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Geometry-aware Similarity Learning
on SPD Manifolds for Visual Recognition
Zhiwu Huang, Member, IEEE, Ruiping Wang∗, Member, IEEE, Xianqiu Li, Wenxian Liu,

Shiguang Shan, Senior Member, IEEE, Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE .

Abstract—Symmetric positive definite (SPD) matrices have
been employed for data representation in many visual recognition
tasks. The success is mainly attributed to learning discrimina-
tive SPD matrices encoding the Riemannian geometry of the
underlying SPD manifolds. In this paper, we propose a geometry-
aware SPD similarity learning (SPDSL) framework to learn
discriminative SPD features by directly pursuing a manifold-
manifold transformation matrix of full column rank. Specifically,
by exploiting the Riemannian geometry of the manifolds of
fixed-rank positive semidefinite (PSD) matrices, we present a
new solution to reduce optimization over the space of column
full-rank transformation matrices to optimization on the PSD
manifold, which has a well-established Riemannian structure.
Under this solution, we exploit a new supervised SPD similarity
learning technique to learn the manifold-manifold transformation
by regressing the similarities of selected SPD data pairs to
their ground-truth similarities on the target SPD manifold. To
optimize the proposed objective function, we further derive
an optimization algorithm on the PSD manifold. Evaluations
on three visual classification tasks show the advantages of the
proposed approach over the existing SPD-based discriminant
learning methods.

Index Terms—discriminative SPD matrices, Riemannian ge-
ometry, SPD manifold, geometry-aware SPD similarity learning,
PSD manifold.

I. INTRODUCTION

Recently, symmetric positive definite (SPD) matrices of real
numbers have appeared in many branches of computer vision.
Examples include region covariance matrices for pedestrian
detection [1], [2] and texture categorization [3], [4], [5], joint
covariance descriptors for action recognition [6], [5], diffusion
tensors for medical image segmentation [7], [8], [4] and image
set based covariance matrices for video face recognition [9],
[10], [11]. Due to the effectiveness of measuring the useful
second-order information of processed data, such SPD matrix
features have been shown to provide powerful representations
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for still images and dynamic videos in the field of computer
vision.

However, such advantages of the SPD matrices are often
accompanied by the challenges of the non-Euclidean data
structure that underlies a specific Riemannian manifold [7],
[8]. Applying Euclidean geometry directly to SPD matrices
often results in poor performance and undesirable effects, such
as the swelling of diffusion tensors in the case of SPD matrices
[12], [13]. To overcome the drawbacks of the Euclidean repre-
sentation, researchers [13], [8], [14] have conducted extensive
studies on Riemannian metrics, e.g., the affine-invariant metric
[7] and Log-Euclidean metric [8], to encode the Riemannian
geometry of SPD manifolds so that the manifold-valued data
can be treated appropriately.

By applying these classic Riemannian metrics, several stud-
ies extend traditional Euclidean algorithms to work on the
manifolds of SPD matrices to learn more discriminative SPD
matrices or their vector forms. To this end, these studies exploit
effective methods on an SPD manifold by either flattening
it via tangent space approximation [2], [15], [16], [17], [52]
(See Fig.1 (a)→(b)) or mapping it into a high-dimensional
reproducing kernel Hilbert space (RKHS) [3], [9], [4], [18],
[19], [20], [21], [54] (See Fig.1 (a)→(c)→(b)). Obviously, both
families of methods inevitably distort the geometric structure
of the original SPD manifold by mapping the manifold into flat
Euclidean space or high-dimensional RKHS. Thus, they often
achieve sub-optimal solutions for the problem of learning the
discriminative features of SPD manifolds. Furthermore, both
learning schemes are computationally expensive due to the
increased dimensions of the processed SPD matrices.

Several techniques were introduced for dimensionality re-
duction on Riemannian manifolds in [22], [23], [24], [25],
[26], [27], [28], [29]. For example, in [23], [24], [25],
[26], traditional nonlinear techniques were extended to their
Riemannian counterparts by introducing various Riemannian
geometry concepts, such as the Karcher mean, tangent spaces
and geodesics, in locally linear embedding (LLE), Hessian
LLE and Laplacian eigenmaps. As these methods do not define
parametric mapping to low-dimensional space, they are limited
to the transformation setting. In contrast, some studies, such as
[27], [28], encode the parametric mapping when pursuing the
target low-dimensional manifold. However, they are originally
designed for different types of Riemannian manifolds (such as
Grassmann manifolds), not SPD manifolds.

For SPD data, the existing dimensionality reduction meth-
ods [5], [30], [53] aim to pursue a column full-rank trans-
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Fig. 1. Three different learning schemes on SPD manifolds. The first (a)→(b)
flattens the original manifold Symn

+ by tangent space approximation and
then learns a map g to discriminative Euclidean space Rd. The second
(a)→(c)→(b) is designed to first embed Symn

+ with an implicit map ϕ into
RKHS H and then learn mapping h to discriminative Euclidean space Rd.
The last (a)→(d) aims to learn a map f from the original SPD manifold
Symn

+ to a more discriminative SPD manifold Symm
+ . Here, X ∈ Symn

+
and f(X) ∈ Symm

+ are the SPD matrices and TXSymn
+ and Tf(X)Sym

m
+

are the tangent spaces.

formation matrix to map the original SPD manifold to
lower-dimensional discriminative SPD manifold, as shown in
Fig.1 (a)→(d). However, since directly learning the manifold-
manifold transformation matrix is difficult, [5] decomposed it
to the product of an orthonormal matrix with a matrix in a
general linear group and required the employed Riemannian
metrics to be affine invariant. In this process, optimizing the
manifold-manifold transformations is equivalent to optimizing
over orthonormal projections. Although the additional require-
ment simplifies the optimization of the transformation, it does
not only reduce the original solution space but inevitably
excludes all non-affine-invariant Riemannian metrics1, such
as the well-known Log-Euclidean metric, which has proved
to be much more efficient than the affine-invariant metric
[8]. While the work [30] exploited the Log-Euclidean metric
under the same scheme, it attempted to learn a tangent map,
which implicitly approximates the tangent space and hence
introduces some distortions of the true geometry of SPD
manifolds.

In this paper, under the last scheme (see Fig.1 (a)→(d)),
we propose a new geometry-aware SPD similarity learning
(SPDSL) framework to expand the problem domain of learn-
ing discriminative SPD features by exploiting either affine-
invariant or non-affine-invariant Riemannian metrics on SPD
manifolds. There are three main contributions in this work to
realize the SPDSL framework:

• By exploiting the Riemannian geometry of the manifolds
of fixed-rank positive semidefinite (PSD) matrices, our
SPDSL framework provides a new solution to directly
learn the manifold-manifold transformation matrix. As no
additional constraint is required, the optimal transforma-
tion is pursued in a favorable solution space, enabling
a wide range of well-established Riemannian metrics to
work.

1Although the recent extension work [31] studied this limitation, it merely
introduced an approximated adaption of the Log-Euclidean metric.

• To fulfill the solution, a new supervised SPD similarity
learning technique is proposed to learn the transformation
by regressing the similarities of selected SPD pairs to the
target similarities on the resulting SPD manifold.

• We derive an optimization approach that exploits the
classic Riemannian conjugate gradient (RCG) algorithm
on the PSD manifold to optimize the proposed objective
function.

II. BACKGROUND

Let Symn = {H : HT = H} be a set of real, symmetric
matrices of size n×n and Sym+

n = {X ∈ Symn : ωTXω �
0,∀ω ∈ Rn,ω 6= 0} be a set of SPD matrices. The mapping
space Symn is endowed with the usual Euclidean metric (i.e.,
inner product) 〈H1,H2〉 = Tr(HT

2 H1). As noted in [7], [8],
the set of SPD matrices Sym+

n is an open convex subset of
Symn. Thus, the tangent space to Sym+

n at any SPD matrix
in it can be identified with the set Symn. The smoothly
varying family of inner products on each tangent space is
known as the Riemannian metric, allowing the space of SPD
matrices Sym+

n to yield a Riemannian manifold. Based on
this Riemannian metric, the geodesic distance between two
elements X1,X2 on the SPD manifold is generally mea-
sured by 〈logX1

(X2), logX1
(X2)〉X1 . Several Riemannian

metrics and divergences have been proposed to equip SPD
manifolds. For example, the affine-invariant metric [7], Stein
divergence [32], and Jeffereys divergence [18] are designed to
be invariant to affine transformation of SPD manifolds; that
is, for any M ∈ GL(n) (i.e., the group of real invertible
n × n matrices), the metric function δA has the property
δ2A(X1,X2) = δ2A(MX1M

T ,MX2M
T ). In contrast, the

Log-Euclidean metric[8], Cholesky distance [33] and Power-
Euclidean metric [33] are not affine invariant Riemannian met-
rics. Among these metrics, only the affine-invariant metric [7]
and Log-Euclidean metric [8] define a true geodesic distance
on SPD manifolds [4]. In addition, Stein divergence is widely
used due to its favorable properties and strong performance
in visual recognition tasks [32]. Therefore, this paper focuses
on studying these three representative Riemannian metrics for
the manifolds of SPD matrices.

Definition 1. By defining the inner product in
the tangent space at one anchor point X1 on
the manifold of SPD matrices as 〈H1,H2〉X1

=

〈X−1/21 H1X
−1/2
1 ,X

−1/2
1 H2X

−1/2
1 〉 and the logarithm

map as logX1
(X2) = X

1/2
1 log(X

−1/2
1 X2X

−1/2
1 )X

1/2
1 , the

geodesic distance between two SPD matrices X1,X2 on the
manifold is induced by the affine-invariant metric (AIM) as

δ2a(X1,X2) = ‖ log(X−1/21 X2X
−1/2
1 )‖2F . (1)

Definition 2. The approximated geodesic distance between two
SPD matrices X1,X2 on the SPD manifold is defined using
Stein divergence as

δ2a(X1,X2) = ln det

(
X1 +X2

2

)
− 1

2
ln det(X1X2).

(2)
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Definition 3. By defining the inner product in the
tangent space at the SPD point X1 on the SPD mani-
fold as 〈H1,H2〉X1 = 〈D log(X1)[H1],D log(X1)[H2]〉
(D log(X1)[H] denotes the directional derivative) and the
logarithm map as logX1

(X2) = D−1 log(X1)[log(X2) −
log(X1)], the geodesic distance between two SPD matrices
X1,X2 is derived by the Log-Euclidean metric (LEM) as

δ2l (X1,X2) = ‖ log(X1)− log(X2)‖2F . (3)

III. PROPOSED APPROACH

In this section, we propose a new solution of Riemannian
geometry-aware dimensionality reduction for SPD matrices
and then present our supervised SPD similarity learning
method under the solution. Finally, we give a detailed de-
scription of our optimization algorithm.

A. Riemannian Geometry-aware Dimensionality Reduction on
SPD manifolds

Given a set of SPD matrices X = {X1, . . . ,XN}, where
each matrix Xi ∈ Sym+

n , and a transformation W ∈ Rn×m
(m < n) is pursued for mapping the original SPD manifold
Sym+

n to a lower-dimensional SPD manifold Sym+
m. For-

mally, this procedure attempts to learn the parameter W of a
mapping in the form f : Sym+

n ×Rn×m → Sym+
m, which is

defined as:
f(Xi,W ) =W TXiW . (4)

To ensure the resulting mapping yields a valid SPD manifold
Sym+

m 3 W TXiW � 0, the manifold-manifold trans-
formation W is required to be a column full-rank matrix
W ∈ Rn×m∗ .

Since the solution space is a non-compact Stiefel manifold
Rn×m∗ , where the distance function has no upper bound,
directly optimizing on the manifold is infeasible. Fortunately,
the conjugates (taking the form of WW T ) of column full-
rank matrices span a compact manifold Sym+

n (m) of positive
semidefinite (PSD) matrices, which is a quotient space of
Rn×m∗ and has a well-established Riemannian structure. In
contrast, by additionally assuming the transformation W to
be orthogonal, as done in [5], Eqn.4 can be optimized on
a compact Stiefel manifold, which is a subset of the non-
compact Stiefel manifold Rn×m∗ . Further, for affine-invariant
metrics (e.g., AIM), optimizing on a Stiefel manifold can be
reduced to optimizing over Grassmannian [5]. However, such
an orthogonal solution space is smaller than the original solu-
tion space Rn×m∗ , making the optimization theoretically yield
a suboptimal solution of W . Thus, we perform optimization
on the PSD manifold to search for the optimal solution of W .
We now study the geometry of the PSD manifolds Sym+

n (m).
For all orthogonal matrices O of size m × m, the map

W → WO leaves WW T unchanged. This property of W
results in the equivalence class of the form [W ] = {WO|O ∈
Rm×m,OTO = Im}, and yields a one-to-one correspondence
with the rank-m PSD matrix Q = WW T ∈ Sym+

n (m). By
quotienting this equivalence relation out, the set of rank-m
PSD matrices Sym+

n (m) is reduced to the quotient of the
manifold Rn×m∗ by the orthogonal group O(m) = {O ∈

Rm×m|OTO = Im}, i.e., Sym+
n (m) = Rn×m∗ /O(m). With

the studied relationship between Sym+
n (m) and Rn×m∗ , the

function φ : Sym+
n (m) → R : Q 7→ φ(Q) is able to

derive the function g : Rn×m∗ → R : W 7→ g(W )
defined as g(W ) = φ(WW T ). Here, g is defined in the
total space Rn×m∗ and descends as a well-defined function in
the quotient manifold Sym+

n (m). Therefore, optimizing over
the total space Rn×m∗ is reduced to optimizing on the PSD
manifold Sym+

n (m), which has been thoroughly studied in
several works [34], [35], [36], [37]. Since a PSD manifold
is a quotient space, each element on the PSD manifold is
actually an equivalence class [W ]. Thus, optimizing on the
PSD manifold addresses W directly rather than WW T . To
more easily understand this point, one can take the well-
known Grassmann manifold, where each element can also be
represented by the equivalence class [W ] and the optimization
on it seeks the solution of W directly, as an analogy. Similarly
the optimization over the PSD manifold is actually direct
optimization of W rather than Q =WW T . Thus, we design
an objective function directly on W instead of Q, as done
in the existing works [34], [36] and the popular manifold
optimization (manopt) toolbox2.

It can be further proved that the quotient space Sym+
n (m)

presents the structure of a Riemannian manifold [34]. As a
result, by endowing the total space Rn×m∗ with the usual
Riemannian structure of Euclidean space (i.e., the inner prod-
uct 〈H1,H2〉 = Tr(HT

2 H1)), the quotient space Sym+
n (m)

follows a Riemannian structure. The inner product occurs in
the tangent space TW of the manifold Rn×m∗ . In the case of
the manifold Sym+

n (m), the corresponding tangent space is
decomposed into two orthogonal subspaces, the vertical space
VW = {WΩ|Ω ∈ Rn×m,ΩT = −Ω} and the horizontal
space HW = {H ∈ TW |HTW = W TH}, to achieve the
inner product 〈H1,H2〉. This Riemannian metric allows sev-
eral classic optimization techniques, such as the Riemannian
conjugate gradient (RCG) algorithm [34], to work on the PSD
manifold Sym+

n (m). For more detailed background on the
Riemannian geometry of PSD manifolds, please refer to [34],
[36].

By exploiting the Riemannian geometry of the fixed-
rank PSD manifold Sym+

n (m), we create the possibility
of directly pursuing an optimal column full-rank manifold-
manifold transformation matrix to solve the problem of di-
mensionality reduction of SPD features.

B. Supervised SPD Similarity Learning

As previously studied, under the proposed framework of di-
mensionality reduction of SPD features, a target SPD manifold
Sym+

m of lower dimensionality can be derived. On the new
SPD manifold Sym+

m, the geodesic distance between the two
original SPD points Xi,Xj is obtained by:

δ̂2(Xi,Xj) = δ2(f(Xi,W ), f(Xj ,W )), (5)

where f(Xi,W ) is the manifold-manifold transformation
computed by Eqn.4, and δ is the geodesic distance induced

2The manopt toolbox is available at http://www.manopt.org.
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by the commonly used affine-invariant or non-affine-invariant
Riemannian metrics in Eqn.1, Eqn.2 and Eqn.3.

In this paper, we focus on the problem of supervised SPD
similarity learning for more robust visual classification tasks,
where SPD features have shown great power. Formally, for
each SPD matrix Xi ∈ Sym+

n , we define its class indicator
vector: yi = [0, . . . , 1, . . . , 0] ∈ Rc, where the k-th entry
is 1 and the other entries are 0, indicating that Xi belongs
to the k-th class of c total classes. As discriminant learning
techniques developed in Euclidean space, we assume that prior
knowledge is known regarding the distances between pairs of
SPD points on the new SPD manifold Sym+

m. Let us consider
the similarity or dissimilarity between pairs of SPD points: two
SPD points are similar if the similarity based on the geodesic
distance between them on the new manifold is larger, while
two SPD points are dissimilar if their similarity is smaller.

Given a set of similarity constraints, our goal is to learn the
manifold-manifold transformation matrix W that parameter-
izes the similarities of SPD points on the target SPD manifold
Sym+

m. For this purpose, we exploit the supervised criterion
of centered kernel target alignment [38], [39], [40] to learn
discriminative features on the SPD manifold by regressing the
similarities of selected sample pairs to the target similarities.
Formally, our supervised SPD similarity learning (SPDSL)
approach is based on maximizing the following objective
function:

J (W ) =
〈UG ◦ k(W )U ,G ◦ (Y Y T )〉F

‖UG ◦ k(W )U‖F
, s.t.W ∈ Rn×m∗ ,

(6)
where 〈·〉F and ‖ · ‖F are the Frobenius inner product and the
Frobenius norm, respectively. The elements of matrix k(W )
encode the similarities of the SPD data, while the elements
of Y Y T present the ground-truth similarities of the involved
SPD points. The matrix G is used to select the pairs of
SPD points whose corresponding elements are 1. The matrix
U = IN − 1N1T

N

N is employed to center the data similarity
matrix k(W ) and the similarity matrix Y Y T on the labels.
N is the number of samples, IN is an identity matrix of size
N × N , 1N is a vector of size N with all entries being
ones, Y = [y1, . . . ,yN ]T is assumed to be centered, i.e.,
U(Y Y T )U → Y Y T , for simplicity. In the following, we
present the formulations of the matrices k(W ) and G in
greater detail.

More specifically, the matrix k(W ) in Eqn.6 encodes the
similarity between each pair of SPD points (Xi,Xj) on the
SPD manifold Sym+

n and takes the form:

kij(W ) = exp(−βδ̂2(Xi,Xj)), (7)

where δ̂2(Xi,Xj) is computed using Eqn.5, β is typically
fixed as β = 1

σ2 , and σ is empirically set to the mean distance
of the original training sample pairs. Eqn.7 respects a form
of the Gaussian kernel function. Nevertheless, as the objective
function Eqn.6 can be expressed as the sum of the similarity
regression results of selected sample pairs, Eqn.7 serves as
a tool to encode the similarities and is thus not necessarily
positive definite (PD).

In practical applications, the computational burden of han-
dling the full kernel matrix k(W ) on the SPD manifold scales

Algorithm 1 Optimization algorithm
Input: The initial matrix W0

1. H0 ← 0,W ←W0.
2. Repeat
3. Hk ← −∇W J(Wk) + ητ(Hk−1,Wk−1,Wk).
4. Line search along the geodesic γ in the direction Hk

from Wk−1 = γ(k − 1) to find Wk = argminW J (W ).
5. Hk−1 ←Hk, Wk−1 ←Wk.
8. Until convergence
Output: The optimized matrix W

quadratically with the size of the SPD training data. To address
this problem, we exploit graph embedding [41] to select a
limited number of data pairs to construct a sparse kernel matrix
(non PD) with a large number of elements being zero. The
matrix G is defined to select the pairs of SPD points for SPD
similarity learning. By using this matrix, G ◦ k(W ) can be
regarded as the sparse kernel matrix, where the operation ◦
denotes the Hadamard product and the matrix G = Gw+Gb.
Here, Gw and Gb are defined as:

Gw(i, j) =

{
1, if Xi ∈ Nw(Xj) or Xj ∈ Nw(Xi)

0, otherwise,
(8)

Gb(i, j) =

{
1, if Xi ∈ Nb(Xj) or Xj ∈ Nb(Xi)

0, otherwise,
(9)

where Nw(Xi) is the set of vw nearest neighbors of Xi that
share the same class label as yi, and Nb(Xi) is the set of vb
nearest neighbors of Xi with different class labels from yi.
According to the theory of graph embedding [41], the within-
class similarity graph Gw and the between-class dissimilarity
graphGb, respectively defined in Eqn.8 and Eqn.9, can encode
the local geometric structure of the processing data space.
Consequently, in addition to accelerating the discriminant
similarity learning on the SPD manifolds, graph embedding
can learn the discriminative information of SPD data and char-
acterize the local Riemannian geometry of the underlying SPD
manifold. The efficiency and effectiveness of the proposed
discriminant learning approach on SPD manifolds is further
studied in the experimental section.

C. Riemannian Conjugate Gradient Optimization

As discussed above, optimization in the solution space
Rn×m∗ of the column full-rank transformation matrices in
our objective function can be reduced to optimization on the
Riemannian manifold of rank-m PSD matrices, Sym+

n (m).
Therefore, in this section, we exploit the RCG algorithm [34]
to optimize our objective function J (W ) in Eqn.6 by deriving
its corresponding gradient on the PSD manifold Sym+

n (m).
Similar to the traditional conjugate gradient (CG) algorithm

developed in Euclidean space, our employed RCG algorithm
is an iterative procedure. As given in Algorithm1, an outline
for the iterative part of the RCG algorithm is as follows: at the
k-th iteration, we find Wk by searching the minimum of J
along the geodesic in direction Hk−1 from Wk−1, compute
the Riemannian gradient ∇WJ (Wk) at this point, and then
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choose the new search direction Hk = −∇WJ (Wk) +
ητ(Hk−1,Wk−1,Wk). In the iterative procedure, the Rie-
mannian gradient ∇WJ (Wk) can be easily approximated
from its corresponding Euclidean gradient DWJ (Wk) by
∇WJ (Wk) = DWJ (Wk) −WkW

T
k DWJ (Wk), and the

operation τ(Hk−1,Wk−1,Wk) is the parallel transport of
tangent vector Hk−1 from Wk−1 to Wk. For more details
about the RCG algorithm, we refer readers to [34], [5].

For now, we only need to compute the Euclidean gradient
DWJ (W ) for the proposed objective function J (W ) in
Eqn.6. To obtain the Euclidean gradient DWJ (W ), we ex-
press its corresponding directional derivative DWJ (W )[Ẇ ]
in direction Ẇ . Formally, they are related by the following
equality:

DWJ (W )[Ẇ ] = 〈DWJ (W ), Ẇ 〉. (10)

We compute the adjoint of the directional derivative to
obtain the Euclidean gradient. By employing the standard
properties of directional derivatives, DWJ (W )[Ẇ ] can be
derived by:

DWJ (W )[Ẇ ]

=
〈UG ◦DW k(W )[Ẇ ]U ,G ◦ (Y Y T )〉F‖L‖F

‖L‖2F

−
〈L,G ◦ (Y Y T )〉F 〈 L‖L‖F ,UG ◦DW k(W )[Ẇ ]U〉F

‖L‖2F

= 〈DW k(W )[Ẇ ],U

(
G ◦ (Y Y T )

‖L‖F
− J (W )L
‖L‖2F

)
U〉F ,

(11)
where k(W ) is formulated by Eqn.7, L = UG ◦ k(W )U ,
〈·〉F indicates the Frobenius inner product, and ‖ · ‖F denotes
the Frobenius norm.

Accordingly, the key issue in Eqn.11 is to estimate
DW k(W ). When δ in Eqn.5 is the geodesic distance of AIM
defined in Eqn.1, the Euclidean gradient of k(W ) can be
derived as:

DW kij(W )

= −4βkij(W )(BiX̂
−1
i −BjX̂

−1
j ) log(X̂

− 1
2

j X̂iX̂
− 1

2
j ),

(12)
where Bi =XiW , X̂i =W

TXiW ∈ Sym+
m.

For other affine-invariant metrics, such as Stein divergence
[32], the corresponding Euclidean gradient of k(W ) with the
geodesic distance function δ defined in Eqn.2 can be computed
by:

DW kij(W )

= −βkij(W )((Bi +Bj)A
−1
ij −BiX̂

−1
i −BjX̂

−1
j ),

(13)
where Aij = W T Xi+Xj

2 W and is therefore applicable in
our proposed framework.

By endowing the SPD manifold with the non-affine invariant
metric LEM, it seems difficult to calculate the Euclidean
gradient of DW k(W ) due to the matrix logarithms it contains.
Thus, we study the computation of the Euclidean gradient for
the LEM case in the following.

First, we decompose the derivative of LEM w.r.t. W into
three derivatives with the trace form Tr(·):

DW (‖ log(W TXiW )− log(W TXjW )‖2F ) =
DW (Tr(log2(W TXiW )) +DW (Tr(log2(W TXjW ))

− 2DW (Tr(log(W TXiW ) log(W TXjW ))).
(14)

Proposition 1. The derivatives of the three trace forms Tr(·)
in Eqn.14 can be computed by (Here, Bi = XiW , X̂i =
W TXiW ):

DW (Tr(log2(X̂i)) = 4BiD log(X̂i)[log(X̂i)]. (15)
DW (Tr(log2(X̂j)) = 4BjD log(X̂j)[log(X̂j)]. (16)

DW (Tr(log(X̂i) log(X̂j))

= 2BiD log(X̂i)[log(X̂j)] + 2BjD log(X̂j)[log(X̂i)].
(17)

Proof. The three formulas for the gradients with the matrix
logarithm correspond to the three formulas with rotation
matrices in [42] (section 5.3), where a detailed proof is given.

By using Proposition 1. (i.e., Eqn.15, Eqn.16, Eqn.17) and
the sum rule of directional derivatives, we derive DW k(W ),
where δ is the geodesic distance of the LEM in Eqn.5 as:

DW kij(W ) = −4(BiD log(X̂i)[log(X̂i)− log(X̂j)]

+BjD log(X̂j)[log(X̂j)− log(X̂i)])βkij(W ).
(18)

To calculate Eqn.18, we apply the block triangular ma-
trix function developed in [43] to compute the form of
D log(X̂)[H], which is the directional (Fréchet) derivative of
log at X̂ ∈ Sym+

m along H ∈ Symn. The following theorem
shows that the directional derivative appears as the (1, 2) block
of the resulting big matrix when f : X̂ 7→ log(X̂) is evaluated
at a certain block triangular matrix.

Theorem 1. Let f : X̂ 7→ log(X̂) be 2n−1 times continuously
differentiable on G and let the spectrum of X̂ lie in G, where
G is an open subset of R. Then

f

([
X̂ H

0 X̂

])
=

[
f(X̂) D log(X̂)[H]

0 f(X̂)

]
. (19)

Proof. The result was proved by Najfeld and Havel [44]
(Theorem 4.11) under the assumption that f is analytic.

The directional derivative of the matrix logarithm can be
easily computed using Theorem 1. The pseudo matlab code
for computing D log(X̂)[H] is: n = size(X, 1); Z = zeros(n);
A = log([X, H ; Z, X]); D = A(1:n, (n+1):end), where D =
D log(X̂)[H].

With the gradient formulas derived in Eqn.12, Eqn.13
and Eqn.18, the Euclidean gradient Eqn.11 of the objective
function Eqn.6 for these cases can be computed to feed into
the exploited RCG algorithm on the PSD manifold. Since the
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global convergence of the RCG algorithm has been thoroughly
studied [45], we do not investigate it any further. The main
time cost of the algorithm is computing the gradient in Eqn.11,
O(lk0n

2m + lk1nm
2) (l is the iteration number, k0 and k1

denote the number of selected samples and pairs, respectively,
and n and m indicate the dimensions of the original and target
manifolds, respectively) in the LEM case. In the experiment,
we also study the running time of each iteration of the
algorithm when varying the number of selected between-class
pairs for each SPD sample.

IV. EXPERIMENTS

In this section, we study the effectiveness of the proposed
geometry-aware SPD similarity learning (SPDSL) approach by
conducting experimental evaluations of three visual classifica-
tion tasks: face recognition, material categorization and action
recognition.

In these three tasks, the SPD features have been shown to
provide powerful representations for images and videos via
set-based covariance [9], [10], [11], region covariance [1], [2]
and joint covariance descriptors [6], [5]. Therefore, they are
natural choices to evaluate the proposed SPDSL exploiting the
AIM, Stein divergence and LEM.

To evaluate the effectiveness of the proposed SPDSL ap-
proach, we compare three categories of SPD-based learning
methods: basic Riemannian metric baseline methods, kernel
learning based SPD discriminant learning methods and dimen-
sionality reduction based SPD discriminant learning methods:

1) Basic Riemannian metrics on SPD manifolds:
Affine-invariant metric (AIM) [13], Stein divergence
[32], Log-Euclidean metric (LEM) [8]

2) Kernel learning based SPD matrix learning methods:
PLS-based covariance discriminative learning (CDL)
[9], Riemannian sparse representation (RSR) [3] and
Log-Euclidean kernels (LEK) [46]

3) Dimensionality reduction based SPD matrix learning
methods:
Log-Euclidean metric learning (LEML) [30] and SPD
manifold learning (SPDML-AIM and SPDML-Stein) [5]
with AIM and Stein divergence

Note that the proposed SPDSL belongs to the last category
of SPD discriminant learning methods. As this paper focuses
on the problem of supervised SPD discriminant learning, we
report the performance of the original discriminant learning
methods, such as SPDML, rather than performance when
further coupling them with other classifiers, as done in [5].
In addition, to study the discriminant learning power of
our proposed framework, we replace its supervised learning
scheme with that of SPDML but still perform optimization
on the exploited solution space. The adaptions of the pro-
posed SPDSL are denoted SPDSL-AIM∗, SPDSL-Stein∗ and
SPDSL-LEM∗.
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Fig. 2. Video frames from the YTC video dataset [47].

For RSR, the parameter β is densely sampled around the
order of the mean distance, and the parameter λ is sampled
in the range of [0.0001, 0.001, 0.01, 0.1]. For LEK, there are
three implementations based on polynomial, exponential and
radial basis kernels, which are, respectively, denoted LEK-
κpn , LEK-κen and LEK-κg . For LEK-κpn and LEK-κen , we
densely sample the parameter n from 1 to 50. The parameters
β in LEK-κg and λ in the three LEK versions are all tuned
in the same way as RSR. For LEML, the parameter η is
tuned in the range of [0.1, 1, 10], and ζ is tuned from 0.1
to 0.5. For SPDML and our SPDSL method, the maximum
iteration number of the optimization algorithm is set to 50,
the parameter vw is fixed as the minimum number of samples
in one class, and the dimensionality of the lower-dimensional
SPD manifold and vb are tuned by cross-validation. The
parameter β in our method is set to β = 1

σ2 , where σ is
equal to the mean distance of all pairs of training data.

A. Face Recognition

In the first experiment, we use the YouTube Celebrities
(YTC) video face database [47] to perform video face recogni-
tion. The dataset is challenging and widely used in video face
recognition research. It has 1,910 video clips of 47 subjects
collected from YouTube. Most of the clips contain hundreds
of frames, which include noise and are often low resolution,
highly compressed, and low quality.

For the testing protocol, following [9], [10], [30], the dataset
is randomly split into the gallery and the probe, which have
3 image sets and 6 image sets, respectively, for each subject.
The process of random testing is repeated 10 times to evaluate
the video face recognition.

In our experiment, each face image in a video is cropped
into a 20×20 intensity image and is then histogram-equalized
to eliminate lighting effects. Following [9], [30], we extract the
set-based covariance matrix for each video sequence of frames
in this dataset. To avoid matrix singularity, we add a small
ridge δI to each covariance matrix Σ, where δ = 10−3 ×
trace(Σ) and I is the identity matrix. In the literature, the
mean face in each video has been proved to benefit video face
recognition. Therefore, we improve the set-based covariance
matrix feature by concatenating it with the mean to yield a (d+

1)-dimensional SPD matrix as
[
Σ + µµT µ
µT 1

]
, where µ ∈

Rd and Σ ∈ Symd
+ represent the mean and the covariance
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TABLE I
AVERAGE RANK-1 FACE RECOGNITION RATES (%) WITH THE STANDARD DEVIATION OF THE THREE CATEGORIES OF COMPETING METHODS, INCLUDING

THE PROPOSED SPDSL, ON THE YTC DATABASE.

Category1 AIM Stein LEM
Accuracy 62.85 ± 3.46 61.46 ± 3.52 63.91 ± 3.25
Category2 CDL [9] RSR [3] LEK-κpn [46] LEK-κen [46] LEK-κg [46]
Accuracy 72.67 ± 2.47 72.77 ± 2.69 61.85 ± 3.24 62.17 ± 3.52 56.30 ± 3.62
Category3 LEML [30] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 70.53 ± 2.95 64.66 ± 2.92 61.57 ± 3.43

The proposed SPDSL-AIM∗ SPDSL-Stein∗ SPDSL-LEM∗ SPDSL-AIM SPDSL-Stein SPDSL-LEM
Accuracy 64.27 ± 2.84 62.31 ± 3.48 69.32 ± 2.04 71.60 ± 2.45 71.03 ± 2.39 72.29 ± 1.58

matrix of one image set. Note that the dimensions of the target
manifolds for the dimensionality reduction methods are all set
to 40 for the YTC database.

As can be seen from Table I, the baseline method LEM
outperforms the other two baselines, AIM and Stein, in most
cases, which demonstrates that LEM is more effective than the
other two Riemannian metrics in the evaluation. The results in
Table I also show that most of the kernel learning (Category2)
and dimensionality reduction (Category3) methods improve
the accuracy of the baselines: AIM, Stein and LEM. This
demonstrates that learning discriminative SPD features in these
methods is beneficial to visual recognition tasks.

Compared with the state-of-the-art kernel learning based
methods CDL and RSR, the dimensionality reduction based
methods LEML and SPDML perform worse in the face recog-
nition task. In contrast, the proposed SPDSL improves LEML
and SPDML by approximately 2% and 7%, respectively, and
achieves comparable performance with CDL and RSR. By
comparison with SPDML, the performances of the adaption
of our proposed SPD similarity learning framework SPDSL-
AIM∗ and SPDSL-Stein∗ are close to those of SPDML-AIM
and SPDML-Stein. These results indicate that the former
solution can be approximated by the latter solution when the
involved Riemannian metric is affine invariant. Nevertheless,
after using the proposed similarity learning technique, both
SPDSL-AIM and SPDSL-Stein can clearly outperform the
SPDML method. In addition, our SPDSL method can address
cases where the SPD manifold is equipped with the non-affine
Riemannian metric LEM, and we can observe that SPDSL-
LEM∗ and SPDSL-LEM achieve higher accuracies in most
cases. The big improvement of the proposed SPDSL over the
adapted SPDSL∗ stems from the proposed similarity learning
technique, which can learn more robust representations over
the original SPD data of the YTC database.

Additionally, we study the effectiveness of the proposed
SPDSL when varying its key parameter vb. As shown in Fig.3,
we present the behavior of the sparse (non PD) kernel cases
on the YTC database for different values of vb in the interval
[1, 8] and the values of 20 and 100 while fixing the parameter
vw = 3. When k(W ) achieves a full kernel matrix, the
performance reaches 72.57%, which is close to the highest

20 100 

20 100 

Fig. 3. Recognition accuracy of the proposed SPDSL-LEM on the YTC
dataset for varying values of vb (i.e., different sparse degrees of the involved
kernel matrix k(W )).

20 100 

20 100 

Fig. 4. Running time of the proposed SPDSL-LEM on the YTC dataset
for varying values of vb (i.e., different sparse degrees of the involved kernel
matrix k(W )).

performance (72.29%) reached in the sparse kernel matrix
cases (see Fig.3).

The efficiency of the proposed SPDSL technique is also
studied. As shown in Fig.4, the running time is the average
training time of each iteration of the optimization algorithm,
which typically iterates 50 times. Specifically, we perform the
test on the YTC dataset and employ an Intel(R) Core(TM) i5-
2400 (3.10GHz) PC. As the value of vb increases, the running



1051-8215 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2729660, IEEE
Transactions on Circuits and Systems for Video Technology

8

Fig. 5. Convergence behavior of the generalized RCG algorithm for the
proposed SPDSL-LEM in 10 random testings of the YTC dataset with the
parameter vb = 2.

time increases substantially, especially when k(W ) is full,
with a running time of approximately 13,975 seconds (i.e.,
approximately 30 times that of the case where vb = 2 at each
iteration, and extremely expensive when the algorithm iterates
50 times) on YTC. Hence, when huge datasets are involved,
the sparse kernel case scales much better than the full (PD)
kernel case with very slight gain/loss of accuracy.

We also investigate the convergence behavior of the ex-
ploited RCG algorithm for our SPDSL approach. As seen from
the results in Fig.5, the optimization algorithm exploited on the
PSD manifold converges to a favorable solution after several
tens of iterations.

B. Material Categorization

For the task of material categorization, we conduct experi-
ments on the UIUC material dataset [48]. This dataset includes
18 subcategories of materials from four general categories:
bark, fabric, construction materials, and outer coat of animals.
Each subcategory contains 12 images taken at different scales.
Several samples from this database are shown in Fig.6.

Region covariance matrices (RCMs) [1] and SIFT features
[49] have been shown to be robust and discriminative for ma-
terial categorization [48]. As in [5], we extract RCMs of size
128×128 using 128-dimensional SIFT features from grayscale
images. Specifically, we resize each image to 400 × 400 and
compute the dense SIFT descriptors on a grid with 4-pixel
spacing (each patch size is 16x16, the number of angles
is 8, and the number of bins is 4). One 128-dimensional
SIFT feature is thus yielded in each grid point. For the
dimensionality reduction methods, the dimensions of the target
manifolds are all set to 40.

Following [5], we randomly select half of the images from
each subcategory of the UIUC dataset as training data, and the
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Fig. 6. Samples from the UIUC material dataset [48].
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Fig. 7. Hopping action from the HDM05 Motion Capture database [50].

remaining images are used as the testing data. The evaluation
process is conducted 10 times in our experiment.

In Table I, for the competing methods, we report the average
accuracies and the standard deviations of 10 random testings
on the UIUC dataset. As concluded in the last evaluation, the
proposed dimensionality reduction technique SPDSL improves
the most-related method SPDML by 2%-4% and achieves
comparable performance to the state-of-the-art methods. Com-
pared to the last evaluation on the YTC database, the gains of
SPDSL over SPDSL∗ are small, possibly because the UIUC
dataset does contain large SPD data for each class, which
reduces the discriminant power of the proposed similarity
learning technique.

C. Action Recognition

To address the problem of human action recognition, we
make use of the HDM05 motion capture database [50]. As
shown in Fig.7, the dataset contains 2,337 sequences of 130
motion classes, e.g.,‘clap above head’,‘lie down floor’,‘rotate
arms’ and ‘throw basket ball’, in 10 to 50 realizations executed
by various actors.

The 3D locations of 31 joints of the subjects are provided
over time, acquired at 120 frames per second. Following the
previous works [6], [5], we represent an action of a K-
joints skeleton observed over m frames by its joint covariance
descriptor. This descriptor is an SPD matrix of size 3K×3K,
which is computed using the second-order statistics of 93-
dimensional vectors concatenating the 3D coordinates of the
31 joints in each frame.

Similar to the evaluation protocol for the UIUC dataset,
we conduct random evaluations 10 times, in which half of
the sequences (approximately 1,100 sequences) are randomly
selected for training data, and the rest are used for testing.
On the HDM05 database, [5] only used 14 motion classes
for evaluation while we consider 130 action classes. Thus,
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TABLE II
AVERAGE RECOGNITION ACCURACIES (%) AND STANDARD DEVIATIONS OF THE THREE CATEGORIES OF COMPETING METHODS, INCLUDING THE

PROPOSED SPDSL, ON THE UIUC DATABASE.

Category1 AIM Stein LEM
Accuracy 46.30 ± 2.90 42.87 ± 2.27 46.30 ± 2.86
Category2 CDL [9] RSR [3] LEK-κpn [46] LEK-κen [46] LEK-κg [46]
Accuracy 54.91 ± 4.72 52.41 ± 4.03 48.89 ± 3.29 49.54 ± 3.67 49.63 ± 3.03
Category3 LEML [30] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 52.53 ± 2.13 48.09 ± 1.82 49.17 ± 2.37

The proposed SPDSL-AIM∗ SPDSL-Stein∗ SPDSL-LEM∗ SPDSL-AIM SPDSL-Stein SPDSL-LEM
Accuracy 50.00 ± 3.60 49.35 ± 2.47 50.28 ± 3.78 52.31 ± 3.55 51.57 ± 4.16 52.13 ± 3.49

TABLE III
AVERAGE RECOGNITION ACCURACIES (%) AND STANDARD DEVIATIONS OF THE THREE CATEGORIES OF COMPETING METHODS, INCLUDING THE

PROPOSED SPDSL, ON THE HDM05 DATABASE.

Category1 AIM Stein LEM
Accuracy 42.70 ± 1.74 42.13 ± 2.63 43.98 ± 2.13
Category2 CDL [9] RSR [3] LEK-κpn [46] LEK-κen [46] LEK-κg [46]
Accuracy 41.74 ± 1.92 41.12 ± 2.53 47.22 ± 1.62 46.87 ± 1.72 48.72 ± 3.00
Category3 LEML [30] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 46.87 ± 2.19 47.25 ± 2.78 46.21 ± 2.65

The proposed SPDSL-AIM∗ SPDSL-Stein∗ SPDSL-LEM∗ SPDSL-AIM SPDSL-Stein SPDSL-LEM
Accuracy 47.93 ± 2.62 46.35 ± 2.45 48.88 ± 3.18 48.09 ± 2.49 49.02 ± 2.93 49.13 ± 2.74

our reported recognition rates are slightly lower than those
published in [5].

Table III summarizes the performances of the algorithms
on the HDM05 dataset. In the evaluation, the dimensions of
resulting manifolds achieved by the dimensionality reduction
methods are all set to 30. In contrast to the results in the last
two evaluations, CDL and RSR behave worse than the other
methods because the testing and training data of the HDM05
database are more diverse. In this case, the kernel learning
methods tend to overfit the training data and perform worse on
the distinct testing data. The proposed SPDSL again improves
the existing dimensionality reduction methods LEML and
SPDML by 1%-3% and achieves state-of-the-art performance
on the HDM05 database.

D. Discussion

In contrast to existing kernel learning based SPD discrimi-
nant analysis methods, such as CDL and RSR, our SPDSL is
proposed for dimensionality reduction on SPD manifolds. In
theory, our method overcomes the general drawbacks of these
kernel learning methods, which are limited by the requirement
of Mercer kernels and the high complexity that scales with the
square of the training data size.

While our SPDSL and the existing SPDML and LEML are
all designed for dimensionality reduction on SPD manifolds,
there are some differences between them as follows.

First, compared with the related manifold learning method
SPDML, our SPDSL framework proposes a more general

solution and a more favorable objective function. This point is
validated by the three evaluations. As shown in Table I, Table
II and Table III, there are two key conclusions from the three
visual recognition tasks:

a) With respect to the proposed new solution, the main
benefits result from enlarging the search domain and enabling
the use of non-affine-invariant metrics (e.g., LEM). While
SPDSL* for the affine-invariant metrics AIM and Stein slightly
improves SPDML (this may depend on the data), the gains of
SPDSL*-LEM over the AIM and Stein cases are relatively
obvious, i.e., 1.65%, 2.15%, and 6.21% on average for the
three datasets.

b) The proposed objective function (working for similarity
regression) is quite different from that (working for graph
embedding) used in [5]. While it is difficult to theoretically
prove the gains, we have empirically studied its superiority in
the above evaluations. When comparing SPDSL with SPDSL∗,
the improvements are 2.13%, 1.03%, and 6.34% on average
for the three evaluated databases.

Second, in contrast to LEML, which focuses on metric
learning, our SPDSL learns discriminative similarities on SPD
manifolds. Moreover, while LEML performs metric learning
on the tangent space of SPD manifolds, the proposed SPDSL
learns similarity directly on the SPD manifolds. Intuitively, the
proposed SPDSL learning scheme more faithfully respects the
Riemannian geometry of the data space and therefore is able
to learn more appropriate SPD features for visual classifica-
tion tasks. The evaluations on the three used databases have
demonstrated some improvements of the proposed SPDSL
over LEML.
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V. CONCLUSIONS

We have proposed a geometry-aware SPD similarity learn-
ing (SPDSL) framework for more robust visual classification
tasks. Under this framework, by exploiting the Riemannian
geometry of PSD manifolds, we enable direct learning of the
manifold-manifold transformation matrix. To achieve discrim-
inant learning on the SPD features, this work devises a new
SPDSL technique for SPD manifolds. With the objective of
the proposed SPDSL, we derive an optimization algorithm on
PSD manifolds to pursue the transformation matrix. Extensive
evaluations demonstrate both the effectiveness and the effi-
ciency of our SPDSL on three challenging datasets.

For future work, research on the relationship between the
selected Riemannian metrics of PSD manifolds and SPD
manifolds would be interesting for the problem of super-
vised SPD similarity learning. Furthermore, if the designed
discriminant function on SPD features is neglected, learning
the transformation on SPD features for object sets is equal
to learning the projection on single object features. Thus,
we can follow [51] to extend this work to learn hierarchical
representations on object features by leveraging the current
powerful deep learning techniques.
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