
ETH Library

Model driven security for process-
oriented systems

Conference Paper

Author(s):
Basin, David A.; Doser, Jürgen; Lodderstedt, Torsten

Publication date:
2012

Permanent link:
https://doi.org/10.3929/ethz-a-007329377

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-007329377
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Model Driven Security for Process-Oriented Systems ∗

David Basin
ETH Zurich

8006 Zurich, Switzerland

basin@inf.ethz.ch

Jürgen Doser Torsten Lodderstedt
University of Freiburg

79110 Freiburg, Germany

{doser,tlodderstedt}@informatik.uni-freiburg.de

ABSTRACT

Model Driven Architecture is an approach to increasing the

quality of complex software systems based on creating high-

level system models and automatically generating system

architectures from the models. We show how this paradigm

can be specialized to what we call Model Driven Security.

In our specialization, a designer builds a system model along

with security requirements, and automatically generates from

this a complete, con�gured security infrastructure.

We propose a modular approach to constructing model-

ing languages supporting this process, which combines lan-

guages for modeling system design with languages for model-

ing security. We present an application to constructing sys-

tems from process models, where we combine a UML-based

process design language with a security modeling language

for formalizing access control requirements. From models in

the combined language, we automatically generate security

architectures for distributed applications.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information

Systems]: Security and Protection; D.2.2 [Software En-

∗This work has been supported by the German "Bundesmin-

isterium für Wirtschaft und Arbeit" under the reference

number IT-MM-01MS107. The authors are responsible for

the content of this publication.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’03,June 1–4, 2003, Como, Italy.
Copyright 2003 ACM 1-58113-681-1/03/0006 ...$5.00.

gineering]: Design Tools and Techniques�Computer-aided

software engineering, Object-oriented design methods; D.2.1

[Software Engineering]: Requirements/Speci�cations�

Languages, Methodologies, Tools

General Terms

Design, Languages, Security

Keywords

Model Driven Architecture, Metamodeling, RBAC, Security

Engineering, UML

1. INTRODUCTION

Many processes are security critical in the sense that secu-

rity requirements are a central part of process requirements

and security mechanisms are required for their realization.

Examples range from the authorization of a military engage-

ment, to an enterprise purchase process, to even the coordi-

nation of the sequence of user interface masks displayed to

a user.

In such examples, the security policy can be quite complex

and may be comprised of a collection of requirements, which

are associated with di�erent points of execution and checked

and enforced at these points. If we view a process abstractly

as being characterized by system modes or states, then the

policy is de�ned and enforced over a sequence of states in

a run of the process. This is because the policy itself may

stipulate how the process evolves over time, i.e., what state

transitions are allowed, since the transitions permitted de-

pend on information available in the di�erent states (e.g., in

an enterprise purchase process), or because the policy itself

must be implemented in various steps (e.g., a nuclear launch

requiring authorization along a chain of command).

The above considerations motivate the two questions that

we address here. (1) How can we model designs along with

their security policies in a process-oriented setting? And (2)

how can we make the transition from designs and policies to

secure systems?

A partial answer to both questions is given by the ap-

proach of Model Driven Architecture (MDA) [5], which sup-

ports system development by employing a model-centric and

generative development process. MDA is based on creating

design models and using tool support to automatically gen-

erate substantial parts of systems from these models. In

the context of process modeling, MDA can be realized by

building an automata-oriented (e.g., state chart) model of a

system, and using a CASE-tool to automatically generate a

process controller (i.e., a state-transition system) from the

model.

Our contribution in this paper is to extend the partial

answer above to a complete answer by specializing MDA to

model driven security. Namely, we present an approach to

building secure systems where we (1) integrate security mod-

els with UML process models and (2) automatically generate

executable systems with fully con�gured security infrastruc-

tures from these integrated models. This closes the gap be-

tween process models and security models and thereby the

gap between software engineering and security engineering.

This means that security can be tightly integrated into a

system during design, rather than after-the-fact, increasing

the security and maintainability of the resulting system.

With respect to (1), we present the security modeling lan-

guage SecureUML and show how to integrate it with UML

process models. SecureUML is a UML-based language for

modeling access control requirements that generalizes role-

based access control (RBAC) as de�ned in [4]. SecureUML

provides a language for formalizing security policies about

protected resources, but leaves open the nature of these re-

sources, i.e., whether they are components, processes, tasks

in a process, etc. We show how to combine this generic

security policy language with a process modeling language

by de�ning a dialect, which identi�es process elements (e.g.,

states, actions, or even processes themselves) as protected

resources. As a result, the right to start a process or to

execute parts of the process depends on the modeled access

control policy. The result is a modeling language capable

of formalizing a new kind of model, security design models,

which integrate security and design requirements.

We have chosen RBAC and UML as foundations for this

work because they are well-established, popular standards

and well-supported by platforms and tools. By combining

these two formalisms, our work enables developers to formal-

ize access control in the context of di�erent kinds of system

models using intuitive, graphical UML notation.

With respect to (2), we show how to translate security

design models into implementations of controller objects for

multi-tier applications augmented by an access control in-

frastructure enforcing the modeled access control policy. We

use the Java Servlet architecture as the target platform of

the generation and we have evaluated our approach using a

prototype generator that is implemented within the MDA-

tool ArcStyler [6].

Related Work.Kandala and Sandhu showed that RBAC

can serve as access control model for work�ow systems [10]

and Atluri and Huang proposed a Work�ow Authorization

Model [1]. While [10] and our work focus on processes and

tasks as protected resources, [1] provides a model for dynam-

ically assigning privileges to subjects during the execution

of tasks. In contrast to [10], our modeling language also

supports authorization constraints on permissions.

Bertino, Ferrari and Atluri in [2] and Jaeger in [8] empha-

sized the need for authorization constraints on role and user

assignments. In contrast, authorization constraints as de-

�ned in SecureUML make the applicability of a permission

depend on the system state, e.g. the attribute values of an

object or properties of the caller.

There is related work on using UML for security modeling.

Epstein and Sandhu showed in [3] how UML can be used to

model RBAC policies. Although there are some similarities

between our work and theirs (e.g., the focus is on the static

aspects of a RBAC model), there are also di�erences (e.g.,

they use a di�erent UML notation and document application

constraints as preconditions in plain English, whereas we use

OCL). Also, we show how UML state machine elements can

be incorporated in the de�nition of an access control policy.

Jürjens proposed in [9] a UML-extension called UMLSec

for specifying secure systems. UMLsec allows one to an-

notate di�erent UML diagrams with security requirements,

which can then be validated using formal veri�cation tech-

niques. In contrast, we focus on specifying access control

requirements in class and state chart diagrams and develop

tool support to automatically generate systems obeying these

requirements.

Finally, in [11] we introduced the modeling language Se-

cureUML. In our current work we have both simpli�ed and

generalized the formalism and introduced the concept of di-

alects. The major di�erence though is that [11] uses class

diagrams as a system modeling language and generates secu-

rity infrastructures for distributed components conforming

to the Enterprise JavaBeans standard [12], whereas in the

current work we focus on process modeling and generate

process controllers. The two works are complementary and

together they suggest the wide scope of SecureUML and the

idea of model driven security.

Organization.In Section 2, we give a brief overview of

relevant aspects of UML and we introduce a UML-based

process design language. We de�ne SecureUML in Section 3

and integrate it into our process design language by de�ning

a SecureUML dialect in Section 4. We give an example

policy in Section 5 and explain the generation of secure web

applications (based on Java Servlet) from modeled policies

in Section 6. In Section 7, we report on experience and draw

conclusions.

2. THE UNIFIED MODELING LANGUAGE

In UML [13], the structural aspects of systems are de-

�ned in terms of classes, each formalizing a set of objects

with common services, properties, and behavior. Services

are described by methods, properties by attributes and as-

sociations, and the behavior can e.g., be characterized by

a state machine that is attached to a particular class. Ad-

ditional constraints can be given using expressions in the

Object Constraint Language (OCL).

UML can serve as foundation for building domain speci�c

languages by de�ning stereotypes, which introduce new lan-

guage primitives by subtyping UML core types, and tagged

values, which represent new properties of these primitives.

Model elements are assigned to such types by labeling them

Assemble
Order

Special
Offers

backbuy
add / addItem

remove / removeItem
specialOffers

finish

Ordering

items : list
sum : currency

<<Process>>
Control Flow

OrderInfo

Figure 1: Structure and control �ow of the ordering process

with the corresponding stereotype. Below, we give an ex-

ample of a domain speci�c language.

UML can also be used as metamodeling language, where

UML diagrams are used to formalize the abstract syntax of

another (modeling) language. We de�ne SecureUML in this

way because it allows us to use object-oriented concepts in

our language de�nition.

Example: A Process Design Language

We now give an example of a process design language using

(stereotyped) classes to de�ne process types where, for each

process type, a state machine describes the corresponding

behavior. Figure 1 shows a model of an ordering process

for an online book club. The process type Ordering is shown

in the upper-left corner of the �gure as a UML class with

the stereotype �Process�. Ordering has attributes to store

the ordered items and the total cost.

The control �ow of the process is de�ned by the state

machine shown in the box labeled �Control Flow�. The rect-

angles and circles represent states and the arrows represent

transitions. Transitions may be labeled with the name of

the triggering event and (separated by a slash) the name of

the action that is executed during state transition.

In our example, AssembleOrder is the state where club

members can browse through the club catalog, add items

to their order, or remove them. The state SpecialOffers

accesses special o�ers, which are restricted to �gold mem-

bers� or to users whose current order is more than 100 d. In

the state OrderInfo, additional data is processed, like the

delivery address.

As the paper proceeds, we will use this as a running ex-

ample to show how the requirement for restricted access

CompositeAction

ResourceAction

*

*

*

*

ActionHierarchy*
1

*
1

ResourceActionRole

* **

RoleHierarchy

*

User

*

*

*

*

UserAssignment

AuthorizationConstraint

Permission

1..* *1..* *

PermissionAssignment

* 1..** 1..*

ActionAssignment

0..1

*

0..1

*
ConstraintAssignment

AtomicAction

Figure 2: SecureUML Metamodel

to SpecialOffers and other requirements are stated as a

formal access control policy and how access control infras-

tructures can be generated that enforce such a policy. Se-

cureUML, which we introduce next, will provide the foun-

dation for expressing such a policy.

3. SecureUML

We now de�ne the syntax and semantics of SecureUML.

Moreover, as we will use SecureUML to create visual models

(like in UML), we will also endow it with a notation (e.g.,

icons, strings, or geometric �gures). To distinguish the two

kinds of syntax, we will call the underlying syntax the ab-

stract syntax and the notation the concrete syntax. We give

examples of concrete syntax in Section 5.

3.1 Abstract Syntax

Figure 2 presents the metamodel that de�nes the abstract

syntax of SecureUML. The types User, Role, and Permission

and the relations UserAssignment, PermissionAssignment, and

RoleHierarchy are directly adopted from the proposed RBAC

standard [4]. In the following we focus on our additions.

An AuthorizationConstraint is a logical predicate that is at-

tached to a permission by the association ConstraintAssign-

ment and makes the permission's validity a function of the

system state, e.g., dependent on the current time, date, or

attribute values. Consider the informal policy given in Sec-

tion 2, stating that ordinary book club members may only

access special o�ers if their current order is more than 100 d.

Such a policy could be formalized by giving a permission for

a role Member to the state SpecialOrders, restricted by an

authorization constraint on the attribute sum of the order-

ing process. Such a constraint is given by an OCL expres-

sion, where the system model determines the vocabulary

that can be used (classes and methods) extended by the ad-

ditional symbol caller, which represents the name of the user

on whose behalf an action is performed.

The types Resource and Action roughly correspond to the

terms Operation and Object in [4] and formalize a generic

resource model that serves as a foundation for integrating

SecureUML into system modeling languages.1 Resource is

the base class of all model elements in the system model-

ing language that represent protected resources, e.g., pro-

cesses in our process design language. Each resource o�ers

one or more actions and each action belongs to exactly one

resource, which is denoted by the composite aggregation Re-

sourceAction. Therefore, we can directly assign actions to

a permission by the relation ActionAssignment, rather than

associating permissions with resource/action pairs.

We di�erentiate between two categories of actions formal-

ized by the action subtypes AtomicAction and CompositeAction.

Atomic actions are low-level actions that can be mapped

directly to actions of the target platform, e.g. the action

execute of a method. In contrast, composite actions are

high-level actions that may not have direct counterparts on

the target platform. Composite actions, ordered in an Ac-

tionHierarchy, are used to group actions and provide a rich

modeling vocabulary.

As we will see, the semantics of a permission de�ned on

a composite action is that the right to perform the action

implies the right to perform any of the (transitively) con-

tained subactions. This semantics yields a simple basis for

de�ning useful high-level actions. Suppose the security pol-

1We use di�erent names to prevent confusion with similar

terms used in the object-oriented community.

icy grants a role the permission to �read� an entity. Using

an action hierarchy, we can unambiguously formalize this by

stipulating that such a permission includes the permission

to read the value of every entity attribute and to execute

every side-e�ect-free method of the entity. Another reason

for introducing action hierarchies is that they simplify the

development of generation rules as it is su�cient to de�ne

these rules only for atomic actions.

The concrete resource types, their actions, and the action

hierarchy are de�ned as part of a SecureUML dialect, which

integrates SecureUML with a system development language.

In Section 4 we will present a dialect that combines Se-

cureUML with our process design language.

3.2 Semantics

SecureUML formalizes access control decisions that de-

pend both on the static assignments of users and permis-

sions to roles and on the satisfaction of authorization con-

straints in the current system state. The tricky bit in de�n-

ing the semantics is formalizing the satisfaction of a con-

straint relative to the system state, which varies over time.

To accomplish this, we represent the system state at a time

point t by a �rst-order structure S(t). An authorization con-

straint can be expressed as a formula in �rst-order logic over

a signature Σ, which is determined by the system model.

The question of whether a user u is allowed to perform an

action a can then be cast as the logical decision problem

S(t) |= φAC(u, a), formalizing that access should be granted

if and only if φAC(u, a) is satis�ed in S(t). The formula

φAC(u, a) is built from the constraints that are assigned to

permissions and depends on the static assignments of users

and permissions to roles, designated as the access control

con�guration.

The basic elements of the access control con�guration are

the sets Users, Roles, Permissions, and Actions, each con-

taining entries for every model element of the corresponding

metamodel types User, Role, Permission, and Action. Over

these sets, we have the relations UA ⊆ Users×Roles, PA ⊆

Roles×Permissions, and AA ⊆ Permissions×Actions, which

contain tuples for each instance of the corresponding asso-

ciations2 in the abstract syntax of SecureUML.

2We abbreviate the names of the associations in Figure 2 as

Additionally, we de�ne the partial order ≥Roles as well as

the partial order ≥Actions, on the sets of roles and actions

respectively, where we write superior roles (or actions) on

the left (bigger) side of the ≥-symbol. ≥Role is given by

the re�exive, transitive closure of the aggregation associa-

tion RoleHierarchy on Role in Figure 2 and ≥Actions is de�ned

analogously based on the aggregation association ActionHier-

archy.

Given a system model (i.e., a UML model in our process

modeling language), we de�ne a signature Σ = (S, F, P),

where S is a set of sorts, F is a set of typed function sym-

bols (including constants), and P is a set of typed predicate

symbols. S contains one sort for each class in the system

model and additionally the sort Users, which represents the

users of a system as de�ned in the access control con�g-

uration. F contains a function symbol for each attribute

or side-e�ect free method of the model that does not re-

turn a Boolean value, and the constant symbol selfClass for

each Class in the system model denoting the object that is

currently accessed. Additionally, there is a constant sym-

bol caller denoting the user on whose behalf an action is

performed at a time point t. Finally, P contains a predicate

symbol for every side-e�ect free method in the system model

that returns a Boolean value.

Given an access control con�guration, we de�ne φAC(u, a)

by �rst de�ning the auxiliary function

UAP : (Users×Actions) → 2Permissions

by

UAP(u, a) := {p ∈ Permissions | ∃r ∈ Roles : UA(u, r) ∧

∃r′ ∈ Roles : r ≥Roles r′ ∧ PA(p, r′) ∧ (1)

∃a′ ∈ Actions : AA(p, a′) ∧ a′ ≥Actions a} ,

which determines the permissions a user has for an action.

We also introduce the function constraint : Permissions →

LΣ, which maps permissions to their associated constraints

translated3 into the �rst-order language over Σ, associating

the formulae true with unconstrained permissions. In this

setting, we de�ne that at time t the user u is allowed to

their capital letters.
3Due to space restrictions we omit the translation rules from

OCL to �rst-order logic.

StatemachineProcess

1

+behavior

1

Resource

StatemachineActionState

n

+states

n

Transition

0..1

+effect

0..1

1 0..n

+target

1

+incoming

0..n

+source
+outgoing

0..n1 0..n1

Figure 3: SecureUML Dialect for Process Design

resource type action subactions

Process activate recursive activate for the same process,

activate recursive for all process states

activate -

State activate recursive activate for the same state,

execute for all actions on outgoing transitions

activate -

StatemachineAction execute -

Table 1: Actions and Action Hierarchies of the Dialect

perform the action a if and only if S(t) |= φAC(u, a), where

φAC(u, a) :=
∨

p∈UAP(u,a)

constraint(p) . (2)

This means that access is granted if and only if the user

u has a permission p for which the corresponding formula

constraint(p) is valid at time t. Note that the disjunction

over an empty set UAP results in the formula false.

4. A DIALECT FOR PROCESS DESIGN

As previously noted, SecureUML is general in that it leaves

open the nature of protected resources. The general scheme

for combining SecureUML with a system design language is

to formalize a dialect, which identi�es primitives of the sys-

tem modeling language as SecureUML resources and assigns

them atomic and composite actions (which are given by an

action hierarchy). Hence, to combine SecureUML with the

proposed process design language, we de�ne a dialect where

we interpret a process type and the elements of its state ma-

chine as a hierarchy of protected resources and additionally

de�ne appropriate resource actions and an action hierarchy.

The abstract syntax of this dialect is de�ned by the meta-

model shown in Figure 3. We �x the elements Process, State

and StatemachineAction as the protected resources, which is

denoted by de�ning types for these primitives as subtypes

of the base type Resource of the SecureUML metamodel (see

Section 3.1).

We stipulate the actions o�ered by the resource types and

the structure of the action hierarchy, shown in Table 1, by

de�ning OCL invariants on the resource types. For exam-

ple, we de�ne that each Process has the actions activate and

activate recursive and that the composite action activate re-

cursive for a process recursively includes the actions listed

on all states of the process.

Action hierarchies, here and in general, support the de�-

nition of natural and concise security policies. For example,

an activate recursive permission on a process grants a role

the privilege to perform all actions on the process. Alterna-

tively, the right to execute a single state machine action can

be de�ned with the action execute.

5. AN EXAMPLE POLICY

In this section we explain our UML-based notation and

illustrate the semantics of SecureUML using our running

example.

5.1 An Example UML Model

In Figure 4, we formalize a security policy where (1) all

members of the club can place orders, (2) members having

MemberAccess

<<StateAction>> AssembleOrder : activate_recursive
<<ProcessAction>> Ordering : activate

GoldMemberAccess

<<StateAction>> SpecialOffers : activate_recursive

GoldMember
<<secuml.Role>>

Ordering

items : list
sum : currency

<<Process>>

<<secuml.Permission>>

Member
<<secuml.Role>> <<secuml.Permission>>

<<secuml.Permission>>

MembersRestricted

<<StateAction>> SpecialOffers : activate_recursive

self.sum >= 100.0

Figure 4: Access control policy for the ordering process

the �gold� status are given special o�ers, and (3) ordinary

members may also access special o�ers, but only after they

have ordered items for more than 100 d.4

We start by declaring the roles Member and GoldMember,

which are represented by classes with the stereotype �se-

cuml.Role� and de�ne GoldMember as a subrole of Member.

Next, we de�ne several permissions, each formalizing a re-

quirement of the informal policy description. As Figure 4

suggests, a permission is represented by an association class

with the stereotype �secuml.Permission� connecting a role

with a UML class representing a protected resource, desig-

nated as the root resource of this permission. Each attribute

of the association class represents the assignment of an ac-

tion to the permission, where the action is identi�ed by a

resource name and an action name. The action name is given

by the attribute type, e.g. �activate�. The resource name is

stored in the tagged value identi�er and references the root

resource or one of its subresources. Its format depends on

the referenced resource's type, which is determined by the

stereotype of the attribute. For example, an attribute with

the stereotype �StateAction� and the identi�er �Assemble-

Order� denotes an action on the corresponding state of the

process �Ordering�. The stereotypes for action references are

de�ned as part of the dialect; our process design language

has the stereotypes �ProcessAction�, �StateAction�, and �Ac-

tionAction�, which are respectively used to label references

to actions on processes, states, and actions.

The �rst requirement of our example policy is formalized

4Note that for sake of simplicity we omit additional arrange-

ments, which would handle the case that the total sum for

ordinary items falls below 100 d after adding special items.

by the permission MemberAccess that grants the role Member

the right to perform the actions activate on Ordering and

activate recursive on the state AssembleOrder. The permis-

sion GoldMemberAccess grants the right to activate the state

SpecialOffers to the role Member and in doing so formalizes

the second requirement of our policy. The third requirement

is formalized by the permission MemberRestricted, which is

augmented with an authorization constraint. The permis-

sion itself grants the role Member the right to perform acti-

vate recursive on the state SpecialOffers. The constraint

self.sum >= 100.0

restricts this permission to cases where an order is more than

100 d. This expression is de�ned in a tagged value of the

permission class, but we show it here in the �gure as a text

box attached to this class.

5.2 Example Semantics

We now illustrate our semantics by analyzing several ac-

cess control decisions for the users Alice and Bob, each trying

to perform the action activate on the state SpecialOffers.

The (partial) example access control con�guration is

Users := {Bob,Alice}

Roles := {Member, GoldMember}

Permissions := {MemberRestricted, GoldMemberAccess, . . . }

Actions5 := {SpecialOffers.activate,

SpecialOffers.activateRecursive, . . . }

UA := {(Bob, Member), (Alice, GoldMember)}

5Actions are denoted by the name of their resource and their

name, separated by a dot.

PA := {(Member, MemberRestricted),

(GoldMember, GoldMemberAccess), . . . }

AA := {(MemberRestricted,

SpecialOffers.activateRecursive),

(GoldMemberAccess,

SpecialOffers.activateRecursive), . . . }

≥Roles := {(GoldMember, Member)}

≥Actions := {(SpecialOffers.activateRecursive,

SpecialOffers.activate), . . . } ,

and the signature Σ, derived from the system model, is

S := {Processes,Real} ∪ {Users}

F := {selfProcesses, sum} ∪ {caller}

P := {≥Real} .

The constant symbol selfProcesses of sort Processes denotes

the currently accessed process and sum : Processes → Real

represents the value of the attribute sum of a process in-

stance. The predicate symbol ≥Real represents the standard

order over the real numbers.

Suppose that Alice wants to perform the action explained

above at time t1. The corresponding structure S(t1) over

the signature Σ is given by the interpretation

caller
S(t1) := Alice

ProcessesS(t1) := {processAlice, processBob}

self
S(t1)
Processes := processAlice

sumS(t1) := {(processAlice, 30), (processBob, 55)} .

The formula that has to be satis�ed by the structure S(t1) in

order to grant Alice access is built according to the de�nition

(2), given in Section 3.2. The constraint

self.sum >= 100

on the permission MemberRestricted is translated into the

formula

sum(selfProcesses()) ≥Real 100

in the language de�ned by the signature Σ, and the formula

for the permission GoldMember is true. The access decision

is formalized as

S(t1) |= true ∨ (sum(selfProcesses()) ≥Real 100) ,

which is satis�ed.

Alternatively, suppose that Bob tries to perform this ac-

tion at time t2. The corresponding structure S(t2) di�ers

from S(t1) by the interpretation of the constant symbols

selfProcesses and caller, now referring to processBob and

Bob, respectively. However, Bob only has the permission

MemberRestricted for this action; hence

S(t2) |= sum(selfProcesses()) ≥Real 100

is required for access. Since Bob only has items that sum to

55 d in his order, this constraint is not satis�ed and access

should be denied here.

6. GENERATION

We have implemented a prototype generator for the con-

struction of secure web applications within the MDA-tool

ArcStyler [6]. This tool already provides a transformation

function for converting UML classes and state machines

into controller classes for web-applications, executed in a

Java Servlet environment. Hence our task was to extend

this function to generate a security infrastructure from Se-

cureUML model elements.

Java Servlet [7] is a popular technology for developing

web applications as it provides a rich environment for pro-

gramming dynamic web pages. This technology supports

RBAC; however its URL-based authorization scheme only

enforces access control when a request arrives from outside

the web server. This is ill-suited for modern web applica-

tions that are built from multiple servlets, with one acting as

the central entry point to the application. This entry point

servlet acts as a dispatcher in that it receives all requests

and forwards them (depending on the application state) to

the other servlets, which execute the business logic. The

standard authorization mechanism only provides protection

for the dispatcher. To overcome this weakness, we generate

access control infrastructures that exploit the programmatic

access control mechanism which servlets provide, where the

role assignments of a user can be retrieved by any servlet.

We augmented ArcStyler's transformation function by a

generation rule that produces Java assertions and adds them

as preconditions to the methods for process activation, state

activation, and action execution. These assertions are of the

form

if (!(
∨

p∈AP(a)

((∨
r∈PR(p)

userrole(r)
)
∧ constraint(p)

)
))

c.forward("/unauthorized.jsp");

This rule is similar to Equation (2), which de�nes φAC(u, a)

in Section 3.2, as each permission represents an (alternative)

authorization to execute an action. However, here we must

consider all permissions for all users on an action, which

are determined by the function AP . For each permission,

there is �rst a check whether a user is assigned to one of

the roles in PR, which denotes the set of all roles assigned

to the permission. Because servlets do not support role in-

heritance, the transitive closure of all roles associated with

a permission must be determined using the association Role-

Hierarchy. If a constraint is assigned to the permission, it is

evaluated afterwards. The request is forwarded to an error

page by the term c.forward("/unauthorized.jsp") if ac-

cess is denied. As an example, the assertion generated for

SpecialOffers.activate is:

if (!(

/** Permission GoldMemberAccess **/

request.isUserInRole("GoldMember")

||

/** Permission MemberRestricted **/

((request.isUserInRole("Member") ||

request.isUserInRole("GoldMember"))

&& this.getSum() >= 100.0)

)) c.forward("/unauthorized.jsp");

The role check is performed using the method isUserIn-

Role(Role) on the request object and each constraint is trans-

lated into a Java expressions, which accesses the attributes

and side-e�ect free methods of the controller. For example,

the OCL constraint

self.sum >= 100.0

is translated into the Java expression

this.getSum() >= 100.0

as shown above.

Comparing the code generated above with the example

given in Section 5.2 shows that the declarative semantics

of our models is preserved (under the operational seman-

tics of Java) by the generation function. The user Alice is

granted unrestricted access to the state by the �rst part of

the assertion, whereas the right for the user Bob depends on

the return value of the method getSum(), which is used to

obtain the current value of the controller's attribute sum.

7. ANALYSIS AND CONCLUSIONS

We have carried out a number of small and medium scale

experiments, specifying controllers for applications like on-

line shopping and banking. Our experiments show that

the combination of UML process models with a vocabu-

lary based on RBAC, authorization constraints, and action

hierarchies is expressive enough to naturally and concisely

describe complex security policies. Hence, our proposal pro-

vides a concrete example of how to close the gap between

design models (here process models) and security models.

The generative approach taken also closes another gap:

the one between system design and implementation. Doing

so has a number of advantages. First, it guarantees the con-

formance of the implementation with the model. Second, it

eases system maintenance (as the process and security pol-

icy are clearly and formally documented) and evolution (as

changes are easily made at the model level and automat-

ically propagated to the implementation). And �nally, it

enhances portability since models are technology indepen-

dent and hence the migration to new technologies can be

realized by changing the generation rules, not the models

themselves. It should be a simple matter to develop other

transformation functions for translating models into secure,

executable systems based on other technologies like work�ow

management systems or other web application platforms.

There are a several promising areas for future work. A

natural step is to increase the expressiveness of either Se-

cureUML or the design modeling language with which it

is integrated. An example of the former would be adding

primitives for modeling other security aspects, like digital

signatures or auditing (and then, of course, generating cor-

responding infrastructures). An example of the latter would

be supporting a more comprehensive process design lan-

guage. The idea of joining languages via a dialect, as sketched

in Section 4, provides a way of tackling these problems inde-

pendently, and then combining solutions. Another promis-

ing direction is to leverage the fact that our security design

models have a well-de�ned semantics. Hence, it should be

possible to carry out automatic property checking of secu-

rity design models to detect and correct design errors and

even to verify the correctness of the model transformation

process itself.

8. REFERENCES

[1] V. Atluri and W.-K. Huang. An authorization model

for work�ows. In Proceedings of the Fifth European

Symposium on Research in Computer Security, Rome,

Italy, volume 1146 of LNCS, pages 44�64. Springer,

1996.

[2] E. Bertino, E. Ferrari, and V. Atluri. An approach for

the speci�cation and enforcement of authorization

constraints in work�ow management systems. ACM

Transactions on Information Systems Security,

2(1):65�104, February 1999.

[3] P. Epstein and R. S. Sandhu. Towards a UML Based

Approach to Role Engineering. In Proceedings of 4th

ACM Workshop on Role-Based Access Control, pages

145�152, 1999.

[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,

and R. Chandramouli. Proposed NIST standard for

role-based access control. ACM Transactions on

Information and System Security (TISSEC),

4(3):224�274, 2001.

[5] D. S. Frankel. Model Driven ArchitectureTM: Applying

MDATMto Enterprise Computing. John Wiley & Sons,

2003.

[6] R. Hubert. Convergent Architecture: Building Model

Driven J2EE Systems with UML. John Wiley & Sons,

Inc., 2001.

[7] J. Hunter. Java Servlet Programming, 2nd Edition.

O'Reilly & Associates, 2001.

[8] T. Jaeger. On the increasing importance of

constraints. In Proceedings of 4th ACM Workshop on

Role-Based Access Control, pages 33�42, 1999.

[9] J. Jürjens. UMLsec: extending UML for secure

systems development. In UML 2002 - The Uni�ed

Modeling Language. Model Engineering, Languages,

Concepts, and Tools. 5th International Conference,

Dresden, Germany, September/October 2002,

Proceedings, volume 2460 of LNCS, pages 412�425.

Springer, 2002.

[10] S. Kandala and R. Sandhu, editors. Secure Role-Based

Work�ow Models, volume 215 of IFIP Conference

Proceedings. Kluwer, 2002.

[11] T. Lodderstedt, D. A. Basin, and J. Doser.

SecureUML: A UML-based modeling language for

model-driven security. In UML 2002 - The Uni�ed

Modeling Language. Model Engineering, Languages,

Concepts, and Tools. 5th International Conference,

Dresden, Germany, September/October 2002,

Proceedings, volume 2460 of LNCS, pages 426�441.

Springer, 2002.

[12] R. Monson-Haefel. Enterprise JavaBeans (3rd

Edition). O'Reilly & Associates, 2001.

[13] J. Rumbaugh, I. Jacobson, and G. Booch. The Uni�ed

Modeling Language Reference Manual.

Addison-Wesley, 1998.

