
ETH Library

Risk-based optimal power flow
with probabilistic guarantees

Conference Paper

Author(s):
Roald, Line; Vrakopoulou, Maria; Oldewurtel, Frauke; Andersson, Göran

Publication date:
2015-11

Permanent link:
https://doi.org/10.3929/ethz-a-010607900

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
International Journal of Electrical Power & Energy Systems 72, https://doi.org/10.1016/j.ijepes.2015.02.012

Funding acknowledgement:
282775 - Toolbox for Common Forecasting, Risk assessment, and Operational Optimisation in Grid Security Cooperations of
Transmission System Operators (TSOs) (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010607900
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1016/j.ijepes.2015.02.012
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Risk-Based Optimal Power Flow
with Probabilistic Guarantees

Line Roald1∗, Maria Vrakopoulou2, Frauke Oldewurtel3, Göran Andersson1
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Abstract—Higher penetration of renewable energy sources and
market liberalization increase both the need for transmission
capacity and the uncertainty in power system operation. New
methods for power system operational planning are needed to
allow for efficient use of the grid, while maintaining security
against disturbances. In this paper, we propose a risk model
for risks related to outages, accounting for available remedial
measures and the impact of cascading events. The new risk
model is used to formulate risk-based constraints for the post-
contingency line flows, which are included in an optimal power
flow (OPF) formulation. Forecast uncertainty is accounted for by
formulating the relevant constraints as a joint chance constraint,
and the problem is solved using a sampling-based technique. In
a case study of the IEEE 30 bus system, we demonstrate how
the proposed risk-based, probabilistic OPF allows us to control
the risk level, even in presence of uncertainty. We investigate the
trade-off between generation cost and risk level in the system, and
show how accounting for uncertainty leads to a more expensive,
but more secure dispatch.

Keywords—risk-based optimal power flow, chance constrained
optimal power flow, security, wind power integration

I. INTRODUCTION

Market liberalization and increasing penetration of renew-
able energy sources (RES) lead to a situation where power is
not necessarily produced close to where it is consumed, but
rather where production is cheap, the wind is blowing or the
sun is shining. This trend increases the need for transmission
capacity, and forces the transmission system operators to
operate the system closer to the operational limits. At the same
time, fluctuations in RES in-feed and short-term trading lead to
larger deviations from the planned schedule, and thus increase
uncertainty in power system operation. The combination of
a highly loaded system and significant uncertainty increases
operational risk. There is a need for methods which allow
for efficient use of transmission capacity, while maintaining
security and robustness against disturbances.
There are two types of disturbances in the system, random
outages and forecast uncertainty, which have inherently dif-
ferent characteristics. Whereas outages can be characterized
as discrete events with a (usually) low probability, forecast
uncertainty (deviations in power in-feeds arising from load,
RES or short-term trading) is characterized by a continuous
probability distribution. The method proposed in this paper
addresses both types of disturbances. The random outages are
handled by a risk-based extension to the N-1 criterion that
utilizes additional information about the probability of outages,
the extent of post-contingency violations and the cost and

availability of remedial actions to provide a more quantitative
measure of power system security. The risk-based criterion is
implemented in an optimal power flow (OPF). By formulating
the OPF as a chance constrained optimization problem, we
are able to account for forecast deviations in a comprehensive
way. The resulting formulation allows us to control the risk of
outages, even in presence of forecast uncertainty.
There exist two main approaches to model risk in power system
operation. On the one hand, risk can be modeled through
overall reliability parameters like Expected Energy Not Served
(EENS). These parameters incorporate the effect of cascading
events and thus reflect the risk faced by the customers in
the system. However, computing the risk requires extensive
calculations (i.e., Monte-Carlo simulations), and these types
of risk measures are therefore typically used to analyze the
risk for a given operating condition [1], [2], as opposed to
inclusion in an optimization problem.
On the other hand, risk can be modeled in terms of violation
of technical limits, e.g., dependent on the power flow of a
line or on the voltage magnitude. Such risk measures typically
consider the situation after an N-1 outage, and do not simulate
how a potential cascade would develop further. Thus, these risk
measures do not reflect the full risk of cascading events, but
are much easier to compute than the risk measures in the first
category. Further, when a risk measure is related to specific
technical parameters, it is easier for the system operator to
identify actions to influence the risk. This type of risk measures
have therefore often been proposed for incorporation in OPF
formulations. The OPF formulations in [3], [4] describe risk
as violations and near-violations of voltage limits and line
transfer capacities, modeled as linear functions of the voltage
magnitude and the line flow. In [5], risk is expressed as a
quadratic function of the line flow, whereas [6] models risk as
the cost of equipment aging in function of, e.g., the line flow.
Here, risk is expressed as a piecewise affine function of the
line flow, based on the risk function we presented in [7]. The
parameters of the risk function are computed based on the cost
and availability of remedial measures, and also reflects the risk
of initiating a cascading event.
The OPF is formulated as a central dispatch problem mini-
mizing overall generation cost, similar to the OPF problems
solved in markets with locational marginal pricing (LMP).
Recently, [8] investigated how a risk-based OPF impacts the
LMPs, showing that the risk-based OPF introduces a new cost
component which reflects the system risk level. While [8] also
uses a piecewise affine risk function, the parameters of the
risk function seem to be chosen arbitrarily, thus impacting



the LMPs in an arbitrary way. In contrast, the parameters
introduced in this paper are based on actual system properties,
providing a less arbitrary definition of the risk function.
Although the OPF is formulated as a central dispatch problem,
the proposed method does not focus on the market clearing
aspect, but rather on ensuring that the dispatch has a suffi-
ciently low level of risk. Therefore, it can also be applied in
self-dispatch markets by changing the objective to minimize
changes to the market outcome instead of minimizing over-
all generation cost. For security considerations, the relation
between the risk function and the cost and availability of
remedial measures is particularly interesting. All risk-based
formulations [3] - [8] allow for post-contingency line over-
loading under some circumstances, but do not provide remedial
actions to bring the system back to normal operation. Since the
risk function proposed here is based on the cost and availabil-
ity of remedial actions, the method proposes effective post-
contingency remedial actions, ensuring that system security
can be restored when a contingency occurs.
Although several risk-based OPF formulations exist, few of
them account for forecast uncertainty in a comprehensive way.
The OPF formulation in [6] considers normally distributed
load uncertainty, but only limits the expected value of the risk
and does not provide any guarantees for an upper bound. In
contrast, the method proposed in this paper guarantees that
the risk limit will hold with a chosen probability. This is
achieved by formulating a chance constrained optimization
problem, following along the lines of [9], [10]. The problem is
solved using the randomized optimization technique proposed
in [11], based on the so-called scenario approach from [12].
This technique requires no assumptions on the distribution of
the forecast errors.
In summary, the contributions of this paper are threefold: 1)
We define a risk function based on system parameters such
as available remedial measures, which has several advantages
compared to previous risk functions. First, it avoids using arbi-
trary parameters with arbitrary influence on cost. Second, the
severity function is defined separately for each line and each
contingency. Third, it suggests effective remedial measures
for the cases where a post-contingency overload is accepted.
2) We introduce risk-based constraints for post-contingency
line flows, and show how to choose appropriate upper bounds
on the risk by comparing the risk-based constraints to the
deterministic N-1 constraints. 3) We include the risk-based
constraints in a chance constrained OPF formulation to account
for forecast uncertainty from RES.
The reminder of the paper is organized as follows: Section II
introduces the risk measure which relates post-contingency line
loading to the cost of remedial measures and the probability
of cascading events. Section III formulates a DC optimal
power flow incorporating the risk measure and chance con-
straints to account for forecast uncertainty. Section IV analyzes
the proposed formulation and compares it with other OPF
formulations with regards to cost, risk level, and number
of post-contingency overloads in a case study for the IEEE
30-bus system. An additional sensitivity study investigates
the relationship between remedial actions and accepted post-
contingency overloads, as well as the proposed remedial ac-
tions. Section V summarizes and concludes. Note that this
paper is an extension to [7], introducing an improved severity
function, additional results and a prolonged discussion.

II. RISK MODELING

In this paper, we propose a risk measure for incorporation
in an OPF formulation and focus on risk as a function
of post-contingency transmission line loading. Previous risk
formulations (e.g., [4], [5]) use the same severity function
for all transmission lines independent of which contingency
has taken place. Here, we improve this formulation in two
ways. First, we explicitly account for different types of risk
(such as moderate overloads that can be mitigated through
redispatch and high overloads that might lead to cascading
events) by formulating a piecewise linear severity function.
Second, we formulate the severity function separately for each
line and contingency, which allows us to account for the effect
of available remedial measures on each line in each post-
contingency situation. The proposed risk formulation allow us
to set post-contingency line flow limits based on the available
remedial measures and potential impacts of cascading events.
This ensures that effective remedial measures are available in
the cases where we allow for post-contingency overloads.

A. Definition of the risk measures

A risk measure should reflect both the probability of an
outage and the severity of the resulting operating condition.
The risk related to a specific outage i and line k is expressed
as

Rspec
(i,k) := P(i) · S(k|i) , (1)

where P(i) is the probability of outage i and S(k|i) is the
severity of the operating condition on line k given outage i.
This expression can be seen as the risk-based counterpart of
the N-1 criterion, as it describes the risk for a specific line in
one specific post-contingency state. Using Rspec

(i,k) as a basis,
we define:

Rout
(i) :=

Nl∑
k=1

P(i) · S(k|i) (2)

Rline
(k) :=

Nout∑
i=1

P(i) · S(k|i) (3)

Rtot :=

Nout∑
i=1

Nl∑
k=1

P(i) · S(k|i) (4)

Rout
(i) expresses the risk after an outage i, and is obtained by

summing the risk of all lines k in this post-contingency state.
Rline

(k) is the risk related to line k, summed over all outages i.
Rtot is the total risk in the system, summed over all outages
i and all lines k.
In order to evaluate (1), the outage probabilities P(i) must
be estimated, and the severity S(k|i) has to be defined. We
assume that the outage probabilities are calculated a-priori
(e.g., based on historical data and current weather conditions
[13], [14]) and given as an input to the optimization. The
severity modeling is described in the next section.

B. Severity modeling

To capture different types of risk arising from different
levels of post-contingency line loading, we define the severity
S(k|i) as a piecewise linear function of the line flow. We define
four different segments for the severity function (as opposed



Fig. 1. Piecewise linear severity function for line k after outage i.

to two in previous formulations [4], [5]). The four segments
are shown in Fig. 1, and correspond to 0) normal load, 1) high
load, 2) moderate overload which requires remedial actions and
3) cascading overload which might lead to a cascading event.
For the derivation of the severity function parameters, we
consider a system with Nl lines and NG generators and include
the outage of any line or generator, in total Nout = Nl +NG

outages. Although we restrict ourselves to those N-1 outages,
any other outage situations, e.g. N-2 or common mode outages,
can be included without any change to the methodology. The
post-contingency line flows after outage i are denoted by the
vector P i

l ∈ RNl , with P i
l(k) being the post-contingency flow

on the kth line. P l ∈ RNl denote the line capacity limit during
normal operation. Mathematically, we define the piecewise
linear severity function as the pointwise maximum over a set
of affine functions of the line flow,

S(k|i)(P
i
l(k)) := max

j
{aij(k)P

i
l(k) + bij(k)} , j ∈ {−3, ..., 3}

(5)
where aij(k), b

i
j(k) are parameters for the jth segment belonging

to line k and outage i. Formulating the severity function
like this ensures tractability of the optimization problem, as
discussed in Section III.A. We will now give a physical
interpretation of the different severity zones, and explain how
to compute the parameters aij(k) and bij(k) with j = 0, ..., 3
for positive line flows. The severity function is not symmetric
in general, but the parameters for negative line flows with
j = −3, ..., 0 can be calculated in an analogue way.

1) Normal load: At low load (P i
l(k) < 0.9 · P l(k)), the

severity is assumed to be zero. This segment of the severity
function, marked blue in Fig. 1, connects the two points

S(k|i)(0) = 0 (6)

S(k|i)(0.9 · P l(k)) = 0 , (7)

with parameters ai0(k) = bi0(k) = 0.

2) High load: High loading (0.9 · P l(k) < P i
l(k) < P l(k))

might lead to a failure of the line (e.g., due to relay malfunc-
tion), and the severity is therefore non-zero. We choose ai1(k)
and bi1(k) such that the ”high load” segment of the severity
function connects the two points given by Eq. (7) and (8).
This segment is marked green in Fig. 1.

S(k|i)(P l(k)) = 1 . (8)

3) Moderate overload: Many system operators allow a
transmission line overload for a short time (e.g., for a short
period after a contingency). However, if the operating limit is

violated, removing the overload requires remedial actions like
transmission switching or redispatch. Here, we define moderate
overload as one which can be relieved within a given time
frame (e.g., 5 minutes). The corresponding severity zone goes
from P l(k) < P i

l(k) < (P l(k) + ∆P+i
l(k)), where we define

∆P+i
l(k) as the largest achievable line flow reduction for line k

after outage i. ∆P+i
l(k) is a function of the available remedial

measures (e.g., available redispatch). The effectiveness of a
remedial measure depends on the location of a line in the
system, topology changes (e.g., after a line outage), or changes
in availability of remedial measures (e.g., after the outage
of a generator offering redispatch). Therefore, ∆P+i

l(k) must
be calculated separately for each line and each outage. The
increase in risk from P l(k) to (P l(k) + ∆P+i

l(k)) depends
on both the risk of overloading the line and the cost of
removing this overload. The cost of reducing the line flow
by ∆P+i

l(k) is denoted by c+i
l(k), and can be a function of, e.g.,

the cost of a redispatch measure. Some remedial measures,
such as switching measures, does not incur any additional
cost (c+i

l(k) = 0). However, allowing for a temporary overload
always involves an increase in the risk since the probability
of an outage increases (due to increased line sag and higher
probability of relay malfunction) and the remedial actions
might not work as planned. This inherent risk of overloading
is therefore modelled in a similar way as for the high load
case, with the same slope ai1,k. If both ∆P+i

l(k) and c+i
l(k) are

known, the severity function parameters ai2(k) and bi2(k) are
chosen such that the severity function connects the two points
given by (8) and (9). This segment is marked yellow in Fig.
1.

S(k|i)(P l(k) +∆P+i
l(k)) = 1 + ai1(k)∆P+i

l(k) + c+i
l(k) . (9)

The term ai1(k)∆P+i
l(k) represent the inherent risk of overload-

ing, and c+i
l(k) the cost of the remedial action. Note that the

severity function (5) is convex for all remedial actions, since
ai2(k) ≥ ai1(k).

In general, there are many ways to consider remedial
measures in this formulation. We now suggest one way of
defining ∆P+i

l(k) and c+i
l(k) with the following choice: (i) We

only consider generation redispatch. (ii) We only allow one
redispatch measure (i.e., one shift between two generators)
per line and contingency. We further assume that the available
positive and negative redispatch is known and given by the
vectors P+

R , P−
R ∈ RNG

+0 , with P+
R(g) denoting the positive

redispatch capability of generator g. The corresponding re-
dispatch costs are also assumed to be known and are given
by c+R, c

−
R ∈ RNG . To compute the largest possible reduction

of the line flow ∆P+i
l(k), we first need to compute the largest

possible shift in generation ∆Pg→h from any generator g to
any other generator h. This is given by

∆Pg→h = min{P+
R(g), P

−
R(h)} . (10)

To describe how much a generation shift from g to h decreases
the power flow on line k, we use the power transfer distribution
factor PTDFk,g→h [15]. The largest power flow decrease
∆P i+

l(k) can then be calculated as

∆P+i
l(k) = −min

g,h
{PTDF i

k,g→h∆P i
g→h} , (11)



since ∆P+i
l(k) is defined as a positive value. Note that both

PTDF i
k,g→h and ∆P i

g→h depend on the outage i. For a
generator outage i, the topology remains unchanged, but the
redispatch availability of generator g is lost. Thus, ∆P i

g→h

might be different from normal operation since P+i
R(g) =

P−i
R(g) = 0. For a line outage i, the redispatch availability

remains unchanged, but the topology changes. Thus, we need
to recalculate PTDF i

k,g→h for line outages. When we know
which generation shift ∆Pg→h that lead to the largest line
flow decrease ∆P+i

l(k), the cost c+i
l(k) of the redispatch measure

is given by

c+i
l(k) = (c+R,g + c−R,h)∆Pg→h . (12)

With this result, we can calculate ai2(k) and bi2(k) as the affine
function connecting (8) and (9).

4) Cascading overload: Short term overloads might be
acceptable up to a certain point, but should not be allowed to
evolve into cascading events. Here, we consider two types of
cascade initiation. First, any overload that cannot be removed
by remedial actions might eventually lead to a line trip
(delayed trip due to time settings in the relays or flash-over
due to sag). We therefore define line loadings higher than
P l(k)+∆P+i

l(k) as cascading overload. Second, overloads above
a certain threshold (e.g., P i

l(k) > 1.2 · P l(k)) might lead to
immediate trip of the line. To avoid this, we introduce a limit
for ∆P+i

l(k) (e.g., ∆P+i
l(k) ≤ 0.2 · P+i

l(k)).
Since the potential impacts of a cascading event are very high,
the severity increases very rapidly as we enter the cascading
zone. The increase in severity per additional MW loading is
denoted by ρC . The severity function parameters ai3(k) and
bi3(k) are chosen such that the severity function connects the
two points given by (9) and (13). This part of the severity
function is marked red in Fig. 1.

S(k|i)(P
i

l(k) +∆P+i
l(k) + 1) = 1 + ai2(k)∆P+i

l(k) + ρC (13)

There are many possible ways of defining the value of ρC . On
the one hand, if ρC → ∞, no violation of the limit P

i

l(k) +

∆P+i
l(k) is allowed. On the other hand, if contingency analysis

show that an outage of line k following the outage i would
not have an adverse effect on the system as a whole, we can
choose ρ

C
= a2(k). The reason for this lower bound is that

ρC ≥ a2(k) to ensure convexity of the severity function (5).
Thus, we get that ρC can be chosen anywhere in the range
ρ
C

≤ ρC ≤ ρC . Here, we choose ρC = max{120, a2(k)},
corresponding to a very rapid increase in the risk as the line
loading exceeds P l(k) + ∆P+i

l(k). We also assume that ρC is
the same for all lines, assuming that cascading events should
be generally avoided.

C. Risk Constraints

Since the risk is modelled based on the post-contingency
line flows , we can formulate risk-based constraints for these
line flows. For other quantities, e.g. line flows in normal
operation or generator outputs, no risk-based constraints can be
formulated, since no risk level is defined for those quantities.

1) Formulation of risk constraints: Based on the risk
measures defined by (1) to (4), we can formulate constraints
to limit the risk:

Rspec : P(i) · S(k|i)(P
i
l(k)) ≤ R(i) (14)

Rout :

Nout∑
i=1

P(i) · S(k|i)(P
i
l(k)) ≤ Rout

(15)

Rline :

Nl∑
k=1

P(i) · S(k|i)(P
i
l(k)) ≤ Rline

(16)

Rtot :

Nout∑
i=1

Nl∑
k=1

P(i) · S(k|i)(P
i
l(k)) ≤ Rtot

(17)

Eq. (14) constrains the risk for each line k to stay below a
constant limit Ri after the outage i. Eq. (15) limits the risk
of outage i, while (16) limits the risk of line k and (17) limits
the total risk in the system.

2) Relation to N-1 constraints: Including the constraints
(14) - (17) in the optimization problem allows us to control
the risk level in the system according to our preferences, but
also requires us to define the risk limits R in a reasonable
way. To provide a physical interpretation of the risk limits,
we relate the risk-based constraints (14) to the traditional N-1
constraints. This relation is then used to propose reasonable
values for the risk limits, and to show how the choice of the
risk limits influences the accepted post-contingency flows.
Assuming that P(i) is a scalar value given as an input to the
optimization, (14) can be reformulated as an upper bound on
the severity

S(k|i)(P
i
l(k)) ≤

R(i)

P(i)
. (18)

If the risk limit is chosen equal to the probability of the outage,
R(i) = P(i), the risk constraint (18) reduces to

S(k|i)(P
i
l(k)) ≤ 1 . (19)

The severity function, as defined in Section II.B, takes the
value S(k|i)(P

i

l(k)) = 1 at the line capacity limit P l(k), and

S(k|i)(P
i

l(k)) ≤ 1 when P i
l(k) ≤ P l(k). Thus, (19) is equivalent

to the traditional N-1 constraint P i
l(k) ≤ P l(k).

To enforce the traditional N-1 criterion for the overall system,
the upper bound on the severity must be equal to 1 for all risk
constraints (14). To achieve this, the risk limit must be set to
R(i) = P(i) for all outages i. This choice implies that the
accepted risk level R(i) is different for outages with different
outage probabilities P(i).
This discussion highlights two important characteristics of the
traditional N-1 criterion. First, the N-1 criterion corresponds to
an implicit risk level, which might be different from the desired
risk level. Second, the N-1 criterion leads to a situation where
the accepted risk level differs between outages, and is thus
inconsistent across the system, because the outage probabilities
are not accounted for. These problems of the N-1 criterion
can be mitigated by enforcing risk-based constraints with an
appropriately chosen, consistent risk limit. The value of this
risk limit should be in the same order of magnitude as the
outage probabilities, to obtain a risk level which is not too
different from the traditional N-1 situation.



Fig. 2. Left: Comparison between the risk-based severity limit (red line),
and the N-1 severity limit (black line). Right: Tightening and relaxation of the
line flow constraint as a function of the severity limit and the line and outage
specific severity function.

If the risk limit R(i) is chosen to be the same for all outages
i, the upper bound on the severity depends on the outage
probability P(i) and a higher severity is accepted for outages
with low probability. This is illustrated in Fig. 2 (left), where
the red line is the severity limit for a given value of R(i)

and the black dashed line is the severity limit for the N-1
criterion (which is constant equal to 1, independent of the
outage probability). Since the severity is a function of the post-
contingency line flow, accepting a higher (or lower) severity
relaxes (or tightens) the constraint on the post-contingency line
flow. The amount of relaxation (or tightening) depends on the
severity function, as shown in Fig. 2 (right).

III. FORMULATION OF OPTIMIZATION PROBLEM

This section introduces the risk-based, probabilistic se-
curity constrained optimal power flow (RB-pSCOPF), with
risk-based constraints for the post-contingency line flows and
chance constraints to account for the forecast uncertainty. The
objective is to find the minimal cost dispatch that satisfies the
desired risk level for all Nout outages as well as the desired
violation level for the chance constraint. The setup is similar
to the probabilistic SCOPF described in [9], but the security
constraints for the post-contingency line flows are substituted
with the proposed risk-based constraints. In addition to the
NG generators and Nl lines, there are NB buses, NL loads
and Nw wind power plants in the system. Given a DC power
flow formulation, the line flows can be expressed as linear
functions of the active power injections both in normal and
outage conditions:

P i
l = AiP i

inj , for all i = 0, ..., Nout . (20)

Here, Ai ∈ RNl×NB describes the relation between the active
power injections P i

inj ∈ RNB and the line flows P i
l after

outage i, with i = 0 being the normal operation condition.
Ai is given by

Ai = Bi
f

[
(B̃i

bus)
−1 0

0 0

]
(21)

where Bi
f ∈ RNl×NB is the line susceptance matrix and

B̃i
bus ∈ RNB−1×NB−1 the bus susceptance matrix (without the

last column and row) after outage i [9]. The power injections
are given by

P i
inj = Ci

G(PG − diP i
m) + Ci

wPw − Ci
LPL, i = 0, ..., Nout .

(22)

PG ∈ RNG describe the generator output, and PL ∈ RNL the
load consumptions. Pw ∈ RNw contains the wind power in-
feeds, and is the sum of the forecast P f

w and a random error
∆Pw. The matrices CG ∈ RNB×NG , Cw ∈ RNB×Nw and
CL ∈ RNB×NL relate the power injections to the respective
buses. The distribution vector di describes how the power
mismatch P i

m ∈ R is compensated by the different generators.
P i
m describes the power required to balance wind power

deviations and power outages, and is defined as

P i
m = 11×Nw(Pw − P f

w)− (biG)
TPG + (biL)

TP f
L (23)

where the first term is the sum of the forecast deviations, and
the two next terms corresponds to generator or load outages.
biG ∈ RNG and biL ∈ RNL are binary vectors whose elements
are either ‘0’ or ‘1’. A value of ‘1’ corresponds to the tripped
component for outage i. The resulting optimization problem is
given by

min
PG

cT1 PG + PT
G [c2]PG (24)

subject to

11×Nb
(CGPG + CwP

f
w − CLPL) = 0 (25)

P

 −P l ≤ A0P 0
inj ≤ P l

PG ≤ PG − diP i
m ≤ PG , i = 0, ..., Nout

R ≤ R

 ≥ 1− ε

(26)

Eq. (24) and (25) define the objective function and the
power balance constraints, with c1, c2 ∈ RNG being the linear
and quadratic cost coefficients, and [c2] a diagonal matrix with
c2 on the diagonal. Eq. (26) describes a probabilistic constraint,
stating that all inequalities within the brackets must hold with a
probability of at least 1−ε, where ε is called the violation level.
The first inequality is the line flow limits for normal operating
conditions i = 0, and the second inequality the capacity limits
of the generators PG in all conditions i. The last inequality
describes one or more risk limitations for the post-contingency
line flows, which can be chosen from the options proposed in
Section II.C. The problem remains convex after introduction of
the risk constraints. Inserting (22) and (20) in (5), S(k|i)(P

i
l(k))

can be expressed as a the pointwise maximum over a set of
affine functions with PG as an argument. P(i) · S(k|i)(P

i
l(k))

is hence convex with respect to PG. This means that all the
risk measures are sums of convex functions and hence convex
themselves.

A. Chance Constraint Reformulation

In this paper, we follow the probabilistically robust ap-
proach, a randomized optimization technique proposed in [11].
This method allows us to account for a reduced number of
scenarios inside the optimization compared with the scenario
approach [12], while still guaranteeing a violation level ≤ ε.
The method includes two steps. In the first step, we solve
an optimization problem to determine, with a confidence of
at least 1 − β, the minimum volume set D that contains at
least 1−ε probability mass of the distribution of the uncertain
variable Pw. The number of required scenarios for this first
step is related to the number of uncertain variables Nw and
given by [12]

N ≥ 1

ε

e

e− 1

(
ln

1

β
+ 2Nw − 1

)
, (27)



where e is the base of the natural logarithm. Further details on
how to compute D is given in [11], [16]. In the second step,
we use the probabilistically computed set D to solve a robust
problem for all uncertainty realizations within this set. The
chance constraint (26) is substituted by the robust constraints

−P l ≤ A0P 0
inj ≤ P l ∀Pw ∈ D

PG ≤ PG − diP i
m ≤ PG , i = 1, ..., Nout , ∀Pw ∈ D

R ≤ R ∀Pw ∈ D

Since all our constraints are convex with respect to Pw

(independent of the value of PG), the robust constraints hold
for all Pw ∈ D if they hold for Pw at the vertices of the set, i.e.,
all possible combinations of minimum and maximum values of
the vector Pw. With one wind power plant, we need to consider
only 2 scenarios, the maximum and minimum Pw in D. With
Nw uncertain in-feeds, we must consider 2Nw scenarios. In
this case, enumeration of the vertices should be avoided to
solve the problem more efficiently. This can be achieved by
applying techniques proposed in [17].

B. Possible SCOPF formulations

The risk-based, probabilistic OPF (RB-pSCOPF), given by
(24) - (26) includes risk-based limits for the post-contingency
line flows and accounts for wind in-feed uncertainty. However,
some small changes allow us to change the OPF type. By
choosing R(i) = P(i) for each outage i and Rout

= Rline
=

Rtot
= ∞, the risk-based constraints become equivalent to

traditional N-1 constraints. If the forecast is perfect, i.e. there
exist no forecast uncertainty, we set Pw = P f

w such that
the probabilistic constraint (26) reduces to a deterministic
constraint. Thus, we can define four different SCOPF formu-
lations:
1) Standard SCOPF (SCOPF) considers traditional N-1 con-
straints (i.e., choose R(i) = P(i)), and no forecast errors for
the wind in-feed (Pw = P f

w).
2) Probabilistic SCOPF (pSCOPF) considers traditional N-
1 constraints (i.e., choose R(i) = P(i)), and a probabilistic
constraint with violation level ε.
3) Risk-based SCOPF (RB-SCOPF) considers risk-based post-
contingency line flow constraints, but no forecast errors for the
wind in-feed (Pw = P f

w).
4) Risk-based, probabilistic SCOPF (RB-pSCOPF) considers
risk-based post-contingency line flow constraints, and a prob-
abilistic constraint with violation level ε.
In the following case study, we compare these four formula-
tions.

IV. CASE STUDY

The OPF formulations presented above are applied to the
IEEE 30-bus network [18], which is modified to include two
wind power generators (i.e., Nw = 2) at bus 7 and 12. The
forecasted wind power at the two buses is 50 and 40 MW,
respectively. To generate wind power scenarios, we used a
Markov Chain based model as described in [19], [9]. For
the chance constrained optimization, we account for up to
2000 scenarios (depending on ε). In addition, we have 8000
scenarios which are used only for evaluation of the risk. The
line outage probabilities were estimated based on the line

length (estimated from the line reactance) and the average
outage probability for transmission lines in Germany [13]. The
generator outages were estimated based on reliability data from
the IEEE RTS-96 system [20]. We assume that all generators
are able to provide both positive and negative redispatch and
that the up and down redispatch capability are the same, i.e.,
P+
R = P−

R = PR. The redispatch capability is defined as 10%
of the maximum output for each generator, PR = 0.1 · PG,
and all generators are paid the same price for redispatch
[$/MW], with c+R(g) = 1.1max(c1) and c−R(g) = 0. Further, we
introduce a new base quantity Rbase. This quantity is defined
as the median probability of the line outages,

Rbase = median(P(k)) ,

where k denotes the set of all line outages. When we define
risk limits R(i) and Rout

or evaluate the risks Rspec
(i,k) and

Rtot in the case study, we normalize the values by Rbase

to obtain numerical values that are easier to interpret. All
optimization problems were solved using CPLEX via the
MATLAB interface TOMLAB.

A. Generation cost and risk level for different SCOPF formu-
lations

We first compare the generation cost obtained with the
four SCOPF formulations presented in Section III.B. The
contingency and line specific risk constraint Rspec

(i,k) ≤ R is
used for the risk-based formulations, with R = Rbase. For
the probabilistic formulations, the maximum violation level
was set to ε ≤ 0.05.
Table I lists the generation cost for each of the four SCOPF
formulations. The variation in generation cost is not very large.
However, using the risk-based criterion in this case reduces
the cost by about 0.1% (RB-SCOPF compared to SCOPF),
whereas accounting for wind uncertainty increases cost by
about 0.5% (RB-pSCOPF compared to RB-SCOPF).

TABLE I. SCOPF FORMULATIONS

Formulation SCOPF pSCOPF RB-SCOPF RB-pSCOPF
Generation cost
(% of SCOPF) 100.00 100.48 99.88 100.35

To explain the differences in cost, we compare the risk level
for the different formulations. Considering the solutions of the
optimization problems above, we compute Rspec

(i,k) according
to (1). We first discuss the SCOPF and RB-SCOPF solutions,
and then move on to the RB-pSCOPF result. Since the SCOPF
and RB-SCOPF are deterministic, we compute Rspec

(i,k) for the
case where no wind deviation occurs, Pw = P f

w . In Fig. 3, the
severity S(k|i) is plotted against P(i) for each line k and each
outage i. The black diamonds and the blue dots are the results
from the SCOPF and the RB-SCOPF, respectively. Note that
since we calculate the severity for all lines after each outage,
there are several dots and circles for each outage. The red line
is the risk limit R(i) = Rbase, and dashed black line is the
N-1 limit S(k|i) = 1. For most outages, S(k|i) = 0 for all lines
k because all post-contingency line flows are below 0.9P l(k).
For other outages, S(k|i) > 0, but is similar for both the RB-
SCOPF and the SCOPF. However, the RB-SCOPF violates
the N-1 limit for two cases (i.e., there are two outages with
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S(k|i) > 1). For one of the binding constraints, the severity
is allowed to increase from S(k|i) = 1 with the SCOPF to
S(k|i) = 3.2 with the RB-SCOPF. Because of the relaxation
of this binding constraint, the cost is lower for the RB-SCOPF
than the SCOPF in this case. Note that in other cases, the
RB-SCOPF could lead to a more expensive solution than the
SCOPF, since the RB-SCOPF leads to a constraint tightening
for outages with high probability.

The above discussion for the results of the SCOPF and
the RB-SCOPF only considers the risk level for the forecasted
wind Pw = P f

w . Looking at the results for RB-pSCOPF, we
now discuss how the risk level changes when we account for
forecast uncertainty in the optimization. We compute Rspec

(i,k)

for the case where no wind deviation occurs, Pw = P f
w , and

for the cases Pw = P f
w+∆P δ

w, where δ denotes the worst case
scenarios in the robust set D. Fig. 4 shows the risk computed
for the solution of the RB-pSCOPF for different wind in-feed
scenarios. The green dots show the risk for the wind energy
forecast Pw = P f

w , while the blue crosses denote the risk for
the worst case scenarios Pw = P f

w+∆P δ
w. Comparing Fig. 4 to

Fig. 3, we see that the RB-pSCOPF leads to lower severities
S(k|i) than the RB-SCOPF when Pw = P f

w (the green RB-
pSCOPF dots are lower than the blue dots of the RB-SCOPF).
However, for the worst-case scenario Pw = P f

w + ∆P δ
w, the

risk is at the limit (one cross at the red line). By keeping a
margin and being conservative for the case with Pw = P f

w ,
the RB-pSCOPF avoids constraint violations for all Pw ∈ D.
This conservativeness affects the generation cost, meaning that
the RB-pSCOPF will always be more expensive than the RB-
SCOPF.
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Fig. 5. Generation cost obtained with the RB-pSCOPF, relative to the cost of
the SCOPF, for different limits on the violation level ε and the risk Rout

(i) ≤
Rout. In the white region, there is no feasible solution to the problem.

Note that in this case, all S(k|i) < 1 for the RB-pSCOPF
when Pw = P f

w . This explains why the RB-pSCOPF is
more expensive than the SCOPF. This result is however case
dependent, and could change with, e.g., a different violation
level ε.

B. Influence of risk limit and accepted violation probability
on the RB-pSCOPF

We now compare generation cost and risk level for the RB-
pSCOPF for different upper bounds on the risk and violation
probability. The accepted violation level ε is varied in the range
between 0.01 - 0.08. The scenarios are first drawn for ε = 0.08,
and additional samples are added as ε is decreased. The upper
bound in the contingency specific risk constraint Rout

(i) ≤ Rout

is varied in the range (0.5− 5) Rbase. The generation cost is
obtained directly as an output from the optimization, while the
risk level Rtot is computed as the average total risk (4) for
8000 wind scenarios.
The generation cost of the RB-pSCOPF for different risk
levels Rout

and violation probabilities ε is depicted in Fig.
5. The cost increases as the acceptable violation level ε or the
risk limit Rout

decreases. This is as expected, since a lower
violation probability means that the robust set D becomes
larger and a lower risk limit implies shifting the severity curve
to lower values. The generation cost is not influenced very
much by the choice of ε, except for a cost decrease as ε
increases from 0.03 to 0.04. The relaxation of the risk limit
Rout

decreases the cost linearly.
Fig. 6 shows the average total risk Rtot over 8000 wind
scenarios. The risk decreases as the acceptable violation level ε
or the risk limit Rout

decreases. The total risk is not very sen-
sitive to the choice of ε, except when ε increases from 0.03 to
0.04. The choice of the risk limit Rout

has a more significant
influence. For Rout

< 2.5 ·Rbase, the risk increases linearly.
For higher risk limits Rout

> 2.5 ·Rbase, the risk increases
quadratically. This means that for Rout

> 2.5 ·Rbase, the risk
level increases faster than the generation cost decreases.

C. Number of cases with overloads

The risk-based formulation allows post-contingency over-
load (i.e., S(k|i) > 1) for contingencies with low probability.
In such cases, post-contingency actions to reduce the line
flow are required, which introduce additional cost and require
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manual activation by the operator. Since it is not desirable
that this happens too often, we investigate how many cases
there are with S(k|i) > 1. Investigation A) showed that
there were only two outages leading to overloaded lines (i.e.,
two outages with S(k|i) > 1), even though the risk-based
formulations allow post-contingency overloads for all outages
with P(i) < Rbase. Fig. 7 shows the average number of cases
with S(k|i) > 1 for the RB-pSCOPF solutions from the above
investigation, evaluated for the 8000 wind in-feed scenarios.
Although the number of cases with S(k|i) > 1 increases when
either the violation level or the risk limit increases, the average
always remains below two violations per scenario. As this is
a relatively small number, we believe that these situations can
be handled by the operator, particularly since the RB-pSCOPF
proposes effective remedial actions to relieve these overloads
if the outage should happen.
As an example for the proposed remedial actions, we investi-

gate the redispatch proposed for the RB-pSCOPF case in Fig.
4. The two lines that risk a post-contingency overload (i.e.,
where the severity is larger than 1) are the lines from bus 6 to
10 and bus 6 to 28. Both would be overloaded if the other is
outaged. However, this overload is tolerated since a generation
shift of up to 5.5 MW between generator 2 and 4 would be
sufficient to remove the overload, with a reduction in the line
flow by up to 3.5 MW.

Fig. 8. Left: Change in severity function with higher amount of available
redispatch PR, leading to a higher ∆Pl. Right: Change in severity function
with a lower redispatch cost c+, leading to a less steep severity function.

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

Amount of redispatch  P
R
 / P

G
max 

C
os

t o
f r

ed
is

pa
tc

h 
c R1

 / 
c 1

 

 

1.01

1.02

1.03

1.04

1.05

relative to 
line capacity

Amount of 
accepted 
overload

Fig. 9. Average accepted overload for all lines after all contingencies with
P(i) ≥ median(P(k)) (i.e., all contingencies with S(k|i) ≥ 1) for different
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D. Influence of cost and availability of remedial measures

If the availability or cost of redispatch change, the severity
function changes. Fig. 8 shows the influence of changes in
available redispatch power (left) and changes on redispatch
cost (right) on the severity function. As more redispatch
becomes available or the cost decreases, the severity related to
overloads decreases. This means that for some lines, a higher
post-contingency line flow will be acceptable. In the following,
the influence of the amount and cost of redispatch on the
accepted line overloads and objective cost is investigated. The
RB-pSCOPF is run with ε = 0.05 and the contingency and
line specific risk constraint Rspec

(i,k) ≤ Rbase. The amount of
available redispatch PR is varied in the range (0− 0.25) PG,
and the cost of the redispatch c+R is varied from (0− 1.2) c1
(with c−R = 0). Fig. 9 shows the average accepted overloads
for all lines after all contingencies with P(i) ≥ median(P(k))
(i.e., all contingencies with S(k|i) ≥ 1) for different values of
PR and c+R. The values are given as a percentage of the line
capacity. If the cost c+R is high, higher amounts of available
redispatch PR does not lead to an significant increase in the
accepted overloads. This is because of the steep slope of the
severity curve, which means that the accepted overload for
most lines is below ∆Pl(k). If the cost cR+ is low, higher
amounts of available redispatch PR leads to an increase in
the accepted overloads. In this case the slope of the severity
curve is lower, meaning that the accepted overload is higher
than ∆Pl(k). Similarly, if PR is low, the cost c+R is of little
importance, whereas if PR is high, the accepted overloads are
more sensitive to the cost c+R.
With more and cheaper remedial actions, it is thus possible
to relax the post-contingency line constraints more, which has
an influence on the overall cost of the optimization problem.



0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

Amount of redispatch P
R
 / P

G
max 

C
os

t o
f r

ed
is

pa
tc

h 
c R+

 / 
c 1 

 

 

0.99

0.995

1

Generation
cost

relative to base
RB−pSCOPF

Fig. 10. Cost of the RB-pSCOPF with ε = 0.05 and the contingency and
line specific risk constraint Rspec

(i,k)
≤ Rbase for different values of PR and

c+R.

Fig. 10 shows the generation cost from the RB-pSCOPF for
different values of PR and c+R. The pattern is similar to Fig.
9, confirming that the relaxation of the post-contingency line
constraints leads to overall lower cost.

V. CONCLUSION

This paper proposes a new way of modeling risk in
power system operation, accounting for system properties
like the effect and availability of redispatch. The resulting
risk measure is used to formulate risk-based constraints for
the post-contingency line flows. By discussing how the risk-
based constraints compares with traditional N-1 constraints, we
provide some guidance on how risk limits can be chosen. The
new constraints are included in an SCOPF formulation which
also accounts for uncertainty of RES in-feeds. This risk-based,
probabilistic SCOPF is formulated such that we guarantee that
the risk level and the rest of the system constraints will be
enforced with a violation level lower than ε, where ε is a
design parameter.
The OPF formulation was applied to a case study of the IEEE
30 bus system. We show that we are able to control the risk
even when the in-feeds deviate from the forecast. Further, the
risk-based formulation allows us to choose the desired risk
level, as opposed to the N-1 criterion which only deems the
system as secure or insecure. As expected, enforcing a lower
level of risk or a lower violation level both increases generation
cost, but leads to lower average risk and fewer N-1 violations.
The proposed method allows us not only to control the system
risk level, but also to account for the effect of available
remedial measures during the operational planning process.
Through the use of risk-based constraints, the post-contingency
line flow limits are set based on which measures are available.
The case study demonstrates how the cost and amount of
available redispatch influences the severity function, and how
less costly and larger amounts of redispatch allow us to relax
the post-contingency line flow constraints, leading to lower
generation cost.
The method and particularly the severity model can be further
developed. Here, the amount of available redispatch is assumed
to be known, which allows us to pre-compute the severity
function before the optimization starts. In future work, we
intend to make the severity function computation part of the
optimization, which will allow for co-optimization of the gen-
eration dispatch and available redispatch. Further, we would
like to include more than one remedial action for each line, and

consider the possibility of incorporating other remedial actions
than redispatch, such as, e.g., switching actions. Finally, we
would like to consider the influence of the remedial actions
not only on the overloaded line, but also on other lines in the
system.

ACKNOWLEDGMENT

Line Roald receives funding from the project Innovative
tools for future coordinated and stable operation of the pan-
European electricity transmission system (UMBRELLA), sup-
ported under the 7th Framework Programme of the European
Union, grant agreement 282775. The research of F. Oldewurtel
receives funding from the European Union Seventh Framework
Programme FP7-PEOPLE-2011-IOF under grant agreement
number 302255, Marie Curie project Stochastic Model Predic-
tive Control, Energy Efficient Building Control, Smart Grid.

REFERENCES

[1] D. S. Kirschen and D. Jayaweera, “Comparison of risk-based and
deterministic security assessments,” IET Gener. Transm. Distrib., vol. 1,
no. 4, pp. 527–533, 2007.
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