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ABSTRACT 
The problem of arterial signal control is considered here. Urban intersections face serious congestion 

problems and at the same time the installation and maintenance of centralized systems is deemed 

cumbersome. A decentralized approach which is relatively simple to implement is studied here. The 

recently proposed max-pressure controller, which provably stabilizes the queues of arterial traffic systems, 

is tested in simulations. Different modifications of the controller are analyzed and compared under the 

same demand scenarios. The mesoscopic model used for the simulation experiments is an extended 

version of the store-and-forward model and emulates the arterial traffic network as a queuing system. The 

obtained results demonstrate the efficiency of max-pressure algorithm, which, under certain conditions, 

can stabilize all queues of the system. 

 

Keywords: Traffic signal control; store-and-forward modeling; max-pressure controller; queuing 

networks; bounded queues; system stability; real-time adaptive control. 
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INTRODUCTION 
Recent advancements in computing and communications have set the ground for the development and 

implementation of the next generation of traffic control strategies. Especially in arterial networks, there is 

an emerging effort towards the design and deployment of efficient signal control systems, as urban 

congestion continues to grow in most cities around the world. Although additional measures, such as road 

pricing, improved public transport operations, access restrictions of various kinds, driver information and 

guidance, may also help to alleviate the congestion problem, improved signal control strategies remains a 

significant objective. Real-time signal control systems that respond automatically to the prevailing traffic 

conditions are deemed to be potentially more efficient than clock-based fixed-time control settings. A 

variety of such strategies have been developed during the past few decades, some of which have been 

actually implemented while others are still in a research stage (see, e.g., (1), (2) for a good review). 

Historically, SCOOT (3) and SCATS (4) systems were among the earliest efforts to develop 

adaptive traffic control systems for arterial networks. These well-known and widely-used traffic-

responsive control systems are based on heuristic optimization algorithms. Other optimization methods 

for arterial traffic control that follow a centralized design avenue are OPAC (5), PRODYN (6) and 

RHODES (7), which are all based on dynamic programming and the rolling-horizon optimization scheme. 

More recently, TUC system (8) was introduced, which applies a multivariable feedback regulator 

approach that derives from a Linear-Quadratic (LQ) optimal control problem. This system has been 

successfully implemented in several large networks in Europe and South America; see (9) for some recent 

field results. 

All the aforementioned systems have a centralized nature, that is, the control inputs are a function 

of all the measurements of the network. Hence, in order to apply one of these systems, the information 

from all intersections must be collected and transmitted to a central location (i.e. Traffic Management 

Center). This communication and computing architecture imposes significant installation, operating and 

maintenance costs, which has inhibited widespread adoption of traffic-responsive and adaptive control. 

According to (10), traffic-responsive and adaptive control achieve large benefits but fewer than 10% of 

intersections in U.S.A. use adaptive signals, because of the deployment cost of detection and 

communication and uncertainty about the benefits. By contrast, local controllers are much easier to 

implement as they only use the measurements around a certain area of interest and are considered to be 

more cost effective. 

This paper presents the local feedback controller max-pressure which is applied intersection-by-

intersection and uses only the adjacent measurements of queue lengths. The methodology was originally 

proposed in (11), considering the problem of routing and scheduling packet transmissions in a wireless 

network. In packet networks, the term backpressure policy has been adopted. The name max-pressure 

may have been coined by (12), and it seems to be the preferred term in scheduling and routing in flexible 

manufacturing networks. There is a large literature on max-pressure or backpressure algorithms. Different 

variations of the methodology that can be potentially applied to arterial road networks in real-time 

(depending on the available infrastructure and communication capabilities) are presented here, and 

evaluated by the use of a mesoscopic simulation environment. 

For the purposes of the simulation experiments an event-based queuing model has been 

developed, which has been validated to capture the dynamics of queues in arterial streets. For the 

validation procedure, real data that have been collected from an arterial in Los Angeles area under the 

NGSIM initiative (13) have been used. The results of the simulation investigations demonstrate the ability 

of max-pressure to stabilize the queues of the studied system, in contrast to other local controllers, 

including priority service and fully actuated control, which are proven to not stabilize the queues of 

vehicles in arterial intersections (see (14) for details). 

 



A. Kouvelas, J. Lioris, S.A. Fayazi, P. Varaiya  4 

 

 

DECENTRALIZED FEEDBACK CONTROL 
In this section the max-pressure control for arterial networks is introduced. This decentralized controller 

does not require any knowledge of the mean current or future demands of the network (in contrast to other 

model predictive control frameworks). Max-pressure stabilizes the network if the demand is within 

certain limits, thus it maximizes network throughput. However, it does require knowledge of mean turn 

ratios and saturation rates, albeit an adaptive version of max-pressure will have the same performance, if 

turn movements and saturation rates can be measured. It only requires local information at each 

intersection and provably maximizes throughput (14). Several variations of the basic method that can be 

applied in real-time (depending on the available infrastructure) are presented. 

 

Notations 
The arterial network is represented as a directed graph with links 𝑧 ∈ 𝑍  and nodes  𝑛 ∈ 𝑁 . For each 

signalized intersection 𝑛, we define the sets of incoming 𝐼𝑛 and outgoing 𝑂𝑛 links. It is assumed that the 

offsets and the cycle time 𝐶𝑛  of node 𝑛 are fixed or calculated in real-time by another algorithm. In 

addition, to enable network offset coordination, it is quite usual to assume that 𝐶𝑛 = 𝐶  for all 

intersections 𝑛 ∈ 𝑁 but this is not the case here as the coordination problem is not considered. The signal 

control plan of node 𝑛 (including the fixed lost time 𝐿𝑛) is based on a fixed number of stages that belong 

to the set 𝐹𝑛, wherein  𝑣𝑗 denotes the set of links that receive right of way at stage 𝑗 ∈ 𝐹𝑛. Finally, the 

saturation flow 𝑆𝑧  of link 𝑧 ∈ 𝑍  and the turning movement rates  𝛽𝑖,𝑤 , where 𝑖 ∈ 𝐼𝑛  and  𝑤 ∈ 𝑂𝑛  are 

assumed to be known and can be constant or time varying. 

By definition, the constraint 

∑ 𝑔𝑛,𝑗(𝑘𝑛)

𝑗∈𝐹𝑛

+  𝐿𝑛 = (𝑜𝑟 ≤) 𝐶𝑛 

holds for every node 𝑛, where 𝑘𝑛 = 0, 1, 2, … is the control discrete-time index and 𝑔𝑛,𝑗 is the green time 

of stage  𝑗. Inequality in the equation above may be useful in cases of strong network congestion to allow 

for all-red stages (e.g. for strong gating). In addition, the constraint 

𝑔𝑛,𝑗(𝑘𝑛) ≥ 𝑔𝑛,𝑗,min ,   𝑗 ∈ 𝐹𝑛 

where 𝑔𝑛,𝑗,min  is the minimum permissible green time for stage 𝑗 in node 𝑛 and is introduced in order to 

guarantee allocation of sufficient green time to pedestrian phases. The control variables of the problem 

are 𝑔𝑛,𝑗(𝑘𝑛) which depict the effective green time of every stage 𝑗 ∈ 𝐹𝑛 of every intersection 𝑛 ∈ 𝑁. 

 

Max-pressure 
The state of each link 𝑥𝑧(𝑘𝑛) is defined by the number of vehicles waiting in the queue to be served for 

each control index 𝑘𝑛  (i.e. at the beginning of time period  [𝑘𝑛𝐶𝑛 , (𝑘𝑛 + 1)𝐶𝑛] . Given that we are 

provided with real-time measurements or estimates of all the states we can compute the pressure 𝑝𝑧(𝑘𝑛) 

that each link exerts on the corresponding stage of node 𝑛 at the beginning of cycle 𝑘𝑛 as follows 

𝑝𝑧(𝑘𝑛) = [
𝑥𝑧(𝑘𝑛)

𝑥𝑧,max
− ∑

 𝛽𝑖,𝑤𝑥𝑤(𝑘𝑛)

𝑥𝑤,max
𝑔𝑛,𝑗(𝑘𝑛)

𝑤∈𝑂𝑛

] 𝑆𝑧 ,   𝑧 ∈ 𝐼𝑛 

where 𝑥𝑧,max is the storage capacity of link 𝑧 (in vehicles). Storage capacity is used in the denominator in 

order to take into account the length of the links, so that the pressure of a short link with a number of 

vehicles waiting to be served is higher than the pressure of a longer link with the same number of vehicles. 

The measurements (or estimates) 𝑥𝑧(𝑘𝑛), ∀ 𝑧 ∈ 𝑍 represent a feedback from the network under control, 

based on which the new pressures are calculated via the equation above in real-time 

The pressure of link 𝑧 during the control cycle 𝑘𝑛 is the queue length of the link (first term within 

the brackets) minus the average queue length of all the output links (second term within the brackets). 

Regarding the second term as the (average) downstream queue length and the first as the upstream queue 
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length, the definition of the pressure is simply the difference between the upstream and downstream 

queue lengths. It should be noted, that in the case where all output links are exiting the network (we 

assume that exit links have infinite capacity, i.e., they do not experience any downstream blockage), the 

second term in the brackets becomes zero. Hence, the pressure of the link is simply the queue length 

multiplied by its corresponding saturation rate. 

If the equation above is applied ∀ 𝑧 ∈ 𝐼𝑛  the pressures of all incoming links of node 𝑛  are 

calculated. The pressure of each stage 𝑗 of the intersection can then be computed as follows 

𝑃𝑛,𝑗(𝑘𝑛) = max { 0 , ∑ 𝑝𝑧(𝑘𝑛)

𝑧∈ 𝑣𝑗

}  ,   𝑗 ∈ 𝐹𝑛 

and this metric can be used to calculate the splits for the different conflicting stages of the intersection. 

 

Variations on max-pressure 
This paper investigates different modifications of max-pressure control and their ability to 

stabilize the system queues via simulation experiments. A demand (i.e. time-series of incoming flow in 

the network origins) is said to be stabilizable if there exists a control plan that can accommodate it (i.e. 

the time-average of every mean queue length is bounded). The set of feasible (stabilizable) demands 𝐷 is 

a convex set and can be easily defined for an intersection by solving a collection of linear inequalities 

involving only the mean values of the demands, turn ratios and saturation rates. If a demand 𝐷0 is in the 

interior of the convex set 𝐷 then there exists a fixed-time control that stabilizes the queues. Under this 

control the intersections may experience cycle failures but no queue is going to grow continuously. 

Given that the pressure of each stage has been computed by the last equation of the previous 

section, the total effective green time  𝐺𝑛 that is available to be distributed in node 𝑛 

𝐺𝑛 =  𝐶𝑛 −  𝐿𝑛 − ∑ 𝑔𝑛,𝑗,min 

𝑗∈𝐹𝑛

,   𝑛 ∈ 𝑁 

can be split to all stages in many different ways. One approach, is to select the stage with the maximum 

pressure and activate it for the next control cycle 𝐶𝑛. This implies that all the available effective green 

time 𝐺𝑛  will be given to this stage. In the next cycle the queues of the system are updated, the new 

pressures are calculated and the stage with the maximum pressure is selected to be activated and so forth. 

This approach may not be the optimal one, as the control cycle may be large and queues can grow 

unexpectedly at the links that are not activated. Alternatively, max-pressure can be called several times 

within a cycle 𝐶𝑛. Every time the stage with the maximum pressure is activated, however, the frequency 

of the measurements/control is now higher. The frequency of max-pressure application to an intersection 

depends on two main factors: (a) the available infrastructure and communications (i.e. the appropriate 

measurements or estimates of queue lengths should be provided in real-time), and (b) an optimal 

frequency of max-pressure application which needs to be investigated and defined (and could be 

dependent on the special characteristics of each site). 

Another approach, is to call max-pressure at the end of each cycle and split the green time 𝐺𝑛 

proportionally to the computed pressure of each stage. That is, for each decision variable 𝑔̃𝑛,𝑗(𝑘𝑛) (where 

𝑔̃𝑛,𝑗 depicts the green time of stage 𝑗 on the top of 𝑔𝑛,𝑗,min ) the following update rule is applied 

𝑔̃𝑛,𝑗(𝑘𝑛) =
𝑃𝑛,𝑗(𝑘𝑛)

∑ 𝑃𝑛,𝑖(𝑘𝑛)𝑖∈𝐹𝑛

𝐺𝑛 ,   𝑗 ∈ 𝐹𝑛. 

Thus, the total amount of green time allocated for each control variable 𝑔𝑛,𝑗(𝑘𝑛) for cycle 𝑘𝑛 is given by 

𝑔𝑛,𝑗(𝑘𝑛) = 𝑔̃𝑛,𝑗(𝑘𝑛) + 𝑔𝑛,𝑗,min ,   𝑗 ∈ 𝐹𝑛. 

This procedure is repeated periodically (for every cycle) and requires minimum communication 

specifications, as the local controller is called once per cycle. 
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THE SIMULATION MODEL 
A modeling avenue for network-wide simulation of the queue dynamics in arterial networks, especially 

for oversaturated traffic conditions, is based on the store-and-forward modeling paradigm, first proposed 

in (15). According to this model, the equation that describes the evolution of the queue for an arterial link 

𝑧 is as follows (see (16) for details) 

𝑥𝑧(𝑡 + 1) = 𝑥𝑧(𝑡) + 𝑇𝑡→(𝑡+1)[𝑞𝑧(𝑡) − 𝑠𝑧(𝑡) + 𝑑𝑧(𝑡) − 𝑢𝑧(𝑡)] 

where 𝑥𝑧(𝑡) is the number of vehicles within link 𝑧 at the end of the discrete time period 𝑡 (for the sake of 

brevity also called queue in this document); 𝑞𝑧(𝑡) and 𝑢𝑧(𝑡) are the inflow and outflow, respectively, in 

the sample period 𝑇𝑡→(𝑡+1) (i.e. for the time period between the discrete time index 𝑡 and (𝑡 + 1)); 𝑑𝑧(𝑡) 

and 𝑠𝑧(𝑡) are the demand and the flow exiting the network within this link, respectively. As mentioned 

earlier, this is an event-based simulation model, hence the sample periods are not constant since they are 

triggered by different kind of events (e.g. vehicle arrival, signal change, etc.). The update equation above 

establishes the conservation of vehicles in link 𝑧. Consider that link 𝑧 connects two intersections 𝑀𝑢 and 

𝑀𝑑 such that 𝑧 ∈ 𝑂𝑀𝑢
 and 𝑧 ∈ 𝐼𝑀𝑑

. The exit flow 𝑠𝑧(𝑡) is given by 

𝑠𝑧(𝑡) =  𝛽𝑧,0𝑞𝑧(𝑡) 

where the exit rates  𝛽𝑧,0 are assumed to be known. The inflow to the link 𝑧 is given by 

𝑞𝑧(𝑡) = ∑  𝛽𝑖,𝑧

𝑖∈𝐼𝑀𝑢

𝑞𝑖(𝑡) 

where  𝛽𝑖,𝑧 with 𝑖 ∈ 𝐼𝑀𝑢
 are the turning rates towards link 𝑧 from the links that enter junction 𝑀𝑢. Queues 

are subject to the constraints 

0 ≤ 𝑥𝑧(𝑡) ≤ 𝑥𝑧,max ,   𝑧 ∈ 𝑍 

where 𝑥𝑧,max  is the maximum admissible queue length (in vehicles). Although the right part of the 

inequality is modeled in the simulator, it is not used for the investigations undertaken here as we want to 

demonstrate the ability of max-pressure to bound the queue length. Thus, no constraint on the maximum 

length of the queues is applied to the experiments presented here. For modeling the outflow 𝑢𝑧(𝑡), an 

approach that characterizes the utilized modeling approach and can be found in many places (see e.g. (17)) 

is introduced. According to this, the outflow 𝑢𝑧(𝑡) of link 𝑧 is equal to the saturation flow 𝑆𝑧 if the link 

has right of way, and equal to zero otherwise. Consequently, 

𝑢𝑧(𝑡) = {
 min{𝑥𝑧(𝑡),  𝑆𝑧𝑇𝑡→(𝑡+1)} if sample period 𝑇𝑡→(𝑡+1) ∈ green phase

 0 if sample period 𝑇𝑡→(𝑡+1) ∈ red phase.
 

Another challenging part in the procedure of designing the simulation model has been the 

modeling of the turning movements, i.e., when there are more than one incoming links flowing to the 

same outgoing link simultaneously. Based on the signal plans that are used in the United States (permitted 

right and left turns need to consider gaps between opposite traffic), in an arterial network we can have 

multiple input links merging or diverging into output links simultaneously for every discretized time 

period 𝑡. This has been modeled with different queues for each movement and gap acceptance criteria but 

the details are beyond the scope of this document (the reader is referred to (14) where the simulation 

model is discussed in detail). 

 

Model validation 
The mesoscopic simulation model was validated with arterial data obtained by (13). A network with 4 

signalized intersections in Los Angeles was studied (FIGURE 1). The inputs to our model are the 

demand profiles in all network origins (time-series of number of vehicles entering the network), the time 

varying profiles of split ratios in all nodes, and all the information about the signals (duration of phases, 

cycles, offsets). In reality, actuated control is applied to all the studied intersections, thus, the signal plans 

can be varying over time depending on the prevailing traffic conditions. It should be noted that there are 

two parking lots in the area, the inflows and outflows of which interact with the traffic of the main arterial. 
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Detailed information about the turn ratios towards the parking lots, as well as for the outflows from the 

lots to the main arterial were also provided. 

The dataset that was simulated has a duration of 30 minutes (8:30am–9:00am) and the evaluation 

metric is the comparison between the total simulated outflow (in vehicles) for all the signalized links (link 

IDs: 1, 2, 3, 4, 6, 7, 8, 9 in FIGURE 1(b)). The location that the outflow is measured (both in the 

simulation and in reality) is the stop-line of each link. TABLE 1 demonstrates the obtained results from 

the validation procedure. More precisely, TABLE 1(a) presents the real measurements after the raw 

NGSIM data was processed, TABLE 1 (b) presents the outflows obtained by the simulation model, and 

TABLE 1(c) displays the comparison of the two aforementioned outflows (the (%) difference of the 

simulated over the real values). It should be noted, that the comparison is done for time intervals of 5 

minutes (first column of TABLE 1) and the sampled number of vehicles is accumulated as time 

progresses. The simulated outflows of the signals are close to the real ones, illustrating that the store-and-

forward model accurately simulates the real traffic conditions. Note, that for the corresponding dataset the 

network does not experience any severe congestion. Finally, the only tuning parameters for the simulation 

are the saturation flows 𝑆𝑧 for each signal approach, which are assumed to be constant over the whole 

simulation horizon. 

 

Closed-loop control and evaluation metrics 
In order to investigate the efficiency and stabilizing property of the max-pressure controller, extensive 

simulation experiments have been carried out. The developed simulation model that was described in the 

previous section also tests the applicability of the methodology in real life conditions, as it comprises a 

replica of the real traffic conditions (as validated with real data). The arterial network is modeled as a 

queuing network with queues of vehicles waiting to be served at conflicting approaches of signalized 

intersections. 

In our experiments, the overall closed-loop scheme uses a properly structured API module in 

order to control the traffic lights of the network in real-time. More specifically at each cycle 𝑘𝑛, the 

simulation engine delivers the queue lengths for all the incoming and outgoing links of node 𝑛, which are 

then used as inputs to max-pressure controller. The pressures of each stage of the intersection are 

calculated and according to the version of the controller used, the signal settings are computed (splits for 

every stage 𝑔𝑛,𝑗(𝑘𝑛) ∈ 𝐹𝑛). FIGURE 2 illustrates the way max-pressure controller is used in closed-loop 

with the simulation engine. The blue box indicates the computations that are done on the max-pressure 

side. The algorithm gets the simulated queue lengths 𝑥𝑧(𝑡), ∀𝑧 ∈ 𝑍 and outputs the duration of all stages 

in real-time. 

Another output of the simulation engine that is used in order to evaluate the applied control 

policies is the mean travel time (MTT). The model keeps track of every individual vehicle, the time-stamp 

that it entered the network and the time-stamps that it enters or exits each of the consecutive traveled links 

on its path. The time that each individual vehicle joins a queue is also stamped, thus, at any given time the 

user has access to the complete state of any vehicle in the network (i.e. its location and whether it is 

moving or not). Therefore, at the end of the simulation, statistics about the time that each vehicle has 

spent on each link of the network are available (time traveling on free flow and stopping time), and all 

travel times can be averaged (by approach, link, path, etc.) providing a performance metric for the 

enforced signal plans. 

 

SELECTED SIMULATION RESULTS 
Some selected illustrative results are presented in this section. Due to the stochastic nature of the 

simulator (i.e. all vehicles arrivals follow a Poison process, turn ratios in intersections follow stochastic 

distributions with predefined mean values) many replications of the same experiments have been run and 
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the results shown here stem from scenarios that are close to the respective case's average. FIGURE 3 

presents the fictitious arterial network that was used in the simulations. It consists of 4 signalized 

intersections and 12 links. All links are one-way and each intersection has 2 green stages (i.e. no left turns 

are allowed for simplicity) the duration of which can be controlled in real-time (cycle times and offsets 

are kept constant for all simulation scenarios). For all experiments we use  𝐶𝑛 = 62, ∀𝑛 and  𝑔𝑛,𝑗,min = 5, 

∀𝑛, 𝑗 and there is an intergreen of 5 seconds between successive stages. The simulation horizon is 1 hour. 

Two demand scenarios have been generated 𝐷1 and 𝐷2 (i.e. vehicle arrivals in all origins of the 

network over time) and two fixed-time controls have been calculated (by solution of the system of linear 

inequalities that derive for this network and each demand scenario), 𝐿1  and 𝐿2  respectively, that can 

stabilize each demand. It should be noted, that the demand scenarios are created in such a way that no 

single fixed-time control can stabilize both demands. Each of the simulations is characterized by three 

attributes, i.e., the demand, the applied control (two variations of max-pressure are presented here) and 

the capacity of the links. The third attribute is based on the queue bound and whether or not the maximum 

queue inequality is applied. In the case that the inequality holds we say that we have a finite storage 

capacity for the link, whereas when the inequality is not applied links are assumed to have infinite storage 

capacity. The simulations have been run for both cases in order to investigate if this constraint is 

important for the model or not. 

FIGURE 4(a) presents the evolution of the total number of vehicles in all the queues of the 

network (∑ 𝑥𝑧(𝑡)𝑧∈𝑍 ) when the capacity of the queues if infinite, while FIGURE 4(g) shows the same 

run when the capacities are finite. FIGURE 4(c) presents the trajectory of the number of queued vehicles 

when MP1 control is applied. In MP1, max-pressure controller is called twice per cycle and the stage with 

the maximum current pressure is activated. FIGURE 4(e) displays the same scenario with MP2 control, 

where the total green duration is split proportionally to the pressures, however this is done once every  𝐶𝑛 

(i.e. at the beginning of each cycle, according to the current measurements). FIGURE 4(b) depicts what 

happens if after the end of the simulation presented in FIGURE 4(a) we continue with demand 𝐷2 and 

with the same fixed-time control 𝐿1. Obviously, this demand cannot be stabilized by this control and the 

sum of the queues is continuously growing until the end of the simulation. In contrast, if we apply either 

MP1 (FIGURE 4(d)) or MP2 (FIGURE 4(f)) the system is stabilized, as the sum of the queues is clearly 

bounded. FIGURE 4(h) is the same run as FIGURE 4(d) whereas the capacities of the queues are 

considered finite. In the experiment of FIGURE 4(f) the queues are assumed finite as well. 

Similar runs have been conducted for demand 𝐷2 and selective results are presented in FIGURE 

5. FIGURE 5(a) shows the evolution of the queues for the fixed-time control 𝐿2, FIGURE 5(c) for 

controller MP1 and FIGURE 5(e) for controller MP2. After the end of demand 𝐷2  (3600 sec) the 

simulation is continued for another hour using demand 𝐷1  and the same controllers are applied; the 

results are displayed in FIGURE 5(b), (d) and (f) respectively. All the experiments presented in 

FIGURE 5 have been run with infinite link capacities, except the simulation of FIGURE 5(e) where 

finite capacities have been used for all network links. Both in FIGURE 4 and FIGURE 5 the controller 

MP2 produces higher oscillations than MP1 for all experiments. This is an indication that calling max-

pressure twice per cycle is better than once per cycle, as the recently updated measurements help the 

controller to track the changes in the queue lengths and adjust its inputs. 

 

Evaluation of simulation results 
The simulation results presented here are some representative runs and comprise a subset of all the 

conducted experiments. The main findings of the simulations in terms of control are twofold, (a) max-

pressure will stabilize the queues of arterial networks if the demand is within the feasible area, and (b) the 

frequency that the controller is applied affects its performance. On the latter, one could say (by studying 

the Figures presented here) that the more frequently max-pressure is applied the narrower the bounds of 

the system can be. However, this statement is not obvious for any arbitrary network topology. For the 
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simulation model, the capacity of the links (finite versus infinite) does not seem to play an important role 

at least for this kind of experiments, where the objective is to validate the stability of the system. The one 

approach is helpful to investigate if some of the queues are growing continuously with the corresponding 

control, while the other is important as it allows for consideration of spillback (or even gridlock) 

phenomena. 

TABLE 2 displays the Total Travel Time (TTT) in vehicles∗hours for all the different major 

routes of the arterial network in FIGURE 3 and for all the reported simulated scenarios. As expected, the 

total number of vehicles in the queues explodes if the fixed-time control is not appropriate (something 

that can even happen with other local controllers), albeit max-pressure manages to stabilize the state of 

the system, given that a feasible fixed-time controller that can stabilize the system exists. The metric TTT 

is slightly higher for MP2 compared to MP1 and this is because of the different frequency (once per cycle 

versus twice per cycle respectively). 

 

CONCLUSIONS 
Two different versions of max-pressure controller are presented here and tested through simulation 

experiments. The first activates the stage with the maximum pressure every time the controller is called, 

while the latter distributes the green time proportionally to the respective pressures. The macroscopic 

simulation model that was used for the investigations has been developed in Python and is based on the 

store-and-forward model. It is an event-based simulator (i.e. the simulation step is not constant but rather 

defined by events that are triggered by an event planner module) and represents the arterial traffic as a 

queuing system. The results demonstrate the efficiency of max-pressure controller and validate the 

already published theoretical argument that it can stabilize networks of arbitrary topology. As shown, the 

frequency that the controller is applied plays a key role on the bounds of the summation of the network 

queues. Further experiments are needed in order to clarify the optimal frequency for different networks 

and demand scenarios. 
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TABLE 1  Total outflows comparison for the validation network (a) vehicles measured in 

real dataset (NGSIM); (b) simulated number of vehicles; (c) comparison of assessment 

metric (% difference of number of vehicles). 
 

Link ID 1 2 3 4 6 7 8 9 

Time N-S S-N 

8:30–8:35 180 170 158 110 43 99 90 90 

8:35–8:40 355 340 320 221 99 215 192 186 

8:40–8:45 539 513 484 337 139 337 301 291 

8:45–8:50 755 714 667 457 195 454 406 395 

8:50–8:55 973 924 875 601 247 601 541 525 

8:55–9:00 1156 1093 1059 716 302 733 661 642 

(a) 

 

Link ID 1 2 3 4 6 7 8 9 

Time N-S S-N 

8:30–8:35 178 177 166 104 43 98 100 84 

8:35–8:40 355 352 319 213 100 220 201 179 

8:40–8:45 541 524 495 344 138 338 316 287 

8:45–8:50 757 738 697 470 194 483 423 390 

8:50–8:55 977 951 918 626 246 630 534 501 

8:55–9:00 1160 1135 1099 751 301 771 655 615 

(b) 

 

Link ID 1 2 3 4 6 7 8 9 

Time N-S S-N 

8:30–8:35 -1.11 4.12 5.06 -5.45 0.00 -1.01 11.11 -6.67 

8:35–8:40 0.00 3.53 -0.31 -3.62 1.01 2.33 4.69 -3.76 

8:40–8:45 0.37 2.14 2.27 2.08 -0.72 0.30 4.98 -1.37 

8:45–8:50 0.26 3.36 4.50 2.84 -0.51 6.39 4.19 -1.27 

8:50–8:55 0.41 2.92 4.91 4.16 -0.40 4.83 -1.29 -4.57 

8:55–9:00 0.35 3.84 3.78 4.89 -0.33 5.18 -0.91 -4.21 

(c) 
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TABLE 2  Total Travel Time (TTT) criterion as computed by the simulation engine (a) 

scenarios presented in FIGURE 4; (b) scenarios presented in FIGURE 5. 
 

Route TTT – Total Travel Time (vehicles∗hours) 

(Entry Link)– Simulation scenario (FIGURE 4) 

(Exit Link) 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 1(h) 

(1)–(3) 4.63 2.25 5.02 2.02 7.64 3.58 4.64 2.20 

(4)–(6) 4.70 51.91 2.48 5.78 3.77 9.52 4.39 5.41 

(7)–(9) 2.97 37.24 2.45 4.91 2.83 5.67 3.08 4.58 

(10)–(12) 5.88 6.43 4.74 4.29 5.51 4.24 6.26 4.35 

SUM 18.18 97.83 14.69 17.00 19.75 23.01 18.37 16.54 

(a) 

 

Route TTT – Total Travel Time (vehicles∗hours) 

(Entry Link)– Simulation scenario (FIGURE 5) 

(Exit Link) 2(a) 2(b) 2(c) 2(d) 2(e) 2(f) 

(1)–(3) 3.86 36.91 1.87 5.12 2.54 9.02 

(4)–(6) 9.83 2.97 5.87 2.42 11.12 4.08 

(7)–(9) 4.05 2.21 5.01 2.70 5.56 2.60 

(10)–(12) 4.13 10.81 3.43 5.41 4.66 6.74 

SUM 21.87 52.90 16.18 15.65 23.88 22.44 

(b) 
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FIGURE 1  The NGSIM arterial network in Los Angeles: (a) satellite view of the network, 

(b) schematic representation of the simulation model (links, nodes and signals). 
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FIGURE 2  The closed-loop testing scheme of max-pressure controller using the 

macroscopic simulation engine. 
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FIGURE 3  Directed graph of the fictitious arterial network used in the simulations with 

𝑵 = {𝟏, 𝟐, 𝟑, 𝟒} nodes and 𝒁 = {𝟏, 𝟐, … , 𝟏𝟐} links. We assume that links exiting the network 

do not experience any downstream blockage. 
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(a)            (b) 

 
(c)            (d) 

 
 (e)            (f) 

 
(g)            (h) 

 

FIGURE 4  Evolution of total number of vehicles in all queues of the network for 

simulations that start with demand 𝑫𝟏  and different scenarios: (a) 𝑫𝟏  and 𝑳𝟏  (infinite 

capacities); (b) 𝑫𝟐 after 𝑫𝟏 and 𝑳𝟏 (finite capacities); (c) 𝑫𝟏 and MP1 (infinite capacities); 

(d) 𝑫𝟐  after 𝑫𝟏  and MP1 (infinite capacities); (e) 𝑫𝟏  and MP2 (finite capacities); (f) 𝑫𝟐 

after 𝑫𝟏 and MP2 (finite capacities); (g) 𝑫𝟏 and 𝑳𝟏 (finite capacities); (h) 𝑫𝟐 after 𝑫𝟏 and 

MP1 (finite capacities).  
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(a) (b) 

 

 
(c)            (d) 

 

 
(e)            (f) 

 

FIGURE 5  Evolution of total number of vehicles in all queues of the network for 

simulations that start with demand 𝑫𝟐  and different scenarios: (a) 𝑫𝟐  and 𝑳𝟐  (infinite 

capacities); (b) 𝑫𝟏 after 𝑫𝟐 and 𝑳𝟐 (finite capacities); (c) 𝑫𝟐 and MP1 (infinite capacities); 

(d) 𝑫𝟏 after 𝑫𝟐 and MP1 (infinite capacities); (e) 𝑫𝟐 and MP2 (infinite capacities); (f) 𝑫𝟏 

after 𝑫𝟐 and MP2 (infinite capacities). 
 


