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Abstract Several mathematical models have

been developed to simulate processes and inter-

actions in the plant rhizosphere. Most of these

models are based on a rather simplified descrip-

tion of the soil chemistry and interactions of plant

roots in the rhizosphere. In particular the feed-

back loops between exudation, water and solute

uptake are mostly not considered, although their

importance in the bioavailability of mineral ele-

ments for plants has been demonstrated. The aim

of this work was to evaluate three existing

coupled speciation-transport tools to model rhi-

zosphere processes. In the field of hydrogeo-

chemistry, such computational tools have been

developed to describe acid–base and redox reac-

tions, complexation and ion exchange, adsorption

and precipitation of chemical species in soils and

aquifers using thermodynamic and kinetic rela-

tionships. We implemented and tested a simple

rhizosphere model with three geochemical com-

putational tools (ORCHESTRA, MIN3P, and

PHREEQC). The first step was an accuracy
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analysis of the different solution strategies by

comparing the numerical results to the analytical

solution of solute uptake (K or Ca) by a single

cylindrical root. All models are able to reproduce

the concentration profiles as well as the uptake

flux. The relative error of the simulated concen-

tration profile decreases with increasing distance

from the root. The uptake flux was simulated for

all codes with less than 5% error for K and less

than 0.4% for Ca. The strength of the codes

presented in this paper is that they can also be

used to investigate more complex and coupled

biogeochemical processes in rhizosphere models.

This is shown exemplarily with simulations

involving both exudation and uptake and the

simultaneous uptake of solute and water.

Keywords Modeling Æ Root uptake Æ Single root Æ
Numerical simulation Æ Analytical solution Æ
Transport

Introduction

The rhizosphere is by definition the environment

around plant roots. It is thus characterized by

considerable microbial biomass, accelerated rates

of water, nutrient, and contaminant flows, as well

as chemical and biochemical reactions driven by

plant-induced input of energy. Hence, located at

the interface between plant roots and soil,

the rhizosphere is the focal point of plant-soil-

microbe interactions and represents a unique

biogeochemical reactor. Therefore, it is crucial to

improve the understanding of the fundamental

processes involved in order to better optimize the

performance of this reactor.

However, even though rhizosphere research

has had a relatively long tradition, going back to

Hiltner in 1904 (Hiltner 1904), our understanding

of rhizosphere processes is still limited. More

qualitative and quantitative assessment and

modeling of rhizosphere processes with emphasis

on rhizosphere–bulk soil interactions is required

to provide tools for proper management of these

processes in phytotechnologies, including man-

agement of plant nutrition and health in sustain-

able farming, forestry systems and ecological

engineering, such as phytoremediation, phyto-

amelioration and phytoprevention.

Uptake of chemicals by the plant root system

depends mainly on three sets of factors. These are

(i) physical factors such as geometry, morphology

and diffusion properties of the soil around roots and

(ii) biological factors such as symbiotic status of the

root system, rate of growth, uptake and exudation

by roots, and (iii) chemical factors such as the initial

distribution and speciation of chemical elements in

the soil, including adsorption, complexation,

acid–base and redox reactions between elements

dissolved in the pore water and soil minerals.

Several mathematical models have been

developed to simulate these interactions in the

plant rhizosphere (Barber 1995; Tinker and Nye

2000). However, most of these models are based

on a rather simplified description of the soil

chemistry and interactions of plant roots in the

rhizosphere. For example, the actions exerted by

roots on its rhizosphere are generally limited to

elemental uptake, and the chemical interactions

between dissolved elements and the soil are

reduced to a buffer power or Freundlich adsorp-

tion isotherms (Barber 1995; Kirk 1999). In par-

ticular the feedback loops between exudation, soil

and element uptake are not considered, although

many authors have demonstrated their impor-

tance in the bioavailability of mineral elements

for plants (Parker and Pedler 1997).

The chemical and biological actions exerted by

roots in the rhizosphere are mainly changes in

element concentrations, pH and Eh shifts, and

exudation of organic anions or enzymes. These

actions change the chemical conditions in the

rhizosphere, affect the bioavailability of mineral

elements and therefore their uptake by roots.

Some root uptake models have been specifically

developed to incorporate speciation calculations

and reactions of mineral elements or organic
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exudates with soil. Examples include modeling

the effect of citrate exudation on phosphate

uptake (Geelhoed et al. 1999), of proton on

aluminum speciation in the rhizosphere (Calba

et al. 1999, 2004) and of ligands on copper uptake

by roots (Seuntjens et al. 2004). However, these

models are very specialized because they are

designed to answer specific questions. Conse-

quently, they can neither easily be extended to

include other processes or additional interactions

nor to test a large range of processes.

In hydrogeochemistry, sophisticated computa-

tional models have been developed to describe

acid–base and redox reactions, complexation and

ion exchange, adsorption, dissolution and pre-

cipitation of chemical species in soil environments

using thermodynamic and kinetic relationships.

Examples of such computer codes are MINEQL

(Westall et al. 1972) and MINTEQA2 (Allison

et al. 1991). Others such as PHREEQC (Park-

hurst and Appelo 1999), ECOSAT (Keizer and

van Riemsdijk 1995) and ORCHESTRA

(Meeussen 2003) have been extended to combine

these geochemical processes with transport cal-

culations. Additionally there are computer codes

that are specialized in modeling three-dimen-

sional transport in variably saturated media that

include geo-chemical modeling. MIN3P (Mayer

et al. 2002) is an example of such a code. An

application of these models allows us in principle

to describe root nutrient uptake and exudation

of organic acids in the rhizosphere therefore

enabling us to model complex and multiple

interactions between roots and soil.

The recent coupling of PHREEQC to HY-

DRUS-1D (Simunek et al. 1998) resulting in HP1

(Jacques and Simunek 2005) allows considering

root growth and water uptake in 1D flow prob-

lems under natural boundary conditions (precip-

itation, evapotranspiration) in conjunction with

geochemical speciation, equilibrium and kinetic

reactions. An example of such coupled processes

under steady-state flow conditions was already

given (Seuntjens et al. 2004). So far, HP1 has not

been used to model these coupled processes for

natural vegetation conditions.

The general aim of this work is to evaluate

existing modeling tools, recognized and accepted

by the scientific community, in their capability to

model rhizosphere processes. To do so, we

implemented and tested a simple rhizosphere

model with these computational modeling tools.

The aim of this paper is to assess the accuracy of

the different approaches that were used to

implement a cylindrical root in these coupled

speciation-transport models. The uptake of K or

Ca into a single root was simulated using three

codes, ORCHESTRA (Meeussen 2003), PHRE-

EQC (Parkhurst and Appelo 1999) and MIN3P

(Mayer et al. 2002) for the same set of parameters.

By comparison of the numerical results to an

existing analytical solution of solute uptake by a

single root (Roose et al. 2001) the trustworthiness

of these approaches was assessed. In addition we

also extended the simple model by including water

flow towards the root and water uptake. We also

present an extension of the model where exuda-

tion of citrate and interaction of citrate and

phosphate is included. The description of the

implementation of root uptake will be useful for

researchers working on rhizosphere–soil interac-

tions and will provide them with direct access to

current modeling capabilities for transport and

chemical processes, now also applicable to the

rhizosphere.

Material and methods

Description and aim of the case studies

ORCHESTRA is a computational modeling

framework developed by Meeussen (2003) for

modeling equilibrium chemistry, with the option

of including kinetics and/or transport processes.

The package is distinctive in that all model defi-

nitions are separate from the calculation engine

or equation solver. This separation has the

advantage that the model definitions are fully

accessible by the user, which gives flexibility in

the adaptation of the model structure and equa-

tions. ORCHESTRA is object-oriented and

model definitions are stored as object classes in

the object database. New models can be built

using model definitions from the object database,

or by adjustment or addition of model definitions

if required. The object database contains basic

geochemical reactions such as complexation in
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solution, ionic strength correction, minerals,

gases, different types of sorption, redox reactions,

kinetic reactions, as well as more advanced

sorption models that account for pH-dependent

sorption and electrostatic interactions.

PHREEQC (Parkhurst and Appelo 1999) is a

computer code to simulate a large number of

geochemical reactions in water and geological

media. Geochemical reactions include interactions

between aqueous phase, minerals, gases, solid

solutions, exchangers, and surface complexation

for both equilibrium, kinetic or mixed equilibrium-

kinetic reactions. Furthermore, PHREEQC solves

the one-dimensional reactive transport equation

using a mixing cell solution approach (or central

finite difference scheme, see Appelo and Postma

(2005), for details). The non-iterative sequential

approach is used to solve the coupled reactive

transport problem, meaning that the transport step

(solute diffusion) and the reaction step (adsorp-

tion and kinetic uptake of solutes at the root

surface) are split within every time step.

MIN3P can simulate one- to three-dimensional

flow and reactive transport problems in variably

saturated media. The flow solution is based on

Richard’s equation and transport of solute is

simulated using the standard advection–disper-

sion equation, while gas transport in the unsatu-

rated zone is assumed purely diffusive (Mayer

et al. 2002). Geochemical processes considered

are aqueous complexation, mineral dissolution–

precipitation, intra-aqueous kinetic reactions, gas

dissolution, ion exchange, surface complexation,

and linear sorption. Transport can take place in

both the gas and aqueous phases. This allows the

simulation of the ingress of atmospheric O2 and

permits considering soils as systems that are semi-

open to the atmosphere (CO2 balance between

gas, aqueous and solid phase). Similar to

PHREEQC, reactions are specified through a

database. The solution of the governing equations

is based on the global implicit method (GIM), in

which the reaction equations are directly substi-

tuted into the transport equations, known as the

direct substitution approach (DSA) (Yeh and

Tripathi 1989). Spatial discretization is performed

using block centered finite differences with half-

cells on the boundary. The code provides a choice

of various spatial weighting schemes for advective

transport (upstream, centered, Van Leer flux

limiter) and uses implicit time weighting.

Although the numerical accuracy of implicit time

weighting is limited for many problem types, it is

unconditionally stable (Unger and Forsyth 1996)

and has the advantage that it facilitates large time

steps under certain conditions. The grid spacing,

model parameters and boundary conditions can

be varied in zones of rectangular shape in each

direction, i.e., also for a single cell if desired.

Specific to applications in the rhizosphere, recent

model developments enable MIN3P to consider

root water uptake and preferential water flow in a

1D unsaturated soil profile, as shown by modeling

soil moisture variations measured in a forest

ecosystem (Gérard et al. 2004).

The strength of the codes used in this paper is

that it is relatively straightforward to consider

more complex and coupled biogeochemical pro-

cesses in rhizosphere models. The three codes all

have a main strength. ORCHESTRA is the most

flexible code because the model definitions are

fully accessible by the user, which gives flexibility

in the adaptation of the model structure and

equations. Both ORCHESTRA and PHREEQC

are more versatile for geochemical modeling.

However PHREEQC is easier to use because the

models are readily available in the user-interface

and PHREEQC has large number of users

in geochemistry and environmental chemistry.

Although not quite as comprehensive as PHRE-

EQC from a geochemical point of view, MIN3P is

also capable of simulating reaction networks

including equilibrium and kinetic reactions. The

main strength of the MIN3P code is that it can

tackle complex one-, two-, and three-dimensional

scenarios under variably saturated conditions.

Specifically, the simulation of unsaturated flow

and transport can be considered simultaneously

with geochemical reactions.

The three codes have been used to simulate the

diffusion and uptake of solutes towards a single

root for a specified set of parameters. The results

are compared to the analytical solution of this

scenario. As examples we have chosen uptake of

K, which is present at rather low concentrations in

the soil solution and is taken up with fast kinetics

and Ca, which is present at elevated concentra-

tions and is taken up at a much lower rate.
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Analytical solution of uptake into a single root

The simplest model for nutrient uptake by a root

is described in Roose et al. (2001). This model

is based on previous models (Tinker and Nye

2000; Barber 1995). Roose et al. (2001) use

dimensional analysis and asymptotic approxima-

tion techniques to derive an analytic expression

for nutrient uptake by a single cylindrical root in

unbounded soil. Here we will briefly outline

the main elements of the Roose et al. (2001)

approach.

The nutrient concentration c (mol m–3) in the

soil water phase is given by

ð/þ bÞ @c

@r
� aV

r

@c

@r
¼ /Df

r

@

@r
r
@c

@r

� �
; ð1Þ

where / is the soil water content (m3 m–3), b =

cs/c is the soil buffer power (where cs is the

concentration of solute bound to the soil particles

(mol m–3), Tinker and Nye 2000), b is dimen-

sionless and valid only for linear sorption), a is the

radius of the root (m), V is the volume of water

flowing into the root through the unit area of root

in unit time (m3 m–2 s–1 = m s–1), D is the nutrient

diffusion coefficient in water (m2 s–1), f is the

nutrient diffusion impedance factor (dimension-

less), also known as tortuosity, r is the radial

distance from the centre of the root (m), and t is

the time (s).

In order to solve this equation one has to de-

fine the boundary condition. The first boundary

condition describes the nutrient uptake at the

root surface r = a, and it assumes that the flux of

nutrient into the root is given by Michaelis–

Menten nutrient uptake law, i.e.,

/Df
@c

@r
þ Vc ¼ Fmc

Km þ c
at r ¼ a; ð2Þ

where Fm (mol m–2 s–1) and Km (mol m–3) are the

Michaelis–Menten nutrient uptake parameters.

Very far away from the root we assume that

the nutrient concentration is undisturbed by the

presence of the root nutrient uptake, i.e., we

take

c! c0 as r!1; ð3Þ

where c0 (mol m–3) is the concentration of nutri-

ent in the soil in absence of the root system.

In addition to these boundary conditions, we

also need an initial condition that we specify at a

constant nutrient concentration, i.e.,

c ¼ c0 at t ¼ 0 and a � r\1: ð4Þ

Roose et al. (2001) non-dimensionalized these

equations and found the leading order analytical

solution using matched asymptotic analysis tools.

An important observation from the non-dimen-

sionalization was that diffusion is the dominant

mechanism for the nutrient movement to the

root surface since the Peclet number is small,

i.e., Pe = Va/(/fD) < < 1 and therefore the

advection term in the equations can be ne-

glected. For the specific case of P uptake

(Roose, 2000), the water flux V into the root

would have to be much larger than 4.5 · 10–

5 cm s–1 for advective solute uptake to be

important (typical recorded flux values in Barber

1995, and Tinker and Nye 2000 are on the order

of 10–7 cm s–1, so the water uptake would need

to increase by about 100 times before advection

becomes even comparable to diffusion). This

value is clearly outside the standard value re-

corded for most plants. However, if the reader is

interested in the case when advection is impor-

tant we want to highlight the issue that the

numerical solution of equations which do include

advection and diffusion terms is more difficult

than numerical solution of a diffusion equation.

Therefore great care should be taken when do-

ing this. Such analytical solutions are presented

for example in Roose (2000).

In order to derive the equation, Roose et al.

(2001) used matched asymptotic expansions in

space (Hinch 1991), and therefore the solutions

derived were valid everywhere in the space

domain, i.e., they are valid for a < r < ¥. Fur-

thermore, they are valid for times larger than

diffusional timescale of the nutrient calculated

using the root radius as length scale, i.e., they are

valid for times t > (/ + b)a2/(/D). For most

nutrients in most soils this means that the solu-

tions are valid for times more than a few minutes

to at most a day depending on a nutrient and soil
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considered. Thus, the solutions derived by Roose

et al. (2001) are valid for all times that are in the

order of the root growth time-scale which typi-

cally ranges from weeks to months. Readers that

are interested in specific mathematical techniques

are referred to the original paper (Roose et al.

2001).

Thus, the Roose et al. (2001) solutions to the

rate of nutrient uptake F(t) as a function of time t

and the concentration profile c(r,t) of the nutrient

around the root are given by

FðtÞ¼ 2Fmc1

1þc1þLðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c1þ½1�c1þLðtÞ�2

q ;

cðr;tÞ¼c0�
2c0k

1þc1þLðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c1þ½1�c1þLðtÞ�2

q

�E1
ð/þbÞ

/D

r2

4t

� �
ð5Þ

where

c1 ¼ c0=Km;

k ¼ Fma=ð/DfKmÞ;

E1ðxÞ ¼
Z1

x

e�y

y
dy;

LðtÞ ¼ k
2

ln 4e�c /D

ð/þ bÞa2
t þ 1

� �
ð6Þ

and c = 0.5772 is Euler’s constant. In equation (6)

the last equation represents a standard definition

of exponential integral function where y is the

integration variable and x is the value of the

parameter where the function is evaluated.

The analytical solutions given by Eqs. 5 and 6

will now be used as a guideline for determining if

the computational soil speciation models can

describe root nutrient uptake with sufficient

accuracy. Tests are performed for Ca- and

K-uptake with the parameters given in Table 1.

The water flow towards the root is zero so there is

no advection.

Procedure ORCHESTRA

The rhizosphere diffusion model was imple-

mented in ORCHESTRA as a finite-difference

numerical scheme with discrete calculation cells.

Diffusion towards the root is assumed symmetri-

cal and can therefore be solved as a one-dimen-

sional problem. Radial diffusion towards the root

is calculated in a one-dimensional grid of calcu-

lation cells, with one cell representing the root and

50 cells representing concentric layers of soil

around the root (see Fig. 1). Diffusion is simulated

by mass transfer between the 50 soil cells, and

uptake by the plant root is calculated between the

innermost soil cell and the root cell. Diffusion and

uptake are calculated with a non-iterative

sequential approach using small and constant time

steps (dt = 10–3 days). The time step needs to be

small enough to avoid numerical instability.

The diffusion flux between two adjacent soil

cells is calculated with

FD; ijðt! t þ DtÞ ¼ �/Df
cðj; tÞ � cði; tÞ

hij
ð7Þ

where FD,ij (t fi t + Dt) is the diffusion flux

between cell i and j during the period from t until

t + Dt, c(j,t) is the concentration in solution in cell

j at time t, hij is the distance between the centres

of cell i and j, / is the water content of the soil, D

is the diffusion coefficient in water and f is the

tortuosity correction factor. The flux then needs

to be multiplied by the time step (Dt) and the

interfacial area between the cells (Aij) to obtain

the amount of chemical (m) that is transported

from one cell to another. The flux for uptake by

the root is calculated using the Michaelis–Menten

equation:

FUðt! t þ DtÞ ¼ Fmcð1; tÞ
Km þ cð1; tÞ ð8Þ

where FU (t fi t + Dt) is the uptake flux from cell 1

into cell 0 (the root cell) during the period from t

until t + Dt, c(1,t) is the concentration in cell 1 at

time t, and Fm and Km are the Michaelis–Menten

parameters. The flux then needs to be multiplied

by the time step (Dt) and the surface area (A)

between the cells to obtain the amount of chemical

(m) that is transported from cell 1 into cell 0.

The amount of chemical that leaves or enters a

cell during a time step due to diffusion or uptake

is added up for each cell. Then after each time

310 Plant Soil (2006) 285:305–321
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step, the new amount of chemical in each cell is

calculated subject to conservation of mass. The

resulting mass change per cell due to diffusion

only (cell 2–50) is given by:

mðj; t þ DtÞ �mðj; tÞ
Dt

¼ /Df
Xn

i 6¼j

Aij

hij
ðcði; tÞ � cðj; tÞÞ for j[1;

ð9Þ

where m(j,t) is the amount of chemical in the jth

cell at time t, Dt is the time step, i is an adjacent cell

and n is the number of adjacent cells. Aij is the

cylindrical surface area between cell i and cell j

and hij is the distance between the centers of cell i

and cell j. The resulting changes in mass in the root

cell (j = 0) and the first soil cell (j = 1) are de-

scribed by

mðj; t þ DtÞ �mðj; tÞ
Dt

¼ A0
Fmcðjþ 1; tÞ

Km þ cðjþ 1; tÞ for j ¼ 0; ð10Þ

mðj; t þ DtÞ �mðj; tÞ
Dt

¼ /Df
Xn

i6¼j

Aij

hij
ðcði; tÞ � cðj; tÞÞ

� �

�A0
Fmcðj; tÞ

Km þ cðj; tÞ for j ¼ 1; ð11Þ

where Fm and Km are the Michaelis–Menten

uptake parameters and A0 is the surface area of

the root. After each transport calculation, the

new equilibrium concentrations are calculated

from the total amount of a chemical in a cell. The

total mass in the jth cell is given by:

Table 1 Input parameters to describe K and Ca uptake (from Roose et al. 2001, except where noted)

Parameter Symbol Unit K Ca

Root radius a cm 0.02
Water content / – 0.3
Diffusion coefficient D cm2 s–1 1.0 · 10–5

Effective diffusion coefficient (*) Deff cm2 s–1 3.0 · 10–6

Apparent diffusion coefficient (#) Da cm2 s–1 2.29 · 10–8 5.76 · 10–9

Impedance factor F – 0.3
Water flux to root V 0
Initial concentration C0 lmol cm–3 4.6 · 10–2 8.0 · 10–1

Buffer capacity B – 39 156
Retardation coefficient (*) R – 131 521
Michaelis–Menten Fm lmol cm–2 s–1 3 · 10–5 8.9 · 10–7a

Michaelis–Menten Km lmol cm–3 0.014 0.3b

Effective rate coefficient (*) km lmol cm–3 s–1 2.356 · 10–3 6.99 · 10–5

Parameters in italics are specific to MIN3P (*) or PHREEQC (#)
aFrom Silberbush et al. (2005)
bFrom Barber (1995)

Fig. 1 Schematic representation of the diffusion model in
ORCHESTRA. Radial diffusion and uptake by the root is

solved by mass transfer between the soil cells (cells 1–50)
representing concentric soil layers around the root, and
Michaelis–Menten uptake into the root cell (cell 0)

Plant Soil (2006) 285:305–321 311

123



m ¼ Vjð/cþ qKcÞ ð12Þ

in which Vj is the total volume of the cell, q the

density and K is the linear sorption coefficient.

The latter relates to the buffer capacity by

K ¼ /
q

b ð13Þ

ORCHESTRA uses a Newton–Raphson iter-

ation procedure to solve the equilibrium sorption

and solution concentrations. In this case sorption

of Ca and K is a linear relationship that could be

solved without iteration. However chemical

sorption is more often a non-linear multi-com-

ponent process for which iteration is a much more

effective and versatile method. The uptake and

diffusion of K and Ca were solved simultaneously

in ORCHESTRA. Chemicals would need to be

simulated simultaneously if they would interact,

for example by co-dissolution or competition for

sorption.

To improve accuracy of the numerical solution,

the thickness of the soil layers was varied with the

distance from the root. The layers are thinner

closer to the root where the concentration gradi-

ent is expected to be high. The radius of every cell

is calculated in the model by

outer radius cell

¼ width soil profile � n

N

� �2

þ radius root ð14Þ

in which n is the cell number (1–50 counted from

the root surface), and N is the total number of

cells (N = 50). The volume of every concentric

layer, and the diffusion distance and area between

the layers, are calculated from this radius.

Procedure PHREEQC

To model the radial diffusion of nutrients towards

a single root, the option of diffusion within a

series of stagnant zones is used (see p. 51 in

Parkhurst and Appelo 1999). The stagnant zone is

overlaid by a finite difference grid to solve Fick’s

diffusion equation

cðj; t þ DtÞ � cðj; tÞ
Dt

¼ D f
Xn

i 6¼j

Aij

hijVj
cði; tÞ � cðj; tÞð Þfbc ð15Þ

where c(j,t) is the concentration in the jth cell at

time t (mol l–1), Dt is the time step (s), i is an

adjacent cell, n is the number of adjacent cells (=2

in this problem), Aij is the surface area between

the ith and jth cell (m2), hij is the distance be-

tween the midpoints of the ith and jth cell (m), Vj

is the volume of the cell (m3), and fbc is 1 for all

cells except when in contact with the constant soil

solution and the root for which fbc is 2 for a

constant concentration at the boundary (Appelo

and Postma 2005). By adapting the volumes Vj

and the surface areas Aij, radial diffusion can be

described. Equation (15) can be reformulated in

terms of mixing factors as

cð j; t þ DtÞ ¼ mixfjj cðj; tÞ þ
Xn

i 6¼j

mixfij cði; tÞ

ð16Þ

with

mixfij ¼
D f Dt Aijfbc

hijVj

mixfjj ¼ 1 � D f Dt
Xn

i 6¼j

Aijfbc

hijVj

ð17Þ

To prevent numerical oscillations, the value of

mixf should be between 0 and 1. In principle, a

grid with equal hij’s yields second order accuracy

of the calculations, i.e. refining the grid by a factor

of 2 will increases the accuracy of the results by a

factor of 4. PHREEQC allows to model sorption

by (non-specific) ion exchange and by (specific)

surface complexation reactions. The latter can be

used to implement linear equilibrium sorption.

The linear adsorption isotherm is redefined in

terms of the size of the surface. For the reaction

K+ + S = SK+ (with S the sorption surface), the

relation between the equilibrium constant K of

this reactions and the buffer power b is
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K ¼ b/
S

ð18Þ

where S is the amount of free sorption sites. To

have a constant value of K, S is taken very large

compared to the sites covered with K+ (e.g.,

S = 10100 moles). Alternatively the diffusion

coefficient, D, in Eqs. 1, 5 and 6 can be replaced

by an apparent diffusion coefficient Da defined

as

Da ¼
D f

R
¼ D f

ð1 þ b=/Þ ð19Þ

where R is the retardation coefficient. This ap-

proach is adapted here, because larger time steps

Dt are possible with a smaller Da (Eq. 17). The

reported computation time in the next sections

are related to this second approach in which dif-

fusion and uptake for K and Ca were separately

simulated. When modeling real multicomponent–

multispecies rhizosphere problems, the first

approach should be used resulting in an increase

of the computational time.

The uptake of K and Ca described by

Michaelis–Menten kinetics is included as an

irreversible kinetic reaction in the first cell

(representing the root). By implementing a

smaller flux with the apparent diffusion coeffi-

cient De the rate parameter in the Michaelis–

Menten equation, Fm, must be reduced by

dividing by R (see Eq. 2). The user-defined ki-

netic reaction is written in Basic language in the

input file. PHREEQC integrates the kinetic

rates with the Runge–Kutta method or with a

stiff-equation solver. When the maximal rate of

root solute uptake is so high that diffusion

through the soil is rate-limiting, the concentra-

tion of the solute becomes zero at the root

surface. In our case, the fast rate of K+ uptake

results in a zero concentration, which can be

mimicked in PHREEQC (and other geochemi-

cal models) by imposing an equilibrium reaction

with a very small equilibrium concentration

(e.g., 10–15 mol l–1). Initial calculations has

shown that this approach gives equal results to

the kinetic approach for K+ (results not shown).

This approach speeds up the calculation times

significantly.

Procedure MIN3P

MIN3P provides a general solution of the

advection–dispersion equation coupled with non-

linear geochemical reactions. In this case, we use

a subset of these equations by only considering

diffusive transport in the aqueous phase subject

to a linear sorption isotherm and an uptake term

in the root cell. Spatial discretization is per-

formed using the block centered finite difference

method, yielding similar discretized equations as

described for ORCHESTRA (Eqs. 9–11) and

PHREEQC (Eq. 16). MIN3P uses implicit time

weighting, which allows the code to take rela-

tively large time steps for the example consid-

ered here. For a detailed description of the

governing equations and solution methods em-

ployed, we refer the interested reader to Mayer

et al. (2002).

Since the one-dimensional set-up in MIN3P is

not designed to represent a radial transport

regime (of cylindrical or spherical symmetry), a

two-dimensional set-up was used to simulate

transport to the root. Thus, a quarter section of a

plane perpendicular to the root was simulated,

with the root represented at one corner and the

sides extending sufficiently far to maintain back-

ground concentration values at the desired time

scale, therefore approximating an infinite

boundary (Fig. 2).

For this two-dimensional representation, a

suitable geometry for describing the root had to

be determined. The root is represented by a

number of cells extending from 0.015 to 0.025 cm,

with the center of the cell located at 0.02 cm,

therefore crudely mimicking a quarter-circle

(Fig. 2). In total, the base case model consisted of

57 · 57 cells, having a vertical extension of 1 m,

which constitutes the net root length. The time

steps were adjusted automatically by MIN3P with

a maximum time step of 1.0 day used in the base

case simulation.

Some parameters used in the analytical model

had to be converted to be consistent with the

MIN3P formulation. Rate coefficients in MIN3P

are defined on a per volume basis. A rate

expression similar to Eq. 8 is used to calculate the

effective root uptake rate F 0M per volume for each

grid cell:
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F 0M ¼
kmc

Km þ c
ð20Þ

where km is defined in units of lmol cm–3 s–1 on a

volume basis instead of the surface basis of the

Michaelis–Menten nutrient uptake parameter Fm.

The rate coefficient km can be calculated from the

parameter Fm by:

km ¼ ðArFmÞ=Vr ð21Þ

where Ar is the root surface, notably for a quarter

circle, and Vr corresponds to the total volume

of all root cells in the MIN3P simulations

(cf. Fig. 2). The rate coefficients used in

MIN3P are 2.356 · 10–3 lmol cm–3 s–1 and

6.990 · 10–5 lmol cm–3 s–1 for K and Ca, respec-

tively. The total uptake rate at each time is

evaluated in MIN3P by multiplying the F 0M of

each root cell with its volume and summation

over all root cells.

The retardation coefficient used in MIN3P is

related to the buffer capacity and porosity

through R = 1 + b//. The resulting values for the

retardation coefficient are 131 (K) and 521 (Ca).

This approach was chosen because it is a simple,

fixed distribution between the species sorbed at

the solid phase and the ones remaining in aqueous

phase, and thus is able to represent the buffer

capacity as required. Notably, MIN3P is capable

also of explicitly handling ion exchange reactions

as well as sorption via surface sites and according

reactions, but this features were not needed for

the current study.

MIN3P allows calculating the tortuosity

(impedance factor) f as a function of porosity or

alternatively allows to use an effective diffusion

coefficient Deff, defined by the product of D and f.

For consistency with the other simulations, the

second option was used here. Furthermore, Cl–

was added for maintaining charge balance, al-

though this is not a necessary requirement to run

the code. Thus, the simulations calculate K+, Ca2+

and Cl– transport simultaneously.

Numerical setup

All parameters used for the simulation are given

in Table 1. The simulations were performed for a

constant water content of 0.3 under saturated

conditions. The accuracy of the model output was

tested by repeating model runs (i) varying the
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Fig. 2 Schematic
representation of the
discretization in MIN3P.
Diffusion and uptake by
the root is simulated in a
2D domain. Symmetry of
the problem allows to
simplify the domain to
one quarter of the full
domain. The inset shows
the location of the root
cells (grey-shaded area)
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number of calculation cells, and (ii) varying the

length of the time step. An accurate numerical

solution is assumed if the output does not change

notably when the model resolution is increased.

ORCHESTRA produces output concentra-

tions for the centre of each calculation cell. For

the model validation we selected 16 locations at

0.1, 0.2, ..., 1.0, 1.25, 1.5, 1.75, 2, 2.5, and 3 cm. The

concentrations at these locations were calculated

by linear interpolation of the ORCHESTRA

output.

In principle, the discretization scheme used in

PHREEQC is similar to that of ORCHESTRA,

i.e. a number of cells discretized in radial

dimensions, each having a volume and surface

area depending on the distance from the root

centre. The size of the cells, rf, is not described by

Eq. 14, but, to obtain second order accuracy, the

distance between cell-midpoints is made equal

where the concentration gradient changes mark-

edly. The spatial discretization scheme consists of

a regular fine discretisation between the root

surface and 1.62 cm and a raw discretization

between 1.62 and 4.00 cm consisting of five

0.476 cm-width cells. The cell width Drf at

the root surface determines the number of cells in

the simulation (e.g., if Drf = 2.0 · 10–2 cm, 87

cells are needed). For the model validation we

selected 16 locations at 0.1, 0.2, ..., 1, 1.25, 1.5,

1.75, 2, 2.5, and 3 cm.

Model evaluation measures

The accuracy of the concentration profiles was

quantified as proposed by Steefel and MacQuar-

rie (1996), normalised for the initial concentration

(c0) in the model:

xk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1

x2
i

s

Nx � c0
ð22Þ

where x is the vector of concentration differences

between the numerical and analytical solution at

a given location in the domain, Nx the number of

locations used and c0 the initial concentration.

The accuracy of the root solute uptake flux EF

was calculated as

EF ¼ 100
FCode � Fanalytical

Fanalytical
ð23Þ

where FCode and Fanalytical are the root solute

uptake flux after 120 d obtained with the three

codes and the analytical solution, respectively.

Thus, EF gives the relative error in total root

uptake expressed as a percentage of the root

uptake calculated analytically.

Additional simulations

As an example to illustrate further possibilities of

the presented codes, we extended the rhizosphere

model in ORCHESTRA to simulate phosphate

uptake and citrate exudation by a root, as

described by Geelhoed et al. (1999). In this

example, phosphate is bound to an iron-oxide

mineral (goethite) in a sand matrix. The plant

root takes up phosphate actively from the soil

solution, which causes phosphate diffusion

towards the root. The phosphate concentration

directly at the root surface is assumed zero in the

model because of the active uptake by the root

(zero-sink). Citrate exudation from the root pro-

motes the uptake of phosphate. Citrate competes

for binding on the same mineral surface, there-

fore part of the phosphate is released into the soil

solution. Geelhoed et al. (1999) used the

CD-MUSIC model (Hiemstra and Van Riemsdijk

1996) to describe the surface chemistry of goe-

thite. The CD-MUSIC model is available in the

ORCHESTRA database. We included it in the

rhizosphere model above, along with the solution

speciation of phosphate and citrate. The param-

eters for root radius, soil density, soil water con-

tent, diffusion coefficients and tortuosity were

adjusted to the values given in Geelhoed et al.

(1999) and convection towards the root

(0.21 mm day–1) was introduced. The calculations

were performed for 95 m2 goethite per kg sand,

1.9 lmol m–2 phosphate initially bound on the

goethite surface, 0.5 lmol m–1 day–1 citrate exu-

dation and t = 1 day. The initial concentration of

citrate in the soil was zero and the pH is constant

at pH 5.

In all previous model calculations, water flux to

the root was neglected to simplify the calculations.
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An additional example using the standard version

of MIN3P is presented where water flux towards

the root is taken into consideration. Thus, the

uptake of Ca as defined in Table 1 is simulated

together with a concurrent water uptake of

10–6 cm3 cm–2 s–1 (Barber 1995), corresponding to

10–3 l m–1 d–1 for the root dimensions that we

have used.

Results

Concentration profiles

Figures 3 and 4 show the concentrations of K and

Ca in the rhizosphere after 120 days of uptake by

the root. Figures 3a and 4a show the direct

comparison of the different models with the

analytical solution. Almost no difference between

the analytical solution and the model simulations

can be seen. The relative errors (Fig. 3b, 4b) are

consequently small for the three models and

over- or underestimation at short distance from

the root does not impair correct prediction at

greater distance. The relative error for K at

0.05 cm is 5% for ORCHESTRA and PHRE-

EQC and 10% for MIN3P. Already at 0.1 cm it is

between 0 and 4% for the three models. An over-

or underestimation of the concentration of K by

10–60% occurs at very small distance (less than

0.04 cm from the root center), that is essentially

in the very first cell outside the root cell(s) in the

model. The relative error for Ca is always less

than 0.3% even in close proximity to the root.

The accuracy measure ||x||2 (see Eq. 22) of the

profiles is given in Tables 2–4. Overall the accu-

racy is very good with a relative error of K

between 0.001 and 0.002 for MIN3P, about 0.003

Fig. 3 K concentration in soil solution after 120 days.
Comparison of the analytical solution, the ORCHESTRA,
MIN3P and PHREEQC simulation. (a) Concentration
profile, (b) error relative to the analytical solution. The
parameters for the calculations are given in Table 1

Fig. 4 Ca concentration in soil solution after 120 days.
Comparison of the analytical solution, the ORCHESTRA,
MIN3P and PHREEQC simulation. (a) Concentration
profile, (b) error relative to the analytical solution. The
parameters for the calculations are given in Table 1
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for ORCHESTRA and 0.03–0.06 for PHREEQC.

The relative error for Ca is much smaller with

values between 7.9 · 10–6 and 2.16 · 10–4.

The concentration plots for ORCHESTRA

provide a good resolution of the steep K gradient

near the root, since the dimension of the numerical

cells was varied with distance from the root. De-

spite the small time steps of 10–3 days, the simu-

lation required only a few minutes. For

ORCHESTRA the accuracy of the numerical

solution with 50 cells and 10–3 day time steps was

tested by repeating the calculations with half and

twice the number of cells, and with twice the

number of time steps (half dt). As expected, the

simulation time increased significantly with the

number of calculation cells, see Table 2, though

the results of the simulations were very similar.

The test shows that a model with 50 cells and time

steps of 10–3 days is sufficient for the model cal-

culations presented here.

The root uptake of K is fast compared to dif-

fusion of K through the soil and therefore, K-

uptake can be described by equilibrium reactions

in PHREEQC. The equilibrium approach gives

identical K-concentration profiles after 120 d

compared to the kinetic approach (for

Drf = 2.0 · 10–4 m). However, the calculation

time of the latter is much longer than the former:

125 s compared to 29 s (on a Pentium(R) 4,

3.06 GHz computer). Table 3 reports the accu-

racy measures for four spatial discretisations for

PHREEQC. For Drf = 4.0 · 10–2 cm and smaller,

concentration profiles are similar and close to

analytical solution. Ca concentration profiles are

accurately described for Drf discretisations of at

least 4.0 · 10–2 cm.

Simulations results using the MIN3P code

provide solutions of similar accuracy for Ca- and

K-concentration profiles. Although the two-

dimensional discretization leads to a significantly

larger number of nodes (equal to 3249) in com-

parison to the other codes that use a one-

dimensional representation (50 and 87 for

ORCHESTRA and PHREEQC, respectively),

the computational demand was comparable

although MIN3P was run using a slower proces-

sor (257 sec for the base case simulation on a

Pentium(R) 2, 700 MHz). This is due to the fact

that MIN3P simulations were conducted with

adaptive time stepping starting with a minimum

time step of 10–10 days and maxing out at a time

step of 1 day (for the base case). This approach

allowed completing the base case simulation

using a total of 150 time steps. Using time steps

of this magnitude was possible due to the use of

the global implicit method and implicit time

Table 2 Accuracy and
efficiency measures for
ORCHESTRA
simulations

aOn a Pentium(R) 4,
3.00 GHz; simultaneous
simulation of K and Ca

Number of
cells

Dt
(days)

Simulation
time (s)a

xk k2 EF xk k2 EF

K Ca

Base case 50 1 · 10–3 195 2.8 · 10–3 –2.9 2.2 · 10–5 0.017
Reduced Dt 50 5 · 10–4 427 2.8 · 10–3 –2.9 2.2 · 10–5 0.017
Coarse grid 25 5 · 10–3 20 3.2 · 10–3 –1.4 3.6 · 10–5 0.051
Fine grid 100 2 · 10–4 1883 2.8 · 10–3 –3.3 7.9 · 10–6 0.004

Table 3 Accuracy and
efficiency measures for
PHREEQC simulations

aOn a Pentium(R) 4,
3.06 GHz

Number
of cells

Dt
(days)

Drf
(cm)

Simulation
time (s)a

xk k2 EF xk k2 EF

K Ca

Base case 27 0.15 8.0 · 10–2 4 6.4 · 10–2 –12.9
Run 2 47 0.08 4.0 · 10–2 12 2.8 · 10–2 –6.3
Run 3 87 0.05 2.0 · 10–2 29 3.5 · 10–2 –5.2
Run 4 167 0.021 1.0 · 10–2 115 3.2 · 10–2 –5.9
Base case 47 0.3 4.0 · 10–2 2 3.8 · 10–5 0.124
Run 2 87 0.2 2.0 · 10–2 5 8.0 · 10–5 0.135
Run 3 167 0.08 1.0 · 10–2 22 7.5 · 10–5 0.042
Run 4 87 0.1 2.0 · 10–2 9 6.4 · 10–5 0.083
Run 5 87 0.05 2.0 · 10–2 19 5.4 · 10–5 0.017
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weighting (Calderhead and Mayer 2004). The

MIN3P simulations are run for K, Ca, and Cl

simultaneously and simulation times increase

quadratically with the number of components.

Therefore, reported simulation times would be

faster by a factor of roughly 9, if conducted

separately for a single component (as was done

for PHREEQC).

A further investigation on model accuracy of

MIN3P was performed using finer and coarser

discretizations in space and time (Table 4). The

results suggest that the accuracy of the simula-

tions is not sensitive to the maximum time step

size. If maximum time steps are an order of

magnitude larger than in the base case, the sim-

ulation time is reduced to 25% without compro-

mising accuracy at all. Correspondingly, reducing

the maximum time step size does not lead to a

significant gain in accuracy, and is therefore not

efficient . However, the error appears to be more

sensitive to the spatial discretization.

Uptake of K or Ca

All numerically simulated uptake fluxes are sim-

ilar to the analytical solution, although the mod-

eled cumulative uptake for the three codes is

slightly less than for the analytical solution

(Fig. 5). The uptake is calculated based on the

concentration in the innermost cell, which is also

prone to the highest errors. However, the overall

effect on the uptake is rather small. The accuracy

of the uptake flux EF of K was –1.4 to –3.3% for

ORCHESTRA, –5.2 to –12.9% for PHREEQC

and 0.47 to –9.02% for MIN3P, depending on the

spatial or temporal discretization scheme. For

most simulations the error was therefore less than

5%. For Ca, the simulated uptake flux was close

to the analytical one, EF for the three codes was

always less than 0.4%.

Both spatial and temporal discretisations have

a large effect on the root uptake of Ca calculated

by PHREEQC (Table 3). Although EF is small

for all tested runs, the simulated uptake flux

Table 4 Accuracy and efficiency measures for MIN3P simulations

Number
of cells

Max
Dt (days)

Simulation
time (s)a

xk k2
(2) EF xk k2

b EF

K Ca

Base Case 3249 1.0 257 1.78 · 10–3 –1.85 1.29 · 10–5 0.31
Reduced max Dt 3249 0.1 1134 1.80 · 10–3 –1.91 1.41 · 10–5 0.31
Increased max Dt 3249 10.0 84 1.50 · 10–3 –1.30 7.08 · 10–6 0.32
Fine grid 12544 1.0 1552 1.73 · 10–3 0.47 1.18 · 10–5 0.36
Coarse grid 784 1.0 40 1.22 · 10–3 –9.02 2.1 · 10–4 0.16

aOn a Pentium(R) 2, 700 MHz, Windows XP Professional, Version 5.1, SP 2; simultaneous simulation of K, Ca, and Cl
bCalculations performed for 27, 56 and 111 grid points for coarse, base case, and fine grid respectively, results normalized
with respect to number of cells

Fig. 5 Uptake of K by the root: (a) uptake flux as a
function of time, (b) cumulative uptake. The parameters
for the calculations are given in Table 1
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with PHREEQC is larger than the analytical

one for coarse spatial and/or temporal discreti-

sations. For sufficiently fine spatial discretisations

(Drf = 1.0 · 10–2 cm) or temporal discretisations

(Dt = 4320 s for Drf = 2.0 · 10–2 cm), Ca-uptake

fluxes are accurately described.

It is somewhat surprising that the calculated

uptake rate in MIN3P is less accurate for a refined

spatial discretization (Table 4). Similar observa-

tions can be made for ORCHESTRA, where not

only a finer grid results in a lower accuracy, but a

coarser one results in a higher accuracy of EF, for

both K and Ca, and for PHREEQC where

decreasing the time step did not result in better

correspondence. Although the exact reason for

this behavior could not be determined, for

MIN3P it is likely related to the crude approxi-

mation of the root in a 2D-cartesian coordinate

system. However, all simulations, even for the

coarse grid, provide a reasonably good represen-

tation of the analytical solution.

Examples of applications in more realistic

rhizosphere models

Figure 6 shows the phosphate concentration in

the soil solution after 1 day of phosphate uptake,

and the remaining bound phosphate in the soil,

corresponding to Fig. 1a and b in Geelhoed et al.

(1999). The simulation was repeated with and

without citrate exudation. Figure 6 shows that

exudation of citrate increases the concentration

of phosphate in the soil solution and therefore

enhances the uptake of phosphate from the soil.

The concentration profiles are almost identical to

those of Geelhoed et al. (1999).

MIN3P was used to simulate the problem

defined in Table 1 with concurrent water uptake.

The simulation results are compared to the base

case without water uptake (Fig. 7). If water uptake

by the root takes place, the slow Michaelis–

Menten-type uptake rate of Ca results in the

build-up of Ca near the surface of the root,

because more Ca is additionally transported to the

root surface than is taken up there originally. This

phenomenon is well known to occur in the rhizo-

sphere (Hinsinger et al. 2005). Adding a passive

uptake mechanism for Ca to the water uptake,

results in a concentration profile very similar to

Fig. 6 Concentration profiles predicted by ORCHESTRA
of (a) phosphate in solution and (b) phosphate adsorbed on
goethite with and without exudation of citrate. Calculations
for 95 m2 goethite per kg sand, 1.9 mmol m–2 phosphate
initially bound on the goethite surface, 0.5 mmol m–1 day–1

citrate exudation and t = 1 day

Fig. 7 Concentration profile predicted using MIN3P of
specific Ca uptake by the root (according to Eq. 2) in the
absence and presence of water uptake. The parameters for
the calculations correspond to the ones in Table 1 with
additional water uptake of 10–6 cm3 cm–2 s–1
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the original one, without water uptake (data not

shown).

Discussion

The good agreement between the model simula-

tions and the analytical solution show that the

three different solution strategies of the codes

provide an overall equally good description of

diffusion and uptake of solutes around a single

root. This validation has been performed, on a

strict mathematical basis, with two different sol-

utes with different concentration in soil solution

and different adsorption and uptake characteris-

tics. Though there are model specific assumptions

such as the type of grid used or replacing the

Michaelis–Menten equation by an equilibrium

reaction, our supposition is that the three models

could henceforth be used reliably to consider

additional components and increased chemical

complexity.

This study demonstrates that reactive transport

codes available to date are applicable in rhizo-

sphere investigations. These codes can be used to

perform studies with more complex and more

detailed, and thus more realistic, soil chemistry,

e.g. several species, exudation, complexation, ion

exchange, aqueous redox reactions, and the deg-

radation of organic acids among other processes.

For example, it is possible to investigate the effect

of exudation on acid base and redox chemistry,

and the subsequent effect on mineral dissolution

and precipitation in the vicinity of roots. Evi-

dently, the choice between the three models could

be driven by the particular needs, to play to the

particular strengths. For example, somebody

aiming for a broader community of users could

use the more widespread PHREEQC; somebody

wanting to include water content changes under-

lying the reactive transport could use MIN3P; and

somebody interested in very versatile settings of

boundary conditions, fluxes and chemistry could

use ORCHESTRA.

This flexibility is the particular strength of the

codes introduced here, lying in the fact that vari-

ous combinations of biogeochemical and transport

processes can now be considered simultaneously

and the impact of the various parameters on the

behavior of rhizosphere systems can be evaluated.

We have demonstrated this in two simple addi-

tional simulations, which show the effect of citrate

exudation on phosphate uptake and the effect of

concurrent water uptake on solute uptake. Be-

cause the geochemical part of the three codes is

well validated further inclusion of additional and

more complex processes is relatively straightfor-

ward. The simulation of phosphate uptake in the

presence of citrate already shows that the feed-

back loops between exudation and uptake can

change the behavior of elements in the rhizo-

sphere.

Future work may include the implementation

of the root as a sink and source which could be

improved in terms of geometry, uptake processes

and including multiple roots. However, such

conceptual improvements will have to be tested

individually for their reliability.

A significant step towards the application of

multicomponent reactive transport codes in the

rhizosphere has been achieved in the work pre-

sented here. The accuracy demonstrated, and the

existing verification of these codes for transport

and geochemical simulations, is a promising basis

for rhizosphere scientists to quantitatively test

their conceptual models resulting from interpre-

tation of experimental data to numerical simula-

tions accounting for non-linear interactions.
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