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Thomas Guillod, Jonas Huber, Florian Krismer, and Johann W. Kolar
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Abstract—High-Frequency (HF) litz wires are extensively used
for the windings of Medium-Frequency (MF) magnetic compo-
nents in order to reduce the impact of eddy current losses that
originate from skin and proximity effects. Literature documents
different methods to calculate eddy current losses in HF litz
wires, however, most of the computation methods rely on perfect
twisting of the strands, which is often not present in practice.
This paper analyzes the implications of imperfect twisting on
the current distribution among the different strands of HF litz
wires and the corresponding losses by means of a fast 2.5D
PEEC (Partial Element Equivalent Circuit) method. The effects
of different types of twisting imperfections (at the bundle-, sub-
bundle-, or strand-level) are examined. It is found that imperfect
twisting can lead to increased losses (more than 100 %). However,
perfect twisting of the strands, which is difficult to achieve,
is often not required, i.e. suboptimal twisting is sufficient.
Analytical expressions are given for distinguishing between
critical and uncritical imperfections. The experimental results,
conducted with a 7.5 kHz / 65 kW transformer, reveal a reduction
of the error on the predicted losses from 52 % (ideal HF litz wire
model) to 8 % (presented model) and, thus, confirm the accuracy
improvement achieved with the proposed approach.

Index Terms—Power Electronics, Litz Wires, Skin Effect,
Proximity Effect, Twisting Imperfections, Medium-Frequency,
Transformers, Inductors, PEEC, Numerical Simulations.

I. INTRODUCTION

The computation of winding losses represents an essential
part of the modeling process of inductors and trans-
formers. Power electronic converters are usually operating
at Medium-Frequency (MF), which can be defined with
the power/frequency product (usually 0.1−1.0GHzW for
medium-power systems). At MF, the impacts of eddy current
losses cannot be neglected any more. Usually, eddy current
losses are split up into losses due to skin and proximity
effects: the skin effect describes the eddy currents due to
the magnetic field created by the current in the conductor
itself and the proximity effect characterizes eddy currents
that originate from an external magnetic field.

In order to obtain efficient MF inductors and transformers,
the impacts of losses due to skin and proximity effects need
to be mitigated. This is usually achieved with foil conductors
or High-Frequency (HF) stranded conductors, e.g. Roebel
bars or HF litz wires. In this regard, HF litz wires are very
popular since they allow for low losses and great flexibility
in the design of the magnetic component [1]–[5].

HF litz wires are composed of multiple insulated strands,
as shown in Fig. 1. Each single strand is subject to skin
and proximity effects and thus, the single strand diameter
is selected with regard to acceptable losses [6]. The strands
are twisted together in both radial and azimuthal directions:
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Fig. 1. (a) Projection and (b) 3D view of the twisting scheme (azimuthal
and radial) of a single strand. The depicted path depends on the structure of
the bundle, the pitch lengths of the bundles, and the used twisting scheme.
(c) Packing structure of a HF litz wire with bundles and sub-bundles.

• The permutation in radial direction prevents eddy
currents in case of an azimuthal magnetic field. An
azimuthal field is created by the currents that are
present in the considered HF litz wire itself.

• The permutation in azimuthal direction suppress the
oriented area spanned between the strands with respect
to an homogeneous external field. The cancellation of
the magnetic flux between the strands, prevents the
formation of circulating eddy currents.

In addition to the number of strands and the diameter
of a single strand, the pitch (or length of lay), which is
the spatial period length of the twisting (in longitudinal
direction), denotes a third important parameter of a HF litz
wire.

For HF litz wires with a high number of strands, simulta-
neous azimuthal and radial twisting is difficult to achieve.
Such HF litz wires are often constructed in a recursive
manner, i.e., the total HF litz wire is composed of twisted
bundles of HF litz wires and each bundle itself can again
be composed of twisted bundles or single strands. In this
paper, the first twisting level (twisting of the strands) and
the last level (forming the complete HF litz wire) are called
strand-level and top-level twisting, respectively. Additional
twisting levels between the top- and the strand-level are
denoted as mid-levels, cf. Fig. 1(c).

With high numbers of strands and complex twisting
schemes, the accurate computation of losses in such
stranded conductors is a challenging task. Over the years,
different calculation methods have been proposed for the
calculation of the losses, which rely on analytical and/or
numerical calculations [6]–[11]. However, it is found that the



measured losses are often larger than the values computed
with the aforementioned methods [1], [2], [12]. Different
effects can explain such deviations:

• The (external) magnetic field is inaccurately com-
puted [13]. Moreover, certain computational methods
presuppose the external magnetic field to be homoge-
neous across the cross section of the HF litz wire [11].

• The terminations of the HF litz wire are generating
losses. Moreover, terminations can add an impedance
mismatch between the strands which leads to undesired
circulating currents [2], [12], [14].

• Due to twisting, the length of the strands is greater
than the length of the HF litz wire [15]. For typical HF
litz wire, however, this effect is often negligible (less
than 10%).

• The packing (hexagonal, square, etc.) of the strands is
not homogeneous and/or not perfectly modeled [8], [9].
The exact packing in a HF litz wire, which is often not
clearly defined, has only a limited impact on the losses
(less than 10%).

• A non-integer number of pitches is used, leading to
circulating currents inside the HF litz wire [7], [16].
Alternatively, local variations (along distances that are
similar to the pitch length) of the external magnetic field
also create additional losses [12]. Such local variations
are typically produced by the fringing fields of air gaps.

• An imperfect twisting scheme is used, leading to an
inhomogeneous current distribution in the strands. This
includes improper azimuthal and/or radial twisting (at
the top-, strand-, or mid-level), poor choices of the
ratios of the pitch lengths between twisting levels, etc.

The last two effects can lead to significant additional losses
and commonly occur in practice. In particular, commercially
available HF litz wires are frequently found to be subject
to imperfect twisting [2]. Therefore, this paper analyzes the
impact of the twisting scheme on the losses, which, to the
knowledge of the authors, has not been studied in details
in the literature. Section II summarizes loss computation
methods for perfectly twisted HF litz wires. Section III
analyzes the implications of twisting imperfections on the
losses. Finally, Section IV, compares calculated results to
experimental results, using a MF transformer that employs
a HF litz wire with imperfect twisting.

II. PERFECT TWISTING

A perfectly twisted (radial and azimuthal directions)
HF litz wire with an infinitesimally small pitch length is
considered (ideal HF litz wire). The HF litz wire conducts
the current Iwire and is subject to a homogeneous external
magnetic field, Hext. Fig. 2 depicts the magnetic field
determined with FEM simulations for a 343×100µm HF litz
wire at different frequencies. At 1MHz, the eddy currents
generate losses but have a limited impact on the magnetic
field distribution. For f À 1MHz the skin depth is less than
the strand diameter of a single strand and the eddy currents
alter the magnetic field distribution, leading to a shielding
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Fig. 2. (a) Low frequency and high frequency magnetic field patterns
for current and (b) external field excitation. A 343×100µm HF litz wire is
considered (2.5mm outer diameter).

effect inside the strands. The corresponding losses, P , are
expressed as [11]

P
(

f
)= RDC

(
K I

(
f
)

I 2
wire +KH

(
f
)

H 2
ext

)
, (1)

where K I and KH are frequency-dependent parameters and
RDC denotes the low frequency resistance. The losses can
be split up into four categories:

• DC losses (represented by RDC): conduction losses
which are not linked to eddy currents.

• Skin effect (included in K I ): eddy current losses in
a strand that originate from the field created by the
current in the same strand.

• Internal proximity effect (included in K I ): eddy current
losses in a strand that originate from the field created
by the currents in the other strands.

• External proximity effect (included in KH ): eddy current
losses in a strand by reason of an externally applied
homogeneous magnetic field.

The parameters RDC, K I , and KH are figures of merit
for the HF litz wire itself. In a magnetic component
(e.g. inductor, transformer), the relevant part of the external
magnetic field, Hext, depends on the conductor current,
Iwire, and the geometrical properties of the component (e.g.
selected core, air-gap length, number of turns). This allows
the definition of the equivalent AC resistance, which is
a figure of merit for the complete winding of a defined
magnetic component and not only for the HF litz wire.
With (1), the equivalent AC resistance can be calculated
according to

P = RAC
(

f
)

I 2
wire, Hext ∼ Iwire. (2)

Different methods exist for the computation of the
losses, which feature different hypotheses, high frequency
accuracies, and computational costs. The most common
methods are listed below:

• Asymptotic approximation (“Asymp”): The losses by
reason of skin effect are neglected (the skin depth is
assumed to be larger than the diameter of strands)



and the losses due to proximity effects (internal and
external) are modeled with a low-frequency asymptotic
approximation. The packing pattern is only modeled
with the fill factor [2], [6], [10].

• Bessel functions (“Bessel fct.”): The losses due to skin
and proximity effects are modeled with Bessel functions.
HF effects are considered for every strand but the
shielding effect of the eddy currents (cf. Fig. 2) is not
modeled. The packing pattern is only modeled with the
fill factor [2], [11].

• Biot-Savart discrete modeling (“Biot-Savart”): The losses
by reason of skin and proximity effects are modeled with
Bessel functions. The exact packing pattern is modeled
and the magnetic field is computed with a Biot-Savart
summation [5].

• FEM homogenization (“FEM hom.”): The packing pat-
tern of the HF litz wire is assumed to be periodic. A
unit cell of the pattern is solved with FEM simulation
and virtual material parameters (conductivity and
permeability) are extracted for the packing pattern.
Subsequently, the virtual conductor parameters are
used to compute the losses. All high frequency effects
are modeled. The limitations of this approach are the
presupposed periodicity of the packing pattern and
inaccuracies at the boundary of the HF litz wire [8], [9].

• FEM discrete modeling (“FEM disc.”): All strands are
modeled with FEM. The obtained solution contains all
high frequency effects and considers the exact packing
pattern [14]. Alternatively the PEEC (Partial Element
Equivalent Circuit) method can be used [14].

Fig. 3 depicts a comparison between the methods for a
343×100µm HF litz wire (cf. Fig. 2). The corner frequency
fc,HF characterizes the maximum frequency up to which
the low frequency asymptote of the proximity losses is
considered to be valid and can be expressed as

fc,HF (ds) ≈ 32
2
3

πσµ0d 2
s

, (3)

where σ is the conductivity and ds the diameter of the
strands. For f < fc,HF, it can be concluded that the simplest
method, the asymptotic approximation, features sufficient
accuracy for most applications. For f > fc,HF, the solutions
based on Bessel functions or, if higher accuracy is required,
the FEM-based methods need to be considered (cf. Fig. 2).
Most commonly, however, f > fc,HF is avoided in order
to avoid excessive HF losses and a HF litz wire with a
smaller single strand diameter is considered [2]. Therefore,
in this paper, f < fc,HF is presupposed. Furthermore, the
comparative evaluation given in Fig. 3 reveals that an exact
model of the packing pattern is not required.

For f < fc,HF the results obtained with all considered
computational methods are matching. This indicates that
potential deviations between computed and measured losses
originate from phenomena that violate the hypothesis of a
perfectly twisted HF litz wire with an infinitesimally small
pitch length.
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Fig. 3. (a) Loss factor KI and (b) KH computed with different methods
(asymptotic approximation, Bessel functions, Biot-Savart summation, FEM
homogenization, and FEM discrete modeling). A 343×100µm HF litz wire
is considered (2.5mm outer diameter).

III. TWISTING IMPERFECTIONS

A. Computation Method

This section investigates the implications of different
twisting schemes (e.g. radial, azimuthal, combined) and
numbers of pitches (integer or non-integer) on the expected
AC losses of HF litz wires. In such HF litz wires, the
assumption of equal current distribution among the strands
is, in general, incorrect and the aforementioned methods
are not applicable.

In the literature, an analytical method for the simulation
of imperfect HF litz wires has been proposed [16], especially
with regard to the impact of the pitches. However, this
method, which does not compute the current sharing
between the strands, cannot be used for simulating complex
twisting schemes. Further references propose 3D simulation
methods, based on integral equations (e.g. PEEC), differential
equations (e.g. FEM) [7], [17], [18], or both [13]. However,
3D methods are complex to implement and demand for
very high computational cost, which limit the number of
strands to less than hundred [7], [18]. For larger HF litz wires,
massive parallel computing is required [17]. Furthermore, the
3D methods require a complete parametric representation
of all the strands, which is difficult to obtain for HF litz
wires with a high number of strands (e.g. consideration of
deformations of the bundles) [10], [19].

The 2.5D PEEC method proposed here and briefly de-
scribed in the following offers a trade-off between modeling
accuracy, modeling effort, and computational cost. Fig. 4
presents the main steps of the method, which is based on a
custom-built PEEC solver. First, the geometry (packing and
twisting) of the HF litz wire is generated and the HF litz
wire is sliced into different sections (about ten per pitch). In
a second step, the inductance and resistance matrices are
calculated using a 2D model. For taking the twisting scheme
into account, the matrices are permuted (according to the
slicing of the HF litz wire) and the total impedance matrix of
the HF litz wire is generated. The current sharing problem
is solved by equalizing the voltage drops (computed with
the impedance matrix) between the strands [19]. Finally, the
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Fig. 4. Workflow for the computation of losses in HF litz wires with
arbitrary twisting schemes and numbers of pitches. The analysis is based
on a 2.5D PEEC method.

magnetic field and the losses (due to skin and proximity
effects) are extracted.

Compared to a full 3D method, the 2.5D PEEC method
neglects the current flows in azimuthal and radial directions,
which are, however, much smaller than the longitudinal
currents [19]. This implies that the method is not able to
simulate configurations with a large external field applied
in longitudinal direction, which are, anyway, uncommon for
magnetic components. The main advantage of the 2.5D PEEC
method is the reduced computational cost (and memory
requirements), which enables the simulation of a HF litz
wire with thousands of strands in less than a minutes on a
personal computer. Moreover, the method does not require
a complete 3D full parametric representation of the HF
litz wire and, hence, substantially reduces the modeling
complexity. Finally, the fact that the PEEC method is based
on an equivalent circuit allows the combination of the HF
litz wire model with external models, such as terminations
[2], [14]. Furthermore, the method is also applicable to high
frequencies ( f > fc,HF), even if this case is not considered
in this paper.

B. Considered Twisting Imperfections

Many different twisting schemes exist for HF litz wires [6],
[14], [18], featuring different bundle structures, radial and/or
azimuthal permutations, etc. However, most litz wires are
constructed with the following twisting schemes:

• Perfect twisting (“PT”): the strands are perfectly twisted
(radial and azimuthal direction). This ideal construction
is difficult to realize with a large number of strands
(more than six).

• Bunched wires (“BW”): the strands are only twisted in
azimuthal direction. The strands located in the center
of the wire, stay in the center and are not twisted. This
represents the easiest and cheapest twisting scheme

4×5 : Perfect twisting × Perfect twisting

42 : Bunched wires

7×7 : Bunched wires × Bunched wires

4×12 : Perfect twisting × Bunched wires

(a)

(b)

(c)

(d)

Fig. 5. (a) Perfect twisting, (b) bunched wires, (c) bundle in the center,
and (d) hybrid twisting (perfect and bunched). Each title line specifies the
corresponding number of bundles and the number of strands per bundle.

TABLE I
TWISTING SCHEMES (343×100µm).

Name Twisting scheme Number of wires

“343/PT/PT/PT” PT×PT×PT 7×7×7

“343/PT/PT/BW” PT×PT×BW 7×7×7

“343/PT/BW/BW” PT×BW×BW 7×7×7

“343/BW/BW/BW” BW×BW×BW 7×7×7

“343/PT/BW” PT×BW 7×49

“343/BW” BW 343

and is commonly found in commercially available HF
litz wires [2], [6], [12].

These twisting schemes (“PT” and “BW”) feature correct
twisting in azimuthal direction since imperfect azimuthal
twisting is uncommon for HF litz wires. Fig. 5 illustrates dif-
ferent combinations of the aforementioned twisting schemes
(many levels of twisting). Fig. 5(c) shows an imperfect
twisting scheme which feature an untwisted bundle in the
center of the wire [2]. Fig. 5(d) depicts a hybrid twisting
scheme, which is also commonly found: the “BW” twisting
scheme is used at the strand-level and all other levels (e.g.
top-level) employ perfect twisting (“PT”) [6], [12].

All simulations consider the HF litz wire introduced in
Section II (343×100µm) and the six different combinations of
the aforementioned twisting schemes (“PT”, “BW”, cf. Fig. 5)
listed in Tab. I. The pitch length of the top-level twisting
is 30mm. The ratio of the pitch between two successive
twisting levels is set to 2.0 (given that the strand-level
twisting pitch is the shortest).

C. Simulation: Twisting Schemes

The six twisting schemes listed in Tab. I are considered
with an integer number of pitches. Fig. 6(a) illustrates the
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Fig. 6. (a) Phase differences of the strand currents (with respect to the phase of the total current, Iwire) at 100kHz for different twisting schemes
(Iwire = 1A, Hext = 0A/m). (b) Factor KI (cf. (1)) for different twisting imperfections (cf. Tab. I), compared to a perfectly twisted HF litz wire (cf. Fig. 3). A
343×100µm HF litz wire is considered (2.5mm outer diameter).

current sharing for the case of a current excitation (no
external field excitation). The current in the bundles which
are not perfectly radially twisted is phase-shifted with respect
to the total current. This implies that more current is flowing
in the other bundles. This leads to increased losses according
to Fig. 6(b) for K I (cf. (1)). The effect of the twisting on
the DC resistance is small (less than 5%) and, therefore, is
neglected.

As expected, the loss increases are particularly pronounced
(more than 100%) for twisting imperfections at the top-
level (“343/BW/BW/BW”, “343/BW”). For imperfect twisting
at the mid-level (“343/PT/BW/BW” and “343/PT/BW”),
the increase is already much smaller (less than 40%). A
twisting imperfection at the strand-level (“343/PT/PT/BW”)
has a negligible impact on the losses, showing that a
perfect twisting is actually not required. Finally, the ideal
twisting scheme (“343/PT/PT/PT”) matches perfectly with
the methods presented in Section II. At higher frequencies
( f ≈ 1MHz, cf. Fig. 6(b)), the effects of twisting imperfections
disappear and imperfectly twisted HF litz wires feature even
lower losses, due better current distributions with respect
to the high-frequency proximity losses [6], [11], [12].

The impact of the twisting schemes on the external field
factor KH (cf. (1)) is negligible since the considered HF litz
wires are correctly twisted in azimuthal direction and an
integer number of pitches is chosen.

D. Simulation: Number of Pitches

The losses are further affected by the number of pitches
(number of twisting periods) of the HF litz wire. For the
sake of simplicity and brevity, only the twisting scheme
“343/BW” is considered. However, the results are similar
for the remaining five schemes since the impacts of the
pitch lengths of the sub-bundles (e.g. mid- and strand-level
twisting) are less critical [16].

If a non-integer number of pitches is used, the impedance
asymmetry between the strands is leading to circulating
currents, as shown in Fig. 7(a) for 5.5 pitches and an
external magnetic field excitation (no current excitation).
Fig. 7(b) illustrates the impact of the number of pitches on

Field loss factor: number of pitches1 kHz / np = 5.5
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Fig. 7. (a) Amplitude of the strand currents for the twisting scheme
“343/BW” with 5.5 pitches (Hext = 1A/m, Iwire = 0A). (b) Factor KH (cf. (1))
for the twisting scheme “343/BW” and for different number of pitches
compared to a perfectly twisted HF litz wire (cf. Fig. 3). A 343×100µm HF
litz wire is considered (2.5mm outer diameter).

the external field factor KH (cf. (1)). The impact on K I is
much smaller and therefore not considered.

The loss increase is particularly pronounced (more than
100%) for short HF litz wires which is critical for windings
with reduced number of turns. As expected, the impacts
of non-integer numbers of pitches reduce significantly for
increased lengths of the HF litz wire. At higher frequencies,
the spatial distributions of the circulating currents change
(cf. Fig. 7(a)), which leads to a mitigation of the losses
due to the circulating currents between the strands [11].
By contrast, as shown in Fig. 3, the factor KH of an ideal
HF litz wire increases rapidly over frequency. This implies
that the effects of a non-integer number of pitches become
negligible at higher frequencies.

The same effect appears for winding with an integer
number of pitches placed in a non-homogeneous external
magnetic field (variable in the longitudinal direction). Such
local variations, which are typically produced by the fringing
fields of air gaps, also lead to circulating currents, as shown
in Fig. 7(a).

E. Analytical Approximations & Design Recommendations

Even though the 2.5D PEEC simulations are fast, analyt-
ical formulas are still required for a rapid assessment of
the impacts of twisting imperfections on the losses. For
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computing the loss increases due non-integer numbers of
pitches or non-homogeneous external field, the analytical
formulas presented in [16] can be used. For the evaluation of
different twisting schemes (cf. Fig. 5), the following approach
can be used.

First the twisting schemes “343/PT/PT/PT” and “343/BW”,
which represent the extreme cases (cf. Fig. 6), are considered.
Fig. 8(a) depicts the corresponding loss factors, K I , and
presents the different asymptotes. With these asymptotes,
an expression for the frequency, fc,BW,PT, where the two
curves intersect, can be derived as

fc,BW,PT (douter,ds) ≈ 1024
1
3

πσµ0F d
2
3

outerd
4
3

s

, (4)

where σ is the conductivity and ds the diameter of the
strands, douter the external HF litz wire diameter, and F the
fill factor. It can be seen that a bunching of the all strands
would be preferable for f > fc,BW,PT, due to the superior
high frequency properties [6]. However, HF litz wires are
usually operated at f < fc,BW,PT such that twisting in radial
direction is also required [2], [6].

Radial twisting is difficult to achieve for large numbers of
strands and a construction based on bundles with reduced
numbers of single strands is preferred, instead. In case of HF
litz wires with very high numbers of single strands, many
levels of bundles are required, which makes the process
of twisting difficult and expensive. According to the results
depicted in Fig. 6, however, certain twisting imperfections
can be acceptable. Therefore, an expression is required in
order to assess the impacts of given imperfections on the
expected losses.

Since imperfections in the top-most level are most critical
and should be avoided (for f < fc,BW,PT), a HF litz wire with
the twisting scheme “PT×BW” is selected and compared to
a perfectly twisted HF litz wire (“PT×PT”). The diameter of
each bundle is dbundle and the outer diameter of the HF litz
wire is douter. Fig. 8(b) shows the loss factors, K I , calculated
for single bundles and the loss factor of the (complete)
perfectly twisted HF litz wire. The corner frequencies for

TABLE II
7.5kHz / 65kW MF TRANSFORMER.

Name HV winding LV winding

Voltage ±1.1kV ±0.8kV

RMS Current 70A 95A

Winding size 6.0×72mm 8.1×70mm

Litz wire profile Rectangular Rectangular

Litz wire size 6.0×6.0mm 8.1×8.1mm

Number of strands 700×200µm 1000×200µm

Twisting Scheme BW×PT×BW BW×BW×BW

Number of wires 7×5×20 7× [10,11]×14

the perfectly twisted HF litz wire and the bundles, fc,PT and
fc,BW, can be expressed as:

fc,PT (douter,ds) ≈
p

128

πσµ0F douterds
, (5)

fc,BW (dbundle) ≈ 16

πσµ0F d 2
bundle

. (6)

In order to avoid that the eddy current losses in the single
bundles lead to a considerable increase of the overall losses,
the corner frequency of the bundles needs to be greater
than the operating frequency (by approximately a factor
of two/three). With this, the following condition for the
diameter of each bundle is derived:

dbundle
(

fc
)< 4√

πσµ0F fc
, fc < fc,BW < fc,PT. (7)

where fc is the selected corner frequency. These results can
also be generalized to HF litz wires with arbitrary numbers of
twisting levels. The diameters of the largest bundles resulting
from an imperfect twisting scheme (e.g. “BW”) should not
exceed the value computed with (7).

For the construction of a HF litz wire with a given outer
diameter (douter) and strand diameter (ds), the following
design procedure can be used (for f < fc,BW,PT):

• The bundles diameter (dbundle, cf. (7)) is computed for
the strand-level twisting. This strand-level bundle is
composed of bunched strands. Using bundles with a
smaller diameter only marginally reduces the losses
but significantly increase the complexity of the twisting
scheme and potentially reduce the fill factor.

• From the diameters douter and dbundle, the number of
bundle is extracted.

• If the number of bundles is too large for a “PT×BW”
twisting scheme additional mid-level twisting steps
should be added (e.g. “PT×PT×BW’).

Now it is possible to combine the aforementioned effects
(e.g. non ideal twisting, number of pitches) into an accurate
model of the windings of a real component.

IV. MEASUREMENTS OF TWISTING IMPERFECTIONS

A 7.5kHz / 65kW MF transformer is considered, cf. Fig. 10.
This transformer is used in a DC-DC converter composing a
Solid-State Transformer (SST) [20], [21]. Tab. II summarizes
the relevant parameters of the windings and the employed
HF litz wires. All measurements are conducted with the
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Fig. 9. (a) HF litz wire structure for the HV winding where the untwisted bundle in the center has been removed. (b) Amplitude and (c) phase of
the current in the center bundle compared to the total current in the HV winding. (d) Ratio RAC/RDC (cf. (2), for both windings). Also shown are the
simulated losses for hypothetical perfectly twisted HF litz wires and for the actually present imperfect twisting.
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Fig. 10. (a) Considered 7.5kHz / 65kW MF transformer. (b) HV/LV windings
without the magnetic cores.

magnetic (nanocrystalline) cores being installed in order
to obtain a realistic distribution of the magnetic field. The
simulations employ the method presented in Fig. 4 and the
external magnetic field is calculated with FEM. The number
of pitches is very large (more than 70 for each winding),
hence, an integer number of pitches has been assumed in
the simulations.

In a first step, the current distribution among the bundles
of the HV winding has been measured at different frequen-
cies, with a short-circuit being applied to the LV winding.
Fig. 9(a) shows the structure of the HF litz wire of the HV
winding, for which an untwisted bundle is present in the
center (“BW” at the top-level twisting, cf. Fig. 5(c)). This
center bundle has been removed in Fig. 9(a) to highlight
the present construction of the HF litz wire. Therefore, an
unequal current distribution among the bundles is expected
(cf. Fig. 6 and (7)). Figs. 9(b)-(c) depict the ratio of the
currents in the center bundle to the total current, with
respect to amplitude and phase. A good agreement between
simulations and measurements is achieved. Furthermore, it
appears that measuring the amplitude of the current in the
center bundle is insufficient since almost only the phase is
affected by the imperfect twisting. Furthermore, it is found
that the presence of the magnetic cores has only a minor
impact on the current distribution in the HF litz wire (in
both, simulations and measurements).

In a second step, the winding losses have been measured
with a “Yokogawa 3000WT” power analyzer (LV winding
short-circuited). In the course of this measurement, the
ratio RAC/RDC is determined, since it is a figure of merit
for the losses of the windings (for both HV and LV, cf. (2)).
Fig. 9(d) presents a comparative evaluation of the results

for the simulations and the measurements conducted for
the present HF litz wires and, in addition, includes the
simulation results for hypothetical perfectly twisted HF
litz wires. At 10kHz (near the operating frequency), the
resistance ratio for hypothetical perfectly twisted HF litz
wires is 1.27, the simulated ratio for the non-ideal HF litz
wires is 1.79, and the measurement returns 1.93. Hence, the
mismatch between expected losses with perfectly twisted
HF litz wires and the measurements (52%) can be explained
with the presented simulation method.

V. CONCLUSION

This paper investigates the implications of imperfections
in HF litz wires (e.g. number of pitches, twisting) on the
losses and particularly focuses on imperfect twisting which
is commonly observed in commercially available HF litz
wires. A fast 2.5D PEEC solver, which is able to simulate HF
litz wires with thousands of strands, has been implemented
to simulate the current distribution among the strands and
determine the losses.

According to the results obtained from the analysis of
different types of imperfect twisting schemes it is found that
imperfect twisting, in particular of the top-level bundles, can
lead to a significant increase of losses due to eddy currents
(up to 100% increase). It is also found that imperfections
may be tolerated at sub-bundle-levels. In this context,
simple analytical expressions are derived and the results are
summarized in a design guideline for the construction of
suitable HF litz wires. Furthermore, an increase of the losses
is to be expected for windings with low number of pitches
and/or non-homogeneous external magnetic field.

The presented method is finally applied to a
7.5kHz / 65kW MF transformer, which employs imperfectly
twisted HF litz wires, for experimental verification. Both,
the measured current distribution among the bundles and
the losses, are in good agreement with the simulations. The
imperfections of the HF litz wires lead to an increase of
the winding losses by 52%.
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