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Abstract The DCL (defective chloroplasts and leaves)
gene of tomato (Lycopersicon esculentum Mill.) is
required for chloroplast development, palisade cell
morphogenesis, and embryogenesis. Previous work
suggested that DCL protein is involved in 4.5S rRNA
processing. The Arabidopsis thaliana (L.) Heynh. gen-
ome contains five sequences encoding for DCL-related
proteins. In this paper, we investigate the function of
AtDCL protein, which shows the highest amino acid
sequence similarity with tomato DCL. AtDCL mRNA
was expressed in all tissues examined and a fusion be-
tween AtDCL and green fluorescent protein (GFP) was
sufficient to target GFP to plastids in vivo, consistent
with the localization of AtDCL to chloroplasts. In an
effort to clarify the function of AtDCL, transgenic plants
with altered expression of this gene were constructed.
Deregulation of AtDCL gene expression caused multiple
phenotypes such as chlorosis, sterile flowers and
abnormal cotyledon development, suggesting that this
gene is required in different organs. The processing of
the 4.5S rRNA was significantly altered in these trans-
genic plants, indicating that AtDCL is involved in
plastid rRNA maturation. These results suggest that
AtDCL is the Arabidopsis ortholog of tomato DCL, and
indicate that plastid function is required for normal
plant development.

Keywords Arabidopsis Æ Defective chloroplasts and
leaves Æ Chloroplast development Æ Plastid ribosomal
RNA

Abbreviations DCL: Defective chloroplasts and
leaves Æ GFP: Green fluorescent protein

Introduction

As in the eubacteria, the plastid rRNA genes are
arranged in an operon and are transcribed as a large
precursor RNA, in the order 16S, 23S and 5S (Kössel
et al. 1985). However, plastid rRNA operons have some
features that are distinct from those of prokaryotic
rRNA. For example, in Chlamydomonas reinhardii the
region corresponding to the 5¢ end of the eubacterial 23S
gene is divided into 7S and 3S rRNAs (Rochaix and
Darlix 1982). Sequence comparisons have revealed that
the 3S and 7S rRNAs are not unique to plastids, but are
equivalent to the 5¢ terminal regions of the eubacterial
23S rRNA (Rochaix and Darlix 1982).

In the chloroplasts of flowering plants the 7S and 3S
rRNAs are absent, but the 3¢ terminus of the 23S gene is
split off as a separate gene termed 4.5S rRNA (Edwards
et al. 1981). This small rRNA is separated from the
mature 23S gene by short spacer that is removed from
the precursor rRNA posttranscriptionally (Kössel et al.
1982). The primary transcript containing the 16S, 23S,
4.5S and 5S rRNAs is processed into the 16S and the 5S
rRNAs, and the 23S–4.5S rRNA precursor. The latter is
subsequently cleaved into the 23S and 4.5S rRNAs
(Kössel et al. 1982, 1985; Strittmatter and Kössel 1984).

While there is extensive information about the orga-
nization of plastid rRNA operons (reviewed by Harris
et al. 1994), little is known about the enzymatic mecha-
nisms of rRNA maturation. Mutants blocked at various
stages of rRNA cleavage would be helpful to identify
nuclear genes that play critical roles in plastid rRNA
processing. A gene of tomato, defective chloroplasts and
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leaves (DCL), which is required for rRNAmaturation has
been identified in our laboratory. DCL is ubiquitously
expressed and encodes a small protein that is required for
chloroplast development, palisade cell morphogenesis,
and embryogenesis (Keddie et al. 1996; Bellaoui et al.
2003). Examination of the expression of several nuclear
and plastid genes has suggested that DCL protein is in-
volved in the processing of 4.5S rRNA (Bellaoui et al.
2003).

The objective of the present work was to gain in-
sight into DCL function in Arabidopsis thaliana, a
particularly good model system for this study because
of the many genetic resources available. We have
characterized the AtDCL gene, one of the Arabidopsis
homologs of DCL. We show that the AtDCL gene is
expressed ubiquitously and that AtDCL protein is
efficiently imported into chloroplasts in vivo, confirm-
ing that AtDCL is plastid-localized. We also demon-
strate that several phenotypic changes are induced
when the expression of AtDCL is deregulated in
transgenic Arabidopsis plants. Furthermore, we show
that 4.5S rRNA maturation is affected in these trans-
genic plants, implying that AtDCL is most likely the
Arabidopsis ortholog of DCL.

Materials and methods

Plant material and growth conditions

Seeds of Arabidopsis thaliana (L.) Heynh. were sown in
optima soil (http://www.optima.magnet.ch) and kept for
2 days at 4�C before being moved into the growth
chamber. Plants were grown at 22�C under long-day
growth conditions (16 h light/8 h dark). Transgenic
Arabidopsis seeds were surface-sterilized, and plated on
Murashige and Skoog medium containing hygromycin
(35 lg ml�1). Hygromycin-resistant seedlings were
transferred to soil and grown in long-day conditions in
the growth chamber.

3¢ and 5¢ rapid amplification of cDNA ends
(3¢ and 5¢ RACE)

Total RNA was extracted from Arabidopsis leaves.
First-strand cDNA from total RNA was prepared using
the Advantage RT-for-PCR Kit (Clontech). 3¢ and 5¢
RACE experiments were performed using the Marathon
cDNA Amplification kit (Clontech) and the following
AtDCL-specific primers:

– For 5¢ RACE:

– 5¢-CTC TTA AAA TCC GGG TGA TGC CCT
ACC-3¢

– 5¢-GCG AAA ATG TCT GAG GAT GAA ACT
GTC-3¢

– 5¢-TGG CTG AGG TCT CAC CCC AAA ACC-3¢.

– For 3¢ RACE:

– 5¢-GAT GCT ACT TCC TTA TCA TCC TGA
ATG-3¢

– 5¢-GAC AGT TTC ATC CTC AGA CAT TTT
CGC-3¢

– 5¢-CTC GGT TCC ACT ACA AGG TTT TGG
GGT-3¢.

Construction of the AtDCL::GFP fusion
and the transformation vectors

The open reading frame of the AtDCL gene was PCR-
amplified using primers that contained an extra restric-
tion site for NcoI. The amplified fragment was digested
with NcoI and cloned in-frame into the NcoI site of the
green fluorescent protein (GFP) expression vector
pGFP-MRC (Rodriguez-Concepcion et al. 1999) to ex-
press the fusion protein AtDCL::GFP. The nucleotide
sequence of the resulting construct (named pAt-
DCL::GFP) was checked by sequencing.

For overexpression of AtDCL::GFP in A. thaliana,
the pAtDCL::GFP construct was digested with Hin-
dIII to isolate the 35S::TL::AtDCL::GFP::Ter frag-
ment. This fragment was then ligated into the pGPTV-
HPT plant vector. The generated construct was
introduced into Agrobacterium tumefaciens cells for
plant transformation. Plants were inoculated with
A. tumefaciens by dipping aerial parts of the plants for
20 s in dipping solution as described by Clough and
Bent (1998).

To generate the antisense AtDCL construct, the
open reading frame of the AtDCL gene was PCR-
amplified by using primers that contained extra
restriction sites. The amplified fragment was digested
and cloned in antisense orientation into HindIII–XbaI
sites of the plant vector pGPTV-HPT. The generated
construct was further sequenced for confirmation and
introduced into A. tumefaciens cells for plant trans-
formation.

Subcellular localization

Protoplasts were isolated as described by Spangenberg
and Potrykus (1995).Confocal imaging was performed
using a Leica confocal laser-scanning microscope.

RNA gel blot analysis

RNA was extracted as described by Bonhomme et al.
(1991). Northern blot experiments were conducted as
described by Ausubel et al. (1990). 10 lg of RNA was
hybridized to random-primed AtDCL probe. The probe
was generated by PCR amplification of the coding
region of AtDCL.
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Protein gel blot analysis

Total Protein extracts were prepared as described by
Barkan (1998) and resuspended in Laemmli buffer
(Laemmli 1970). Protein electrophoresis and western
blotting were conducted as described by Grelon et al.
(1994). Immunoblots were developed using the Super
Signal kit (Pierce Chemical Co.).

Results

Arabidopsis homologous of DCL

Sequence comparison of tomato DCL with proteins in
current databases revealed significant similarity to five
sequences from the Arabidopsis genome-sequencing

project (Fig. 1). These sequences showed no significant
homology to any protein sequence in the database other
than DCL, except for a DCL-related gene, which is
much larger than tomato DCL (AGI 2504390) and
encodes a protein related to RNA polymerase subunit.
One of these DCL-related sequences exhibited the
highest amino acid sequence similarity with tomato
DCL and was designated AtDCL. It shows 68% simi-
larity and 60% identity over the entire open reading
frame (Fig. 1). The highest sequence identity was seen at
the C-terminus (92% similarity and 83% identity),
which contains the DCL-domain found in all DCL-re-
lated proteins (Bellaoui et al. 2003). Analysis of these
Arabidopsis DCL-related proteins using common tar-
geting prediction programs (http://www.inra.fr/Internet/
Produits/Predotar/) suggested that only AtDCL is
localized in the chloroplast. We suggest, therefore, that
AtDCL is the Arabidopsis ortholog of DCL.

Expression pattern of AtDCL

To begin the study of the function of AtDCL, expression
analysis of the AtDCL gene was undertaken. A screen of
the EST database identified two expressed sequence tags

Fig. 2 RNA-blot analysis of the AtDCL gene. A 10-lg sample of
total RNA from each organ was loaded in each lane. The blot was
hybridized with AtDCL cDNA probe. The numbers on the left
indicate the approximate length of each transcript in kilobases.
After ethidium bromide coloration of the gel, the cytosolic 25S
rRNA is shown in the lower panel as a loading control

Fig. 3a–c The AtDCL protein imports the GFP into chloroplasts
in vivo. Bright-field (a), fluorescence (b) and chlorophyll autoflu-
orescence (c) images of a protoplast from a stably transformed
Arabidopsis plant with AtDCL::GFP fusion. Bars = 10 lm

Fig. 1 Alignment of the
predicted amino acid sequences
of tomato (Lycopersicon
esculentum) DCL and
Arabidopsis thaliana-related
genes. The alignment was
created using MultAlin and
Boxshade (ExPASy Molecular
Biology Server and Boxshade
server). Gaps that were
introduced to improve the
alignment are represented by
dashes. Dark-shaded boxes
indicate amino acids that are
identical in at least three
sequences and lighter shaded
boxes indicate conserved amino
acids. Stars indicate the DCL-
domain
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(accession numbers: AI994762 and N38199). Neither of
these cDNA sequences is complete (391 and 417 bp),
and so 5¢ and 3¢ RACE experiments were performed
using total RNA from leaves. The sequence of the full-
length cDNA of AtDCL was then determined
(1,151 bp).

Using AtDCL cDNA as probe, the expression pattern
of AtDCL was examined by northern blot experiments.
The AtDCL gene was expressed in all organs examined,
including leaves, stems, flowers, and siliques (Fig. 2).
This is consistent with the expression pattern of tomato
DCL, which is also expressed in all types of tissues and
stages of development examined (Keddie et al. 1996). A
1.2-kb transcript was detected in the four organs
examined, consistent with the size determined by
sequencing the full-length cDNA of AtDCL. However, a
second transcript of 1.3 kb was detected in flowers, and
siliques. Since AtDCL genes are quite different from
each other at the level of DNA sequence, we assume that
this 1.3-kb transcript in flowers and siliques corresponds

to differentially spliced transcript or resulted from an
alternative transcript termination.

AtDCL targets GFP to the chloroplast in vivo

To confirm that AtDCL is targeted to plastids in vivo,
an in-frame fusion between the coding regions of
AtDCL and the gene for GFP was made and used for
stable transformation of Arabidopsis. The expression of
AtDCL::GFP fusion in protoplasts isolated from a sta-
bly transformed Arabidopsis plant was examined by
confocal laser-scanning microscopy. The results of these
experiments clearly show that the fusion protein co-
localized with the chloroplast chlorophyll (Fig. 3).
Without the putative transit peptide, GFP signals were
dispersed in the cytoplasm and nucleus (data not
shown). Thus, AtDCL is able to target proteins to
plastids in vivo, confirming that AtDCL is a plastid-
localized protein.

Fig. 4a–c Phenotype of
A. thaliana plants harboring the
35S::AtDCL::GFP transgene.
a Four-week-old wild-type (top)
and AtDCL::GFP-2 transgenic
(bottom) plants. b Two-month-
old wild-type (left) and
AtDCL::GFP-2 mutant (right)
plants. c Variation in cotyledon
number and shape in the
progeny of the AtDCL::GFP-2
line
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Analysis of AtDCL::GFP fusion overexpression

To explore the function of the AtDCL gene, phenotypic
and molecular analyses of transgenic Arabidopsis lines
overexpressing the AtDCL::GFP fusion were performed.
For this, the AtDCL::GFP fusion was cloned down-
stream of the CaMV 35S promoter. This promoter was
chosen because it is known to be constitutively expressed
in Arabidopsis, an expression pattern that matches that
of the AtDCL gene. This construct was transformed into
Arabidopsis wild-type plants (ecotype Columbia).

In total, 15 transformants were obtained after selec-
tion on Murashige and Skoog medium containing hy-
gromycin. When transferred to soil, 12 T1 transformants
showed similar developmental defects and were further
analyzed. The transformants were pale green (Fig. 4a),
had chlorotic and poorly fertile flowers and their growth
was extremely retarded compared to the wild type
(Fig. 4b). The results presented here are all derived from
studies of one of these transgenic lines, named
AtDCL::GFP-2. Segregation analysis of the T2 genera-
tion indicated that a single T-DNA was inserted into the
AtDCL::GFP-2 line. Northern blot analysis revealed
that this line accumulated a very high level of
AtDCL::GFP transcript and GFP fluorescence indicated
that the AtDCL::GFP fusion protein accumulated to
high levels and was correctly localized in the plastids
(Fig. 3 and data not shown). Therefore, these results
suggest that the developmental defects observed in
transgenic lines resulted from an overexpression of
AtDCL::GFP fusion protein.

When germinated in vitro, the T2 progeny of the
AtDCL::GFP-2 line contained seedlings with abnormal
cotyledon development (seedlings with one, three, fused
or unequal cotyledons) (Fig. 4c). This phenotype is
consistent with the role of tomato DCL during
embryogenesis (Bellaoui et al. 2003).

To test whether AtDCL protein is involved in 4.5S
rRNA processing, we examined the expression of the
small rRNA in the transgenic plants. As expected, the
expression pattern of 4.5S rRNA was severely affected in
the AtDCL::GFP-2 mutant (Fig. 5). In contrast, 5S
rRNA accumulated normally (Fig. 5). Together, these
data suggest that overexpression of AtDCL::GFP affects
4.5S rRNA formation, which in turn affects normal
plastid function and plant development. Therefore, we
suggest that overexpression of AtDCL::GFP behaves as
a dominant negative mutation and indicates that AtDCL
might play the same function as tomato DCL.

Analysis of antisense AtDCL expression

To further analyze AtDCL function, we generated
transgenic Arabidopsis plants that constitutively ex-
pressed antisense AtDCL transcript. When selected on
Murashige and Skoog medium containing hygromycin,
true transformants with healthy roots segregated into
normal green and albino seedlings. The latter grew

slowly and died before true leaves were formed which
suggests that expression of antisense AtDCL is lethal.

The survivor T1 transformants were transferred to
soil. From 26 T1 independent transgenic lines, 12 be-
came chlorotic after 2 weeks and were further ana-
lyzed. They gave rise to few seeds and their T2
progeny segregated into normal and chlorotic seedlings
characterized by variation in cotyledon number. Five-
week-old siblings of the T2 progeny of one of the 12
transformants are shown in Fig. 6a (normal plant) and
6b (mutant plant). Mutant plants grew extremely
slowly, had chlorotic flower buds and died after
7–8 weeks (Fig. 6c). In contrast, the normal progeny
showed developmental defects at a more advanced
stage: yellow inflorescence (Fig. 6d), initiation of many
axillary meristems at the same place (Fig. 6e), shoot
apical meristem arrested (Fig. 6f), stem fasciation
(Fig. 6g) and fasciated siliques (data not shown). We
assume that these plants still express the AtDCL gene
albeit at reduced levels, while it is completely off in the
mutant progeny exhibiting chlorosis at an early stage.
Together, these data show that overexpression of
antisense AtDCL causes chlorosis throughout the
vegetative cycle of the plant and affects normal plant
development.

RNA gel blot analysis was used to investigate the
effect of overexpression of antisense AtDCL on the
steady-state level of 4.5S rRNA. Leaf tissue was col-
lected for total RNA extraction from wild-type and
antisense AtDCL mutant plants. Figure 7a shows that
4.5S rRNA accumulation was dramatically reduced in
antisense AtDCL mutant plants in comparison with the

Fig. 5 Effect of overexpression of AtDCL::GFP on chloroplast
gene expression in A. thaliana. Northern analysis of 4.5S and 5S
rRNA expression. Total RNA samples from wild-type (WT) and
AtDCL::GFP-2 mutant (AtDCL::GFP-2) leaves were fractionated
on agarose gels, transferred to nylon membrane and hybridized
with labeled probes for 4.5S and 5S rRNA. After ethidium bromide
coloration of the gel, the cytosolic 25S rRNA is shown in the lower
panels as a loading control
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wild type, which is consistent with previous data from
overexpression of the AtDCL::GFP fusion.

We then tested the effect of the overexpression of
antisense AtDCL on the accumulation of plastid pro-
teins. Total leaf protein was extracted from mutant
plants of two independent lines (antisense AtDCL-11
and AtDCL-21), and protein gel blot analysis was per-
formed using antibodies raised against plastid proteins.

While POR protein accumulated to near normal level, a
strong reduction was observed in the abundance of
CF1a, PSI-D and LHCII proteins (Fig. 7b). This is
consistent with the effect of dcl-m mutation on the
accumulation of plastid proteins in tomato (Bellaoui
et al. 2003).

Together, these results demonstrate that overexpres-
sion of antisense AtDCL affects 4.5S rRNA processing

Fig. 6a–g T2progenyof the
antisenseAtDCL-11 lineof
A.thalianaharboringthe
antisenseAtDCL transgene.
aFive-week-oldnormalplant.
bFive-week-oldmutantplant.
cEight-week-oldmutantplant.
dSix-week-oldnormalplantwith
yellowinflorescence(left)
comparedtowild-typeplant
(right).e Eight-week-oldnormal
plantwithmanyaxillary
meristems initiatedat thesame
place (arrows). fEight-week-old
normalplantwitharrestedshoot
apicalmeristem(arrowhead).
gEight-week-oldnormalplant
withstemfasciation(arrow)
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and strongly suggest that AtDCL protein is involved in
plastid rRNA maturation.

Discussion

Five sequences with homology to tomato DCL have
been identified in the Arabidopsis genome. A very high
degree of conservation was seen at the DCL-domain-
containing C-terminus of these sequences. However, no
significant amino acid sequence similarity between these
proteins was found at the N terminus, which suggests
that the Arabidopsis homologs of DCL do not have
identical activities. We assume that the different DCL-
like proteins are functionally distinct members of a gene
family sharing a common domain. Among those
sequences, AtDCL exhibited the highest amino acid
sequence similarity throughout its length with tomato
DCL. We have demonstrated that, like tomato DCL,
AtDCL is localized in the plastid. Expression analysis
showed that DCL and AtDCL are normally expressed
not only in photosynthetic but also in non-photosyn-

thetic tissue, suggesting that these genes are required for
the development of different plastid types in different
organs. Our findings that AtDCL and tomato DCL have
the same pattern of expression and that are both local-
ized in the same organelle suggest that they perform the
same function.

To clarify the in vivo function of the AtDCL gene we
investigated the physiological consequence of overex-
pressing AtDCL antisense RNA and AtDCL::GFP
fusion in transgenic Arabidopsis plants. In both strate-
gies, the deregulation of AtDCL gene expression caused
multiple phenotypes. Chlorosis is the main develop-
mental defect phenotype observed in transgenic plants.
The chlorosis is the result of reduced chlorophylls and
carotenoids, which reflect a block of chloroplast devel-
opment. Deregulation of AtDCL gene expression caused
other phenotypes such as sterile flowers, abnormal cot-
yledon development, fasciated siliques, arrested shoot
apical meristem, and stem fasciation. This defect in
chloroplast biogenesis that affects plant organ develop-
ment is similar to that observed in many chloroplast
developmental mutants. For instance, null mutations of
the nuclear-encoded chloroplast genes EDD1, SLP,
Emb506 and DCL cause embryo abortion (Uwer et al.
1998; Albert et al. 1999; Apuya et al. 2001; Despres et al.
2001; Bellaoui et al. 2003). Similarly, mutations that
block chloroplast biogenesis and alter palisade cell
morphogenesis have been identified, and suggest that
chloroplast development also regulates leaf differentia-
tion (Reiter et al. 1994; Chatterjee et al. 1996; Babiychuk
et al. 1997; Keddie et al. 1996; Wang et al. 2000). Be-
cause the primary defect in all of these mutants appears
to be in chloroplast development, we suggest that these
genes are involved in the initial events of plastid bio-
genesis, and that essential compounds for organ devel-
opment are produced by the early-developed plastid.

We have previously shown that a defect in plastid
rRNA processing is associated with dcl-m mutation, and
therefore we suggested that the alteration of rRNA
maturation is the primary lesion responsible for the
blockage of chloroplast biogenesis in the dcl-m mutant
(Bellaoui et al. 2003). In this paper we have shown that
overexpressing the antisense RNA of the AtDCL gene
affected rRNA processing. The same defect was ob-
served when AtDCL::GFP fusion protein was overex-
pressed in transgenic Arabidopsis plants. Our data
suggest that AtDCL activity might be required for
rRNA maturation and provide further support for the
proposed role of tomato DCL gene in rRNA processing
(Bellaoui et al. 2003). In Chlamydomonas, a mutant
defective in chloroplast 23S rRNA maturation has been
reported (Boynton et al. 1970; Herrin et al. 1990). Hol-
loway et al. (1998) have shown that the primary defect in
this mutant, termed ac20, is associated with the matu-
ration of the 23S rRNA itself.

A defect in chloroplast rRNA processing was also
observed in other mutants such as hcf7 in maize and dal1-
2 in Arabidopsis (Barkan 1993; Bisanz et al. 2003). In the
hcf7mutant, maturation of the 16S rRNA is blocked and

Fig. 7a, b Effect of overexpression of antisense AtDCL on chloro-
plast gene expression. a Total RNA was prepared from wild-type
(WT) and antisense AtDCL mutant (line 11) leaves and analyzed
by northern blot hybridization for the expression of 4.5S rRNA.
After ethidium bromide coloration of the gel, the cytosolic 25S
rRNA is shown in the lower panel as a loading control.
b Immunoblot analysis of plastid proteins. Equal amounts of total
protein from wild-type (WT) and antisense AtDCL mutant
(lines 11 and 21) plants were separated on 12 polyacrylamide–
SDS gels and immunoblotted with antisera raised against the
a-subunit of ATP synthase (CF1a), the light-harvesting chloro-
phyll a/b-binding protein of photosystem II (LHCII), the D subunit
of photosystem I (PSI-D), and protochlorophyllide oxidoreductase
(POR)
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the 16S RNA precursor accumulated in the monosome
fraction of a polysome gradient, thereby reducing chlo-
roplast translation efficiency (Barkan 1993). In dal1-2, a
defect in the maturation of 16S and 23S rRNAs was
observed, suggesting that Dal1 protein is involved in
plastid rRNA processing (Bisanz et al. 2003). While
chloroplast mRNA processing has been extensively
investigated, relatively little is known about plastid
rRNA maturation. To our knowledge, hcf7, ac20, dal1-2
and dcl-m are the only examples of mutants that are
defective in chloroplast rRNA processing, and are ideal
tools for determining the enzymes that are involved in
this process. Like tomato DCL, AtDCL does not contain
obvious RNA-binding domains and does not show
similarity to any known nuclease. Preliminary two-hy-
brid screening experiments show that AtDCL protein
interacts with proteins known to be involved in RNA
metabolism and ribosome biogenesis. When these inter-
actions are confirmed, genetic and molecular analyses of
the candidate enzymes should be helpful for dissecting
the molecular mechanism of rRNA processing.
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