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Abstract

Soil contamination by heavy metals is an important problem in many countries. As a first step
in mitigating the related health risks, one has to delineate zones where metal concentrations ex-
ceed tolerable levels. Predictions of metal concentrations are usually required for blocks because
remediation or regulatory decisions are imposed for entire parcels. Parcel areas typically ex-
ceed the observation support, but are smaller than the survey domain. Mapping soil pollution
involves therefore a local change of support. Using data from an extensive survey of heavy met-
als in the soils around a metal smelter, we validate in this study geostatistical block predictions
with measured heavy metal concentrations that were representative for the mean metal content
on 53 parcels with areas of 500–5500 m2. Block predictions were computed by conditional
simulations (CS) and several variants of lognormal universal (LUK), constrained (LCK) and
covariance-matching constrained (LCMCK) block kriging from observations with quasi-point
support (2–100 m2). Lognormal block kriging predictions were either computed based on the
assumption that both observations and block means are lognormally distributed or by averaging
lognormal point kriging predictions. Target quantities were the block means of metal content in
0–20 cm depth and exceedance of regulatory thresholds by these means. CS gave the most pre-
cise predictions, both of block means and of threshold exceedance. However, the advantage was
not pronounced: LUK, although slightly negatively biased, predicted block means nearly as well
and was not much worse than LCK, LCMCK or CS when predicting threshold exceedance. LCK
was partly positively biased (in particular when averaging lognormal constrained point kriging
predictions) and was clearly less precise than LUK and CS when predicting block means. All
four methods predicted threshold exceedance with good success as judged by the areas under Re-
ceiver Operating Characteristic curves (0.78–0.92). The good performance of LUK was rather
surprising because nonlinear transforms of customary block kriging predictions are commonly
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from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control
mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted
for publication. A definitive version was subsequently published in Geoderma, Predicting topsoil heavy metal content
of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional
simulations, VOLUME 193–194, PAGES 200–212, 2013, DOI 10.1016/j.geoderma.2012.08.034.
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known to be biased because kriging predictions are smoother than the target quantities. The
relative success of LUK must be attributed to dense soil sampling around the validation parcels
that dominantly lay in the severely contaminated part of the survey domain where a lot of soil
samples had been taken. When sampling is dense the smoothing bias of block kriging does not
matter much. In this situation, we can expect only limited gains in the precision of predictions
by more sophisticated methods such as CS and LCK.

Keywords: Local change of support, Lognormal block kriging, Validation, Heavy metals, Soil
contamination

1. Introduction

Soil contamination by heavy metals is a problem in many countries worldwide. Sometimes, the
pollution is so severe that the health of humans and other organisms is at risk. To avert harm
one has to spatially delineate the zone where the metal concentration exceeds a tolerable level
and to take protective measures there. Geostatistical methods have become an important tool for
mapping soil pollution at the local and regional scales (Altfelder et al., 2002; Hani and Pazira,
2011; Karanlık et al., 2011; Marchant et al., 2011; McGrath et al., 2004; Papritz et al., 2005;
Paul and Cressie, 2011; Rawlins et al., 2006; Saito and Goovaerts, 2001; Sollitto et al., 2010; Xie
et al., 2011). Apart from predicting the concentration per se, geostatistical methods were also
used to predict whether the metal concentration exceeds regulatory thresholds that have been
enacted in many countries in recent years (Chu et al., 2010; Lin et al., 2002; Marchant et al.,
2011; Papritz et al., 2005).

Soil protection authorities impose protective measures usually for entire parcels of land. The
metal content and threshold exceedance must therefore be predicted for small blocks of land,
typically having areas of a few hundred to several thousand m2. The support of the observations,
i.e. the area over which the material of a composite soil sample is collected, is usually (much)
smaller (5–100 m2). For planning protective measures, one faces therefore a nonlinear local
change of support problem (Chilès and Delfiner, 1999, pp. 435–437, Gotway and Young, 2002):
Based on usually sparse quasi-point support observations, one has to predict for parcels — which
are small compared to the area of the survey domain — whether their means exceed a threshold.
In the sequel, we adopt the usual geostatistical terminology and use the terms block and block
mean for a parcel and the mean content of the pollutant on it.

Conditional simulations (CS, Chilès and Delfiner, 1999, pp. 449–592) are usually preferred
when one has to predict threshold exceedance by block means in soil pollution studies (Ersoy
et al., 2008; Lin et al., 2001; Papritz et al., 2005). However, CS is highly parametric, and nonlin-
ear predictions by CS may be badly biased if the probabilistic model is misspecified as Aldworth
and Cressie (2003) pointed out. Universal block kriging (UK, Cressie, 1993b, p. 155) is simpler
than CS and commonly believed to be less sensitive to misspecifications of the model. But it
is well known that nonlinear functionals of UK block predictions are commonly biased because
the variance of the UK predictor is smaller than the variance of the target quantity (Aldworth
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and Cressie, 2003). The constrained (CK, Cressie, 1993a) and the covariance-matching con-
strained kriging predictors (CMCK, Aldworth and Cressie, 2003) share with UK simplicity and
robustness but are less biased than UK for nonlinear predictions and exactly unbiased for smooth
nonlinear functionals of a Gaussian variable. Like UK, the CK and CMCK predictors are lin-
ear in the data, but they satisfy in addition to the usual unbiasedness constraint of UK further
constraints: CMCK matches the covariance matrix of predictions and block means for a set of
blocks and CK does the same but just for a single block. These additional constraints eliminate
or reduce the bias of predictions of nonlinear functionals of block means.

Aldworth and Cressie (2003) and Hofer and Papritz (2010) investigated the properties of CK
and CMCK in comparison to CS and UK by simulations for the situation of global (Aldworth
and Cressie, 2003) and local change of support (Hofer and Papritz, 2010). In our former arti-
cle we studied a scenario where a point source has polluted the soils in its neighbourhood. We
considered Gaussian and positively skewed spatial processes with a nonstationary mean function
and various scenarios for the auto-correlated error. For Gaussian data and blocks with locally
dense sampling CS, UK, CK and CMCK performed equally well, both for predicting the block
means and whether they exceed a threshold. When sampling was sparse CK and CMCK gave
less precise predictions of the block means — which is expected from theory — but outper-
formed UK for predicting threshold exceedance, irrespective of the data distribution. CK was
only outperformed by CS in the Gaussian case when threshold exceedance was predicted by the
conditional quantiles. However, CS was strongly biased for the skewed data whereas CK still
provided unbiased and quite precise exceedance predictions. As CMCK was not clearly better
than CK, we recommended the latter method to predict block means and nonlinear transforms
thereof because this method seems to offer a good compromise between robustness against model
misspecification, precision of the predictions and simplicity to compute.

Unlike the validation of point predictions of soil attributes, which found some attention in
the past (e.g. Bourennane et al., 2007; Brus et al., 1996; Buttafuoco et al., 2007; Laslett, 1994;
Moyeed and Papritz, 2002; Papritz and Dubois, 1999; Voltz and Webster, 1990), we are not aware
of any study that validates geostatistical predictions empirically for the situation of local change
of support, i.e., when linear and nonlinear block predictions are computed from data observed on
quasi-point support. The reason for this lack might be that soil samples with support larger than
about 100 m2 are rarely gathered in studies on the spatial variation of soil properties. Such block-
support data were available from a comprehensive survey (Kayser et al., 2006; Papritz et al.,
2005) of the heavy metal content of the soils in a region near Dornach, NW Switzerland, where
a metal smelter had polluted the soils by copper (Cu), zinc (Zn) and cadmium (Cd). The study
had been commissioned in 2003 by the owner of the factory and the soil protection authorities
with the aim to delineate the zones where the trigger and clean-up thresholds of the Swiss soil
protection ordinance (OIS, 1998) were exceeded and to examine whether protective measures
were required in these zones.

As we believe that empirical validation studies are important to guide practitioners in their
choice of an adequate spatial prediction method we compare here the performance of CS, UK,
CK and CMCK empirically with data from this survey. We validate lognormal CS, UK, CK and
CMCK block predictions of i) the mean topsoil metal content on 53 parcels and ii) predictions
whether these means exceed regulatory thresholds. The validation is done by comparing the
predictions, computed from observations with support of 2–100 m2, with measured metal content
in composite (bulked) soil samples for which the individual cores had been evenly distributed
over the parcels, having areas between 400 and 5500 m2 (mean 1300 m2).

The sites where soil was sampled in the 2003 survey were selected based on CS predictions
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of the mean topsoil Cu content of some 7400 parcels, computed with data from earlier surveys,
see Papritz et al. (2005) for details. If the 95 %-quantile of the predictive distribution of the
Cu block mean exceeded for a given parcel the clean-up threshold then a composite sample
covering the whole unsealed part of the parcel was collected. All such parcels were sampled in
this way, provided there were no measurements from earlier surveys. In the zone where the CS
predictions suggested less severe contamination (95 %-quantile < clean-up threshold) ‘standard’
soil samples were collected, obtained by bulking the cores over an area of about 100 m2.

The contrasting support of the two types of soil samples allowed us to validate block pre-
dictions by splitting the data into two subsets: A calibration set, consisting of all samples with
support≤ 100 m2, was used to compute the predictions, and a validation set with 53 observations
relating to samples with support > 500 m2 served us to compare the precision of the CS, UK,
CK and CMCK predictions. We report here the results of this comparison.

The remainder of the article is structured as follows: Section 2 summarises the essential
theory about conditional simulations, lognormal universal and constrained block kriging. In the
following section, we describe the study site (3.1), the available data (3.2), the model fitted to the
calibration data (3.3), the target quantities (3.4) and the criteria used to validate the predictions
(3.5). A subsection on computations (3.6) completes section 3. Sections 4 and 5 present and
discuss the results and the article concludes with some final remarks in section 6.

2. Conditional simulations, lognormal universal, constrained and covariance-matching con-
strained block kriging

Let Z = (Z(s1),Z(s2), . . . ,Z(sn))
′ denote the vector of random variables that model the obser-

vations z(si), i = 1,2, . . . ,n (′ denotes transpose). We assume a lognormal distribution for Z(s):

Z(s) = exp
(
Y (s)

)
= exp

(
S(s)+ ε(s)

)
= exp

(
x(s)′β +δ (s)

)
· exp

(
ε(s)

)
, (1)

where S(s) = x(s)′β +δ (s) is a Gaussian variable with expectation E[S(s)] = x(s)′β ; x(s) and β

are p-vectors with the covariates for location s and the regression coefficients; δ (s) is a zero mean
weakly stationary Gaussian variable with isotropic covariance function Cov[δ (s),δ (s+h)] =
Cov[S(s),S(s+h)] =C(h), h = ||h||; and ε(s) is a Gaussian zero mean white noise variable with
variance σ2

ε that models independent measurement errors. Notice that the errors are multiplica-
tive on the original scale of the measurements.

Our task is to predict the block mean of the measurement error-free variable W (s)= exp
(
S(s)

)
W (B) =

1
|B|

∫
B

exp
(
S(s)

)
ds, (2)

and to predict whether W (B) exceeds some threshold T (|B| denotes the area of the block). A
standard approach is to use conditional simulations to predict W (B): A conditional realisation of
W (B) given Z, say Wω(B)|Z, is obtained from

Wω(B)|Z =
1
|B|

∫
B

exp
(
Sω(s)|Y

)
ds,

where Sω(s)|Y is a realisation of the Gaussian random process {S(s)} over the domain of interest,
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conditioned to Y = log
(
Z
)
. In practice, we approximate the above integral by the sum

Wω(B)|Z≈
1

nB
∑

si∈B
exp
(
Sω(si)|Y

)
, (3)

where nB is the number of points — usually arranged on a grid — that fall into the block. Such
conditional Gaussian realisations can be efficiently simulated by the ‘conditioning-by-kriging’
method (Chilès and Delfiner, 1999, pp. 466). The best mean square predictor of W (B) is the
conditional expectation E[W (B)|Z]. We can approximate this quantity numerically by simulating
a large number M of realisations of Wω(B)|Z and by computing

ŴCS(B) =
1
M

M

∑
ω=1

Wω(B)|Z. (4)

The lognormal block kriging predictor computed under the so-called assumption of perma-
nence of lognormality is another predictor of (2) that was used a lot in the past (cf. Cressie, 2006,
for references). This predictor is obtained by predicting the block mean, S(B) = 1/|B|

∫
B S(s)ds,

of the log-transformed, error-free variable S(s) linearly by block kriging and by transforming
the prediction back to the original scale of the measurements with a bias adjustment that is com-
puted under the assumption that both exp(S(s)) and exp(S(B)) are lognormally distributed, which
strictly cannot hold.

Before we consider this adjustment, we review different ways to predict S(B): Universal
kriging provides the best linear unbiased plug-in predictor

ŜUK(B) = x(B)
′
β̂ GLS + c(s1...n,B)′Σ−1 (Y−Xβ̂ GLS), (5)

where x(B) is the p-vector with the covariates for the target block B; β̂ GLS is the p-vector with the
generalised least squares estimate of β ; c(s1...n,B) is an n-vector with the covariances between Y
and S(B); Σ = Cov[Y,Y′] is the n×n covariance matrix of Y; and X is the n× p design matrix
of the data. The mean squared prediction error (MSPE) of UK is given by

MSPE[ŜUK(B)] = Var[S(B)− ŜUK(B)] (6)
= Var[S(B)]− c(s1...n,B)′Σ−1 c(s1...n,B)+(

x(B)−X′Σ−1c(s1...n,B)
)′
(X′Σ−1X)−1(x(B)−X′Σ−1c(s1...n,B)

)
.

It is well-known that for any nonlinear function g(·), g
(
ŜUK(B)

)
is a biased predictor of

g
(
S(B)

)
as ŜUK(B) underestimates the true variation of S(B). Cressie (1993a) and Aldworth and

Cressie (2003) therefore proposed linear predictors that are less biased in these circumstances be-
cause they match either for a set of blocks (CMCK) or only a single block (CK) the (co-)variances
of predictions and block means. The CMCK predictor, ŜCMCK, of Aldworth and Cressie of a set
of m block means, S = (S(B1), . . . ,S(Bm))

′, is given by

ŜCMCK = XBβ̂ GLS +K′C′Σ−1(Y−Xβ̂ GLS), (7)
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where K = Q−1
1 P1 is an m×m matrix; Q1 and P1 are symmetric m×m matrices given by

Q1Q1 = Q = C′(Σ−1−Σ
−1X(X′Σ−1X)−1X′Σ−1)C, (8)

P1P1 = P = ΣB−XB(X′Σ−1X)−1X′B, (9)

where C = (c(s1...n,B1), . . . ,c(s1...n,Bm)) is an n×m matrix with covariances between the ob-
servations and the block means; ΣB = Cov[S,S′] is the m× x covariance matrix of S and XB =
(x(B1), . . . ,x(Bm))

′ is the m× p design matrix of the m blocks. The matrices Q1 and P1 exist and
are positive definite if Q and P are themselves positive definite. In practice, the CMCK predictor
thus exists if Q and P are positive definite. Unlike Q, which is always nonnegative definite, the
matrix P may become negative definite (see Aldworth and Cressie, 2003, p. 15, and Hofer and
Papritz, 2010, p. 635 for details).

For m = 1 the CMCK predictor simplifies to the CK predictor, first proposed by Cressie
(1993a)

ŜCK(B) = x(B)
′
β̂ GLS +K c(s1...n,B)′Σ−1(Y−Xβ̂ GLS), (10)

where the scalar K is given by

K =

(
P
Q

)1/2

=

(
Var[S(B)]−x(B)′(X′Σ−1X)−1x(B)

c(s1...n,B)′(Σ−1−Σ
−1X(X′Σ−1X)−1X′Σ−1)c(s1...n,B)

)1/2

. (11)

The CK predictor exists if the numerator and denominator of (11) are positive. Whereas Q≥ 0,
P may become negative, which is more likely to happen if |B| is large (Var[S(B)] small) or if the
trend is extrapolated (x(B)′(X′Σ−1X)−1x(B) = Var[x(B)′β̂ GLS] large). Hofer and Papritz (2010,
pp. 643–645) discuss in more detail what controls P and Q.

The constraint that the (co-)variances of Ŝ and S must match, results in larger mean squared
errors of the CK and CMCK compared to the UK predictor

MSPE[ŜCMCK] = MSPE[ŜUK]+ (P1−Q1)(P1−Q1), (12)

where

MSPE[ŜUK] = Cov[(S− ŜUK),(S− ŜUK)
′]

= ΣB−C′Σ−1C+(X′B−X′Σ−1C)′(X′Σ−1X)−1(X′B−X′Σ−1C), (13)

is the covariance matrix of the UK prediction errors. Similarly, the mean squared error of CK is
given by

MSPE[ŜCK(B)] = MSPE[ŜUK(B)]+(
√

P−
√

Q)2. (14)

To transform the predictions Ŝ...(B) back to the original scale under the assumption of perma-
nence of lognormality, one uses the approximately unbiased back-transformation (Cressie, 2006)

ŴL...(B) = exp
(

Ŝ...(B)+1/2
{

Var[S(s)]+β
′M(B)β −Var[Ŝ...(B)]

})
, (15)
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where ... stands for UK, CK or CMCK and

M(B) =
1
|B|

∫
B

(
x(s)−x(B)

)(
x(s)−x(B)

)′ ds

is the (spatial) covariance matrix of the covariates for a point s uniformly distributed in B. To
compute (15) we thus needed Var[ŜCMCK(B)], Var[ŜCK(B)] and Var[ŜUK(B)], which are given by

Var[ŜCKCK(B)] = Var[ŜCK(B)] = Var[S(B)] =
1
|B|2

∫
B

∫
B

C(||s− t||)dsdt (16)

Var[ŜUK(B)] = Var[S(B)]−MSPE[ŜUK(B)]+2Ψ(B)′ x(B), (17)

where
Ψ(B) = (X′Σ−1X)−1(x(B)−X′Σ−1c(s1...,n,B)

)
is the vector with the p Lagrange multipliers of the UK equations.

Cressie (2006) showed by simulation that (15) may be biased and less efficient than the
predictor

W̃L...(B) =
1
|B|

∫
B

ŴL...(s)ds,

which we approximate again by a sum

W̃L...(B)≈
1

nB
∑

si∈B
ŴL...(si), (18)

where
ŴL...(si) = exp

(
Ŝ...(si)+1/2{Var[S(si)]−Var[Ŝ...(si)]}

)
(19)

are unbiasedly back-transformed lognormal point kriging predictions. Cressie’s (2006) simula-
tion results suggest that for lognormal ordinary kriging at least, the bias of (15) is negligible and
the loss of efficiency of (15) relative to (18) remains small, provided Var[S(s)] is not much larger
than 0.1 and the dimension of the block is several times smaller than the effective range of the
variogram. As both conditions were satisfied in our study, we assumed permanence of lognor-
mality and used (15) with UK and CK predictions of S(B) to predict W (B). However, based upon
a reviewer’s suggestion, we also used (18) along with UK, CK and CMCK point predictions of
S(s). Paul and Cressie (2011) used this predictor with UK as well to predict the mean americium
content of remediable blocks on a nuclear weapons test site in the United States.

3. Material and methods

3.1. Study site

The study area is situated at the northern edge of the Swiss Jura mountains, 10 km south of
the city of Basel (7◦ 37’ E, 47◦ 29’ N, 290–700 m above sea level). The metal smelter, which
has been producing non-ferrous metal alloys and semi-finished products since 1895, polluted the
soils by dust emissions until the 1980s in four villages (Fig. 1): Dornach, situated on a west
facing slope 600 m east of the smelter, was most strongly affected; Arlesheim (on the same slope
further to the north outside of the map section), Aesch and Reinach, located on the alluvial plane
in the SW and NW, less so. The premises of the smelter border residential areas in the sector

7



NNE over E to S and industrial premises in the sector from S to NW (Fig. 1). A major part of
the affected area is nowadays built-up. The built-up areas expanded in Dornach and Arlesheim
mainly before and in Reinach and Aesch after 1960. Land is left for agriculture on the western
plain and on the hills in the (south)east, but most hills carry forests.

Jurassic limestones and marls (Bajocian, Bathonian, Oxfordian) form the bedrock on the
hills in the (south)east (Bitterli-Brunner et al., 1984). These sediments are partly naturally rich
in Cd. In the central and western parts of the area Tertiary (Rupelian, Chattian) or Quaternary
sediments (loess, gravel) prevail. Except for the loess areas, the soils are rich in carbonate,
have a high pH and are mostly sandy to silty loams. Rendzic Leptosols and calcaric Cambisols
originally predominate, but at many sites the layering is disturbed by building, and artefacts (spall
of bricks, etc.) are often found. Because of the high pH the soils strongly adsorb the metals, and
the fraction that is readily available to plants is small (Schulin and Gupta, 2002).

3.2. Data

The data that we analysed in our study consisted of topsoil (0–20 cm) measurements of Cd, Cu
and Zn at 707 (Zn: 685) sites, spread over an area of about 12 km2 around the metal smelter.
The measurements refer to composite soil samples for which several (usually 20–35) soil cores
were collected over support areas of varying sizes (2–5500 m2). Estimates of the support of the
composite samples were available with some exceptions.

We split the data set into a calibration and validation set based on the support of the mea-
surements: Measurements with support ≤ 100 m2 were assigned to the calibration set (Cd and
Cu: 578; Zn: 556 observations) and measurements with support > 500 m2, in total 53, formed
the validation set. Measurements with support between 100 and 500 m2 and 76 measurements
without information on support were excluded from the analysis. When collecting the soil sam-
ples, a support > 100 m2 was chosen only if severe pollution was anticipated for the respective
parcel (cf. introduction). Hence, our procedure to split the data into calibration and validation
sets was not random because strongly polluted parcels had a bigger chance to be assigned to the
validation set than parcels with minor soil pollution.

Figure 1 shows about 85 % of the calibration sites (marked by +). The remaining calibration
sites lay outside of the displayed region, mainly to the north and east of it. The histograms of
the calibration data (Fig. 2) reveal that the frequency distributions of the measurements were
positively skewed. The 53 parcels to which the validation data refer are displayed in Figure 1 by
red polygons. They were the targets for which predictions were computed from the calibration
data. Note that the area of the validation parcels was in general larger than the recorded support
of the measurements because on most parcels a part of the ground had been built-up or had been
sealed in some other way.

In addition to the metal measurements, geo-referenced areal views of the study area as well
as a digital cadastre, digitised geological maps and maps of changes in the land use between
1877 and 2000 were available for the geostatistical analyses.

3.3. Spatial modelling

3.3.1. Large-scale spatial trend
To account for the large-scale spatial trend, we modelled the log-transformed Cd, Cu and Zn
measurements by linear regressions. An exploratory analysis of the data (not shown) revealed
that the soil concentration of all three metals decreased with increasing distance, d(s), between
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a site s and the smelter. Besides the distance, the orientation of a site relative to the smelter
mattered. We used eight ‘hat’ functions (B-splines of order 2, cf. Schuhmaker, 1981, sec. 4.3)

fk(s) = max
(

0,1−
∣∣∣∣θ(s)π/4

− k
∣∣∣∣) ,k = 0,1, . . . ,7

and their products with log(d(s)) to model a continuous change of the concentration with d(s)
and the azimuth, θ(s), of a site (in radian from north) as seen from the smelter. As ∑

7
k=0 fk(s) = 1

we did not need to include an intercept, nor did we need log(d(s)) as a covariate on its own in
the regression models.

We used in addition the categorial covariate (factor) ‘Geology’ since the Bajocian and Oxfor-
dian rocks of the Swiss Jura often have elevated Cd content (Rambeau et al., 2002), which may
lead to a natural enrichment of Cd in the soils by weathering. We simplified the classification of
the sites with respect to their bedrock and distinguished only four groups: ‘Lower/Middle Oxfor-
dian’, ‘Bajocian/Upper Oxfordian’, ‘Lower Rupelian’ and ‘other bedrock’ (Bathonian, Chattian,
Quaternary). The former three groups have parent material rich in Cd. Zones where they outcrop
are hatched with coloured lines in Figure 1. We further considered land use and its change since
1877 as a factor in the regression models. This information was also simplified: We distinguished
between agricultural land/forests and areas built-up before or after 1960. The exploratory analy-
sis further revealed that the Cd measurements of one survey (Grünenfelder and Schmidli, 1998)
were systematically too large. To account for this analytical bias we included a binary variable in
the regression model for log(Cd), which was equal to one for measurements of that survey and
equal to zero otherwise.

The regression models were fitted robustly by an MM-estimator
(Maronna et al., 2006, sec. 5.5). We fitted the ‘full’ model that contained all the covariates to the
log-transformed metal data of the calibration set and simplified the models manually based on
partial residual plots (Faraway, 2004, sec. 4.3). To assess the goodness of the fit of the models we
used customary residual diagnostic plots (Tukey-Anscombe plot, normal Q-Q-plots, scatterplot
of residuals vs. leverage, etc.). log(Cd(s)) was eventually modelled with the covariates fk(s),
fk(s) · log(d(s)) and the factors for the simplified geology and land use as well as the indica-
tor variable for the biased measurements. The regression models for log(Cu(s)) and log(Zn(s))
included the same covariates except the factor for geology and the indicator for the biased Cd
measurements. Table 1 lists the GLS estimates of the regression coefficients for the three heavy
metals.

Two remarks might be helpful: First, the coefficients for fk(s) and fk(s) log(d(s)) correspond
to intercept and slope of a regression of log(conc(s)) on log(d(s)) in the kth direction. Second,
we used the so-called treatment contrasts for the factors. The coefficients listed for the various
levels of the factors are therefore differences between the intercept of the respective level and
the intercept of the reference level ‘other bedrock’ (geology) and ‘agriculture/forest’ (land use),
respectively.

3.3.2. Variogram estimation
The sample variograms of the residuals of the robustly fitted regression models were estimated
by Dowd’s MAD estimator (Dowd, 1984). Then we fitted stable variogram models with a nugget
component

γ(h) = σ
2
0
(
1− I(h = 0)

)
+σ

2
1
(
1− exp(−( h

α
)κ)
)
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to each sample variogram by weighted least squares (Cressie, 1993b, sec. 2.6.2). In the above
equation, σ2

0 is the nugget; I(x) is an indicator function with I(x) = 1 if x is true and I(x) = 0
otherwise; σ2

1 is the partial sill; α is the range parameter and κ is the roughness parameter. We
did not try to take the non-constant support (2–100 m2) of the calibration data into account when
estimating the variograms.

The fitted variogram parameters are listed in Table 2, and the sample variograms are plotted
in Figure 3, along with the fitted models. Note that we assumed σ2

ε = 0 for the variance of the
measurement errors. Duplicated chemical analyses of a subset of the soil samples showed that
σ2

ε ≈ 0.0005− 0.002 for the log-transformed measurements, which was several times smaller
than the semivariance for the characteristic length of the measurement support (≈ 10 m). The
nugget reflects therefore mostly micro-scale variation so that the assumption W (B) ≈ Z(B) that
we used in the validation is justified.

3.4. Target quantities

We predicted for each parcel of the validation set the same quantities as in our previous simula-
tion study (Hofer and Papritz, 2010):

1. The block mean, W (Bi).
2. The binary indicator, I(W (Bi)> T ), that indicates if the block mean W (Bi) exceeds a given

threshold T .

Note that Bi refers here to the whole parcel as defined in the cadastre. We mentioned above that
the recorded support of the measurements was for most parcels smaller than |Bi|. However, as
we only had an estimate of the size of the sampled area and did not know its exact geometry, we
could but predict the mean over the entire parcel.

3.5. Validation criteria

3.5.1. Block means
To validate the precision of the predictions of the block means we calculated the empirical bias
(eBIAS) and the empirical mean squared prediction error (eMSPE)

eBIASk =
1

53

53

∑
i=1

(Ŵk(Bi)−W (Bi)), (20)

eMSPEk =
1

53

53

∑
i=1

(Ŵk(Bi)−W (Bi))
2, (21)

where Ŵk(Bi) is the prediction of the block mean by method k and W (Bi) is the heavy metal
concentration measured for block Bi (note that we assumed ε(s) = 0).

3.5.2. Threshold exceedance
To validate predictions of threshold exceedance we adopted the approach of Hofer and Papritz
(2010, pp. 640–642) and assessed the quality of the predictions for multiple thresholds. In more
detail, we used for each heavy metal the ordered validation data as thresholds, say T[l], l =
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1, . . . ,53, and computed for method k the following quantities

TNkl =
53

∑
i=1

I(Ŵk(Bi)≤ T[l]) · I(W (Bi))≤ T[l]),

FNkl =
53

∑
i=1

I(Ŵk(Bi)≤ T[l]) · I(W (Bi))> T[l]),

FPkl =
53

∑
i=1

I(Ŵk(Bi)> T[l]) · I(W (Bi))≤ T[l]),

TPkl =
53

∑
i=1

I(Ŵk(Bi)> T[l]) · I(W (Bi))> T[l]).

From the counts TNkl , . . . ,TPkl we calculated then for each threshold and each method the Peirce
skill score (PSS, Peirce, 1884). PSS characterises the conditional bias and equals the difference
between the hit, Hkl , and the false alarm rate, Fkl

PSSkl = Hkl−Fkl , (22)

where
Hkl =

TPkl

FNkl +TPkl
, (23)

and
Fkl =

FPkl

TNkl +FPkl
. (24)

PSS ranges between−1 (perfect misclassification: TNkl =TPkl = 0) and 1 (perfect classification:
FNkl = FPkl = 0). Tossing a fair coin results in PSS = 0.

To see whether and how strongly the kth method systematically over- or underestimated the
exceedance frequency we used in addition the bias score (BS, Wilks, 2011, p. 310)

BSkl =
FPkl +TPkl

FNkl +TPkl
. (25)

BSkl = 1 indicates that method k predicts on average the correct number of threshold exceedances,
whereas BSkl > 1 (BSkl < 1) signals systematic overestimation (underestimation) of exceedance.
More information on PSS and BS may be found in Hofer and Papritz (2010) and in the references
cited therein.

3.6. Computations

We used the software R (R Development Core Team, 2012) for all the computations. Robust
regressions were computed by the function lmrob of the R package robustbase (Rousseeuw et al.,
2011), and the variogram models were evaluated by the respective function of the R package
RandomFields (Schlather, 2001, 2011).

Block kriging predictions (UK, CK) of the log-transformed metal content were computed by
the preCKrige and CKrige functions of the R package constrainedKriging (Hofer and Papritz,
2011) and were transformed back to the original scale under the assumption of permanence of
lognormality by equations (15), (16) and (17). We denote the respective predictions in the sequel
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by LUKp and LCKp. In addition, we computed point UK, CK and CMCK predictions of S(s)
on a 10× 10 m2 grid. One grid point thus represented an area of 100 m2, equal to the support
of the vast majority of calibration measurements. To constrain the CMCK predictions, we used
3× 3 sets of points centred on the target point in the middle. The UK, CK and CMCK point
predictions were transformed back by (19), and we computed the means for all sets of points
falling into one of the 53 validation parcels. These predictions are denoted by LUK, LCK and
LCMCK respectively. Note that we did not use local search windows in kriging, but computed
the predictions always from all the observations in the calibration set.

Gaussian conditional simulations were generated by the kriging method (Chilès and Delfiner,
1999, pp. 465–472). To this end, unconditional Gaussian realisations of {δ (s)}were simulated at
the 611×611 nodes of a 10×10 m2 grid by the circulant embedding algorithm of Chan and Wood
(1997), implemented in the function GaussRF of the R package RandomFields. For each heavy
metal, we simulated 2000 realisations of conditional errors and added the GLS trend surface to
obtain 2000 conditional realisations of the log-transformed metal content at all the grid nodes.
The simulated values were then transformed back to the original scale, and 2000 conditional
realisations of the block means were obtained by arithmetically averaging the grid values within
the 53 validation parcels. The block means were then predicted by the means of the conditional
realisations (conditional means) and exceedance of threshold T[l] by the l

53 -quantile of the 2000
conditionally simulated block means. This choice should maximise PSS (Hofer and Papritz,
2010, p. 649).

Apart from the conditional mean (cf. equation 4) and the various kriging predictions ŴLUKp(B),
ŴLCKp(B), ŴLUK(B), ŴLCK(B), and ŴLCMCK(B) we used as a last predictor the bias-corrected,
back-transformed GLS trend surface predictor

ŴGLS(B) = exp
(

x(B)′β̂ GLS +1/2
{

Var[S(s)]+ β̂
′
GLS M(B) β̂ GLS−Var[x(B)′β̂ GLS]

})
(26)

to predict W (B).

4. Results

The LCKp prediction of the Cd content of one parcel west of the smelter (marked by ∗ in Fig. 1)
did not exist because P was negative. We excluded the respective datum therefore from the Cd
validation set.

4.1. Validating predictions of parcel means

The GLS, CS and LCKp predictions are plotted in Figure 4 against the measured contents of the
three metals. The line segments in the plots represent differences in predictions by the respective
method and LUKp, which was used as baseline. Figures 5 and 6 report empirical biases (eBIAS)
of predictions and mean squared prediction errors (eMSPE) for all the methods.

The GLS trend surface predictions were conditionally biased: Small contents were over- and
large content underestimated (Fig. 4A–C). The other methods showed no or lesser conditional
biases (e.g. CS and LCKp in Fig. 4D–I). The CS, LUKp and LUK predictions (latter not shown
in Fig. 4) hardly differed from each other. Compared to LUKp, the LCKp, LCK and LCMCK
predictions were ’amplified’ in the sense that small predictions were smaller and large predic-
tions larger than the respective LUKp predictions (K > 1, cf. equation 10). On the log-scale
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the discrepancies between LUKp and the constrained predictions were approximately symmetric
(Fig. 4J–L), but they became asymmetric by the back-transformation (Fig. 4G–I for LCKp).

For Cd the largest marginal biases were observed for LUK and LCK, and LCMCK was best,
closely followed by CS (Fig. 5). For Cd, the contributions of eBIAS to eMSPE remained small (<
2 % for LUK and LCK, Fig. 6). This was different for Cu and Zn where large eBIASs contributed
noticeably to eMSPEs for GLS, LCK and LCMCK. For all the metals, CS had consistently the
smallest eMSPE (Fig. 6), and LCK performed consistently worst (eMSPEs about twice as large
as those of other methods). Strong amplification of the largest LCK predictions relative to LUK
was the reason for the poor precision. The stronger amplification of large LCK compared to large
LCKp predictions was caused by larger values of

√
P for point than for block predictions on the

log-scale (Var[S(s)]� Var[S(B)], cf. equation 11). In general, the eMSPEs of CS, LUKp and
LUK did not differ much, and for Cd those of LCKp and LCMCK were not much worse, unlike
Cu and Zn where all constrained predictors were clearly less precise than conditional simulations
or either type of lognormal universal block kriging.

4.2. Validating predictions of threshold exceedance
The Peirce skill scores (PSS) of CS, LUKp, LCKp and LCMCK are plotted in Figures 7A–C for
the three heavy metals against the 53 (Cd: 52) thresholds. The PSS statistic, being the difference
between the hit and false alarm rate, characterises the conditional bias of binary (‘yes’/‘no’)
predictions. The larger PSS, the better the classification of ‘yes’ and ‘no’ events. We further
recall that we used the conditional l/L-quantiles to predict threshold exceedance by CS.

CS and LCMCK outperformed LUKp and LCKp in predicting exceedance of small (Cd <
1 mg kg−1) and large (Cd > 2 mg kg−1) thresholds, and CS was as good as and LCMCK some-
what worse than the two kriging methods in between (Fig. 7A). Hence, LUKp and LCKp over-
estimated exceedance for the small and underestimated it for the large thresholds, resulting in
a large false alarm rate in the former and a small hit rate in the latter case, deteriorating PSS
thereby in both instances. The performance of LUKp and LCKp differed only for the thresholds
2–3 mg Cd kg−1 where LCKp was slightly better than LUKp. The PSS of LUK (not shown) did
not differ much from that of LUKp, and LCK, due to its positive marginal bias overestimated
threshold exceedance over the whole range of cutoffs, resulting in a large false alarm for the
small and a large hit rate for the large thresholds, but performing on average worst among all the
methods.

The Pierce skill scores showed also for Cu (Fig. 7B) some advantage of CS and LCMCK
over the other methods, mostly for small (Cu < 300 mg kg−1) and large (Cu > 1000 mg kg−1)
thresholds. The performance of LUKp, LCKp, LUK (the latter not shown) hardly differed. LCK
showed the same pattern as for Cd (positive marginal bias, resulting in a large false alarm rate for
small and a large hit rate for large thresholds). For Zn the PSS curves of CS and LCKp were quite
similar (Fig. 7C), with some advantage of CS over LCKp for thresholds in 250–1000 mg kg−1.
Moreover, LUKp and LUK (not shown) predicted threshold exceedance nearly as well, except
for the thresholds between 1000 and 2000 mg kg−1. LMCK and LCK (the latter not displayed)
showed again the pattern typical for positive marginal bias, and both methods were not better
than either LUKp, LUK or LCKp.

Apart from PSS, we computed also the bias scores (BS, Fig. 7D–F) as a function of the
thresholds to see whether the methods systematically over- or underestimated the exceedance
frequency. A bias score close to one signals absence of systematic errors in a binary classifica-
tion problem. Predicting exceedance of the large thresholds by the conditional quantiles of CS
resulted for all the metals in a large number of false positives, and this increased the bias score
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to 2–4. LCK (not shown) performed for all the metals at least as bad as CS, and LCMCK had
large BS for large thresholds of Cu and Zn. The strong positive bias of LCK (and partly also
LCMCK) was responsible for the large bias scores: If the predictions are on average too large
(positive eBIAS) then we expect BS>1, irrespective of the magnitude of the threshold. Such a
pattern was also evident for the positively biased LCKp and LCMCK predictions of the Cu and
Zn contents: For the small to intermediate thresholds, where the false positives of CS did not
matter, LCKp and LCMCK usually had the largest bias score.

5. Discussion

The size of the validation data set was rather small in our study. This must be born in mind
when we now compare the results of the empirical validation with those of the simulation study
by Hofer and Papritz (2010) and make an attempt to distill some general conclusion from the
empirical validation.

First, |eBIAS| and eMSPE were among the seven methods generally smallest for CS, and
CS predicted threshold exceedance with least conditional bias. This suggests that the Gaussian
model was not grossly wrong for the log-transformed metal measurements. Second, in contrast
to the simulation study where all the methods predicted the block means practically without bias
and where we did not use any back-transformation, LCK in particular and the other constrained
predictors somewhat less, tended to be positively biased. Whereas the bias was negligible for Cd,
it was pretty obvious for Cu and Zn and contributed noticeably to the eMSPEs. The amplification
of the differences between constrained and UK predictions of the log-transformed metal content
by the back-transformation leads to marginal bias only if the weighted sums of the GLS resid-
uals (term c(s1...n,B)′Σ−1(Y−Xβ̂ GLS) in equation (10)) are dominantly positive (or negative).
Since most of the non-zero elements of c(s1...n,B)′Σ−1 are positive, this happens when most GLS
residuals are themselves positive, i.e., if the GLS trend surface ‘underfits’ the transformed ob-
servations in the vicinity of the validation blocks. The back-transformed kriging predictions are
then larger than the GLS predictions. Figures 4B–C show that this was indeed the case for Cu
and Zn (positive LUKp−GLS differences with only few exceptions for small metal content).
For Cd, however, the LUKp−GLS differences were more balanced, which resulted — in combi-
nation with the smaller concentration — in less asymmetry in LCKp−LUKp differences when
transforming the CK predictions of the log-transformed metal content back to the original scale
(cf. Figures 4G vs. H–I). It thus appears that differential success to fit the data in the vicinity of
the validation blocks by the regression model was at least partly responsible for the presence or
absence of bias and the partly poor precision of constrained or covariance-matching constrained
kriging predictions.

Third, unlike some simulation results reported by Cressie (2006), LUK did not outperform
LUKp, and LCKp performed far better than LCK. The poor performance of LCK was caused by
much larger K values of CK point than CK block predictions of the log-transformed metal content
in combination with underfitting of the trend. Averaging the back-transformed point predictions
did not moderate the effect of large K values. Using (18) with point CMCK of log-transformed
concentrations did neither offer a clear advantage over LCKp. Hence, the assumption that both
measurements and block means follow lognormal laws seems defendable for our study. The
rather small ratios of the supports of blocks and observations certainly have contributed to the
success of the back-transformation (15).

Fourth, the differences in eMSPE qualitatively agree with theory and our previous simu-
lation results. CS, LUK and LUKp were consistently better than the constrained predictors.
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The small to moderate values of K (Table 3) for LCKp suggest that the measurements were
at least moderately dense around most validation blocks and that there was little need to am-
plify the GLS residuals to meet the variance constraint of block CK. However, compared with
the dense sampling situation in the simulations, the differences in eMSPE between LCKp and
LUKp were rather large, in particular for Cu and Zn. A more detailed analysis revealed that
the ratios eMSPELCKp/eMSPELUKp were always larger than the ratios eMSPECK/eMSPEUK,
computed for the log-transformed data. Hence, for Cu and Zn, the back-transformation not only
introduced some bias, but it also aggravated the loss of precision of LCKp relative to LUKp.

Fifth, the average magnitude of PSS indicates that all the methods predicted threshold ex-
ceedance reasonably well. This was confirmed by the areas (AUC) under the Receiver Operating
Characteristic curves (e.g. Fawcett, 2006) that we computed in addition to plots of PSS vs. T[l].
AUC ranged from 0.78–0.92 (Table 4). Hosmer and Lemeshow (2000) consider such values as
good to excellent in a binary classification problem (AUC = 1 means perfect and AUC = 0.5
random discrimination). The ranking of the methods in predicting threshold exceedance agrees
with their performance in the simulations when many measurements were available around the
target blocks: CS performed then better than either CK or UK for predicting exceedance of the
large thresholds, and UK was nearly as good as CK over the whole range of the thresholds. Fur-
thermore, BS signalled for CS in the simulations at the large thresholds substantial marginal bias
(many false positives). Hence, the results of the validation of threshold exceedance support the
view that the density of the measurements was quite large around the validation parcels, in partic-
ular northeast of the plant where most parcels lay (Fig. 1). Hofer and Papritz (2010, pp. 644–646)
showed that UK and CK predictions of nonlinear functionals of block means then do not differ
much because the variance of the UK predictor is not much smaller than the variance of the
block mean. Under these circumstances, UK (and LUKp) perform quite well when predicting
nonlinear functionals of block means, and the gain in precision, that could be obtained by using
more sophisticated (and more demanding) methods is likely to remain rather limited.

To see if the density of the support points had some influence on the quality of the predictions,
we divided the Cu calibration data set into 5 parts with about 115 observations in each part,
predicted the mean Cu content and threshold exceedance for the 53 validation parcels from each
part, and averaged the performance measures for the five parts. Since some point or block CK or
CMCK predictions did not exist, we had predictions only for 41 validation parcels from all the
five parts. The main difference to the results shown in Figures 5–7 was a substantial negative bias
of LUK, which increased also its eMSPE in comparison to LUKp and LCKp. Furthermore, the
PSS curve of LUK signalled substantial underestimation of exceedance of large thresholds. The
performance of the other kriging methods did not change much, when the number of calibration
observations was reduced to one fifth of the full calibration data set. Reducing the calibration
information even further by splitting the calibration data set into ten parts left us only with 9
validation parcels for which the predictions always existed, and this was too little to draw any
conclusions about the performance of the methods for even sparser calibration data.

6. Conclusions

We presented an empirical validation of predictions of topsoil heavy metal content on parcels
of land in an area where a metal smelter had severely polluted the soils. Precise prediction of
the pollution level of property is essential under such circumstances because it is a prerequisite
for correctly assessing the health risks and mitigating them by appropriate measures. Besides
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predictions of the mean metal content we therefore assessed the precision of predictions that par-
cel means exceed regulatory thresholds. All the predictions were computed from measurements
with quasi-point support. To our knowledge, our study is the first attempt to validate predictions
by conditional simulations, lognormal customary and several forms of constrained block kriging
for a local change of support situation with soil data.

On average, the conditional simulations gave the most precise predictions, both of the block
means and of threshold exceedance. However, the advantage of this approach was not pro-
nounced: Lognormal universal block kriging — regardless whether based on the assumption of
permanence of lognormality or on averaging lognormal point kriging predictions — predicted
the block means nearly as well and was not much worse than either form of constrained krig-
ing or conditional simulations when predicting threshold exceedance. All the methods predicted
threshold exceedance with good success.

Averaging lognormal constrained or covariance-matching constrained point predictions did
not offer a consistent advantage over customary universal or constrained lognormal block kriging
computed on the assumption of permanence of lognormality. However, the latter method did not
perform as well as in our previous simulation study. Its mean squared error was quite large,
and it had no clear advantage over customary lognormal universal block kriging when predicting
threshold exceedance. We think that this result does not reflect a general weakness of the method,
but was rather due to the combined effect of a local misfit of the trend model and the back-
transformation to the original scale of the measurements. However, further work is needed to
corroborate or refute this tentative assessment.

The good performance of lognormal block kriging came rather as a surprise because non-
linear transforms of the customary block kriging predictor are commonly thought to be quite
strongly biased because the kriging predictions are smoother than the target quantity. Constrained
or covariance-matching constrained block kriging and conditional simulations should then have
a clear advantage over customary block kriging. But we already found in the simulations that
the smoothing bias of block kriging does not matter much if soil sampling is sufficiently dense.
In this situation, we can expect only limited gains in the precision of predictions by more so-
phisticated methods. But the simulations also showed that they pay off when sampling is sparse.
Under such circumstances, one should prefer — in spite of the result of this empirical valida-
tion study — constrained, covariance-matching constrained kriging or conditional simulations
for local change of support problems.
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Figure 3: Sample variogram of residuals of robust regression model for A) log(Cd(s)), B) log(Cu(s)), C) log(Zn(s)).
The curves show the stable variogram models fitted to the sample variograms.
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Figure 4: Scatterplots of GLS, CS, LCKp predictions of Cd (A, D, G, J), Cu (B, E, H, K) and Zn (C, F, I, L) contents,
plotted against the measured content of the respective metal. The LCKp predictions are either plotted on a linear scale
(G–I) or log-scale (J–L). The line segments represent differences in predictions by the respective method and LUKp.
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Figure 5: Empirical bias (eBIAS) of conditional simulations (CS), lognormal universal kriging (LUKp, LUK), lognormal
constrained kriging (LCKp, LCK), lognormal covariance-matching constrained kriging (LCMCK) and GLS trend surface
when predicting the mean topsoil Cd, Cu and Zn contents of 53 validation parcels.
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Figure 6: Empirical mean squared prediction error (eMSPE) of conditional simulations (CS), lognormal universal krig-
ing (LUKp, LUK), lognormal constrained kriging (LCKp, LCK), lognormal covariance-matching constrained kriging
(LCMCK) and GLS trend surface when predicting the mean topsoil Cd, Cu and Zn contents of 53 validation parcels.
The shaded part of the bars shows the contribution of eBIAS2 to eMSPE.
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Figure 7: Peirce skill score (PSS) of A) Cd, B) Cu and C) Zn and bias score (BS) of D) Cd, E) Cu and F) Zn vs. the
thresholds T[l] for selected prediction methods.
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Table 1: GLS estimates of the regression coefficients along with standard errors (SE) for log(Cd), log(Cu), and log(Zn).
The coefficients listed for the various levels of the factors are differences between the intercepts for the respective level
and the intercept of the reference level ‘other bedrock’ for geology and ‘agriculture/forest’ for land use.

Cd Cu Zn
Covariate and level of factor β̂ GLS SE β̂ GLS SE β̂ GLS SE
f0(s) N 6.985 1.552 18.519 1.774 16.168 1.944
f1(s) NE 3.824 1.071 15.298 1.244 12.635 1.379
f2(s) E 3.670 0.827 11.669 0.868 8.976 0.953
f3(s) SE 3.508 1.156 15.105 1.216 11.203 1.319
f4(s) S 4.526 1.700 15.291 2.151 12.622 2.314
f5(s) SW -3.990 1.525 7.519 1.783 5.639 1.872
f6(s) W 4.127 1.189 15.024 1.405 11.198 1.563
f7(s) NW 0.134 1.320 13.701 1.567 8.042 1.704
f0(s) log(d(s)) N -1.042 0.229 -1.959 0.262 -1.522 0.286
f1(s) log(d(s)) NE -0.613 0.158 -1.625 0.184 -1.129 0.203
f2(s) log(d(s)) E -0.559 0.122 -1.024 0.124 -0.490 0.136
f3(s) log(d(s)) SE -0.512 0.176 -1.533 0.180 -0.839 0.194
f4(s) log(d(s)) S -0.694 0.266 -1.576 0.336 -1.075 0.360
f5(s) log(d(s)) SW 0.513 0.218 -0.504 0.257 -0.097 0.268
f6(s) log(d(s)) W -0.641 0.172 -1.623 0.204 -0.926 0.225
f7(s) log(d(s)) NW -0.078 0.195 -1.389 0.233 -0.438 0.252
Land use: built-up before 1960 0.063 0.060 0.087 0.08 0.226 0.078
Land use: built-up after 1960 -0.117 0.060 -0.202 0.08 -0.102 0.079
Indicator for biased Cd measurements 0.338 0.059 – – – –
Geology: Lower/Middle Oxfordian 1.350 0.186 – – – –
Geology: Bajocian/Upper Oxfordian 0.527 0.161 – – – –
Geology: Lower Rupelian 0.237 0.132 – – – –
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Table 2: Estimated variogram parameters.

σ2
0 σ2

1 α κ

log(Cd) 0.016 0.125 44.767 0.415
log(Cu) 0.0234 0.222 32.243 0.643
log(Zn) 0.009 0.229 44.976 0.638

Table 3: Quantiles of the factor K (LCKp, cf. equation 11) for the 53 (Cd: 52) validation parcels.

probability
10 % 25 % 50 % 75 % 90 %

Cd 1.16 1.30 1.44 1.58 1.65
Cu 1.15 1.29 1.50 1.64 1.85
Zn 1.10 1.21 1.37 1.49 1.65

Table 4: Areas under the Receiver Operating Characteristic curves.

CS LUKp LCKp LUK LCK LCMCK
Cd 0.85 0.84 0.84 0.84 0.78 0.83
Cu 0.90 0.84 0.83 0.84 0.88 0.92
Zn 0.88 0.85 0.84 0.85 0.87 0.83
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