1

n2

∑
x∈s2

Y (x)ZZZ(x)

The theoretical and empirical regression vector parameters are

βββ = AAA−1UUU

β̂ββs2 = AAA−1
s2
UUU s2[9]

β̂ββs2 is asymptotically design-unbiased for βββ. To calculate the design-based variance-

covariance matrix of the regression coefficients we need

E(β̂ββs2 − βββ)(β̂ββs2 − βββ)t

we shall use the Taylor linearization technique. Let us consider the function f(·, ·) of an

arbitrary (p, p) matrix AAA and an arbitrary (p, 1) vector UUU defined by f(AAA,UUU) = AAA−1UUU .

We can write

β̂ββs2 − βββ = f(AAAs2 ,UUU s2)− f(AAA,UUU)

which can be viewed as the differential of the function f() at the point PPP 0 = (AAA,UUU), which

is the expected value of the random point PPP s2 = (AAAs2 ,UUU s2). The distances between the

fixed and the random point are of the order n
− 1

2
2 in design-probability (by the law of large

numbers for UUU s2 and AAAs2 and the continuity of the inverse operation). The differential of

f(·, ·) at PPP 0 is, by the derivation rule for product

df = d(AAA−1)UUU +AAA−1dUUU
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Differentiating the identity AAA−1AAA = III one gets

d(AAA−1) = −AAA−1(dAAA)AAA−1

and the following first-order Taylor expansion:

β̂ββs2 − βββ ≈ −AAA
−1(AAAs2 −AAA)AAA−1UUU +AAA−1(UUU s2 −UUU)

Expanding this expression and substituting AAA−1UUU = βββ we obtain the Taylor linearization

β̂ββs2 − βββ ≈ AAA
−1
(
−AAAs2βββ +

1

n2

∑
x∈s2

UUU(x)
)

which is, by definition, equal to

AAA−1
(
− 1

n2

∑
x∈s2

ZZZ(x)ZZZ(x)tβββ +
1

n2

∑
x∈s2

Y (x)ZZZ(x)
)

and consequently also to

AAA−1
( 1

n2

∑
x∈s2

(
Y (x)−ZZZ(x)tβββ

)
ZZZ(x)

)
= AAA−1

( 1

n2

∑
x∈s2

R(x)ZZZ(x)
)

Thus, we finally arrive at

[10] β̂ββs2 − βββ ≈ AAA
−1
( 1

n2

∑
x∈s2

R(x)ZZZ(x)
)

Using [8] and the independence of the R(x)ZZZ(x) one obtains the design-based variance-

covariance matrix of β̂ββs2

[11] ΣΣΣβ̂ββs2

≈ AAA−1
( 1

n2

ExR2(x)ZZZ(x)ZZZ(x)t
)
AAA−1
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which can be estimated by replacing the theoretical residual R(x) with their empirical

counterparts R̂(x) = Y (x)− Ŷ (x), with Ŷ (x) = ZZZt(x)β̂ββs2 , and AAA with AAAs2 . We then get

the estimated design-based variance-covariance matrix as

[12] Σ̂ΣΣβ̂ββs2

:= AAA−1
s2

( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZ(x)t
)
AAA−1
s2

Interestingly this is precisely the robust estimate of the model-dependent covari-

ance matrix given in Gregoire and Dyer (1989) (see also Mandallaz (2008) p. 107).

Setting σ̂2 =
∑

x∈s2
R̂2(x)

n2
we get Σ̂ΣΣβ̂ββs2

≈ σ̂2

n2
AAA−1
s2

whereas the model-dependent ordinary least

squares theory gives the unbiased estimate of the covariance matrix as ( n2

n2−p σ̂
2) 1
n2
AAA−1
s2

.

The empirical residuals satisfy the sample orthogonality relation

[13]
1

n2

∑
x∈s2

R̂(x)ZZZ(x) = 000

Theoretically one may use the exact matrix AAA if it is available or its estimate AAAs1 =

1
n1

∑
x∈s1 ZZZ(x)ZZZt(x) based on the large sample. However, the resulting point estimates

are not always intuitively convincing and not optimal in the model-dependent framework.

Beside, they are not available from the usual statistical software packages. For these

reasons we shall only work with AAAs2 .
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3 The estimators

3.1 External models

If the prediction model is external, i.e. not fitted with the inventory data at hand, the

regression estimate is defined as

[14] Ŷreg =
1

n1

∑
x∈s1

Ŷ0(x) +
1

n2

∑
x∈s2

R0(x)

with the predictions Ŷ0(x) = ZZZt(x)β0β0β0 and the residuals R0(x) = Y (x)− Ŷ0(x), where β0β0β0 is

the given external regression coefficient, ideally obtained from another similar inventory.

Note that in this case the mean residual will not necessarily be zero. To calculate the

variance one uses the decomposition

[15] V1,2(Ŷreg) = V1E2|1(Ŷreg) + E1V2|1(Ŷreg)

to obtain

[16] V(Ŷreg) =
1

n1

V(Y (x)) + (1− n2

n1

)
1

n2

V(R0(x))

which can be unbiasedly estimated with

[17] V̂(Ŷreg) =
1

n1

1

n2 − 1

∑
x∈s2

(Y (x)− Ȳ2)2 + (1− n2

n1

)
1

n2

1

n2 − 1

∑
x∈s2

(R0(x)− R̄0,2)2

where Ȳ2 = 1
n2

∑
x∈s2 Y (x) and R̄0,2 = 1

n2

∑
x∈s2 R0(x).

The estimation for any small area G ⊂ F is straightforward, indeed one simply restricts

the samples of n1 and n2 points in F to the n1,G and n2,G points in G and apply the above

formulae to obtain an unbiased estimate of the conditional variance (i.e. given n1,G and
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n2,G, which are realizations random variables because in our set-up only n1 and n2 are

fixed).

3.2 Internal models

In most applications the model has to be fitted with the data provided by the current

inventory. In this case, the model is said to be internal. In very large samples one

can treat an internal model as external and apply again the formulae given above, which

obviously neglects the error in the regression coefficients. This is essentially the frame-

work presented in (Mandallaz (2008), chapter 5 and section 6.3). We shall show in the

present paper how one can take the design-based variance of the regression coefficients

into account, albeit still in large samples, and incorporate the mean residual directly in

the model.

The model-dependent estimator for the small area G is called the synthetic estimator

and is given by

ŶG,synth =
1

λ(G)

∫
G

Ŷs2(x)dx[18]

=
1

λ(G)

∫
G

ZZZt(x)β̂ββs2dx = Z̄ZZ
t
Gβ̂ββs2

where Z̄ZZG = 1
λ(G)

∫
G
ZZZ(x)dx is the true mean of the auxiliary vector over the small area

G, which is available only if the first phase is exhaustive. ŶG,synt is unbiased under the

model, but not optimal as it does not the take the model-dependent spatial correlation of

the Y (x) into account. Let us emphasize the fact that the model, i.e. β̂ββs2 , is fitted with

the full data set and not only with {Y (x),ZZZ(x) | x ∈ G}.

In this paper we shall investigate the properties of ŶG,synt in the design-based

inference framework.
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First, let us note that ŶG,synt is a design-based consistent sample copy of

1

λ(G)

∫
G

Ŷ (x)dx =
1

λ(G)

∫
G

(Y (x)−R(x))dx = ȲG −
1

λ(G)

∫
G

R(x)dx

Consequently, the synthetic estimator ŶG,synt has a design-based asymptotic bias equal

to − 1
λ(G)

∫
G
R(x), which is not zero unless G = F (we have zero mean residual over the

entire domain, see [8]) or, which is unlikely, zero mean residual over the small area of

interest. Using [18] and [12] the estimated design-based variance of the synthetic

estimator is

[19] V̂(ŶG,synth) = Z̄ZZ
t
GΣ̂ΣΣβ̂ββs2

Z̄ZZG

We define the g-weights as

[20] gG(x) = Z̄ZZ
t
GAAA
−1
s2
ZZZ(x)

It is easily checked that one can rewrite the point estimate and its estimated variance as

ŶG,synth =
1

n2

∑
x∈s2

gG(x)Y (x)

V̂(ŶG,synth) =
1

n2
2

∑
x∈s2

g2
G(x)R̂2(x)[21]

where the R̂(x) = Y (x) −ZZZt(x)β̂ββs2 are the empirical residuals. In the above the special

case G = F is possible. The g-weights enjoy several attractive statistical properties (see

Särndal et al. (2003) for the aspects in general sampling theory and Mandallaz (2008) for

their Monte-Carlo counterparts in forest inventory).

To compensate for the bias due to the non vanishing mean residual over G one considers
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the small-area estimator (Mandallaz (2008) p.120)

[22] ŶG,small = ŶG,synt +
1

n2,G

∑
x∈s2,G

R̂(x)

where s2,G = s2 ∩ G and n2,G =
∑

x∈s2 IG(x) is the number of points of s2 falling within

G. It can be shown (Mandallaz (2008)) that ŶG,small is asymptotically design-unbiased

with estimated design-based variance given by

[23] V̂(ŶG,small) =
1

n2,G

1

n2,G − 1

∑
x∈s2,G

(R̂(x)− ¯̂
R2,G)2

where

¯̂
R2,G =

1

n2,G

∑
x∈s2,G

R̂(x)

is the estimated mean residual over a small area. The above variance estimate neglects

the variance of β̂ββs2 and is therefore valid only if n2 is very large and n2 >> n2,G. To have

better insight we use the expansion [10] to obtain

[24] ŶG,small − ȲG = Z̄ZZ
t
GAAA
−1
( 1

n2

∑
x∈s2

R(x)ZZZ(x)
)

+
1

n2,G

∑
x∈s2,G

R(x)− R̄G

which leads to the variance

[25] E(ŶG,small− ȲG)2 = Z̄ZZ
t
GAAA
−1
( 1

n2

ER2(x)ZZZ(x)ZZZ(x)t
)
AAA−1Z̄ZZG+V

( 1

n2,G

∑
x∈s2,G

R(x)
)

+C

where the cross-product term C is given by

2Z̄ZZ
t
GAAA
−1E

(
(

1

n2

∑
x∈s2

R(x)ZZZ(x))(
1

n2,G

∑
x∈s2,G

R(x)− R̄G)
)

11



Both terms of the product tend to zero at rate (n
− 1

2
2 ), which unfortunately is of the same

order as the first two terms. However, using the fact that the R(x), ZZZ(x) are independent

of R(y), ZZZ(y) for x 6= y we obtain after tedious but simple calculations

C =
1

n2

Z̄ZZ
t
GAAA
−1
(
Ex∈GR2(x)ZZZ(x)− R̄GEx∈GR(x)ZZZ(x)

)

which we can reasonably assume to be negligible. The above arguments suggest there-

fore the following estimate of the design-based variance of the small-area estimator with

exhaustive first phase

V̂(ŶG,small) = Z̄ZZ
t
GAAA
−1
s2

( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZ(x)t
)
AAA−1
s2
Z̄ZZG[26]

+
1

n2,G

1

n2,G − 1

∑
x∈s2,G

(R̂(x)− ¯̂
R2,G)2

Comparing with [17] (after restricting the samples to G) we see that treating an internal

model as an external model (i.e. ignoring the variability of β̂ββs2) will underestimate

the variance of the small area estimate. The first term in [26] reflects the uncertainty

in the regression coefficients.

If the first-phase is non-exhaustive, i.e. n1 6=∞, then one can replace the true mean Z̄ZZG

by its estimate in the large sample

ˆ̄ZZZ1,G =
1

n1,G

∑
x∈s1,G

ZZZ(x)

where s1,G is the set s1 ∩ G of the n1,G =
∑

x∈s1 Ig(x) points of the large sample falling

into the small area G. This gives the pseudo-synthetic estimator

[27] ŶG,psynth = ˆ̄ZZZt
1,Gβ̂ββs2 =

1

n1,G

∑
x∈s1,G

Ŷ (x)
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which is clearly asymptotically equivalent to ŶG,synt as n1 →∞ and its design-based ex-

pected value tends to Z̄ZZ
t
Gβββ. To calculate the asymptotic variance we use the decomposition

(actually the first order Taylor expansion)

∆ = ˆ̄ZZZt
1,Gβ̂ββs2 − Z̄ZZ

t
Gβββ = ˆ̄ZZZt

1,G(β̂ββs2 − βββ) + ( ˆ̄ZZZt
1,G − Z̄ZZG)tβββ

Asymptotically we get

E∆2 = Z̄ZZ
t
GΣΣΣβ̂ββs2

Z̄ZZG + βββtΣΣΣ ˆ̄ZZZ1,G
βββ + 2E

(
(β̂ββs2 − βββ)t ˆ̄ZZZ1,G( ˆ̄ZZZ1,G − Z̄ZZG)tβββ

)

where ΣΣΣ ˆ̄ZZZ1,G
is the covariance matrix of ˆ̄ZZZ1,G. The first two terms are of order n−1

2 and

n−1
1 respectively. For the third term we note that E( ˆ̄ZZZ1,G( ˆ̄ZZZ1,G − Z̄ZZG)t) is equal to the

covariance matrix ΣΣΣ ˆ̄ZZZ1,G
and therefore of order n−1

1 and that β̂ββs2 − βββ is of order n
− 1

2
2 .

The last term is therefore of smaller order than the first two which leads to the following

asymptotic design-based estimate of variance

[28] V̂(ŶG,psynth) := ˆ̄ZZZt
1,GΣ̂ΣΣβ̂ββs2

ˆ̄ZZZ1,G + β̂ββ
t

s2
Σ̂ ˆ̄ZZZ1,G

β̂ββs2

The variance-covariance matrix of the auxiliary vector ˆ̄ZZZG is estimated by

[29] Σ̂ ˆ̄ZZZ1,G
=

1

n1,G(n1,G − 1)

∑
x∈s1,G

(ZZZ(x)− ˆ̄ZZZ1,G)(ZZZ(x)− ˆ̄ZZZ1,G)t

Usually ŶG,psynt will have a small variance but at the cost of a potential bias. We can

rewrite [27] and [28] with the g-weights

gG,1(x) = ˆ̄ZZZt
1,GAAA

−1
s2
ZZZ(x)

ŶG,psynth =
1

n2

∑
x∈s2

gG,1(x)Y (x)[30]
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and after some algebra we get

V̂(ŶG,psynth) =
1

n2
2

∑
x∈s2

g2
G,1(x)R̂2(x) + β̂ββ

t

s2
Σ̂ ˆ̄ZZZ1,G

β̂ββs2

=
1

n2
2

∑
x∈s2

g2
G,1(x)R̂2(x) +

1

n1,G(n1,G − 1)

∑
x∈s1,G

(Ŷ (x)− ¯̂
Y1,G)2[31]

where
¯̂
Y1,G = 1

n1,G

∑
x∈s1,G Ŷ (x). The second term in the last equation is the variance of

the predictions over G.

The pseudo small-area estimator

[32] ŶG,psmall = ŶG,psynth +
1

n2,G

∑
x∈s2,G

R̂(x)

is asymptotically design-unbiased and intuitively its variance can be expected to be well

approximated by

[33] V̂(ŶG,psmall) = ˆ̄ZZZt
1,GΣ̂ΣΣβ̂ββs2

ˆ̄ZZZ1,G + β̂ββ
t

s2
Σ̂ ˆ̄ZZZ1,G

β̂ββs2 +
1

n2,G

1

n2,G − 1

∑
x∈s2,G

(R̂(x)− ¯̂
R2,G)2

A tedious formal proof can be given by using [15], [25] and [28].

Using the same arguments as in [31] we also have

V̂(ŶG,psmall) =
1

n2
2

∑
x∈s2

g2
G,1(x)R̂2(x) +

1

n1,G(n1,G − 1)

∑
x∈s1,G

(Ŷ (x)− ¯̂
Y1,G)2

+
1

n2,G

1

n2,G − 1

∑
x∈s2,G

(R̂(x)− ¯̂
R2,G)2[34]
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This should be compared with the external version [17]

V̂(ŶG,psmall) =
1

n1,G

1

n2,G − 1

∑
x∈s2,G

(Y (x)− Ȳ2,G)2

+ (1− n2,G

n1,G

)
1

n2,G

1

n2,G − 1

∑
x∈s2,G

(R̂(x)− ¯̂
R2,G)2[35]

For very large n1,G is is clear that the external version will underestimate the variance as

it neglects the first term in [34], which albeit is also small for large n2.

The special case G = F deserves special attention: because of the zero mean residual we

have ŶF,psmall = ŶF,psynt = Ŷreg and [28,34] lead to the estimated variance

[36] V̂(Ŷreg) =
1

n2
2

∑
x∈s2

g2
F,1(x)R̂2(x) +

1

n1(n1 − 1)

∑
x∈s1

(Ŷ (x)− ¯̂
Y1)2

with
¯̂
Y1 = 1

n1

∑
x∈s1 Ŷ (x). The external version [35] gives

[37] V̂(Ŷreg) =
1

n1

1

n2 − 1

∑
x∈s2

(Y (x)− Ȳ2)2 + (1− n2

n1

)
1

n2

1

n2 − 1

∑
x∈s2

R̂2(x)

Writing Y (x) = Ŷ (x) + R̂(x) an using [13] we can rewrite [37] as

[38] V̂(Ŷreg) =
1

n1

1

n2 − 1

∑
x∈s2

(Ŷ (x)− ¯̂
Y2)2 +

1

n2

1

n2 − 1

∑
x∈s2

R̂2(x)

For G = F the g2
F,s1

(x) are asymptotically equal to 1 (see Mandallaz (2008) p. 113 and

the properties of the g-weights discussed below) so that both versions [36] and [38] are

asymptotically equivalent. However, version [36] estimates the variance of the predictions

in the large sample, which is better, and it rests upon the g-weights for the residual part,

which it is known to have better conditional properties (see Mandallaz (2008) p. 84 and

section 6.1 for the important special case of stratification).
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In the next section we present a simple reformulation of the problem that allows one to

transform small-area estimators into synthetic estimators, which offers a great mathemat-

ical advantage.

3.3 Alternative estimators in extended model

The main difficulty stems from the fact that
∫
G
R(x)dx 6= 0. If we now extend the

auxiliary information vector ZZZ(x) to ZZZ t(x) = (ZZZt(x), IG(x)) ∈ R(p+1), the corresponding

model reads

[39] Y (x) = ZZZ t(x)θθθ +R(x)

which leads to the normal equation for the extended parameter vector θθθ ∈ R(p+1)

(∫
F

ZZZ(x)ZZZ t(x)dx
)
θθθ =:AAAθθθ =

∫
F

Y (x)ZZZ(x)dx

and the orthogonality relationship

∫
F

R(x)ZZZ(x)dx = 000

Since IF (x) ≡ 1 is the intercept term (or linear combination of the components of ZZZ(x))

and ZZZ(x) contains IG(x) we have the two zero mean residual properties

∫
F

R(x)dx =

∫
G

R(x)dx = 0

Hence, by including the 0, 1 indicator variable of the small area G into the model, we

enforce zero mean residual over F and G. Note also that G must be a proper subset of

F , otherwise AAA and AAAs2 are singular. In practice near-singularity could cause numerical
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problems, so that the small area G must indeed be small with respect to F . Simple

calculations yield the following block structure for AAAs2 = 1
n2

∑
x∈s2ZZZ(x)ZZZ t(x)

[40] AAAs2 =

 AAAs2 p̂2,G
ˆ̄ZZZ2,G

p̂2,G
ˆ̄ZZZt

2,G p̂2,G


where we have set p̂2,G =

n2,G

n2
, ˆ̄ZZZ2,G = 1

n2,G

∑
x∈s2,G ZZZ(x). Using formulae for the inversion

of partitioned matrices (see e.g. Searle (1971) p. 27 and Tian and Takane (2009) for

useful generalizations) one obtains

[41] AAA−1
s2

=

 AAA−1
s2

000

000 000

+
1

γ

 p̂2
2,GAAA

−1
s2

ˆ̄ZZZ2,G
ˆ̄ZZZt

2,GAAA
−1
s2
−p̂2,GAAA

−1
s2

ˆ̄ZZZ2,G

−p̂2,G
ˆ̄ZZZt

2,GAAA
−1
s2

1


with γ = p̂2,G − p̂2

2,G
ˆ̄ZZZt

2,GAAA
−1
s2

ˆ̄ZZZ2,G.

We need

1

n2

∑
x∈s2

Y (x)ZZZ(x) = (
1

n2

∑
x∈s2

Y (x)ZZZt(x), p̂2,G
ˆ̄YG)t = ((AAA−1

s2
β̂ββs2)

t, p̂2,G
ˆ̄YG)t

where ˆ̄YG = 1
n2,G

∑
x∈s2,G Y (x). This leads after some algebra to the following relationship

between the regressions coefficients

[42] θ̂θθs2 =

 β̂ββs2

0

+
1

γ

 −p̂2
2,G( ˆ̄YG − ˆ̄ZZZt

2,Gβ̂ββs2)AAA
−1
s2

ˆ̄ZZZ2,G

p̂2,G( ˆ̄YG − ˆ̄ZZZt
2,Gβ̂ββs2)


Note that the term

ˆ̄YG − ˆ̄ZZZt
2,Gβ̂ββs2 =

1

n2,G

∑
x∈s2,G

(Y (x)−ZZZt(x)β̂ββs2)

17



is precisely the mean residual over the small area. Hence, the last component of θ̂θθs2 is

essentially the residual term. We see that the original regression coefficient β̂ββs2 is corrected

in the extended model by the residual term and that the impact of this correction tends

to zero as the small area gets smaller with respect to F , a very intuitive result indeed.

One obtains a very similar but not identical result by least squares minimization under

the constraint of zero mean residual over the small area (see Searle (1971), pp 112-113).

In perfect analogy with [12] the estimated covariance matrix is given by

[43] Σ̂ΣΣθ̂θθs2
=AAA−1

s2

( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZ(x)t
)
AAA−1
s2

where we have set R̂(x) = Y (x) −ZZZ t(x)θ̂θθs2 . If the first phase is exhaustive we calculate

the synthetic estimator in the extended model

[44] ˆ̃YG,synth =
1

λ(G)

∫
G

ZZZ t(x)θ̂θθs2dx = Z̄ZZ tGθ̂θθs2

With Z̄ZZ tG = (Z̄ZZ
t
G, 1) and some algebra one finally obtains

[45] ˆ̃YG,synth = Z̄ZZ
t
Gβ̂ββs2 +

α

n2,G

∑
x∈s2,G

(
Y (x)−ZZZt(x)β̂ββs2

)

where we have set

α =
p̂2,G − p̂2

2,GZ̄ZZ
t
GAAA
−1
s2

ˆ̄ZZZ2,G

p̂2,G − p̂2
2,G

ˆ̄ZZZt
2,GAAA

−1
s2

ˆ̄ZZZ2,G

Clearly ˆ̃YG,synth and ŶG,small are asymptotically equivalent because α tends to 1 in large

samples. Note that α = 1 if the sample is exactly balanced, i.e. if ˆ̄ZZZ2,G = Z̄ZZG.

By using [19] and replacing ZZZ(x) with ZZZ(x) we obtain at once the asymptotic variance

[46] V̂( ˆ̃YG,synth) = Z̄ZZ tGΣ̂ΣΣθ̂θθs2
Z̄ZZG
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One can rewrite ˆ̃YG,synth in terms of g-weights in the extended model as in [20] and [21]

with

g̃G(x) = Z̄ZZ tGAAA−1
s2
ZZZ(x)

ˆ̃YG,synth =
1

n2

∑
x∈s2

g̃G(x)Y (x)

V̂( ˆ̃YG,synth) =
1

n2
2

∑
x∈s2

g̃2
G(x)R̂2(x)[47]

If the first phase is not exhaustive we estimate the true mean of the extended auxiliary

variables

[48] ˆ̄ZZZ1,G =
1

n1,G

∑
x∈s1,G

ZZZ(x)

to get the pseudo-synthetic estimate in the extended model

[49] ˆ̃YG,psynth = ˆ̄ZZZ t1,Gθ̂θθs2

As in [45] we have

[50] ˆ̃YG,psynth = ˆ̄ZZZt
1,Gβ̂ββs2 +

α1

n2,G

∑
x∈s2,G

(
Y (x)−ZZZt(x)β̂ββs2

)

where we have set α1 =
p̂2,G−p̂22,G

ˆ̄ZZZt
1,GAAA

−1
s2

ˆ̄ZZZ2,G

p̂2,G−p̂22,G
ˆ̄ZZZt
2,GpmbA

−1
s2

ˆ̄ZZZ2,G

.

By [28] we get immediately the following consistent estimate of the design-based variance

[51] V̂( ˆ̃YG,psynth) = ˆ̄ZZZ t1,GΣ̂ΣΣθ̂θθs2

ˆ̄ZZZ1,G + θ̂θθ
t

s2
Σ̂ ˆ̄ZZZ1,G

θ̂θθs2
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The variance-covariance matrix of ˆ̄ZZZ1,G can be estimated as usual by

[52] Σ̂ ˆ̄ZZZ1,G
=

1

n1,G(n1,G − 1)

∑
x∈s1,G

(ZZZ(x)− ˆ̄ZZZ1,G)(ZZZ(x)− ˆ̄ZZZ1,G)t

Again, one can rewrite the above expression with the g-weights g̃G,1(x) = ˆ̄ZZZ t1,GAAA−1
s2
ZZZ(x)

namely

ˆ̃YG,psynth =
1

n2

∑
x∈s2

g̃G,1(x)Y (x)[53]

V̂( ˆ̃YG,psynth) =
1

n2
2

∑
x∈s2

g̃2
G,1(x)R̂2(x) + θ̂θθ

t

s2
Σ̂ ˆ̄ZZZ1,G

θ̂θθs2[54]

Properties of the g-weights:

1. The g-weights enjoy the calibration properties 1
n2

∑
x∈s2 gG,1(x)ZZZ(x) = ˆ̄ZZZ1,G and

1
n2

∑
x∈s2 g̃G,1(x)ZZZ(x) = ˆ̄ZZZ1,G. The proof is immediate by transposing the equalities

and by the very definition of the g-weights.

2. The fact that one can assume the g-weights depend only on the point x and not

on the whole sample s2 when calculating variances is fully justified by the Taylor

expansion leading to the robust design-based covariances.

3. By considering formally the trivial constant local density Y (x) ≡ 1 and solving the

normal equations one sees that 1
n2

∑
x∈s2 gG,1(x) = 1

n2

∑
x∈s2 g̃G,1(x) = 1, i.e. the

g-weights have means equal to 1.

4. When G = F the estimator Ŷreg is asymptotically equivalent to the sample mean

over F , i.e. to 1
n2

∑
x∈s2 Y (x). This must hold for an arbitrary density Y (x) and

therefore one gets limn2→∞ gF,1(x) = 1 > 0. This is not true for a proper subset

G ⊂ F . In this case, ˆ̃YG,synt is asymptotically equivalent to the sample mean over
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the small domain, i.e. to ˆ̄YG. Hence, g̃G,1(x) will tend to 0 for x 6∈ G (negative

values are possible) and to n2

n2,G
for x ∈ G.

In the next section we generalize the previous results to cluster sampling. The main

ideas remain the same but the formulae are slightly more cumbersome due to the random

cluster size.

4 Generalization to cluster sampling

We follow the description of cluster sampling as define in Mandallaz (2008) (especially

section 5.5). A cluster is identified by its origin x, uniformly distributed in F̃ ⊃ F .

The geometry of the cluster is given by M vectors e1, . . . eM defining the random cluster

xl = x+el. M(x) =
∑M

l=1 IF (xl) is the random number of points of the cluster falling into

the forest area F . We define the local density at the cluster level by Yc(x) =
∑M

l=1 IF (xl)Y (xl)

M(x)
,

likewise we set ZZZc(x) =
∑M

l=1 IF (xl)ZZZ(xl)

M(x)
. The set F̃ above can be mathematically defined

as the smallest set {x ∈ R2 |M(x) 6= 0}. In the first phase we have n1 clusters identified

by x ∈ s1 and in the second phase n2 clusters with x ∈ s2, obtained by simple random

sampling from s1.

We shall use the model-based approach, in which the regression coefficient βββc at the cluster

level minimizes

Ex∈F̃M(x)(Yc(x)− βββtZZZc(x))2

In the pure design-based approach the weights will be M2(x) but this leads to non-zero

mean residual (thought close zero in practice), and the definitions of the regression esti-

mator and of the normal equation are slightly different (see Mandallaz (2008), section 5.5

for details). The choice of M(x) rather than M2(x) as weights is suggested by the model-

dependent approach. When Yc(x) is the mean of the M(x) observations, its variance can

be expected to be inversely proportional to M(x). This procedure leads to the normal
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equation (
Ex∈F̃M(x)ZcZcZc(x)ZcZcZc(x)t

)
βββc = Ex∈F̃M(x)Yc(x)ZcZcZc(x)

and to Ex∈F̃M(x)Rc(x) = 0. An asymptotically design-unbiased estimate β̂ββc,s2 for βββc can

be obtained by taking a sample copy of the above equation, i.e.

β̂ββc,s2 =
( 1

n2

∑
x∈s2

M(x)ZZZc(x)ZZZt
c(x)

)−1( 1

n2

∑
x∈s2

M(x)Yc(x)ZZZc(x)
)

:= AAA−1
c,s2

( 1

n2

∑
x∈s2

M(x)Yc(x)ZZZc(x)
)

[55]

The empirical residuals at the cluster level are

R̂c(x) = Yc(x)−ZZZt
c(x)β̂ββc,s2

which satisfy the orthogonality relation

∑
x∈s2

M(x)R̂c(x)ZZZc(x) = 0

and in particular the zero mean residual property

∑
x∈s2 M(x)R̂c(x)∑

x∈s2 M(x)
= 0

Using mutatis mutandis exactly the same arguments as in simple random sampling we

get the asymptotic robust design-based estimated variance-covariance matrix

[56] Σ̂ΣΣβ̂ββc,s2

= AAA−1
c,s2

( 1

n2
2

∑
x∈s2

M2(x)R̂2
c(x)ZZZc(x)ZZZt

c(x)
)
AAA−1
c,s2
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In two-phase sampling we estimate the mean of the auxiliary information over the small

area G by

ˆ̄ZZZc,1,G =

∑
x∈s1,G M(x)ZZZc(x)∑

x∈S1,G
M(x)

with estimated covariance matrix

[57] Σ̂ΣΣ ˆ̄ZZZc,1,G
=

1

n1,G(n1,G − 1)

∑
x∈s1,G

(M(x)

M̄1,G

)2
(ZZZc(x)− ˆ̄ZZZc,1,G)(ZZZc(x)− ˆ̄ZZZc,1,G)t

according to (Mandallaz (2008), section 4.3). The pseudo-synthetic estimate is then

Ŷc,G,psynth = ˆ̄ZZZt
c,1,Gβ̂ββc,s2

=
1

n2

∑
x∈s2

gc,1,G(x)Yc(x)[58]

with the g-weights gc,1,G(x) = ˆ̄ZZZt
c,1,GAAA

−1
c,s2
M(x)ZZZc(x). The estimated variance is as in [28]

[59] V̂(Ŷc,G,psynth) = ˆ̄ZZZt
c,1,GΣ̂ΣΣβ̂ββc,s2

ˆ̄ZZZc,1,G + β̂ββ
t

c,s2
Σ̂ ˆ̄ZZZc,1,G

β̂ββc,s2

The pseudo-synthetic estimate is generally design-biased. Adjusting for the residuals we

get the small-area estimator

[60] Ŷc,G,psmall = ˆ̄ZZZt
c,1,GΣ̂ΣΣβ̂ββc,s2

+

∑
x∈s2,G M(x)R̂c(x)∑

x∈s2,G M(x)

It is asymptotically design-unbiased and intuitively its variance can be expected to be

approximated by
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V̂(Ŷc,G,psmall) = ˆ̄ZZZt
c,1,GΣ̂ΣΣβ̂ββc,s2

ˆ̄ZZZc,1,G + β̂ββ
t

c,s2
Σ̂ ˆ̄ZZZc,1,G

β̂ββc,s2

+
1

n2,g(n2,G − 1)

∑
x∈s2,G

(M(x)

M̄2,G

)2
(R̂c(x)− ¯̂

R2,G)2[61]

where M̄2,G = 1
n2,G

∑
x∈s2,G M(x) and

¯̂
R2,G =

∑
x∈s2,G

M(x)R̂c(x)∑
x∈s2,G

M(x)
. One can rewrite [61] with

g-weights and predictions as in [34].

As in simple two-phase sampling we can transform the above estimator into a synthetic

estimator by considering the extended model ZZZ tc(x) = (ZZZt
c(x), Ic,G(x)) ∈ R(p+1) with

Ic,G(x) =
∑M

l=1 IG(xl)

M(x)
. In extensive inventories we can reasonably assume that all the

points of a cluster lying in the forest area F will belong to the same small area G so

that in fact Ic,G(x) ≡ 1 for all x ∈ G̃ = {x |
∑M

l=1 IG(xl) > 0}. The theoretical normal

equation reads

[62]
(∫

F̃

M(x)ZZZc(x)ZZZ tc(x)dx
)
θθθc =:AAAcθθθc =

∫
F̃

M(x)Yc(x)ZZZc(x)dx

which satisfy by construction the two zero mean residuals properties
∫
F̃
M(x)Rc(x)dx =∫

G̃
M(x)Rc(x)dx = 0. The second equality will only hold approximately if Ic,G(x) < 1 for

some x in G̃.

With AAAc,s2 = 1
n2

∑
x∈s2 M(x)ZZZc(x)ZZZ tc(x) we obtain the estimate of the regression coeffi-

cients at the cluster level

[63] θ̂θθc,s2 =AAA−1
c,s2

( 1

n2

∑
x∈s2

M(x)ZZZc(x)Y (x)
)

with estimated design-based covariance matrix

[64] Σ̂ΣΣθ̂θθc,s2
=AAA−1

c,s2

( 1

n2
2

∑
∈s2

M2(x)R̂2
c(x)ZZZc(x)ZZZ tc(x)

)
AAA−1
c,s2

24



where the R̂c(x) = Yc(x)−ZZZ tc(x)θ̂θθc,s2 are the empirical residuals at the cluster level with

respect to the extended model. We define the pseudo-synthetic estimator in the extended

model according to

[65] ˆ̃Yc,psynth = ˆ̄ZZZ tc,1,Gθ̂θθc,s2

where ˆ̄ZZZc,1,G =

∑
x∈s1,G

M(x)ZZZc(x)∑
x∈s1,G

M(x)
is the mean of the extended auxiliary vector over the

small area.

Obviously a decomposition similar to [50] will hold so that ˆ̃Yc,psynth and Ŷc,G,small in [60,65]

are asymptotically equivalent.

As in [59] the estimated variance is given by

[66] V̂( ˆ̃Yc,G,psynth) = ˆ̄ZZZ tc,1,GΣ̂ΣΣθ̂θθc,s2

ˆ̄ZZZc,1,G + θ̂θθ
t

c,s2
Σ̂ ˆ̄ZZZc,1,G

θ̂θθc,s2

where

[67] Σ̂ΣΣ ˆ̄ZZZc,1,G
=

1

n1,G(n1,G − 1)

∑
x∈s1,G

(M(x)

M̄1,G

)2
(ZZZc(x)− ˆ̄ZZZc,1,G)(ZZZc(x)− ˆ̄ZZZc,1,G)t

Defining the g-weights at the cluster level as

[68] g̃G,c,1(x) = ˆ̄ZZZ tc,1,GAAA−1
c,s2
M(x)ZZZc(x)

we obtain as usual

[69] ˆ̃Yc,G,psynth =
1

n2

∑
x∈s2

g̃G,c,1(x)Yc(x)
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and

[70] V̂( ˆ̃Yc,G,psynth) =
1

n2
2

∑
x∈s2

g̃2
G,c,1(x)R̂2(x) + θ̂θθ

t

c,s2
Σ̂ ˆ̄ZZZc,1,G

θ̂θθc,s2

The synthetic estimator in the extended model corresponds formally to n1 =∞, i.e.

[71] ˆ̃Yc,G,synth = Z̄ZZ tGθ̂θθc,s2

with estimated variance

[72] V̂( ˆ̃Yc,G,synth) = Z̄ZZ tGΣ̂ΣΣθ̂θθc,s2
Z̄ZZG

with obvious modification for the g-weights

g̃G,c(x) = Z̄ZZ tGAAA−1
c,s2
M(x)ZZZc(x)

ˆ̃Yc,G,synth =
1

n2

∑
x∈s2

g̃G,c(x)Yc(x)

V̂( ˆ̃Yc,G,synth) =
1

n2
2

∑
x∈s2

g̃2
G,c(x)R̂2(x)[73]

Properties of the g-weights:

1. We have 1
n2

∑
x∈s2 gc,G,1(x)ZZZc(x) = ˆ̄ZZZc,1,G and 1

n2

∑
x∈s2 g̃c,G,1(x)ZZZc(x) = ˆ̄ZZZ1,G.

2. By considering Yc(x) ≡ 1 one gets 1
n2

∑
x∈s2 gc,G,1(x) = 1

n2

∑
x∈s2 g̃c,G,1(x) = 1, i.e.

the g-weights have means equal to 1.

3. When G = F the estimator Ŷc,reg is asymptotically equivalent to the sample mean

over F , i.e. to
∑

x∈s2
M(x)cY (x)∑

x∈s2
M(x)

. Thus, for large n2, gc,F,1(x) ≈ M(x)

M̄2
with M̄2 =

1
n2

∑
x∈s2 M(x). Likewise, ˆ̃YG,synt is asymptotically equivalent to the sample mean

over the small domain, i.e. to Ȳc,G,2 =

∑
x∈s2,G

M(x)cY (x)∑
x∈s2,G

M(x)
. Hence, for large n2 we get
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g̃c,G,1(x) ≈ 0 for x 6∈ G̃ (negative values are possible) and to g̃c,G,1(x) ≈ M(x)

M̄2,G
for

x ∈ G̃, where M̄2,G = 1
n2,G

∑
x∈s2,G M(x).

The construction of design-unbiased small-area estimators as synthetic or pseudo-

synthetic estimators in the extended model containing the indicator variable of the small

area of interest is mathematically more convenient than the classical approach. The math-

ematical approximation of the variances is also more satisfactory than simply treating the

internal model as an external one and it can be formulated within the g-weight technique,

which is known to offer several theoretical advantages.

It is mathematically clear that one can generalize all the previous results to the simulta-

neous estimation of q ≥ 2 small areas by extending the model with q indicator variables

(combined extended model). One can conjecture that the combined model will be less

efficient, for any given small area, than the individual estimation and, on the other hand,

that it will smooth out the residual pattern.

5 Generalization to two-stage sampling

In many applications costs to measure the response variable Yi are high. For instance,

a good determination of the volume may require that one records DBH, as well as the

diameter at 7m above ground and total height in order to utilize a three-way volume

function. However, one could rely on a coarser, but cheaper, approximation of the volume

based only onDBH. Nonetheless, it may be most sensible to assess those three parameters

only on a sub-sample of trees. We now briefly formalize this simple idea, which is used in

the Swiss National Forest Inventory. The reader is referred to (Mandallaz (2008), section

4.4, 4.5, 5.4 and 9.5) for details. For each point x ∈ s2 trees are drawn with probabilities

πi. The set of selected trees is denoted by s2(x). From each of the selected trees i ∈ s2(x)
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one gets an approximation Y ∗i of the exact value Yi. From the finite set s2(x) one draws a

sub-sample s3(x) ⊂ s2(x) of trees by Poisson sampling. For each tree i ∈ s3(x) one then

measures the exact variable Yi. Let us now define the second stage indicator variable

[74] Ji(x) =


1 if i ∈ s3(x)

0 if i 6∈ s3(x)

To construct a good point estimate, we must have the residual Ri = Yi − Y ∗i which

is known only for trees i ∈ s3(x). The generalized local density Y ∗(x) is defined

according to

Y ∗(x) =
1

λ(F )

(
N∑
i=1

Ii(x)Y ∗i
πi

+
N∑
i=1

Ii(x)Ji(x)Ri

πipi

)

=
1

λ(F )

 ∑
i∈s2(x)

Y ∗i
πi

+
∑
i∈s3(x)

Ri

πipi

[75]

where the pi are the conditional inclusion probabilities for the the second stage sampling,

i.e. pi = P(Ji(x) = 1 | Ii(x) = 1). It follows from general principles presented in

(Mandallaz (2008), sections 4.4 and 4.5) that one can use all the previous results by

replacing everywhere the exact local densities Y (x), or Y (xl) in cluster sampling, by the

corresponding generalized local densities Y ∗(x) or Y ∗(xl). The second-stage variance is

automatically taken into account.

6 Examples

6.1 Post-stratification

We consider the important special case of post-stratification, which illustrates the main

issues. We consider a forested area F partitioned in L strata Fk, i.e. F = ∪Lk=1Fk and
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a small area G ⊂ F , we set Gk = G ∩ Fk. Note some Gk might be the empty set. The

auxiliary vector is defined by the indicator variables of the L strata, i.e.

ZZZt(x) = (IF1(x), IF2(x), . . . IFL
(x))

where IFk
(x) = 1 if x ∈ Fk otherwise IFk

(x) = 0. Note that condition [8] is fulfilled.

Straightforward calculations lead to the (L,L) diagonal matrix AAAs2 = 1
n2
diag(n2,k) where

n2,k =
∑

x∈s2 IFk
(x). This leads to the obvious regression estimate

β̂ββs2 = (β̂1, β̂2, . . . β̂L)t

with the empirical strata means β̂k = 1
n2,k

∑
x∈s2∩Fk

Y (x) = ˆ̄Yk. After some elementary

algebra the estimated variance-covariance matrix is found to be the diagonal (L,L) matrix

Σ̂ΣΣβ̂ββs2

= diag(
s2
k

n2,k

)

where s2
k = 1

n2,k

∑
x∈Fk

R̂2(x) with R̂(x) = Y (x)− β̂k for x ∈ Fk.

One obtains for the empirical mean of the auxiliary vector over the small area

ˆ̄ZZZ1,G = (p̂1,G, p̂2,G, . . . , p̂L,G)t = p̂pp1,G

where

p̂k,G =

∑
x∈s1 IGk

(x)∑
x∈s1 IG(x)

:=
n1k,G

n1,G

are the proportions of the strata surfaces areas within the small area as estimated from

the large sample. Conditionally on n1,G the n1k,G follow the multinomial distribution

with cell probabilities given by the vector ppptG = (λ(G1)
λ(G)

, λ(G2)
λ(G)

, . . . λ(GL)
λ(G)

). In this case the
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estimated variance-covariance matrix is known to be given by

[76] Σ̂ΣΣp̂pp1,G =
1

n1,G



p̂1,G(1− p̂1,G) p̂1,Gp̂2,G . . . p̂1,Gp̂1,L

p̂1,Gp̂2,G p̂2,G(1− p̂2,G) . . . p̂2,Gp̂1,L

. . . . . . . . . . . .

p̂1,Gp̂1,L p̂2,Gp̂1,L . . . p̂1,L(1− p̂1,L)


Note that the same is obtained by using [52] after replacing n1,G − 1 by n1,G. Simple

algebra leads then to the pseudo-synthetic estimate

[77] ŶG,psynth = p̂ppt1,Gβ̂ββs2 =
L∑
k=1

p̂k,Gβ̂k

with estimated asymptotic design-based variance

[78] V̂(ŶG,psynth) =
L∑
k=1

p̂2
k,G

s2
k

n2,k

+
1

n1,G

L∑
k=1

p̂k,G
(
β̂k − ŶG,psynt

)2

When n1 = ∞ and G = F this is precisely the exact conditional variance estimate, i.e.

given the nk. The g-weights are gs2(x) = pk
n2

n2,k
for x ∈ Fk, where pk = λ(Fk)

λ(F )
. Thus,

for n1 < ∞ the overall variance will depend on the variances within strata and on the

variance between strata, which is given by the second term. Note also that for G = F in

[78] the strata weights are estimated from the large sample whereas this is not the case

for the external model approach [17], which illustrates perfectly the better conditional

properties of the g-weights technique (see Mandallaz (2008), p.84).

Remarks

If we assume the λ(Fk) and therefore AAA to be known, the estimator

β̂ββ0 = AAA−1
( 1

n2

∑
x∈s2

Y (x)ZZZ(x)
)
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is easily found to be ( n21

n2p1
ˆ̄Y1,

n22

n2p2
ˆ̄Y2, . . .

n2L

n2pL

ˆ̄YL)t and yields Ŷsynth = 1
n2

∑
∈s2 Y (x), which

is unbiased but useless. If we use AAAs2 to estimate βββ we get as shown above β̂k = ˆ̄Yk, which

is very intuitive, and if we use AAA−1 instead of AAA−1
s2

in the Taylor approximation for the

variance, we obtain V̂(Ŷsynth) =
∑L

k=1

n2ks
2
k

n2
2

instead of
∑L

k=1 p
2
k
s2k
n2k

, the later is of course

much better from a conditional point of view (even if both estimates are asymptotically

equivalent). This examples illustrates why it is better to work with AAA−1
s2

throughout.

It can be easily checked that the original small-area estimator is given by

ŶG,psmall =
L∑
k=1

p̂k,G
ˆ̄Yk +

L∑
k=1

n2k,G

n2,G

( ˆ̄Yk,G − ˆ̄Yk)

where n2k,G =
∑

x∈s2 IGk
(x) and ˆ̄Yk,G = 1

n2k,G

∑
x∈s2∩Gk

Y (x). Thus, the residual term will

have an impact if the strata means within the small area differ from the strata means

within the entire domain, which is intuitively clear.

The formulae for the variances are very cumbersome and not really informative, likewise

for ˆ̃YG,psynth in the extended model.

6.2 Case study

We reanalyze the case study described with full details in Chapter 9 of Mandallaz (2008).

The inventoried area covered 218ha. The auxiliary information is based on 16 stands

defined by the following qualitative variables:

1. Developmental stage

This entails four categories “pole stage=3,” “young timber tree=4,” “middle age

timber tree=5,” and “old timber tree=6.” These were assigned according to the

dominant diameter.

2. Degree of mixture
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This variable was simplified to the categories of “predominantly conifers=1” and

“predominantly broadleaves=2.”

3. Crown closure

This variable was based on canopy density, defined as the proportion of the en-

tire ground surface within the stand that was covered by the tree crowns. It was

simplified to the categories of “dense=1” and “close=2.”

These factors produced 4 × 2 × 2 = 16 possible stands, all of which were found on the

study site.

The inventory utilized systematic cluster sampling. The cluster comprises five points:

central point, two points each established 30 m east or west of the central point; two

other points each established 40 m either north or south of the central point.

The first phase sets the central cluster point on a 120 m W-E by 75 m N-S rectangular grid

(note that the clusters partially overlapped in the N-S direction). The second, terrestrial

phase, place the central point on a 1:4 sub-grid of the first phase, i.e. on a 240 m W-E

by 150 m N-S systematic rectangular grid. The terrestrial inventory was purely one-stage

with simple circular plots of 300m2 horizontal surface area, and an inventory threshold

set at 12cm DBH.

We use the following linear model with the vector ZZZ(x):

• Z1(x) ≡ 1 intercept term

• Z2(x) = 1 if x lies in Development Stage 3 and Z2(x) = 0 otherwise

Z3(x) = 1 if x lies in Development Stage 4 and Z3(x) = 0 otherwise

Z4(x) = 1 if x lies in Development Stage 5 and Z4(x) = 0 otherwise

Z2(x) = Z3(x) = Z4(x) = −1 if x lies in Development Stage 6

• Z5(x) = 1 if x lies in a coniferous stand and Z5(x) = −1 otherwise
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• Z6(x) = 1 if x lies in a dense stand and Z6(x) = −1 otherwise

Hence, we have an additive ANOVA model with 7 parameters, as compared with 16

parameters for the full stratification model.

We shall consider 5 small areas:

• Small area G1 (≈ 17ha) was used for a full census. The condition that a cluster

hitting the small area has all its points in F within the small area is occasionally

violated (i.e. Ic,G(x) =
∑M

l=1 IG(xl)

M(x)
< 1 for some x), so that the extended model

for G1 is only approximately correct. The mean residual over the small area is not

exactly zero. The true values for basal area and stem densities are known.

• Small area G2 (≈ 33ha) is the most eastern part of the forest.

• Small area G21 ⊂ G2 (≈ 7ha) is a small subset in the central part of G2 chosen

to have a small number (3) of complete clusters (Ic,G(x) ≡ 1) spread over many

different stands.

• Small area G3 (≈ 46ha) is the most southern part of the forest.

• Small area G4 (≈ 55ha) is the central part north of G3.

• Small area G5 (≈ 84ha) is the most western part north of of G3.

We have F = G2 ∪ G3 ∪ G4 ∪ G5 and Ic,Gk
≡ 1 for k = 2, 3, 4, 5. Fig. 1 displays the

terrestrial plots according to the domains G2 − G5. Stand map of F and detailed maps

of G1 are given in Mandallaz (2008) Chapter 8.

Tables 1 and 2 displays the result for the basal area and the stem density for the small

areas G1, G2, G21 and G3.

The standard error for Ŷc,G,small are given within (−) when considering the internal model
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Figure 1: Location of terrestrial plots in G2 −G5

as an external one, i.e. by using the formulae (see Mandallaz (2008) p. 87):

Ŷc,G,psmall =

∑
x∈s1,G M(x)Ŷc(x)∑

x∈s1,G M(x)
+

∑
x∈s2,G M(x)R̂c(x)∑

x∈s2,G M(x)

V̂(Ŷc,G,psmall) =

(
1− n2,G

n1,G

)
1

n2,G

1

n2,G − 1

∑
x∈s2,G

(
M(x)

M̄2,G

)2

(R̂c(x)− ˆ̄R2,G)2

+
1

n1,G

1

(n2,G − 1)

∑
x∈s2,G

(
M(x)

M̄2,G

)2

(Yc(x)− Ŷ2,G)2
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The standard errors given in [−] refer to the various Taylor expansions given in [59], [61],

[66] or their equivalent g-weights versions.

The extended model for the ˆ̃Yc,Gk,psynt contain only the indicator variable of the corre-

sponding small area Gk. For this reason the corresponding estimates for the entire domain

F are given for G1 G2 and G3 separately (in this order).

We also consider the joint estimation of F and the small areas G2, G3, G4 and G5, which

form a partition of F . The corresponding model ZZZ(x) contains the 4 indicator variable

IGk
(x) (k = 2, 3, 4, 5), the previous components Zl(x), l = 2, 3, 4, 5, 6 but no longer the

intercept term Z1(x) ≡ 1 (otherwise AAAs2 would be singular because Z1(x) is a linear com-

bination of the IGk
(x)). The results for this estimator, denoted by ˆ̃Yc,G,cpsynt, are displayed

in Table 3.

All the calculations were performed with the linear algebra procedure proc iml of the

statistical software package SAS.

7 Discussion and conclusions

In the case study all point estimates were close to each other and do not differ significantly

from each other. In the small area with full census the synthetic estimator was closer to

the true values. As confirmed by simulations this was due to the fact that the plots within

this small area were in the lower tail of the distribution for basal area and stem density.

Of course, the synthetic estimators always had the smallest standard errors but at the

potential cost of a local bias.

For the classical small-area estimator the standard errors based on the external model

assumption were usually, but not always, smaller than their counterparts based on the g-

weights (equivalent to the Taylor asymptotic expansions), but the differences were small,
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a reassuring result. The g-weights based standard errors of the synthetic estimators in

the extended model for one single small area were usually smaller than their g-weights

counterparts of the classical small-area estimator but generally still larger than under the

external model assumption. The g-weights based standard errors in the extended model

with several small areas were comparable to those derived specifically for one single small

area. In this case study the various methods can be regarded as practically almost equiv-

alent, which should be confirmed or eventually invalidated by further examples.

From a mathematical point of view the Taylor based g-weights technique in the models

extended by the indicator variables of the small areas is without any doubts the most

elegant approach: it bypasses the residuals terms and allows for a straightforward cal-

culation of the asymptotic variances that takes into account the errors of the regression

coefficients.
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Table 1: Two-phase estimates for basal area

sample sizes Ŷc,G,psynth Ŷc,G,psmall
ˆ̃Yc,G,psynth

n1 : n2

Domain n1M̄1 : n2M̄2

F 298 : 73 31.34 31.34 31.30[0.92]

1203 : 298 [0.94] [0.94] 31.35[0.93]

(0.91) 31.35[0.94]

G1 29 : 8 30.28 23.99 25.55

true=29.60 92 : 19 [1.34] [3.90] [3.79]

(3.68)

G2 49 : 9 28.27 29.32 29.31

185 : 41 [1.40] [2.52] [2.23]

(2.08)
G21 ⊂ G2 17 : 3 25.55 29.52 29.61

39 : 15 [2.16] [4.13] [2.95]

(3.53)

G3 73 : 18 31.62 31.46 31.46

250 : 66 [1.47] [2.33] [2.16]

(1.87)

Standard errors: [−] (Taylor, g-weights) and (−) (external model)

Remark:

The mean residual for small area G1 was −1.59 for the extended model instead of 0

because Ic,G(x) 6≡ 1.
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Table 2: Two-phase estimates for stem density

sample sizes Ŷc,G,psynth Ŷc,G,psmall
ˆ̃Yc,G,psynt

n1 : n2

Domain n1M̄1 : n2M̄2

F 298 : 73 325.79 325.79 325.62[12.81]

1203 : 298 [12.80] [12.80] 325.88[12.84]

(12.39) 325.72[12.85]

G1 29 : 8 279.54 257.34 258.20

true=280.23 92 : 19 [22.65] [45.81] [54.07]

(48.29)

G2 49 : 9 400.49 406.47 406.41

185 : 41 [23.36] [41.83] [36.22]

(43.49)
G21 ⊂ G2 17 : 3 578.90 589.51 589.74

39 : 15 [35.48] [85.68] [67.16]

(94.31)

G3 73 : 18 279.75 282.46 282.40

250 : 66 [15.41] [21.38] [20.14]

(16.56)

Standard errors: [−] (Taylor, g-weights) and (−) (external model)

Remark:

The mean residual for small area G1 was −1.00 for the extended model instead of 0

because Ic,G(x) 6≡ 1.
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Table 3: Two-phase combined estimates

Domain sample sizes basal area stem density

n1 : n2

n1M̄1 : n2M̄2
ˆ̃Yc,G,cpsynth

ˆ̃Yc,G,cpsynth
F 298 : 73 31.32 325.17

1203 : 298 [0.93] [12.62]

G2 49 : 9 29.39 407.84

185 : 41 [2.23] [39.04]

G3 73 : 18 31.57 284.17

250 : 66 [2.09] [18.09]

G4 81 : 17 27.77 274.59

306 : 69 [1.99] [23.49]

G5 125 : 29 34.31 347.76

462 : 122 [1.24] [16.61]

Standard errors: [−] (Taylor, g-weights).

Remarks:

The classical estimates Ŷc,G,psmall for G4 were: 27.78(2.00) for basal area and 274.79(24.12)

for stem density. For G5 the corresponding results were 34.33(1.35) and 347.89(17.49).

As expected on mathematical grounds all extended models yielded empirical means of the

residuals over the entire domain and over one or many small areas which were equal to

zero (< 10−12).
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