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Adaptive Performance Optimization

for Large-Scale Traffic Control Systems

A. Kouvelas, E. Kosmatopoulos, M. Papageorgiou, K. Aboudolas

Dynamic Systems and Simulation Laboratory,
Technical University of Crete,

GR-73100 Chania, Greece (Tel.: +30-28210-37306;
e-mail: {tasos,kosmatop,markos,aboud}@dssl.tuc.gr).

Abstract: The majority of practical Large-Scale Traffic Control Systems (LSTCSs) requires the
optimization (fine-tuning) of their design parameters. A tremendous amount of human effort and
time is spent for optimization of the overall LSTCS, which is usually performed by experienced
personnel in the lack of an automated – well established – systematic approach. This paper,
investigates the efficiency of the Adaptive Fine-Tuning algorithm, when applied for automated
fine-tuning of an urban traffic LSTCS with mutually-interacting control modules, each one with
its distinct design parameters. The approach of AFT is based on a recently proposed Adaptive
Optimization (AO) methodology that is aiming at replacing the manually-based optimization
by a fully-automated procedure and is proven – using rigorous mathematical arguments – to
provide with safe and reliable, efficient and rapid optimization of general LSTCSs. Simulations
results demonstrate the efficiency of the proposed approach when applied to the simultaneous
fine-tuning of two mutually-interacting LSTCS control modules.

Keywords: Modeling, Control and Optimization of Transportation Systems; Intelligent
Transportation Systems.

1. INTRODUCTION

Currently, a tremendous amount of human effort and time
is spent for calibration of operations of Large-Scale Traffic
Control Systems (LSTCSs). Minor changes in the trans-
port system infrastructure (e.g. installing a new Variable
Message Sign in a motorway network, modifying the traffic
light signal phasing at an urban junction, deploying a new
bus in a public transport system or a new Automated
Guided Vehicle (AGV) in a seaport container terminal)
may require the involvement of significant human effort
and time in order to re-adjust and re-program the LSTCS
decision making mechanisms. Moreover, the continuous
medium- and long-term variations of the overall transport
system dynamics (due to e.g. changes of traffic demand
or number of passengers using the particular transport
system) call for a frequent or even continuous mainte-
nance of LSTCSs, which – if done properly – makes the
maintenance of LSTCSs extremely costly. In many cases,
the result is that system maintenance is neglected and the
system performance deteriorates year after year.

Moreover, the same processes that are required for cal-
ibration must also be used in the initial fine-tuning of
the system during its first installation. Both tasks (ini-
tial fine-tuning and calibration) are performed (if at all)
by experienced personnel in the lack of an automated
and systematic approach; thus there is no guarantee that
the overall fine-tuning and/or maintenance procedure will
end-up successfully. In some cases, the LSTCS has never
achieved a satisfactory performance in the first place, as
for instance in the reported case of the urban signal man-

agement strategy SCOOT (the most popular urban signal
management strategy worldwide) in the city of Nijmegen
in The Netherlands [5], where the SCOOT application was
abandoned completely in the end.

Urban and motorway traffic control systems, LSTCSs
for public transport systems and LSTCSs for large-scale
railway, airport and seaport operations are all specific
examples of LSTCSs that call for calibration while the
system is in operation; in all of these systems the mainte-
nance procedure involves the re-calibration, re-adjustment
and re-programming of hundreds of parameters, rules,
operational schedules, decision-making mechanisms, etc.,
which influence the transport system operations in a highly
complex manner. Moreover, the use of heuristic, trial-and-
error, experience-based techniques, while the system is in
operation, involves the risk of poor system performance
over a lengthy period of time, which may lead to poor-
quality-service problems, delays, severe congestion and
increased Green House Gas (GHG) emissions during this
period. It is finally worth noting that the involvement of
the human factor for the installation, maintenance and
renovation of LSTCSs also involves the risk of unsafe oper-
ations: human mistakes due to lack of expertise, exhaustive
working conditions, etc., may lead to decisions/actions
that put safety at stake.

Recently, we have introduced and analyzed a new family of
algorithms – called hereafter Adaptive Fine-Tuning (AFT)
– that can be used towards the development of a generic,
efficient and systematic approach for the automated fine-
tuning of LSTCS [1]–[4]. The main attributes of these
algorithms may be summarized as follows:
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• They are based on Adaptive Optimization (AO) prin-
ciples and, as a result, they do not require any a priori
knowledge or assumption on the traffic system dynam-
ics; moreover, they can be implemented to any type
of LSTCS regardless of the methodology used for the
original design of the LSTCS.

• They are robust with respect to exogenous distur-
bances, noisy measurements, system interactions, com-
ponent failures, etc.

• They are utterly generic, computationally efficient and
straightforward to embed to any type of LSTCS, re-
gardless of its size, level of complexity and level of
decentralization.

• They incorporate powerful learning and estimation
mechanisms which render them adaptable to short-
term and long-term variations of system characteristics
such as demand long-term variations, system aging etc.
Moreover, through these learning and estimation mech-
anisms, they are capable of incorporating the knowledge
captured in the past regarding the dependence of the
system performance on the controller parameters and
system exogenous inputs.

• Most importantly, they guarantee a safe and efficient
fine-tuning procedure, contrary to other popular AO
methods that cannot exclude the possibility of poor or
even unstable performance during the automatic fine-
tuning process.

This paper investigates the efficiency and real-time feasi-
bility of one of the AFT algorithms [3], when applied to the
problem of calibrating the parameters of an urban traffic
LSTCS via simulation experiments. The aforementioned
design parameters derive from two distinct control mod-
ules operating concurrently within the traffic-responsive
urban control strategy TUC [24], [6].

2. LSTCS OPTIMIZATION (FINE-TUNING):
BACKGROUND

2.1 Theoretical/Simulation-based methods

The last decades, attempts have been made in particular
LSTCS applications to develop model-based, i.e., either
theoretical-based or simulation-based designs that produce
“good” sets of tunable parameters, and although they
have helped in some cases to reduce time and effort for
installation and maintenance, they did not manage to
eliminate, or at least reduce significantly, the involvement
of the human factor. One example in this class is the
implementation of a Variable Speed Limit system on the
UK motorway M42 [25]. Despite the fact that the initial
tunable parameters of the system (which correspond to
speed and flow activation/deactivation thresholds) were
“optimized” using theoretical tools from traffic flow theory
and extensive simulation experiments, it took more than a
year of calibration of the aforementioned thresholds until
the system reached an acceptable performance and, during
this initial deployment phase, the system performance was
sometimes worse than in the no-control case.

There have also been some attempts to incorporate
optimization-based tools within the maintenance proce-
dure, see e.g. [7]–[12] and the references therein for an
indicative list of references. In these cases, the problem of
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Fig. 1. AO for automatic calibration of LSTCSs.

providing efficient maintenance is formulated as an opti-
mization problem, where the tunable LSTCS parameters
are chosen so as to optimize a performance criterion (e.g.
average network speeds in traffic networks, average delays
in airborne or seaborne transport systems, total num-
ber of containers loaded/unloaded in seaport container
terminals, average deviation from the operational sched-
ules in public transport systems). However, optimization
of such a performance criterion requires perfect or, at
least, very accurate knowledge of the transport system
dynamics as well as the demand. To deal with this prob-
lem, optimization-based approaches employ simulation-
based or theoretical models for representing the actual
system dynamics. Then, based on the assumption that
these models represent quite accurately the actual LSTCS
operations, different optimization-based algorithms (e.g.
gradient-descent, Gauss-Newton, evolutionary program-
ming or neural network-based optimization algorithms)
are applied to the simulation/theoretical-based models in
order to extract the optimal values of the tunable parame-
ters. However, these approaches (a) require extensive and
continuous calibration of the simulation/theoretical-based
models, so as to optimize their approximation accuracy
with respect to the actual transport system operations,
and (b) face the tradeoff between simplicity and accuracy;
in most cases accuracy has to be sacrificed in order to
avoid the use of extreme computational requirements of
simulation or mathematical models that employ detailed
modeling of the LSTCS operations.

2.2 Adaptive and Neural/Learning methods

One possible way to by-pass the above-mentioned prob-
lems is to incorporate adaptive or adaptive-like designs
(such as neural, fuzzy, iterative learning, etc., methods)
for updating the parameters of the LSTCS, which render
many advantages contrary to the simulation/theoretical-
based techniques. AFT belongs to the family of the so-
called AO methods, such as the Simultaneous Perturbation
Stochastic Approximation (SPSA) [13]–[15]. These meth-
ods provide probably the most promising approach for the
development of a systematic methodology for automatic,
safe, robust and efficient maintenance and renovation of
LSTCSs. The basic functioning procedure for AO methods
may be summarized as follows (Fig. 1):

• At the end of appropriately defined periods (e.g. at
the end of each day), the AO algorithm receives the
value of the real (measured) performance index (e.g.
average speed over space and time for traffic networks,
total number of containers loaded/unloaded for seaport
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container terminals) as well as the values of the most
significant external factors (e.g. demand). Note that
the performance index is an (unknown) function of
the external factors and the tunable parameters to be
adjusted.

• Using the measured quantities, the AO algorithm cal-
culates new tunable parameter values to be applied at
the next period (e.g. the next day) in an attempt to
improve the system performance.

• This (iterative) procedure is continued over many pe-
riods (e.g. days) until a maximum in performance is
reached; then, the AO algorithm may remain active
for continuous adaptation or be switched off and re-
activated at a later stage (e.g. after few months).

A key idea behind most AO methodologies is to use two
different (but inter-woven) phases of tunable parameter
changes as follows:

(1) At the perturbation phase, the performance of the
LSTCS is evaluated at one or more random pertur-
bations of the current set of tunable parameters.

(2) At the gradient-descent-like phase, the current tun-
able parameter values are modified in a targeted way,
so as to increase performance, based on an estimate of
the gradient of the LSTCS performance. The gradient
is calculated using the values of the performance
index (and of the external factors) at the perturbation
phase.

The random choice of the perturbations introduced in the
perturbation phase is in order for the AO mechanisms to
sufficiently explore the overall LSTCS decision space (so
as to be able to come up with suitable decision each time).
As it was shown in several research articles evaluating
AO methods, the introduction of random perturbations is
necessary and crucial for the successful operation of the
overall scheme ([1], [2], [13], [15]). Different researchers
reported very encouraging results - by using simulation
experiments - on the application of the aforementioned
AO methods in maintenance and renovation of various
LSTCS: Urban signal traffic control [16]–[18], air traffic
management [19], vessel traffic management [20] and fleet
and transit management [21], [22] are few of the LSTCS
maintenance applications where these methods have been
applied and evaluated using simulation-based experiments.

Unfortunately, these designs suffer from two severe draw-
backs:

(1) The majority of AO methods do not have any mech-
anism to incorporate the knowledge captured in the
past, regarding the dependence of the LSTCS perfor-
mance on the tunable parameters and the external
factors (demand); in case where such a dependence
is highly non-linear and complex, the aforementioned
algorithms fail to produce any improvement of the
overall LSTCS performance.

(2) Most importantly, the use of random perturbations in
the AO algorithms may lead to an unacceptable value
of the LSTCS performance; even a small perturbation
of a “good” set of tunable parameters may lead to
an unacceptable or, even worse, unstable or catas-
trophic behaviour. Hence, AO methods possess the
disadvantage of not guaranteeing efficient and, most

importantly, safe performance at the perturbation
phase.

In a series of papers [1]–[4], we introduced and analyzed
a new family of AO algorithms which are capable of
overcoming the limitations (1)–(2) above. This approach
appropriately combines the nice features of AO algorithms
with those of approximation and adaptive mechanisms in
order to come up with an adaptive optimization methodol-
ogy capable of rapidly and efficiently optimizing systems of
arbitrary complexity and scale such as LSTCS and, most
importantly, guaranteeing robust and safe performance
while the maintenance operation is on.

3. PROBLEM FORMULATION

Consider a general discrete-time control system where
the underlying dynamics are described according to the
following nonlinear first-order difference equation

zt+1 = F (zt, ui,t, dt, t) , z0 = z(0) (1)

where zt, ui,t, dt are the vectors of system states, control
inputs, and exogenous (possibly measurable) signals, re-
spectively, t denotes the discrete time-index, i denotes
the controller-index and F (·) is a sufficiently smooth non-
linear vector function. Note that the proposed methodol-
ogy can be applied to a system even if the function F is
unknown. Consider also, that one or more control laws are
applied to the system (1), which are described as follows:

ui,t = ̟i (θi, zt) (2)

where ̟i(·) are known smooth vector functions and θi

is the vector of the i-th controller tunable parameters.
Note that we do not impose any restriction neither on
the form of the equation (2), nor on the number of the
applied control laws. Also, the discrete time-index t may
be different for each control law i.

The overall system performance is evaluated through the
following objective function (performance index)

J (θ; z0, DT ) = πT (zT ) +

I∑

i=1

T−1∑

t=0

πi,t (zt, ui,t)

= πT (zT ) +

I∑

i=1

T−1∑

t=0

πi,t (zt, ̟ (θi, zt)) (3)

where θ = vec (θ1, θ2, . . . , θI), πT , πi,t are known nonnega-
tive functions, I is the number of the fine-tuned controllers,
T the finite time-horizon over which the control laws (2)

are applied and DT
△
= [d0, d1, . . . , dT−1] denotes the time-

history of the exogenous signals over the optimization
horizon T . By defining x = vec (z0, DT ), equation (3) may
be rewritten as

J (θ; z0, DK) = J (θ, x) . (4)

The equation (4) indicates that the system performance is
affected by the vector of the tunable parameters θ. The
problem in hand is to develop an appropriate iterative
algorithm, which will be applied every T and will update
the current control system parameters vector θ so as to
achieve better performance, but also provide safe and
efficient behaviour. This means that the algorithm should
guarantee the stable and sustainable system performance.
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4. THE AFT ALGORITHM

The main components of the proposed algorithm are
summarized as follows:

• An approximator Ĵ (θ, x) is used (e.g., a neural network
or a polynomial-like approximator) in order to obtain

an approximation of the non-linear mapping Ĵ (θ, x) =
J (θ, x).

• An on-line adaptive/learning mechanism is employed
for “training” the above approximator. Globally conver-
gent learning algorithms (see e.g., [30], [31]) are required
for such a purpose.

• At each algorithm iteration k, many randomly chosen
candidate perturbations of vector θk are selected and
the effect of each of these perturbations to the LSTCS
performance is estimated by using the approximator
mentioned above; the perturbation that corresponds to
the “best” estimate (i.e., the one that leads to the best

value for Ĵ) is picked to be the new tunable parameter
values θk+1, to be applied at the next period (e.g. the
next day).

4.1 The formation of the performance approximator

As already mentioned, for the approximation of the objec-
tive function J (θ, x) a polynomial-like approximator with
Lg regressor terms is used, which takes the form

Ĵ (θ, x) = ϑτφ (θ, x) (5)

where ϑ denotes the matrix of the approximator parameter
estimates and

φ (θ, x) =
[
φ1 (θ, x) , φ2 (θ, x) , . . . , φLg

(θ, x)
]τ

. (6)

The non-linear functions φi (θ, x) are given by

φi (θ, x) = Sd1(θm1)·S̄
d2(xm2 )·S

d3(θm3), di ∈ {0, 1} (7)

where d1, mi are randomly chosen – at each iteration of
the AFT algorithm – and S(·), S̄(·) are smooth monotone
nonlinear functions. In the neural networks literature [26],
[27] these functions are usually chosen to be “sigmoidal”
functions. In this application we choose

S(θ) = tanh (λ1θ + λ2) , S̄(x) = tanh (λ3x + λ4) (8)

where λi are nonnegative real numbers initially de-
fined by the user; after 4–5 iterations of the algo-
rithm the values of λi are optimized so as to minimize

min
∑k−1

ℓ=1

(
Jℓ − ϑτφ

(k)

ℓ

)2

.

4.2 The structure of the AFT algorithm

This section presents the details and the performance
characteristics of the AFT algorithm. Table 1 presents a
brief description of the design parameters and variables
used within the AFT algorithm, while Table 2 presents
a brief mathematical description of the AFT dynamics.
Since the purpose of this paper is not to present the AFT
algorithm in each and every detail, we present only a brief
description of the algorithm while focusing on application
results; for more details on AFT the reader is referred to
[1]–[4].

As shown in [1]–[4] using strict mathematical arguments,
if the structure of the approximator and its learning

mechanism satisfy certain design considerations (that are
independent of the particular application) then the above
described process guarantees rapid convergence of the
overall maintenance procedure to the same performance
levels that would have been obtained if efficient non-
linear optimization schemes such as the steepest descent or
Gauss-Newton schemes could be applied to the particular
problem. Most importantly, the above-mentioned proce-
dure guarantees safe, stable and efficient transient perfor-
mance in the sense that the system performance during
maintenance remains within acceptable levels that can be,
in the worst case, similar to the system performance before
maintenance started.

Table 1. Variables used within the AFT

k iteration index

ℓ past performance measurements index

Jℓ performance value for the ℓ-th calibration experiment

Ĵℓ an estimate of Jℓ obtained at the ℓ-th iteration

θk the vector of tunable parameters at the k-th calibration

experiment

θ∗
k

the “best” set of tunable parameters until the k-th

experiment

xk the exogenous signals as defined in (3)

x̄k an estimate/prediction of the exogenous signalsxk

∆
(j)
k,i

zero-mean random sequences (e.g. Gaussian)

∆θk the perturbation picked by the algorithm

Remark: The reader is referred to [1] where a procedure
is presented for the construction of x̄k (defined in Table 1)
using detector measurements at the network origins.

Table 2. AFT algorithm description.

1) calculate K random perturbations

∆θ
(j)
k,i

= αk∆
(j)
k,i

− θk−1,i + θ∗
k−1,i

, j ∈ {1, . . . , K}

2) calculate the number of approximator regressor terms

L
(k)
g = min

{
2 (k − 1) , L̄g

}

3) calculate the number of past measurements

ℓk = max {k − Th, 1}

4) produce the polynomial-like approximator

φ
(k)
ℓ

= φ(k) (θℓ, x̄ℓ)

5) calculate the optimal approximator parameter estimates

ϑk 7→ arg minϑ
1
2

∑k−1

ℓ=ℓk

(
Jℓ − ϑτ φ

(k)
ℓ

)2

6) apply the 2K random perturbations ±∆θk
(j) to the Ĵk

Ĵk

(
±∆θ

(j)
k

+ θ∗
k
, x̄k

)
= ϑτ

k
φ(k)

(
±∆θ

(j)
k

+ θ∗
k
, x̄k

)

7) pick the “best” random perturbation (according to the Ĵk)

∆θk = arg max
∆θ

(±j)

k

Ĵk

(
±∆θ

(j)
k

+ θ∗
k
, x̄k

)

αk is a user-defined positive sequence

Th, L̄g, K are user-defined positive integers

θ∗
k

+ ∆θk denotes the vector of tunable parameters picked to be

applied at the next experiment k + 1
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5. APPLICATION TO THE LSTCS TUC

5.1 Brief Introduction to TUC

TUC [24], [6] is a recently developed, efficient real-time
urban traffic control strategy, whose design principles are
based on feedback control theory as opposed to most of the
existing strategies employing model-based optimization
techniques. TUC consists of four distinct interconnected
control modules that allow for real-time control of the
following: (a) green times (split); (b) cycle time; (c) offset
(green wave along an arterial), as well as (d) provision
of public transport priority. These four control modules
are complemented by a fifth data processing module. All
control modules are based on feedback concepts of various
types, which leads to TUC’s computational simplicity
as compared to model-based optimization approaches,
without actually sacrificing efficiency. In this paper, we
will concentrate on the fine-tuning of the TUC split and
cycle control module parameters. Note that, the proposed
algorithm can be applied to the fine-tuning of the other
control modules as well.

We next briefly describe the control laws applied by the
split and cycle control modules. The split is a network-wide
control module, i.e., all available measurements are used to
calculate the green time of each stage via the multivariable
regulator

gts
= gN − Lzts

(9)

where ts = 0, 1, 2, . . . is the discrete time index with sample
time period typically equal to the cycle time duration
C; the vector gts

includes the green times of all stages
in all junctions to be applied during the next cycle; gN

is a prespecified vector of fixed green times (fixed plan)
whose impact on the resulting control was found to be
limited; the vector zts

comprises the numbers of vehicles
in each network link during the last cycle, estimated by
the data processing module; L is the control matrix (with
dimensions number-of-stages/number-of-links) which re-
sults from an off-line applied software code based on the
Linear-Quadratic regulator design procedure. The traffic
data required to calculate L are: saturation flows of links;
average turning rates at junctions; maximum numbers of
vehicles zi,max in links. The aim of (9) is to balance the
relative space occupancies zi/zi,max in the network links,
so as to minimize the risk of queue spillovers which may
lead to a waste of green time and even to gridlocks; to this
end the regulator (9) may apply an inherent gating, i.e.,
reduce the green time of links that feed a saturating road,
even if these links are two or more junctions away.

The number of vehicles zi,ts
for the link i during the last

cycle are estimated via the following equation:

zi,ts
= zi,maxf (oi,ts

, li) bi (10)

where oi,ts
denotes the measured average time-occupancy

(measured usually by loop-detectors located at a certain
distance from the stop light) during the last cycle time;
f(·) is an empirical function [6], [23] constructed from
practical investigations; li denotes the distance of the loop-
detector from the stop line divided by the total link length;
finally, the nonnegative variable bi is used to denote the
influence of the link i to TUCs control decisions. These
parameters are as many as the network links and are the
ones fine-tuned by the AFT.

Cycle control is another module TUC uses to influence
traffic conditions. Longer cycle times typically increase the
capacity of a junction but on the other hand may increase
vehicle delays in undersaturated junctions, due to longer
waiting times during the red phase, or, even worse, create
queue spillovers. Considering the aforementioned remarks,
the objective of cycle control module is to increase the
junctions capacities as much as necessary to limit the
maximum observed saturation level in the network. Within
TUC, this objective is effectuated through the application
of a simple feedback-based regulator that uses as criterion
for the increase or decrease of the cycle, the current
saturation level of a prespecified percentage of the network
links. The cycle module control law takes the form:

Ctc
=

{
CN + K1 (σtc

− σN1) if σtc
≤ σcr

CN − K2 (σtc
− σN2) if σtc

> σcr
(11)

where tc = 0, 1, 2, . . . is the discrete time index of the
cycle control; CN denotes a nominal network cycle time;
the vector σtc

comprises the mean values of the space
occupancies, for the prespecified links, over the last cycle
control period; σN1 , σN2 , σcr ∈ [0, 1] denote user-defined
design parameters; K1, K2 > 0 are network-wide control
parameters, the selection of which affects the intensity
of the control reactions. In other words, high K1, K2

values force the control law to react strongly even for
small differences of σtc

from σNi
. After the application

of (11), the calculated cycle time Ctc
is constrained within

the range [Cmin, Cmax], if necessary, to become feasible,
where Cmin and Cmax are the minimum and maximum
permissible network cycle times, respectively. The variant
interpretable fine-tuned parameters of the cycle control
module are: K1, K2, σN1 , σN2 , σcr.

5.2 Network and simulation set-up

For the simulation experiments of the proposed approach
the road network of the city centre of Chania, Greece, is
considered. The model of the network (Fig. 2) consists
of 16 signalized junctions (nodes) and 60 links (arrows),
which receive green light independently. Each network link
corresponds to a particular junction phase. Typical loop-
detector locations within the Chania urban network links
are either around the middle of the link or some 40 m
upstream of the stop line. It is noteworthy that severe
congestion problems occur in the actual Chania network,
which sometimes leads to grid-lock situations.

The microscopic traffic simulator AIMSUN (v. 6.0.1) [28],
[29] was used for the simulation experiments. The simula-
tion step was set to 0.5 s. The traffic network characteris-
tics (saturation flows, turning rates) and the fixed plan gN

in (9) used in AIMSUN and in TUC were suggested by the
operators of the Traffic Control Centre (TCC) of the city.
Note that, the fixed plan gN is one of the six field-applied
fixed plans used by the TCC. Two basic traffic demand
scenarios (time-history of vehicles entering the network in
the network origins during the day) were designed based on
actual measurements, in order to investigate the behaviour
of the methodology under different traffic conditions. The
simulation horizon for each scenario is 4 hours. Scenario
1 comprises medium demand in all network origins, while
scenario 2 comprises high demand and the network faces
serious congestion for some 2 hours with some link queues
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Fig. 2. The Chania urban road network.

spilling back into upstream links. Each day – iteration of
the AFT – a randomly perturbed 5%-width version of the
basic demand scenarios was used. Note that a 5%-width
random perturbation makes small difference in the whole
network’s traffic behaviour for the first scenario, but may
cause intense system oscillations to demand scenario 2.

The TUC parameters used for the simulation experiments
were ts = C, tc = 600s, Cmin = 60s, Cmax = 120s, CN =
Cmin. Also, for the implementation of AFT the following
parameter values were used for the experiments: Th = 90,
L̄g = 150, K = 20, αk = α = 0.1 and initial values
to λi according to λ1 = 100, λ3 = 0.1, λ2 = λ4 = 0.
The assessment criterion J ≡ ms was set the actual daily
network mean speed, as calculated by the simulator AIM-
SUN. Finally, the initial values for the tunable parameters
were chosen so as to correspond to values that usually are
chosen during the initial implementation of TUC in prac-
tical applications. More precisely, the parameters θ were
initialized according to bi = 1∀i, K1 = 240, K2 = 300,
σN1 = 0.15, σN2 = 0.6, σcr = 0.4.

5.3 Simulation Results

The AFT exhibited an impressive performance when ap-
plied to both medium and high traffic demand scenarios
as shown in Fig. 3 and 4. More precisely, AFT achieves
to optimize the overall system performance within few
days, by efficiently fine-tuning both split and cycle control
modules’ parameters, while avoiding decreasing the daily
mean speed lower than the initial point. The trajectory
of the system performance (mean speed) is persistently
increasing in both scenarios until it converges to a local
maximum value (Fig. 3). This corollary is not clearly
represented in Fig. 4, due to the high sensitivity of the
system performance to the random changes of the demand
scenario, but still in terms of average values the system
performance is improved by the use of AFT.

Table 3 displays the average mean speed of the experi-
ments for each scenario, without the use of AFT, with the
implementation of AFT, as well as the standard devia-
tion of the mean speed for every simulated scenario. The
comparison of the simulation results indicates that AFT
achieves an average improvement to the system perfor-

mance of some 14% for demand scenario 1 and some 31%
for the higher demand scenario 2.

Fig. 5–10 exhibit the trajectories of the system tunable
parameters for both simulated scenarios. AFT increases
the value of the impact factors bi (split control parameters)
for the important links of the network, while for others –
not so crucial for the overall system performance – this
weight is decreased (Fig. 5 and 8). Finally, the cycle control
parameters are also fine-tuned according to the special
characteristics of each scenario (Fig. 6–7 and 9–10).
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Fig. 3. Mean speed trajectory for the demand scenario 1.
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Fig. 4. Mean speed trajectory for the demand scenario 2.
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Table 3. Comparison of the average mean speed (ms).

average ms (km/h) ms deviation (km/h) comparison
scenario without AFT with AFT without AFT average ms

1 16.39 18.72 0.39 14.22%
2 7.94 10.41 0.94 31.11%
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Fig. 5. Trajectories of the split control parameters (sce-
nario 1).

2 4 6 8 10 12 14 16 18 20 22
200

220

240

260

280

300

320

340

360

380

400

iteration number

K
1

K
2

Fig. 6. Trajectories of the cycle parameters K1, K2 (sce-
nario 1).
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Fig. 7. Trajectories of the cycle parameters σN1 , σN1 , σcr

(scenario 1).

The average computational time for every iteration of the
algorithm is about 20 min, which means that the imple-
mentation of AFT in a real-time large-scale application
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Fig. 8. Trajectories of the split control parameters (sce-
nario 2).
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Fig. 9. Trajectories of the cycle parameters K1, K2 (sce-
nario 2).
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Fig. 10. Trajectories of the cycle parameters σN1 , σN1 , σcr

(scenario 2).

would be feasible, regardless of the type of the operating
Traffic Control System. At the end of each day AFT col-
lects all the necessary data and calculates the new tunable
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parameters to be applied next day aiming to improve the
Traffic Control System performance.

6. CONCLUSIONS AND FUTURE WORK

Preliminary simulations results using the complicated traf-
fic network of the city of Chania, establish the comparative
efficiency of the AFT algorithm. Results indicate that AFT
can improve the overall system performance, when used to
fine-tune the parameters of the mutually-interacting split
and cycle control modules of the urban control strategy
TUC. Future work will deal with experiments of AFT with
all TUC control parameters (split, cycle, offset), as well
as with investigations on on-line generation of the gain
sequences αk, which could possibly increase the efficient
performance of the algorithm.
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