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Abstract

Gelling colloidal suspensions represent an important class of soft materials. Their mechanical response is characterized by a solid-to-liquid
transition at a given shear stress level. Moreover, they often exhibit a complex time-dependent rheological behavior known as thixotropy.
The viscosity changes find their origin in the microstructure, which depends on flow history. Yet, the structural response of colloidal gels to
flow differs fundamentally from most complex fluids, where flow induces orientation. Upon yielding, low to intermediate volume fraction
gels break down in a spatially anisotropic way. Bonds in the velocity-velocity gradient plane are broken, whereas microstructural features in
other planes are less affected. The subsequent flow-induced microstructural anisotropy is characterized by typical butterfly scattering pat-
terns. However, as yet there was no evidence for the pertinence of this anisotropy for the rheological properties of these systems. In the pre-
sent work, orthogonal superposition rheometry was first used to evaluate how the flow-induced microstructure affects the viscoelastic
properties. It was shown to retain significant elasticity in the velocity-vorticity plane, even when the structure liquefied. Further, the shear-
induced mechanical anisotropy was measured using two-dimensional small amplitude oscillatory shear, exploiting the fact that for suitable
thixotropic samples the recovery after arresting the flow is relatively slow. It was hence possible to measure the anisotropy of the moduli
upon cessation of flow. The mechanical anisotropy was shown to be spectacular, with the storage moduli in perpendicular directions differing
by as much as 2 orders of magnitude. VC 2017 The Society of Rheology. [http://dx.doi.org/10.1122/1.4998176]

I. INTRODUCTION

Gelling colloidal suspensions have a wide range of
advanced technological and biomedical applications. Recent
examples include 3D-direct printing [1], tissue scaffolding
[2], or even molecular gastronomy [3]. The wide range of
utilization of these materials is the result of the solidlike
behavior at rest, combined with their ability to liquefy when
subjected to mechanical stress. In terms of material func-
tions, the rheological properties of flocculated suspensions

are described by an elasticity that depends on shear history, a
yield stress, and a viscosity that not only changes reversibly
with shear rate but also with time. The latter effect is known
as thixotropy [4].

These rheological effects find their origin in the micro-
structure and its response to flow. The calculation of the
linear viscoelastic properties of aggregated suspensions
requires taking into account the effect of the microstructure
on both hydrodynamic and thermodynamic stresses. The
high frequency response is expected to be similar to that of
hard sphere suspensions [5,6]. At low frequencies, the oscil-
latory deformation is opposed by the gel microstructure and
several contributions can lead to a broad relaxation spec-
trum. Various approaches have been proposed to explain
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these properties, with most theories focusing on the structure
at rest. For strong gels, fractal scalings [7,8] and poroelastic
models [9] have been proposed linking the elasticity of the
gel network to the rigidity of intra- or interfloc links [7,10].
In weaker gels with more of a bicontinuous, disordered mor-
phology, it has been suggested that the elasticity is deter-
mined by the localization of particles in the gel, which slows
down the Brownian relaxation processes. Mode coupling
theory has then been used to describe the linear viscoelastic
spectra under quiescent conditions [11,12].

In addition to physicochemical details (e.g., the volume
fraction, the pair potential), the flow history plays an impor-
tant role in the details of the microstructure, such as the local
coordination number and the fractal dimensions, as well as
in the resulting mechanical properties [4]. During flow, the
network structure will break down, and the stresses acting on
the individual aggregates will, in turn, alter their internal
structure. However, it is not a priori clear how stresses are
transmitted once the material loses connectivity and the
structure reorganizes. Most existing models assume an iso-
tropic gel structure. For the fractal gels, the non-Newtonian
response is often described by a shear rate dependence of an
isotropic floc size and density [13], resulting from the hydro-
dynamic forces that act on these aggregates. In the frame-
work of mode coupling theory, nonlinear rheological effects
are ascribed to changes in the localization length scale due to
deformation of the microstructure. However, recently Hsiao
et al. [14] argued that localization may not be a good
descriptor of gels upon yielding, and suggested that the main
contribution to the elasticity derives from a subpopulation of
slow, isostatic clusters, which have long relaxation times
[15]. Significant viscoelasticity was experimentally observed
during flow in depletion gels consisting of fluorescent
poly(methyl methacrylate) particles. Their structure was
locked-in by photopolymerization after step-strain nonlinear
deformations and subsequently evaluated by confocal micro-
scopy [14]. The structure-property analysis suggested that the
elasticity could be attributed to the slow Brownian relaxation
of rigid, isostatic clusters. Recently, “ideal thixotropy” was
defined as a purely viscous time dependent response to the
history of the strain rate [16], in an effort to clearly distinguish
thixotropy from ordinary nonlinear elasticity. The presence of
significant residual elasticity in sheared colloidal gels men-
tioned earlier, however, indicates that such a purely viscous
response is only the limiting case of real behavior. This argu-
ment is reinforced by the present work, where a colloidal
gel at low volume fraction is investigated, and elasticity under
flow is observed. Indeed, if at all, ideal thixotropy is expected
to be found in dilute systems. Clearly, predicting the rheo-
logical properties of these systems remains challenging.
Theoretical approaches fundamentally differ and do not ade-
quately predict all rheological properties or flow history
effects [4], thus calling for further work.

In order to study the nonlinear rheological properties of
colloidal gels, different experimental approaches can be
used. An increasingly popular technique is large amplitude
oscillatory shear (LAOS), which has also been applied
to flocculated thixotropic dispersions [17]. However, while
the frequency dependency offers the possibility to probe

different time and length scales, this method relies on sub-
jecting the sample to a very complex kinematic history,
which is an issue especially for thixotropic gels with a micro-
structure depending in a complex manner on the previously
experienced shear history. Another approach, which still ena-
bles frequency dependent measurements while retaining
clean kinematics, consists in superimposing a small oscilla-
tion on a steady shear flow. Similar to linear viscoelasticity,
the response to the superimposed oscillatory motion can be
analyzed in terms of storage and loss superposition moduli.
Parallel superposition is the easier experiment to perform,
but the physical meaning of the parallel moduli is not
straightforward, so that parallel superposition moduli can
even be negative. In the case of superposition in the direction
perpendicular to flow the moduli are more closely related to
normal linear viscoelastic behavior [18] (see Sec. II).
Therefore, this orthogonal superposition rheometry (OSR) is
very well suited to study the flow behavior of colloidal gels,
allowing to probe how the different relaxation times of the
material are affected by shear, and to critically assess the
role of residual aggregates upon flow and structure break-
down, as well as the presence of residual elasticity. The
moduli under steady state flow conditions are still expected
to reflect the effects of a shear rate dependent and anisotropic
suspension microstructure. This approach is further moti-
vated by the results on nonaqueous layered silicate suspen-
sions [19], where mechanical anisotropy in a polymer-clay
nanocomposite was shown for the first time, using 2D-small
amplitude oscillatory shear (2D-SAOS). Such systems are,
however, made up of platelike particles, making them less
ideal to interrogate flocculated suspension mechanics in
general. Moreover, we aim to study the moduli during flow
to interrogate the mechanical consequences of the changing
microstructure in sheared aggregated suspensions.

The response of the suspension microstructure to deforma-
tion or flow has been studied for a variety of flocculated sys-
tems with spherical building blocks [20]. For individual
aggregates, whether they break-up, erode or get stretched in
the flow direction has been well established, depending on the
flow conditions (see, e.g., [21] and references therein). For
percolated colloidal gels, the situation is more complicated.
Weakly aggregated or reversible, physical gel networks are
intrinsically inhomogeneous, and the deformation can be
expected to be localized in the weaker regions of the network,
whereas stronger regions are densified. The vorticity inherent
to shear flow causes this process to be subtle. Continuous
break-up and subsequent reaggregation lead to a local com-
paction along the compressional axis of the flow field with an
increasingly heterogeneous structure [22,23]. Under an
imposed low shear rate, the microstructure of suspensions that
form a percolating network at rest can, hence, be expected to
be anisotropic in nature upon deformation. This anisotropy
has been amply evidenced by a wide array of scattering meas-
urements, which typically reveal a pronounced butterfly
shaped scattering pattern (small angle light (SALS), neutron
(SANS) and X-ray (SAXS) scattering) [17,24–26] and by
some recent direct microscopic observations in both 2D
[21,22,27] and 3D [23,28]. The nonequilibrium structure fac-
tor has a complex spatial dependence with a local anisotropy
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in the velocity gradient, which develops along the compres-
sional axis of flow [17,26]. Using flow SALS, (Ultra)SAXS
or SANS a butterfly pattern is observed in the velocity-
vorticity plane of flow [17,24–26] accompanied by a similar
anisotropy in the velocity-velocity gradient plane [17,26].
Detailed flow-SANS measurements show how these aniso-
tropic structure factors (on length scales corresponding to a
few particle diameters) correlate with rheology [17,29].
USAXS and SALS measurements show how these aniso-
tropic microstructures extend to large length scales, beyond
hundreds of particle diameters [26], which is consistent with
the recent microscopic investigations.

Differing from materials where flow induces microstruc-
tural changes by orientation and stretching [30–33] in perco-
lated reversible colloidal gels, the anisotropic structure factors
are a consequence of a spatially selective breakdown of the
colloidal network. The butterfly scattering pattern is due to the
systematic loss of structure in the flow direction, and even an
initially isotropic structure factor gets constricted in the direc-
tion of flow. In the velocity-vorticity plane, the largest struc-
tures are initially unchanged as no significant forces act in the
neutral direction [17,20,25,26]. For confined suspensions even
log-rolling structures (rouleau formation) have been observed
[34], but it is as yet unclear as to whether they also occur in
bulk flow and are related to the observed butterfly scattering
patterns. The anisotropy and other characteristic aspects of the
microstructure evolve over time scales much beyond the vis-
coelastic relaxation time scale of particles or aggregates. Most
microstructural evidence concerning the anisotropy of colloi-
dal networks has been to a large extent disregarded in current
rheological modeling [7,13,35,36] because implications and
measurements of this anisotropy for rheology have only rarely
been addressed. As yet there was no evidence of mechanical
anisotropy in these systems.

Therefore, in the present work, the relevance of the struc-
tural anisotropy on the mechanical properties is investigated.
On the one hand, we use OSR to elucidate the mechanical
properties of the structure in the velocity-vorticity plane of
flow and its changes in microstructure upon breakdown and
liquefaction. Second, we quantify the mechanical anisotropy
by measuring the moduli in different straining directions, fol-
lowing a preshear step. We use a well characterized model
system for investigating gelling thixotropic suspensions,
introduced earlier by Dullaert and Mewis [37]. It shows all of
the hallmark features of colloidal gel mechanics, including
yield stress, shear thinning, and thixotropy. As these systems
have a relatively slow recovery, the flow-induced mechanical
anisotropy can be quantified by measuring the moduli in two
directions after arresting the flow, thus avoiding the problems
associated with parallel superposition experiments [18]. This
particular system also shows no measurable wall slip [37]
and the moduli lie well within the experimental measurement
window of the orthogonal superposition device.

II. MATERIALS AND METHODS

The model system studied here was formulated by
Dullaert and Mewis [37] for studies of thixotropy. The latter

authors reported the details concerning the roles of its differ-
ent components, as well as the specific conditions required to
obtain reproducible results and ensure homogeneous flow
in the absence of wall slip. Fumed silica particles (Aerosil
R972), kindly provided by Grolman, Basel, were dispersed
in a highly refined paraffin oil (Sigma-Aldrich, 18512). A
low molecular weight poly(isobutene) (PIB: Oppanol B3,
BASF) was added to increase the medium viscosity to 0.4 Pa
s at 25 !C and to reduce wall slip [37]. The particles were
added in five steps to the paraffin oil. A fraction (15%) of the
total, final mass of PIB was added in the first step to take
advantage of its adsorption on the silica particles [37].
Between steps, the sample was mixed with an Ultra-Turrax
device (IKA T25 digital, S25N-10G disperser) at 8000 rpm
and tip sonicated under stirring (Hielscher UP400S). The
remaining PIB was then added (totaling 27% w/w), reaching
a final volume fraction of silica / ¼ 2:9%.

The flow curve of the final dispersion is shown in Fig. 1,
and exhibits the typical features of a flocculated suspension,
with a dynamic yield stress of 4.2 Pa. The steady state flow
curve was found to be independent of measurement geome-
try, confirming the absence of slip and inhomogeneities or
flow instabilities in the sample. The degree of dispersion is
an important factor affecting the rheological properties of
this model system, which is, thus, susceptible to aging
effects. The measurement protocol included a preshear step
at 10 s#1 for 300 s, necessary to ensure reproducible initial
conditions by eliminating prior shear history effects. It was
verified that the same shear stress was always obtained for
this somewhat arbitrary initial state. Subsequently, the sam-
ple was sheared at the desired shear rate for a time sufficient
to reach steady state, before starting measurements. One
sample was allowed to rest for 5400 s immediately following
the preshear step, resulting in a reference “rest” condition.

The double wall Couette flow cell used in the present
work is shown in Fig. 2. It is designed to minimize the back-
flow of material in the measurement gaps (0.5 mm), due to
the pumping effect caused by the oscillatory motion of the
bob in the z direction during orthogonal superposition

FIG. 1. Steady state flow curve of the studied colloidal dispersion: Shear
stress r and viscosity g as a function of shear rate _c. The line shows a fit to
the Herschel–Bulkley model, giving a dynamic yield stress ry ¼ 4:2 Pa.
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measurements [38]. To reduce the backflow in the gap, it fea-
tures openings in the inner wall of the cup, allowing the sam-
ple to flow in and out of the large central reservoir during
measurements. However, for the fluid used here, which is
building up a yield stress, this reduction of the pumping flow
is less effective than for fluids with a Newtonian low-shear
viscosity, as the unsheared fluid in the reservoir can become
more difficult to displace. For estimating the effects of the
pumping flow, computational fluid dynamics (CFD) calcula-
tions (see the Appendix) were performed for the two limiting
cases of an open bottom (with flow into the reservoir) and
closed bottom of the measuring cell. For the sake of simplic-
ity, these calculations were carried out for a Newtonian fluid.
Shear thinning effects will weaken the effects seen for the
closed bottom case so that the results are to be understood as
upper and lower bounds. In the case of an open bottom, the
experimentally measured moduli in the orthogonal direction
are overestimated by 10%, mainly due to a pressure contri-
bution on the bottom of the bob. For the case of closed cup
wall, both the pressure contribution and the enhanced flow in
the measurement gap would cause an increase of the appar-
ent moduli of 2 orders of magnitude. A full calculation for
non-Newtonian and thixotropic materials lies beyond the
scope of the current work but would be worthwhile to
pursue.

The kinematics for the superposition of an oscillatory
motion on the steady shear flow are given in Eq. (1), accord-
ing to the coordinate system of Fig. 2. In the present work,
the direction in which measurements are performed are
always referred to with respect to the standard angular
motion of the rheometer, that is, with respect to the main
steady shear flow. Therefore, h is the velocity direction, r the
velocity gradient direction, and z the vorticity direction

hðtÞ ¼ hðt0Þ þ _cðt# t0Þ þ ac0ðsin xt# sin xt0Þ
! "

rðtÞ;
rðtÞ ¼ rðt0Þ;
zðtÞ ¼ zðt0Þ þ bc0ðsin xt# sin xt0ÞrðtÞ: (1)

t and t0 are the present and reference time, respectively, x is
the frequency of oscillation and _c ¼ ð@vh=@rÞ # ðvh=rÞ the
shear rate in cylindrical coordinates, with vh the velocity in

the flow direction. The small amplitude oscillatory flow can
be superposed in either parallel (a¼ 1, b¼ 0) or orthogonal
(a¼ 0, b¼ 1) direction with respect to the steady shear flow
in h. Most commercial rheometers are able to perform paral-
lel superposition measurements, which do not require modi-
fications to the hardware. To demonstrate the complexity of
the parallel superposition experiment, Yamamoto associated
a perturbation spectrum Hðs; II2DÞ with each shear rate, s
being the relaxation time [39]. The parallel oscillatory flow
is strongly coupled with the steady shear [see Eq. (1)], which
is reflected in the second invariant of the rate of deformation
tensor 2D

II2D ¼ _c2 þ 2ac0x _c cos xt0 þ ðaþ bÞOðc2
0Þ: (2)

In superposition flows with small amplitudes, i.e., for
small perturbations of II2D around _c2, the perturbation spec-
trum Hðs; II2DÞ, can be linearized around the steady state
value

H s; II2Dð Þ ¼ H s; _c2
# $

þ 2ac0x _c cos xt0
@H s; _c2
# $

@ _c2
# $

þ aþ bð ÞO c0
2

# $
: (3)

For parallel superposition (a¼ 1, b¼ 0), the derivative in
the cross term of the linearized spectrum complicates the
interpretation of the spectra and the corresponding moduli.

The orthogonal superposition (a¼ 0, b¼ 1) case yields
directly rate-dependent spectra and superposition moduli
that retain the same physical meaning of storage and loss
modulus as those of linear viscoelasticity when the ampli-
tude is small [18]. Flow induced anisotropy may make the
spectral nature of the response anisotropic, which is not cap-
tured by the simple Yamamoto analysis. Superposition mod-
uli can help designing or evaluating constitutive models, by
assessing the effects of flow on the spectra in a direct and
elegant manner [40,41].

A strain-controlled rheometer (ARES-G2, TA Instruments)
is used to perform orthogonal superposition measurements.
For the latter, the control loop of the normal force transducer is
adapted to generate an axial motion, orthogonal to the standard
angular motion of the rheometer [38,41]. The maximum defor-
mation in the axial direction is limited (50 lm), but suffices for
linear oscillatory measurements. In this manner, an oscillation
with variable frequency x can be superimposed onto a steady
flow at _c in an orthogonal superposition experiment. The oscil-
latory measurement can be continued after the main flow has
been arrested, even in different straining directions, separately
or combined (2D-SAOS) [19,42], as will be discussed further.

III. RESULTS AND DISCUSSION

The orthogonal superposition experiments allow the iden-
tification of the transition from flow at the yield stress pla-
teau (plastic flow) to the viscous flow regime more clearly.
The orthogonal superposition moduli, i.e., those observed
during steady state flow conditions, are shown in Fig. 3,

FIG. 2. Double wall Couette cell for OSR. The inner (a) and outer (b) part of
the cup, as well as the measuring bob (c) are shown from left to right. The
cross section of the assembled cell in measuring position is shown on the right
(d), together with the corresponding cylindrical coordinate system. The sam-
ple filling is shown in blue/light grey with the large reservoir in the center.
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together with the data for a reference structure (denoted in
the legend as “0 s#1”), obtained following the preshear proto-
col and allowing for structural recovery for 5400 s. It has to
be mentioned that this reference structure is not the absolute
rest structure, which is never completely attained. It is, there-
fore, a somewhat arbitrary, but reproducible structure pro-
duced by the preshear and subsequent recovery protocol, and
then measured in OSR with no steady shear flow applied.
The response of such structure represents a typical example
of what would be obtained for a solid, percolating material,
with physical interparticle bonds and a dominant elastic
response. A weak power law regime is observed for the stor-
age modulus, possibly stemming from the fractal nature of
this rather strongly aggregating physical gel, as expected for
the investigated particle volume fraction and the preshear
protocol employed.

As shear flow is applied, both the magnitude and charac-
teristic shape of G0? and G00? versus x change (Fig. 3). For
the lowest shear rates, the superposition moduli at high fre-
quency increase above those of the reference structure. For
hard spheres, the high frequency regime is reached when the
thickness of diffusion and lubrication boundary layers
becomes similar [5]. This corresponds to x' kBT=6a3pgm,
which is expected to be around 10 rad/s for the primary
aggregate sizes and the medium viscosities used. Theoretical
predictions of Lionberger and Russel for hard sphere suspen-
sions in the free draining limit produce a scaling of the elas-
tic modulus with frequency to the power of 0.5 [5], as
opposed to a plateau in the moduli that would be reached for
soft interaction potentials or when hydrodynamics dominate
and the lubrication forces dictate the response. This pre-
dicted hard sphere scaling was for instance observed by Fritz
et al. [43]. Varga and Swan [6] showed how the expected
high frequency hard sphere response is modulated by the
presence of attractive interactions, due to changes in the
local density distribution. The latter may be further modified
during flow by additional flow-induced aggregation and
compaction on local length scales [17,21,22]. Varga and
Swan [6] showed that strong attractions lead to a delay in the

onset of a high frequency, power law scaling and to an inter-
mediate elastic plateau. Although we only access part of the
high frequency regime, we observe that the power law
behavior of both high frequency moduli varies between
exponents of 0.5 and 0.75. To fully attain the high frequency
regime, alternative approaches using piezo based rheometers
or resonators are necessary. Yet, qualitatively, a behavior
more akin to stable dispersions is observed at higher shear
rates, while at lower shear rates the attractions and the corre-
sponding larger aggregates shift the high frequency regime
to higher frequencies, with only a weak dependency of the
power law on the shear rate. In the present systems at low
volume fraction, the high frequency behavior can only reflect
changes in the viscoelastic properties of the aggregates,
which make up the network, in contrast to more concentrated
systems like hard sphere glasses [44], where caging introdu-
ces additional short time dynamics.

At low frequencies, the effects of the main shear rate are
more pronounced. The moduli during flow drop significantly,
reaching a steep-sloped regime for shear rates of the main
flow starting from _c ¼ 0:25 s#1. This indicates that connec-
tivity is lost, in agreement with stress jump measurements
[45], which show that from around this shear rate the elastic
contribution to the stress starts to decrease. Also, in the struc-
tural kinetic modeling of the same system [46], the structural
parameter k decreases and becomes smaller than 1, the value
corresponding to a fully developed structure. As the shear
rate is increased, the magnitude of the superposition moduli
decreases at all frequencies, even at those larger than the
inverse of the characteristic time scale of flow _c#1. This is
quite different from the response observed in polymeric
materials [47] or colloidal glasses [44], where convective
motion cuts off the relaxation spectrum. Earlier measure-
ments by Schoukens and Mewis for carbon black suspen-
sions showed only power laws for the storage moduli versus
frequency over the accessible frequency range [48].

At intermediate frequencies, a near-plateau region can be
observed, which persists up to high shear rates. There, the
steady state stresses are then much higher than the dynamic

FIG. 3. Orthogonal superposition moduli G0? (a) and G00? (b) as a function of frequency at a strain amplitude c0 ¼ 0:22%, for different shear rates of the main
flow. The low-force resolution limit in oscillation of the instrument is shown by the dashed line. A slope of 2 for the storage modulus as expected for terminal
behavior is included for comparison, as well as slopes of 0.5 and 0.75 for the loss modulus. Solid lines are to guide the eye.
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yield stress (Fig. 1). This is in contrast to results of stress
jump experiments on similar materials in which elasticity
decays much faster with shear rate [45]. In the pseudo-
Newtonian regime, the viscous stress is expected to domi-
nate, and the stress jump experiments confirm this. In the lat-
ter, however, the response of the shear stress component (in
the h-r plane) is reported, and the loss of elasticity and struc-
ture is more dramatic than for the superposition experiments
(which probe the h-z plane), as will be illustrated by the
measurements upon cessation of flow presented below. The
curves of the moduli versus frequency evolve very gradually
with increasing shear rate, mainly shifting to higher frequen-
cies. Comparing the observed viscoelasticity with a plateau
modulus in the orthogonal superposition in this system with
the scattering experiments on a wide variety of systems,
where butterfly scattering patterns are observed [17,26], sug-
gests that the viscoelastic response is due to large structures
orthogonal to the main flow direction. These structures
remain present even when the shear stress response is domi-
nated by purely viscous stresses (see Fig. 1). The very grad-
ual evolution of the plateau at intermediate frequencies
suggests that the structural length scales in the vorticity
direction also break down gradually. In the absence of direct
structural measurements, it is not clear whether the inherent
elasticity of porous, fractal aggregates, [9] or the Brownian
motion of dense isostatic clusters [14] is responsible for the
observed plateau; yet, the gradual shift implies that the
aggregate structures in the velocity-vorticity plane only grad-
ually erode. Similar features were observed for depletion
gels, where direct structure measurements showed that the
contact number distribution changes with the strain in a way
that is consistent with the erosion of rigid clusters [15].

Further insight can be gained by inspecting the phase
angle data under flow, shown in Fig. 4. Again, the distinction
between plastic flow and viscous flow regime can be clearly
identified. At low shear rates, the low frequency phase angle
is consistent with dominant elastic behavior. All curves
show an upturn in loss angle at the lowest frequencies,

characteristic for a system with physical bonds. The loss
angle, starting from _c ¼ 0:25 s#1, abruptly increases, sugges-
ting the loss of (transient) connectivity upon yielding with
increasing shear rate. The high frequency behavior should be
related to the individual flocs, as argued above. Because of
the two relaxation mechanisms, at higher rates, a clear mini-
mum appears in the phase angle, which shifts to higher fre-
quencies with increasing shear rate, as shown more clearly in
Fig. 6(c). This trend reflects how flow affects the equilibrium
aggregate size, which decreases as shear becomes more
intense. However, in agreement with the observations at
intermediate frequencies for G0?, this process causes a mini-
mal vertical shift in phase angle at the minimum in the flow
regime. This reflects a gradual erosion of the aggregates.
Plotting the phase angle versus the complex modulus, in a
so-called Van Gurp-Palmen plot, collapses the curves with
_c ( 0:25 s#1, as is shown in Fig. 5.

Such a collapse into a single curve is usually observed in
polymeric systems obeying the time-temperature superposi-
tion principle. Therefore, Fig. 5 suggests an interesting anal-
ogy in the form of a “time-shear” superposition, where shear
flow changes the relaxation time of the aggregates in a rather
simple way, by progressively reducing their size without
changing the internal structure, at least for deformations in
the h-z plane and from a shear rate of 0.25 s#1 onward. This
gradual erosion is consistent with existing microrheological
models for weakly aggregated dispersions under shear [13]
and with the observations of the existence of flow regime
butterfly scattering patterns. As expected, such simple
description fails in the plastic flow regime. There, the inter-
play between shear and the microstructure will be more com-
plex, as no well defined aggregates are formed yet, so that a
vertical shift is also observed. Also, a gradual loss of overlap
between the curves is observed at higher values of G), i.e., at
higher frequencies, capturing the increasing amount of struc-
ture as the shear rate is decreased.

FIG. 4. Orthogonal superposition phase angle d? at a strain amplitude
c0 ¼ 0:22%. The main flow shear rate is indicated in the legend.

FIG. 5. Orthogonal superposition phase angle d? (left) versus superposition
complex modulus G)? at a strain amplitude c0 ¼ 0:22%. The main flow shear
rate is indicated in the legend.
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Given the mechanism of gradual aggregate size reduction
with increasing shear rate hypothesized above, it should then
be possible to collapse the phase angle data also using the
characteristics of the steady shear flow, at least for the curves
in the flow regime. A physically sound choice is the
Bingham number, a dimensionless group defined here as
Bi ¼ r=ry. The Bingham number compares the hydrody-
namic stresses to the structural stresses, which are due to the
attractive interactions, through the yield stress. The latter is
proportional to the maximal attractive interparticle force,
i.e., the maximum slope of the pair potential U: ry *
/2=a2ðdU=drÞ [49,50]. This scaling proved successful for
the steady shear rheology of thermoreversible octadecyl
silica gels [17]. Figure 6 shows the result of such scaling for
a selection of shear rates from Fig. 4, corresponding to a
Bingham number range 1 < Bi < 4:5. The frequencies at the
minimum in phase angle of Fig. 6(a) are plotted against the
shear rate in Fig. 6(c).

The proposed scaling is able to capture the shift in fre-
quency upon flow in the expected range of shear rates, corre-
sponding to stresses beyond the plastic flow regime (the
shear rate of 0.25 s#1 being at the edge of the latter, hence
not scaling so well). The scaling, therefore, holds (at least
approximately) not only for more homogeneous systems
such as the thermoreversible gels studied by Wagner and
coworkers [17,49] but also for the present, more heteroge-
neous colloidal gel. Therefore, the emerging picture is that
the aggregates gradually evolve and decrease in size during
more intense shearing, as a result of the interplay between
the shear forces breaking them up and the maximum attrac-
tive interparticle force. As the shear rate is increased, the
position of the minimum in phase angle moves more slowly
to higher frequencies, indicating how the aggregates turn
more resistant to further erosion as their size is reduced by
the flow.

The emergence of the observed minima in superposition
phase angle could be due to the slow Brownian relaxation of
aggregates. This hypothesis has been presented in the litera-
ture to explain significant elastic responses in colloidal gels
under flow [14]. The consistency of this hypothesis with the
present measurements can be tested by estimating an equilib-
rium aggregate hydrodynamic size, using the frequency at
the minimum in the unshifted phase angle data of Fig. 4 as
inverse characteristic Brownian diffusion time sD ¼ L2=D.
This is, therefore, calculated under the assumption that
Brownian motion is responsible for the observed viscoelas-
ticity of the material. The characteristic length L is taken as
the size of the aggregate itself, and the Stokes–Einstein rela-
tion is used with the medium viscosity and the diffusion
coefficient D to estimate a typical equivalent hydrodynamic
radius. The obtained size ranges from a radius a¼ 195 nm
for a shear rate of 0.25 s#1, down to 85 nm for the highest
shear rate of 100 s#1. The obtained hydrodynamic radii
values are consistent with the expected size range, given the
elementary particle average radius of 14 nm [51] and the size
of their dense agglomerates of about 100 nm, estimated by
X-ray scattering [52]. However, lacking direct structural
information, it still cannot be concluded unequivocally that
the observed elasticity and the minimum in superposition

FIG. 6. Orthogonal superposition phase angle d? versus unscaled (a) and
scaled (b) frequency range x, for a selection of shear rates. The intensity of
the steady flow is indicated. The frequency at the minimum of (a) is plotted
in (c) against the main flow shear rate _c.
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phase angle, are indeed due to the Brownian relaxation of
dense aggregates, as stated by Hsiao et al. for their system
[14,15]. Other contributions coming from, e.g., the poroelas-
tic breathing modes of the aggregates themselves could be
contributing in this frequency regime.

For investigating mechanical anisotropy, the orthogonal
moduli have to be supplemented with similar measurements
in another direction, e.g., parallel to the main flow. In many
commercial devices, such parallel oscillatory flow can be
superimposed on the steady shear flow. However, interpreta-
tion of such data remains difficult due to the coupling
between the main flow and the superimposed perturbation
flow, as discussed earlier [18]. Yet, superposition flows
become ordinary oscillatory flows as soon as the steady shear
is arrested. Here, we use a thixotropic system where structure
and properties recover gradually after arresting the flow. The
evolution of the mechanical anisotropy from steady shear
flow to equilibrium rest conditions can then be univocally
followed without any interference from the main flow.
Figure 7 compares the time evolution of the storage and loss
moduli upon cessation of flow, measured in mutually perpen-
dicular directions, for values of the prior shear rate similar to
the range explored in Fig. 3. A relatively high frequency of 5
rad/s was used to allow for fast enough sampling.

The open symbols show the evolution of the storage mod-
uli parallel to the previous flow direction, indicated with the
subscript h. Such time evolution after cessation of flow of
what are typically called “the” moduli was reported for
many types of colloidal gels, with an increase of orders of
magnitude in storage modulus [37,53–57]. In comparison,
the loss moduli are far less affected by flow. The storage
moduli G0z, measured in the orthogonal direction, i.e., per-
pendicular to the previous flow direction, show a much
weaker dependence on shear rate, as well as a significantly
larger magnitude. This is a consequence of the previous
shear flow selectively breaking down the microstructure in
the velocity-velocity gradient plane, while affecting it much
less in the velocity-vorticity plane, in the neutral direction of

shear, where no direct forces are present, in agreement with
scattering and microscopy studies [17,22,26]. The resulting
anisotropy, expressed as the ratio of the storage moduli in
the two directions, is substantial, as shown in Fig. 8. The
good agreement between steady state data in orthogonal
superposition flows (indicated with open symbols at 0 s in
Fig. 7) with the initial values of the recovery curves confirms
that the orthogonal oscillation is sufficiently decoupled from
the main flow, so that the superposition moduli have the same
physical meaning as ordinary linear moduli. Some fast relax-
ation mechanisms, also observed in stress jump measure-
ments [45], may introduce minor discrepancies. However, it
is clear that the OSR measurements probe the most dominant
aspects of the structural evolution under flow.

For the lower shear rates up to 0.1 s#1, the storage moduli
in the two directions initially differ by a factor of 2–4, up to
a difference of 2 orders of magnitude at the highest shear
rates. As could be seen already in Fig. 7, the anisotropy in

FIG. 7. Storage (a) and loss (b) moduli upon cessation of flow in orthogonal (G0z and G0 0z, filled symbols) and parallel (G0h and G0 0h, open symbols) direction
with respect to the previous flow. The symbols on the y-axis, at 0 s, indicate the values obtained at the corresponding frequency (5 rad/s) during flow (G0? and
G0 0?, Fig. 3). The dashed lines are to guide the eye. The intensity of the main flow before an arrest is indicated.

FIG. 8. Mechanical anisotropy expressed as the ratio of storage moduli in
perpendicular directions, upon cessation of flow. The intensity of the main
flow before an arrest is indicated.
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loss modulus is smaller by about an order of magnitude.
Importantly, the microstructural anisotropy subsides slowly
upon cessation of flow, at the same long timescale of the
thixotropic build-up. Figure 8 shows how the anisotropy
gradually decreases, as the microstructure evolves back to an
isotropic state. The persistence of the anisotropy further sug-
gests that selective breakdown rather than shear-induced ori-
entation of the microstructural features is occurring.

A similar mechanism of a spatially selective breakdown
was hypothesized for nonaqueous layered silicate suspen-
sions [19], where mechanical anisotropy in a polymer-clay
nanocomposite was measured for the first time, with differ-
ences of the moduli in orthogonal directions of a factor 5.
For the fumed silica suspensions studied here, which are
formulated at a similar volume fraction, the degree of anisot-
ropy is significantly higher, by almost 2 orders of magnitude.
In the layered silicate suspensions, the interplay between a
possible flow-induced orientation of the platelets composing
the gel and the anisotropic network breakdown could lower
the observed anisotropic response, as these two effects would
affect the degree of anisotropy in opposite directions. In
contrast, for the present measurements, the anisotropy can be
attributed solely to the spatially selective breakdown of the
network structure, as the fumed silica particles and their
agglomerates are essentially isotropic.

The fractal, isotropic nature of the agglomerates in the
fumed silica suspensions, referred to here as the primary
aggregates of partially coalescing primary particles, arises
from the conditions experienced by the growing silica par-
ticles during the flame synthesis and was proved by electron
microscopy and scattering experiments [51,58]. Primary,
spherical particles emerge from the initial, hotter part of the
flame, while the strongly bound agglomerates stem from
collisions and partial coalescence of the primary particles in
the following cooler regions of the flame. In later stages, larger
flocs are obtained, which are, however, only resulting from
physical aggregation. The same fumed silica used in this work
was found to scatter X-rays with a power law exponent of #3,
when dispersed in a similar matrix and using a similar mixing
protocol, thus indicating very dense, near spherical agglomer-
ates [52].

For suspensions in thermosetting or thermoplastic matri-
ces, the anisotropic microstructure could be locked in to cre-
ate novel functional soft materials with anisotropic
mechanical, thermal or optical properties. Figure 8 indicates
how both shear rate and time upon cessation of flow could be
used to tune the properties of such materials.

It is insightful to compare the present results with those of
other material classes, for example with liquid crystalline
polymers. In simple shear flow, the mechanical anisotropy of
our gel is more than 1 order of magnitude larger than that of
lyotropic liquid crystals probed in the same way [59]. A
second comparison can be made with dense suspensions of
non-Brownian spheres, in the limit of a high P"eclet number.
Stokesian dynamics simulations show for this case a maxi-
mal anisotropy of a factor of order 2, as quantified by the
asymmetry of the radial distribution function [60].

It should be remarked that the anisotropy does not reach
the expected final value of 1 in Fig. 8. This is an artifact of

the measurement caused by the residual pumping flow in the
orthogonal measurement discussed above, leading to an
increased strain amplitude in the axial direction. This is a
problem especially for systems with a yield stress as dis-
cussed earlier. As the sample is thixotropic, the magnitude of
the offset now depends on the applied shear rate. The pre-
shear rate determines the extent of liquefaction the sample
undergoes before the recovery measurement is started.
Therefore, for low preshear rates, the axial motion is not
necessarily strong enough to push material into the central
reservoir through the bottom openings. The resulting back-
flow in the measuring gap, which also increases as the gel
microstructure recovers, is reflected in an overestimation of
G0z. This fact explains the crossing of the curves in Fig. 8.
However, numerical calculations on a Newtonian fluid (see
the Appendix) show that for a true solid wall at the openings,
the resulting pressure force and Poiseuille flow would domi-
nate the simple shear, leading to a much larger offset (almost
2 orders of magnitude) than the ca. þ50% actually observed
for the lowest applied shear rate.

To investigate the anisotropy further, we used 2D-SAOS
measurements, where a bidirectional flow field is imposed

by coupling the axial deformation cz ¼ c0
z sinðxtÞ with the

conventional angular deformation ch ¼ c0
h sinðxtþ dz;hÞ

[19]. With a phase offset dz;h ¼ 0!, a unidirectional, screw-
like deformation is obtained, whose orientation angle in the
velocity-vorticity plane of the main shear flow can be tuned
by varying the relative magnitude of the strain in the two

directions uz;h ¼ arctanðc0
z=c

0
hÞ. The resulting peak ampli-

tude is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02

z þ c02

h

q
, the stress response is then calcu-

lated in the same way from the components in z and h
direction, and its harmonic analysis leads to the viscoelastic
moduli at the given angle uz;h. The results of a recovery

experiment analogous to those in Fig. 7 are shown for a pre-
shear rate of 10 s#1 in Fig. 9. Again, a frequency of 5 rad/s
was used to ensure adequate sampling rates.

The limiting cases of vorticity and flow direction, for 90!

and 0!, correspond to the experiments shown in Fig. 7 for the
orthogonal and parallel case, respectively. Interestingly, it
can be seen that already at a small angle of 22.5! from the
flow direction, most of the difference between flow and vor-
ticity direction is recovered, while the curves for 67.5! and
90! are almost overlapping. This observation strengthens the
conclusion that the measured mechanical anisotropy is due
to the spatially selective breakdown of the microstructure in
the direction of the previous shear flow. Again, the storage
moduli are much more affected by the previous shear than
the loss moduli.

The dispersion quality of the samples is influenced by
mainly two factors: The used mixing procedure and the
physical aging processes occurring over long times. Both
factors affect the microstructure, effectively changing the
recovery behavior of the sample and the observed anisot-
ropy. A less effective dispersion procedure results in both a
lower degree of anisotropy and a faster recovery to an isotro-
pic structure, as shown in Fig. 10. In this case (denoted as
“mild mixing”), the silica powder was dispersed as described
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in Sec. II, but the suspension was subjected to ultrasonication
only after the last addition step.

The results in Fig. 10 confirm the crucial role of disper-
sion quality on the rheology of the present model system.
The storage moduli measured in the direction parallel to the
previous flow are more susceptible to breakdown under shear
than the orthogonal ones, and therefore also more sensitive
to the quality of dispersion. In turn, the orthogonal storage
moduli even cross, so that a sample with lower dispersion
quality recovers more quickly. This results in a decreased
and faster fading anisotropy. Aging produces results similar
to those shown for mixing in Fig. 10.

Many soft materials demonstrate anisotropic rheological
properties, often related to either an inherent anisotropy of
the building blocks, as in liquid crystals [59] or due to a
field-directed assembly of the microstructure, as in magneto-
rheological fluids [61]. However, as recently pointed out by
Cohen and coworkers [62], an anisotropic microstructure
does not automatically lead to an anisotropic rheological

response. The latter authors investigated a suspension of col-
loidal spheres which formed aligned string phases during
shear, but no significant anisotropy in the viscous response
was detected. Also, Stokesian dynamics simulations showed
that shear thinning of the viscosity is decoupled from the
layering of a stable colloidal suspension under shear [63].
For the flocculated suspensions investigated here, the loss
moduli also show a weaker dependence on shear rate, and
hence on the structural anisotropy, suggesting that the hydro-
dynamic contributions to the stress do not depend too
strongly on the microstructure. These can still be expected to
vary because of changes in porosity of the network or
changes in size, density, and effective volume fraction of the
constituent aggregates. Yet, unexpectedly for these materi-
als, the elastic properties show a very high degree of anisot-
ropy. This suggests a strong difference in load bearing

FIG. 10. Comparison of two identical formulations, prepared with different
mixing procedures. Storage moduli in vorticity (G0z, filled symbols) and flow
(G0h, open symbols) direction, upon cessation of the steady shear flow (a).
The corresponding anisotropy as the ratio of the storage moduli in the two
perpendicular directions (b). Measurements at angular frequency x¼ 1 rad/s
and strain amplitude c0 ¼ 0:22%, upon cessation of steady shear flow at
10 s#1.

FIG. 9. 2D storage (a) and loss (b) moduli G02D and G0 02D upon cessation of
steady shear flow at 10 s#1. The orientation angle uz;h of the 2D, unidirec-
tional deformation is indicated.
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structures in the two directions, consistent with the micro-
structural observations by either scattering techniques or
direct observations. The structure in the vorticity direction
can be expected to be affected only weakly by flow, as there
are no direct forces acting in what is appropriately called the
neutral direction. This is confirmed by the comparatively
weak dependence of the moduli in the orthogonal direction
on shear rate (Fig. 7).

In the direction of straining the situation is known to be
different, as evidenced by microstructural observations. At
low stresses, close to the yield point, the flocculated suspen-
sion flows, while maintaining a transient network [21,25,26],
which is observed to be anisotropic, with load bearing struc-
tures forming along the compressional axis of the flow field.
Interestingly, the anisotropy in the mechanical response is
preserved even when connectivity in the microstructure can
be expected to be lost, based on the flow curve. Some signifi-
cant elasticity is retained, even when the system enters the
pseudo-Newtonian regime in Fig. 1 and the viscous response
becomes dominant (Figs. 3 and 4).

The results of the cessation of flow experiments shed new
light on the obtained orthogonal superposition moduli, which
are measured in the same direction where a largely unaffected
structure is found after stopping the previous shear (Fig. 7). It
has to be pointed out that the cessation of flow experiments are
carried out at 5 rad/s, a choice motivated by the trade-off
between time resolution after flow arrest and frequency. This
relatively high frequency is in the range, where a relaxation
time is probed which corresponds to more local features at the
aggregate scale, rather than that of the network. Therefore,
long range connectivity is also lost in the orthogonal direction,
as evidenced by the sharp increase of the superposition phase
angle at low frequencies in Fig. 4, but substantial elasticity is
retained at smaller length scales, which also reflects in the
highly anisotropic structure observed after flow cessation for
this frequency. Given the relaxation time probed, this should
be due to anisotropic, elongated aggregates remaining in the
direction orthogonal to previous shear flow. The recent idea
that rigid, isostatic clusters with a viscoelastic Brownian time
scale contribute is interesting to investigate [14] and consistent
with the above presented data. Yet, when connecting the flow-
induced microstructure of these types of soft materials to their
nonlinear rheology, the anisotropic microstructure is an essen-
tial or even crucial element, especially when important nonhy-
drodynamic contributions are present.

IV. CONCLUSION

OSR and 2D-SAOS were employed to study shear-induced
microstructural changes and mechanical anisotropy in a model
thixotropic gel. The orthogonal superposition moduli, obtained
during steady state flow at different shear rates, provide direct
frequency-dependent information about the effects of shear
rate on flocculated suspensions. Two main relaxation processes
relate to the (residual/transient) network relaxation at low fre-
quencies and to a fast relaxation of the aggregates, respec-
tively. Low shear rates, with stresses very close to the dynamic
yield stress, already drastically affect the superposition moduli

and the relaxation mechanisms, in particular at low frequen-
cies. The pseudoplateau region of the storage moduli, charac-
teristic for the physical gel that exists at rest, drops drastically
at even the smallest shear rates, consistent with a gradual loss
of connectivity, leading to a transient network and to break-
down into systematically smaller structures. However, when
the shear rate is further increased, a lower plateau persists even
at shear rates corresponding to the pseudo-Newtonian part of
the flow curve. Increasing the shear rate reduces the relaxation
time of the aggregates, but the near-constant level of the pla-
teau in the moduli suggests structural elements that can still
relax in the same manner. A mechanism of erosion without
significant internal structural changes can be inferred from the
Van Gurp-Palmen plot. The flow regime phase angle curves
also collapse in a frequency range scaled by the Bingham num-
ber of the main flow.

Additional information was obtained during structural
recovery by means of oscillatory measurements in the flow
direction and by 2D-SAOS. During steady flow, the parallel
superposition flow cannot be analyzed as normal linear oscil-
latory flow. This difficulty disappears after the flow has been
arrested. In the thixotropic systems used here, the evolution
in time of parallel and orthogonal moduli could be compared
after arresting the flow. An initial difference of up to 2 orders
of magnitude between the storage moduli in the two direc-
tions was measured, significantly higher than those observed
in layered silica-polymer systems studied by Mobuchon
et al. [19], where such anisotropies were reported for the first
time. Hence, flow induces a very large anisotropy in these
materials that cannot be directly associated with the shape of
the elementary particles. The difference is less pronounced
for the loss moduli. For both types of moduli, the initial
anisotropy increases with the shear rate over the range cov-
ered here and decays slowly when the structure recovers in
time. The data are congruent with earlier microstructural
studies by scattering and direct observations on similar
systems. Upon yielding, the present gel breaks down in a
spatially anisotropic way. Bonds in the velocity-velocity gra-
dient plane break down, whereas microstructural features are
less affected away from this plane. The rheological data
demonstrate that anisotropy cannot be ignored in understand-
ing and modeling flow in these weakly flocculated and gel-
ling suspensions. It is also shown that the detailed results are
very sensitive to the details of the dispersion process.
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APPENDIX: ESTIMATION OF MEASUREMENT
ERRORS DUE TO PUMPING FLOW

The flow profiles of a Newtonian fluid in the orthogonal
direction of the orthogonal superposition setup were modeled
by CFD simulations in COMSOL multiphysicss

R
. Two limiting
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cases of openings and a solid wall at the inner side of the cup
were considered, using 2D calculations of the velocity fields.
In addition, the behavior was simulated in 3D for the open
bottom case, to check the effects of the supporting pillars of
the cup. The two considered limiting cases represent, respec-
tively, a lower and an upper bound for the overestimation of
the superposition moduli of a yield stress fluid in OSR. The
yield stress fluid in the openings at the measuring cell bottom
undergoes a different level of liquefaction depending on the
experienced shear, resulting in different amounts of error
due to pumping flow, as discussed in Sec. III.

The laminar flow interface was used to simulate the fluid
behavior during oscillatory flow. This interface couples the
Navier–Stokes equations with the continuity equation to
solve for both the pressure and velocity field. Simulations
were performed on a noncompressible fluid with a viscosity
of 1 Pa s. A no-slip boundary condition was applied at the
walls of the bob and cup, whereas the fluid/air boundary was
considered to be a stress free boundary. The bob was oscil-
lated in the orthogonal direction with a frequency of 5 rad/s
using a strain amplitude of 5%.

The resulting velocity fields and profiles over the mea-
surement gaps are shown in Fig. 11 for the 2D models. For
the Newtonian case, they are qualitatively similar to the 3D
case (where a coarser mesh had to be used). A clear differ-
ence can be seen from the velocity magnitude in the gap
between both limiting cases, which is shown more in detail
in Fig. 12, via the orthogonal velocity profile over the outer
measurement gap. There the difference between the nearly
linear shear profile and Poiseuille dominated flow for the
closed wall case is apparent.

The effect of pumping flow is quantified for both limiting
cases by calculating the forces acting on the bob when the
predefined oscillatory deformation is applied. The results are

shown in Table I. They are calculated by integrating the local
forces over the entire geometry. The total force consists of
contributions of the force acting on the side walls (viscous)
and ends of the bob (pressure). As for the velocity fields, the
results for the 2D and 3D models in the open bottom case are
nearly identical, showing the limited effect on both force
contributions of the pillars between the bottom openings.
The moduli are calculated from the force using the geometri-
cal parameters of the setup. For the open bottom case, the
calculated modulus is overestimated by approximately 10%.
The offset for this lower bound is caused by a combination
of an increased shear rate in the gap as a result of a limited
amount of pumping flow, together with pressure forces
on the bob ends. For the closed bottom case, both force

FIG. 11. Velocity magnitude (m/s—color/greyscale) and velocity field (arrows) for the open (a) and closed (b) cup bottom. The bottom of the cell is shown to
emphasize the outflow from or backflow into the measuring gaps. The bob is moving downward at a velocity of 1:25+ 10#4 m/s.

FIG. 12. Velocity profile in the orthogonal direction over the outer measure-
ment gap. The moving bob wall is the reference position at 0 mm.
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contributions increase markedly, but the response is now
dominated by the pressure contribution. The calculated mod-
ulus is overestimated by almost 2 orders of magnitude.
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