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Abstract

We show that the observable rate of tunneling ionization of a molecule in intense low-frequency

laser field is affected by nuclear motion and can essentially differ from a bare electronic character-

istic calculated for fixed nuclei. Both the absolute value of the rate and the shape of its orientation

dependence are affected. The effect is significant for I ∼ 1014 W/cm2 and becomes more pro-

nounced at lower intensities. An isotope effect in tunneling ionization of H2 and D2 is predicted.

The results are compared with available experiments.

PACS numbers: 32.80.Rm, 33.80.Rv, 42.50.Hz
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The interaction of molecules with intense low-frequency laser pulses is a rapidly developing

field attracting much theoretical and experimental interest. One of the main goals is to

establish techniques for retrieving the molecular structure information from experimental

observables. The retrieving procedure requires the knowledge of the tunneling ionization

rate of a target molecule. This important characteristic of the first step of the interaction

process depends on the internuclear configuration and the symmetry of an ionizing orbital

which are revealed in its dependence on the orientation of a molecule with respect to laser

field. Thus even relatively simple measurements of orientation-resolved total ionization

yields already give valuable structure information [1]. More detailed information can be

obtained from photoelectron [2–5] and harmonic [2, 6, 7] spectra, provided that accurate

ionization rates needed for their analysis are available. The recently developed weak-field

asymptotic theory (WFAT) of tunneling ionization of molecules [8] and its implementation

on the basis of quantum chemistry codes [9, 10] enable one to reliably evaluate the rates. So

far, this theory is restricted to the single-active-electron and frozen-nuclei approximations.

In this Communication, we consider the effect of nuclear motion on the observable tunneling

ionization rate of an electron. The effect is shown to be strong, both for absolute values of

the rate and the shape of its orientation dependence. The incorporation of nuclear motion

on the basis of earlier tunneling theories was discussed in Ref. [11]. It was taken into account

in the analysis of the harmonic generation process in Refs. [12, 13]. Recent ab initio studies

[14, 15] aim at treating nuclear and electronic motions on equal footing.

We consider tunneling ionization in a static electric field F = Fez; the results apply also

to time-dependent laser fields in an adiabatic regime specified below. We still employ the

single-active-electron approximation, but nuclei can move now. For simplicity, we consider

a diatomic molecule. The stationary Schrödinger equation reads (atomic units are used

throughout)[
−∆R

2µa

− ∆r

2µe

+ U(R) + V (r;R)−D(R)F+ rF− E

]
Ψ(r,R) = 0. (1)

The heavy subsystem is described by the internuclear vector R, the reduced mass of the

atoms µa, the interatomic interaction potential in the molecular ion U(R), and its dipole

moment D(R) = D(R)N, where N = R/R. The electron’s coordinate r is measured from

the center of mass of the atoms, µe is its reduced mass, and V (r;R) describes its interaction

with the molecular ion. The electronic and nuclear motion can be separated in the Born-
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Oppenheimer approximation. In the leading order in 1/µa, µe = 1 and the solution to

Eq. (1) takes the form Ψ(r,R) = ψ(r;R)Ψ(R), where the electronic and nuclear wave

functions satisfy [
−∆r

2
+ V (r;R) + rF− E(R)

]
ψ(r;R) = 0 (2)

and [
−∆R

2µa

+ U(R) + E(R)−D(R)F− E

]
Ψ(R) = 0. (3)

Equation (2) should be supplemented by the outgoing-wave boundary condition accounting

for tunneling ionization of the electron, which turns it into a Siegert eigenvalue problem

[16]. The electronic energy eigenvalue E(R) is complex for F ̸= 0. The WFAT [8] gives the

asymptotic solution to this problem for F ≪ Fc, where Fc is a boundary between tunneling

and over-the-barrier regimes of ionization. In the present formulation, the potential in

Eq. (2), and hence the solution, dependent on R as a parameter. For neutral molecules

in electronic states which correlate with two neutral atoms, the solution to Eq. (3) must

vanish as R → ∞. Then the imaginary part of the total energy eigenvalue E defines the

ionization rate. For molecular ions E(R)−D(R)F ∼ R as R → ∞, so Eq. (3) also should be

supplemented by the outgoing-wave boundary condition accounting for nuclear tunneling.

In this case, the imaginary part of E acquires a contribution corresponding to dissociation.

Equations (2) and (3) present a rich theoretical model for treating the electronic and

nuclear dynamics in an external electric field. In the following, we adopt a number of rather

crude approximations which, however, are commonly used along with the Born-Oppenheimer

approximation in molecular physics. This is sufficient for a simple analysis of the problem;

a more elaborate theory can be developed later.

Let for F = 0 Eqs. (2) and (3) have bound-state solutions Ee(R), ψe(r;R), EvJ , and

ΨvJM(R) = R−1χvJ(R)YJM(N), where the subscript e identifies the electronic state and the

nuclear radial function satisfies[
− 1

2µa

d2

dR2
+
J(J + 1)

2µaR2
+ U(R) + Ee(R)− EvJ

]
χvJ(R) = 0. (4)

For low-lying vibrational and rotational states one can approximately set χvJ(R) ≈ χv0(R)

and EvJ ≈ Ev0 + B(R0)J(J + 1), where B(R0) = (2µaR
2
0)

−1 is the rotational constant

and R0 is the equilibrium internuclear distance at which function U(R) + Ee(R) attains its

minimum. The effect we are interested in is more pronounced in weak fields. In this case,

3



the eigenvalue of Eq. (2) is given by [8]

E(R) = Ee(R)− de(R)F+O(F 2)− i

2
Γe(R), (5)

where de(R) = −⟨ψe|r|ψe⟩ = de(R)N is the dipole moment of the electron in the state

ψe(r;R) and Γe(R) is its tunneling ionization rate. The second-order Stark shift can be

included into Eq. (5), but this does not qualitatively change the results. The rate Γe(R) is

exponentially small in F , so the interaction with field in Eq. (3) is represented by −µ(R)NF,

where µ(R) = D(R) + de(R) is the total molecular dipole. This interaction preserves the

projection M of the nuclear angular momentum J onto the laboratory z axis. Let ∆EnM

and XnM(N), n = 1, 2, . . . , be the pendulum states defined by the eigenvalue problem [17][
B(R0)J

2 − µ(R0)NF−∆EnM

]
XnM(N) = 0. (6)

The solutions can be expanded as

XnM(N) =
∑
J

cnJMYJM(N). (7)

Then an approximate solution to Eq. (3) is given by

EvnM = Ev0 +∆EnM − i

2
ΓvnM , (8a)

ΨvnM(R) = R−1χv0(R)XnM(N), (8b)

where

ΓvnM =

∫
Γv(N)|XnM(N)|2 dN, (9)

and

Γv(N) =

∫
Γe(R)χ2

v0(R) dR. (10)

Here, we have substituted µ(R) by its equilibrium value µ(R0), hence neglecting nuclear

tunneling, and treated the last term in Eq. (5) perturbatively. The observable ionization

rate of the molecule in a state vnM is thus given by Eq. (9).

The bare rate Γe(R) is a property of the electronic state for fixed nuclei. This is the

most detailed characteristic which explicitly depends on both the internuclear distance R

and orientation N of the molecule. The other two rates appearing in the above formula-

tion successively incorporate the effect of nuclear motion. The intermediate internuclear-

distance-averaged rate Γv(N) explicitly depends only on the orientation and is affected by
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the probability distribution in the vibrational state χv0(R). The observable orientation-

averaged rate ΓvnM does not bear explicit dependence on the positions of nuclei and is,

in addition, affected by the structure of the rotational state (7). So far, Γe(R) has been

the main quantity of interest in theoretical calculations [8–10]. It was generally assumed

that Γe(R0N) averaged over a distribution of orientations in a given experiment is what

should be compared with the experimental results [1]. For typical laser fields F ∼ 0.1

(I ∼ 3.5 × 1014 W/cm2) of interest for applications, the interaction with field in Eq. (6)

exceeds the energy of field-free rotational excitation. The low-lying pendulum states (7)

are then sharply oriented along the field to minimize the interaction energy. There exist

various techniques to create sharply aligned [18] or oriented [19] rotational wave packets by

time-dependent laser fields applicable to polar as well as nonpolar molecules. Our arriving

at pendulum states (7) via Eq. (6) in the adiabatic regime is just one of possible scenarios.

We do not discuss here averaging over orientations in Eq. (9), because the actual contents of

the rotational wave packet (7) is determined by particular experimental conditions and may

even depend on time. But we discuss the effect of averaging over the internuclear distance in

Eq. (10). The main message of this work is that Γv(N) may essentially differ from Γe(R0N).

For diatomic molecules Γe(R) = Γe(R, β) and Γv(N) = Γv(β), where β is the angle

between R and F. In the leading-order approximation of the WFAT, the ionization rate of

an electron in a σ state is given by [8]

Γe(R, β) = |G00(R, β)|2W00(F ;R), (11)

where G00(R, β) is the structure factor defined by the asymptotic tail of the unperturbed

orbital ψe(r;R) [9, 10] and W00(F ;R) is the field factor,

W00(F ;R) =
κ
2

(
4κ2

F

) 2
κ−1

exp

(
−2κ3

3F

)∣∣∣∣∣
κ=κ(R)

. (12)

Here κ(R) =
√
2|Ee(R)| and the subscript refers to the dominant ionization channel with

parabolic quantum numbers (nξ,m) = (0, 0). The origin of the difference between Γv(β)

and Γe(R0, β) mentioned above lies in a very strong dependence of the exponential factor

in Eq. (12) on the electronic energy Ee(R), and hence on R [20]. While slowly-varying

functions like B(R) and µ(R) can be substituted by their equilibrium values upon averaging

over R in low-lying vibrational states, the averaging of Γe(R, β) in Eq. (10) should be done
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more carefully. To estimate the effect, let us substitute the structure factor in Eqs. (11) and

the pre-exponential factor in Eq. (12) by their values at R = R0, but in the exponential

factor we set Ee(R) ≈ Ee(R0) + αeδR and expand κ3(R) in δR = R − R0. The vibrational

wave function χv0(R) is approximated by that of a harmonic oscillator with a frequency ωe

defined by the expansion U(R) + Ee(R) ≈ U(R0) + Ee(R0) +
1
2
µaω

2
eδR

2. Substituting this

into Eq. (10), we obtain

Γv(β)

Γe(R0, β)
≈ eζLv(−2ζ) > 1, ζ =

α2
eκ2(R0)

µaωeF 2
, (13)

where Ln(x) is a Laguerre polynomial. Thus the difference between Γv(β) and Γe(R0, β)

is controlled by the parameter ζ. The function eζLv(−2ζ) is equal to 1 for ζ = 0 and

monotonically grows with ζ. So the ratio in Eq. (13) is close to unity for ζ ≪ 1. However,

since ζ strongly depends on F , for sufficiently weak fields this ratio can become large.

This simple estimate is supported by accurate calculations. We have calculated Γv(β) for

a hydrogen molecular ion H+
2 in the 1sσ state by solving Eq. (4) and using Eqs. (10)-(12)

without any additional approximations. Figure 1 shows Γv(β) for several lowest vibrational

states at F = 0.1. Figure 2 illustrates the dependence of Γv(β) on F . The results are

compared with Γe(R0, β). In all the cases, there is a large difference between the absolute

values of Γv(β) and Γe(R0, β) characterized by numerical factors indicated in the figures.

This difference qualitatively agrees with Eq. (13). Indeed, for H+
2 we have ζ = 0.0142/F 2.

Then, for example, for v = 0 and F = 0.1 the ratio Γv(β)/Γe(R0, β) estimated from Eq. (13)

is 4.1, while its value obtained from accurate calculations varies from 6.7, for β = 0◦, to 5.0,

for β = 90◦. The dependence of the ratio on β reflects a difference between the shapes of

Γv(β) and Γe(R0, β) as functions of the orientation angle β, which is not accounted for by

Eq. (13). This difference is also appreciable and would be observable in an experiment of

the type reported in Ref. [1].

The parameter ζ depends on the reduced mass µa, so Eq. (13) predicts an isotope effect.

To illustrate this, we have calculated Γv=0(β) for hydrogen H2 and deuterium D2 molecules

in the ground electronic state treated in the Hartree-Fock approximation [21]. The results

are shown in Fig. 3. For F = 0.05, the ionization rate of H2 exceeds that of D2 by 30%, and

this difference grows for weaker fields. For both molecules, the shape of Γ0(β) only slightly

differs from that of Γe(R0, β), suggesting that Eq. (13) should work well. From Eq. (13) we
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FIG. 1: (Color online) Ionization rates of H+
2 for F = 0.1 a.u. Solid line: Γe(R0, β). Broken lines:

Γv(β) for v = 0, . . . , 4 multiplied by the indicated factors.
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FIG. 2: (Color online) Normalized ionization rates of H+
2 , see Eq. (12). Solid line: Γe(R0, β).

Broken lines: Γv=0(β) for three values of F multiplied by the indicated factors.

obtain
Γ0(H2)

Γ0(D2)
≈ e(1−1/

√
2)ζ(H2) > 1, (14)

where ζ(H2) = 0.0017/F 2. As can be seen from Fig. 3, Eq. (14) is in good agreement

with accurate results. Laser-induced alignment of molecular hydrogen is experimentally

very difficult because of the very small polarizability (and its anisotropy) and the large

rotational constant. However, the angular dependencies of the tunneling ionization rates of

H2 [22] and D2 [23] have been measured by an ingenious method using the bond-softening

channel. In the leading-order approximation for F → 0, the WFAT predicts an anisotropy
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FIG. 3: (Color online) The ratio of the ionization rates Γv=0(β) of H2 and D2 as a function of F

for β = 0◦ (solid back line) and 90◦ (dashed red line). Dash-dotted blue line: results from Eq. (14).

The insert shows Γe(R0, β) (sold line) and Γ0(β) for H2 and D2 (broken lines) multiplied by the

indicated factors.

Γe(R0, 0
◦)/Γe(R0, 90

◦) = 1.33 [9]. The molecular tunneling model of Ref. [24] for the same

ratio gives 1.17. In the present calculations we obtain Γ0(0
◦)/Γ0(90

◦) = 1.44 and 1.40 for H2

and D2, respectively. This is consistent with the value of 1.42 obtained by extrapolating the

results of Ref. [22] to zero intensity. Moreover, our prediction that H2 has a larger anisotropy

than D2 for the same intensity agrees with the results of Ref. [23], although the difference

between the two isotopes observed in this experiment is within error bars.

The results for a static electric field discussed above remain valid for time-dependent laser

fields in the adiabatic regime with respect to electronic motion, that is, for sufficiently low

frequency, ω ≪ F 2/κ4(R0), at a given intensity [25]. In addition, the validity of Eqs. (13)

and (14) obtained from Eq. (11) requires F ≪ Fc [8]. The adiabaticity with respect to

vibrational motion is not required, as long as transitions to other vibrational states can be

neglected. This can be seen from the very structure of the nuclear wave function (8b). The

averaging of Γv(β) over orientations may produce a further departure of observable rates

ΓvnM from a bare electronic characteristic Γe(R0, β). This depends on experimental details

of creating a rotational wave packet (7) and can be also affected by statistical distribution

in an initial ensemble of molecules. The effect, however, should not be as strong as for

averaging over vibrational motion.

To summarize, taking into account nuclear motion can essentially modify the observable
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tunneling ionization rate of a molecule with respect to a bare electronic rate calculated for

fixed nuclei. The difference is controlled by the parameter ζ, see Eq. (13), and becomes more

pronounced for weaker fields. This parameter depends on the reduced mass of the atoms,

which results in an isotope effect for the rate of tunneling ionization.
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