Profile of tree-related microhabitats in European primary beech-dominated forests

Journal Article

Author(s):

Kozák, Daniel; Mikoláš, Martin; Svitok, Marek; Bače, Radek; Paillet, Yoan; Larrieu, Laurent; Nagel, Thomas A.; Begovič, Krešimir; Čada, Vojtěch; Diku, Abdulla; Frankovič, Michal; Janda, Pavel; Kameniar, Ondrej; Keren, Srđan; Kjučukov, Peter; Lábusová, Jana; Langbehn, Thomas; Málek, Jakub; Mikac, Stjepan; Morrissey, Robert C.; Nováková, Markéta H.; Schurrman, Jonathan S.; Svobodová, Kristýna; Synek, Michal; Teodosiu, Marius; Toromani, Elvin; Trotsiuk, Volodymyr © © Vítková, Lucie; Svoboda, Miroslav

Publication date:

2018-12

Permanent link:

https://doi.org/10.3929/ethz-b-000278780

Rights / license:

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:

Forest Ecology and Management 429, https://doi.org/10.1016/j.foreco.2018.07.021

Profile of tree-related microhabitats in European primary beech-dominated forests
**Daniel Kozák1*, **Martin Mikoláš1,2, Marek Svitok3,4, Radek Bače1, Yoan Paillet5, Laurent Larrieu6, Thomas A. Nagel ${ }_{1,7}$, Krešimir Begovič 1 , Vojtěch Čadaı, Abdulla Dikus, Michal Frankovič 1 , Pavel Jandaı, Ondrej Kameniarı, Srđan Keren9, Peter Kjučukovı, Jana Lábusováı, Thomas Langbehnı, Jakub Málek1, Stjepan Mikac ${ }_{10}$, Robert C. Morrissey1, Markéta Nováková1, Jonathan S. Schurrmanı, Kristýna Svobodová1, Michal Synek1, Marius Teodosiu 11,12 , Elvin Toromani13, Volodymyr Trotsiuk1,14,15,16, Lucie Vítková 1 Miroslav Svoboda1
**These authors contributed equally to the work
${ }_{1}$ Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 - Suchdol 16521, Czech Republic 2 PRALES, Odtrnovie 563, 01322 Rosina, Slovakia

3 Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Masaryka 24, 96053 Zvolen, Slovakia

4 Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
${ }_{5}$ Irstea, UR EFNO, Domaine des Barres, 45290 Nogent-sur-Vernisson, France
${ }_{6}$ INRA, UMR1201 DYNAFOR, Chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet Tolosan Cedex, France; laurent.larrieu@inra.fr; and CRPFOcc, 7 chemin de la Lacade, 31320 Auzeville Tolosane, France
${ }_{7}$ Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
${ }_{8}$ PSEDA-ILIRIA organization, Tirana 1000, Albania

9 Department of Biometry and Forest Productivity, Faculty of Forestry, University of Agriculture in Krakow, al. 29-Listopada 46, 31-425 Krakow, Poland

10 University of Zagreb, Forestry Faculty, Department of Forest Ecology and Silviculture, Svetošimunska 25, 10002, Zagreb, Croatia
${ }_{11}$ "Marin Drăcea" National Research-Development Institute in Forestry, Station Câmpulung Moldovenesc, Calea Bucovinei 73b, 725100 Câmpulung Moldovenesc, Suceava, Romania

12 Ștefan cel Mare University of Suceava, Universităţii 13, 720229 Suceava, Romania
${ }_{13}$ Agricultural University of Tirana, Faculty of Forestry Sciences, 1029 Koder-Kamez, Albania
14 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland

15 SwissForestLab, CH-8903 Birmensdorf, Switzerland
16 Institute of Agricultural Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
*Corresponding author at: Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 - Suchdol 16521, Czech Republic.

E-mail address: kozakd@fld.czu.cz (D. Kozák)

Abstract

Tree-related microhabitats (TreMs) are important features for the conservation of biodiversity in forest ecosystems. Although other structural indicators of forest biodiversity have been extensively studied in recent decades, TreMs have often been overlooked, either due to the absence of a consensual definition or a lack of knowledge. Despite the increased number of TreM studies in the last decade, the role of drivers of TreM profile in primary forests and across different geographical regions is still unknown. To

evaluate the main drivers of TreM density and diversity, we conducted the first large-scale study of TreMs across European primary forests. We established 146 plots in eight primary forests dominated by European beech (Fagus sylvatica L.) in the Carpathian and Dinaric mountain ranges. Generalized linear mixed effect models were used to test the effect of local plot characteristics and spatial variability on the density and diversity (alpha, beta, and gamma) of TreMs. Total TreM density and diversity were significantly positively related with tree species richness and the proportion of snags. Root mean square tree diameters were significantly related to alpha and gamma diversity of TreMs. Both regions reached similarly high values of total TreM densities and total TreM densities and diversity were not significantly different between the two regions; however, we observed between the two regions significant differences in the densities of two TreM groups, conks of fungi and epiphytes. The density and diversity of TreMs were very high in beech-dominated mountain primary forests, but their occurrence and diversity was highly variable within the landscapes over relatively short spatial gradients (plot and stand levels). Understanding these profile provides a benchmark for further comparisons, such as with young forest reserves, or for improving forest management practices that promote biodiversity.

Key words: Biodiversity indicators, Old-growth, Mountain beech forest, TreMs, Snags, Habitat tree

1. Introduction

The natural development and the varied timing and intensity of disturbances within primary forests often results in high levels of structural heterogeneity (Bauhus et al., 2009). Certain structural elements, such as high volumes of accumulated standing and lying deadwood (Nagel et al., 2017a), large canopy (veteran) trees (Commarmot et al., 2013), and a diverse array of tree-related microhabitats (TreMs; Larrieu et al., 2018), are often abundant in primary forests. These structural elements are important features for the maintenance and conservation of biodiversity (Lindenmayer et al., 2006), and they are widely recognized as an important feature of conservation management plans (Kraus and Krumm, 2013). Although structural indicators of forest biodiversity have been a major research topic in recent decades, TreMs have often been overlooked, either due to the absence of a consensual definition or a
lack of knowledge (Paillet et al., 2017). Larrieu et al. (2018) defined TreMs as a distinct, well-delineated structure occurring on living or standing dead trees that constitute a particular and essential substrate or life site for species or communities to develop, feed, shelter, or breed during at least a part of their life cycle. They are specific aboveground tree morphological singularities that are not found on every tree. The origins of TreMs encompass both endogenous modifications, caused by biotic and abiotic factors, such as intrusions, lesions, and breakages that expose sap and heartwood and initialize outgrowth structures and wood decay (saproxylic TreM), as well as exogenous elements that are physically linked to the tree (epixylic TreM).

Many recent TreM studies have largely been conducted in managed forests or forest reserves historically influenced by harvesting (e.g., Paillet et al., 2017; Regnery et al., 2013a; Vuidot et al., 2011), and studies have been largely restricted to a few distinct forest types in the Mediterranean, Western Europe, and the USA (Larrieu and Cabanettes, 2012; Michel and Winter, 2009; Regnery et al., 2013b; Winter et al., 2015). Forest management often encourages the production of uniform stands through the logging of high value trees and the removal of damaged or large trees with limited economic value. Conventional forest management systems sometimes create TreMs, such as dendrothelms or bark loss, due to damage during harvesting operations (Larrieu et al., 2012; Vuidot et al., 2011). However, most of the TreM types are typically removed or never develop (Paillet et al., 2017). It is widely documented that TreMs are more abundant and diverse in unmanaged stands (e.g., Paillet et al., 2017; Winter and Moller, 2008; Winter et al., 2015). The negative effects of forest management on the occurrence of TreMs can largely be explained by the lack of structural features and differences in tree species composition (Keren et al., 2017). Many of these structural components, such as snags and large trees, are considered to be important drivers of TreM diversity and abundance (Keren and Diaci, 2018; Larrieu and Cabanettes, 2012; Michel and Winter, 2009; Vuidot et al., 2011). Only a few studies have been conducted in forests that have developed naturally for at least a century (Larrieu et al., 2014a,b; Courbaud et al., 2017). Primary forests may serve as suitable reference points compared to forests with former management because they tend to have more complex structure and are thus more favorable for many forest-dwelling species (Hunter, 1999; Peterken, 1996).

The importance of studies carried out in primary forests has increasingly been recognized (Commarmot et al. 2013), however, the temperate forests of Europe have a complex land use history, as they have been used for a variety of purposes, such as for fuel wood, pasture, and timber extraction, since ancient times (Sabatini et al., 2018; Veen et al., 2010). Despite extensive forest exploitation in the middle ages and intensive commercial forest management more recently, large patches of primary forests were spared in some remote mountainous areas of central, eastern, and southeastern European countries (Veen et al., 2010). Within Europe, the southeastern European mountain ranges (Carpathians, Dinarides) contain some of the largest areas of well-preserved primary forests, primarily in old-growth stages of development, dominated by European beech (Fagus sylvatica L.)(Meyer et al., 2003; Standovár and Kenderes, 2003). There are currently few censuses of TreMs from primary forests because these forests are rare in Europe and they are usually located in remote mountain regions (Parviainen, 2005; Sabatini et al., 2018).

Despite the increased number of TreM studies in the last decade, the role of drivers of TreM densities and diversity is still unknown at the plot and stand scales across different geographical regions (Paillet et al., 2017). Differences in precipitation, temperature, topography, soils, and bedrock play an important role in the development of forest structure, and TreMs develop at differing rates (Paillet et al., 2017). Natural disturbance regimes are another important driver of stand structure in primary forests (Schurman et al., 2018), and studying remnants of primary forests may help us understand the spatial distribution of TreMs under natural conditions (Larrieu et al. 2018). External biotic factors, such as population dynamics of woodpeckers that create cavities, may also influence the production of certain TreMs (Remm and Lõhmus 2011).

This study examines TreM profile from temperate primary forests dominated by European beech in two distinct mountainous regions - the Carpathians and Dinarides. Our objectives were: (i) to provide reference values of TreM density and diversity measures in mountainous mixed beech primary forests and (ii) to evaluate the importance of local plot structure and spatial variability for TreM density and diversity.

2. Material and methods

2.1 Study area and site selection

We refer to "primary forest" as a forest without signs of direct human impact (Figure 1, Table 1), and where natural disturbances are the primary driver of forest structure and composition. These forests not only include old growth, but also the early seral stages of development. Potential study forests were selected using previous inventories of primary forest remnants when available (e.g., Veen et al., 2010), searching the available archival information, and historical data regarding the land use history of these areas. Almost all study forests are parts of formally protected areas (i.e., national parks, natural parks, strict forest reserves, UNESCO World Heritage sites), or they are proposed to soon be part of protected areas (i.e., Curai i Eperm, Ramino Korito). During the initial field surveys, all forests were inspected for various indicators of naturalness (e.g., coarse woody debris in various stages of decay, pit-and-mound topography, large trees, natural tree species composition) and signs of human impact; forests with evidence of past logging and grazing and those in close proximity (ca. 500 m) to formerly grazed areas were avoided. Preliminary dendrochronological analysis of selectively chosen tree cores from the study stands (30-40 trees per stand) revealed that a significant number of trees in each stand were older than 350 years, and one tree was even more than 450 years old (located at Perućica).

We selected four primary European beech-dominated mountain forests from both regions. Stands from the Carpathian Mountains spanned Slovakia and Romania, and those from the Dinarides were located in Croatia, Bosnia and Herzegovina, and Albania. The dominant tree species in these forests was European beech, mixed with mainly silver fir (Abies alba Mill.), maples (Acer spp. L.), and ashes (Fraxinus spp. L.).

In the Carpathians, the Slovakia Havešová (HAV) study site was located in the Bukovské Mountains. Havešová lies within Poloniny National Park and it is part of the UNESCO World Heritage - Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany. In Romania, the selected study forests, Bistra Valley (BIS), Crivia (CRI), and Paulic (PAU), were located in the Maramures Mountains, which are formally protected within Maramures Natural Park, located on the Romanian-Ukrainian border.

In the Dinarides, the Ramino Korito (RAM) study site is situated in Velebit Nature Park in the Velebit Mountains of Croatia. The Curraj i Eperm (CUR) and Lumi i Gashit (LUM) sites are part of Nikaj-Mërtur Regional Nature Park located in the Albanian Alps. Lumi i Gashit (Gashi River) is also part of the UNESCO World Heritage - Primeval Beech Forests of the Carpathians and Other Regions of Europe. The site in Bosnia and Herzegovina was located in the Perućica primary forest (PER), which is part of Sutjeska National Park.

There are broad environmental differences between our study sites of the Eastern Carpathians and the Dinarides that are important to point out (Table 1). The average annual precipitation and temperature are higher in the Dinaric region compared to the Carpathian sites. Bedrock in the Dinaric sites is primarily limestone, while in the Carpathians sites it is primarily flysch and gneiss. The sites in the Carpathians were also located on steeper slopes.

Figure 1. Locations of primary forest study areas in the Carpathians and Dinarides

Table 1

Study stand characteristics from the Dinaric (CUR, LUM, PER, RAM) and Carpathian (CRI, HAV, BIS, PAU) mountain ranges. Climate characteristics were obtained using the KNMI Climate Explorer (Oldenborgh et al., 2009). Mean temperature and mean annual precipitation were calculated using measurements from 1901 to 2016.

Country	Forest	$\begin{gathered} \text { Numbe } \\ \text { r of } \\ \text { plots } \end{gathered}$	Elevation range (m a.s.l.)	Mean annual precipitation (mm)	Mean temperature range (${ }^{\circ} \mathrm{C}$)	Average slope (${ }^{\circ}$)	DBH mean (DBH max) (cm)	BroadleavedConiferous ratio (\%)	Snags (\% from all trees)	Mean number of trees per ha ($\mathrm{DBH}>6$ cm)	Mean number of TreM- bearing trees per ha
	Dinarides										
Albania	Curraj i Eperm (CUR)	14	1019-1287	1237	7.1-8.4	19.6	24.9 (124.1)	99:1	13	878	306.7
Albania	Lumi i Gashit (LUM)	14	1223-1682	1162	5.9-7.9	27.4	26.1 (135)	58:42	8	820	247.6
Bosnia	Perućica (PER)	48	1057-1450	1157	5-7.2	24.7	24.4 (134.5)	60:40	12	951	321.4
Croatia	Ramino Korito (RAM)	16	820-984	1299	8.1-8.9	15.4	32.1 (97.9)	91:9	16	518	281.6
	Carpathians										
Romania	Crivia (CRI)	14	874-1147	862	4.2-5.6	34.7	28.1 (120)	77:23	7	533	311.4
Romania	Paulic (PAU)	12	942-1097	830	4.4-5.2	33.7	32.2 (163)	76:24	17	559	350.6
Romania	Bistra (BIS)	14	959-1154	830	4.1-5.1	35.4	32.2 (107.6)	69:31	9	477	176.7
Slovakia	Havešová (HAV)	14	615-710	815	6-6.5	23.4	25.5 (130)	100:0	13	572	226.7

2.2 Stand structural data

For the selection of permanent study plots, a polygon network (10 ha each) was created using the ArcView 9.3 Environment (ESRI ArcGIS, 2011). Within each 10-ha polygon we generated a random point to establish sampling points where we established two plots. The paired plots consisted of two $1,500 \mathrm{~m} 2$ circular plots (radius of 21.85 m); each plot center was located 40 m in opposite directions from the random sample point and parallel to the slope contour (Appendix 1). We established 146 permanent research plots nested within 73 pairs of plots across 8 forest stands. For each tree with diameter at breast height $(\mathrm{DBH}) \geq 6 \mathrm{~cm}$, the status of all trees (live or snag), tree species, and TreM presence/absence were recorded.

2.3 TreM data

For all study plots, each tree, including the stem and crown, was visually inspected for TreMs by two observers. Based on the typology of Vuidot et al. (2011), we created a list of 30 TreM types that we used to classify TreMs on our plots. All living trees with a DBH $>6 \mathrm{~cm}$ and snags located within the plots were searched for presence of TreMs (Appendix 2); we surveyed 13,640 living trees and snags in total. We arranged the TreM types into 12 groups for further analysis according to Paillet et al. (2017): crown deadwood, broken tops, conks of fungi, woodpecker cavities, non-woodpecker cavities, base cavities, bark characteristics, cracks, outgrowths, patches with exudates, epiphytes, and dendrothelms. All TreMs were surveyed in 2015 and 2016 during the period of June to September.

2.4 TreM characteristics

Diversity and density measures of TreMs were quantified for each sample plot. To reflect the diversity of TreM types, diversity was defined in terms of the number of TreM types occurring within the plot. Alpha diversity was defined as the average number of TreM types per tree in a given plot. Because the number of trees varied widely among plots (27-277 trees per plot), gamma diversity was calculated as the total number of TreM types per plot standardized by rarefaction to a common
abundance level ($\mathrm{n}=27$ trees) to ensure comparability across plots (Chao et al., 2014). Beta diversity was defined as the ratio of gamma to alpha diversity, as originally proposed by Whittaker (1960); this ratio measures the degree to which TreM composition changes from tree to tree within a given plot.

To identify TreM densities, we used the index proposed by Paillet et al. (2017), i.e. the density of TreM-bearing trees, which allowed us to compare our results with other studies that used the same indices. Density of TreMs was quantified as the sum of TreM-bearing trees extrapolated to one hectare (Paillet et al., 2017). To determine the number of trees per plot bearing a given TreM type, each TreM type found on a tree was counted only once, even if it was present in greater numbers. Diversity and density measures were also calculated for several broad groups of TreM types (Table 2), in which case when we refer to density, it defines the density of trees bearing a particular TreM type. A major advantage of this sampling design was the minimal amount of time an observer needed to access TreMs in the field. Although we did not record the true abundance of all TreM types, our approach allowed us to compare our TreM data with other studies that used the same method (e.g., Paillet et al., 2017; Vuidot et al. 2011).

2.5 Data analyses

Generalized linear mixed models (GLMMs) were used to assess the effect of local plot structure and spatial variability on diversity and density characteristics of TreMs. Fixed effects included tree species richness (i.e., total number of tree species per plot), RMS DBH (root mean square diameter of trees at breast height in a given plot), proportion of snags (proportion of snags per plot versus total number of trees), and region (Dinarides and Carpathians). The random effects structure mirrored the spatial hierarchical nature of the sampling design, including plots nested within pairs of plots, which were nested within stands nested within regions. In the models of TreM density, the tree density per plot was treated as a nuisance variable to account for a trivial positive relationship between tree density and TreM density. Because diversity and density of TreMs are strictly positive and continuous variables, we used GLMMs with a gamma error distribution and log link function (McCullagh and Nelder, 1989). Model parameters were estimated using Laplace approximation and their significance was tested using
likelihood ratio tests (Bolker et al., 2009). There was no serious multicollinearity observed in the models (all VIFs < 2.3). To compare the relative importance of the fixed effects, we calculated semi-partial marginal determination coefficients ($\mathrm{R}_{2 \mathrm{~m}}$; Nakagawa et al., 2017) derived from a commonality analysis (Ray-Mukherjee et al., 2014). The intraclass correlation coefficients (ICC) were used to quantify the proportion of variance explained by each of the hierarchical spatial levels. All analyses were performed in R language version 3.4.3 (R Core Team, 2017) using the lme 4 library (Bates et al., 2015).

3. Results

3.1 Total TreM densities

Total mean density of TreM-bearing trees (number of trees bearing at least one TreM) was similar in the Carpathians (266.4 bearing-trees ha-1) and Dinarides (289.3 bearing-trees ha-1). The average density of TreM-bearing trees for all stands was 277.8 TreM-bearing trees ha-ı. Epiphytes (128.8 bearing-trees ha-1), bark characteristics (101.2 bearing-trees ha-1), base cavities (65.2 bearing-trees ha1), and non-woodpecker cavities (41.3 bearing-trees ha-1) had the highest TreM densities in both regions (Table 2). The lowest densities were observed for outgrowths (9.9 bearing-trees ha-1) and dendrothelms (4.6 bearing-trees ha-1). In the Carpathians, bark characteristics (112.7 bearing-trees ha-1) and base cavities (98.9 bearing-trees ha-1) had the highest densities, and dendrothelms (1.6 bearing-trees ha-1) had the lowest density. The Dinarides were characterized by high TreM densities of epiphytes (168.7 bearing-trees ha-1) and non-woodpecker cavities (48.7 bearing-trees ha-1), and low densities of patches with exudates (8.6 bearing-trees ha-1), outgrowths (7 bearing-trees ha-1), and broken tops (10.1 bearingtrees ha-1).

3.2 Key factors to the diversity of TreMs

Tree species richness, RMS DBH, and the proportion of snags showed significant relationships to TreM alpha diversity (i.e., the mean number of TreM types per tree), and gamma diversity (i.e., the total number of TreM types per plot; Table 3). All these habitat properties were positively correlated with the TreM diversity measures (Figure 2). RMS DBH displayed a relatively strong relationship with TreM alpha $\left(\mathrm{R}_{2 \mathrm{~m}}=12.2 \%\right)$ and gamma diversity $\left(\mathrm{R}_{2 \mathrm{~m}}=13.2 \%\right)$, but the effect of tree diversity was
rather negligible $\left(\mathrm{R}_{2 \mathrm{~m}} \leq 0.6 \%\right)$. In contrast, beta diversity, the TreM turnover among trees, was unaffected by tree DBH. Considering spatial variability, alpha, beta, and gamma diversity of TreMs varied widely within paired plots (ICC > 35\%) and also among pairs within stands (ICC ~ 23-25\%). The contribution of stands to the observed variation was less obvious, but still important (ICC $\sim 9-14 \%$), with the exception of beta diversity, where the between-stand component of variance was not significant. We did not find any significant differences in TreM diversity between the Carpathians and Dinarides.

3.3 Key factors to the density of TreMs

Total density of TreMs was significantly and positively correlated with tree species richness and the proportion of snags in plots; RMS DBH showed no significant relationship with total TreM density (Figure 2). Total TreM density significantly varied among plots, pairs of plots, and stands, but there was no significant difference in overall TreM density between regions (Table 3).

The density of broken tops, patches with exudates, and epiphytes displayed a significant and positive relationship with tree species richness. RMS DBH was positively related with density of conks of fungi, base cavities, epiphytes, and outgrowths, and it was negatively related with crown deadwood and density of broken tops. The density of most TreMs was significantly correlated with the proportion of snags, both positively (crown deadwood, conks of fungi, woodpecker, bark characteristics, patches with exudates) and negatively (outgrowth). Significant differences between regions were observed for the density of conks of fungi and epiphytes; the first group showed higher densities in the Carpathians, while the latter group was higher in Dinarides. There was also a higher density of outgrowths and broken tops in the Carpathians, although the relationships were marginally non-significant (Table 3). These large-scale geographic trends were accompanied by high similarity of TreM densities among stands within regions (non-significant stand effects). In contrast, densities of the other TreM groups varied considerably at smaller spatial scales (plots, pairs of plots, stands), and consistent large-scale differences between regions were not evident.

Table 2

Tree-related microhabitat densities for different TreM groups for the Carpathian and Dinaric mountain ranges, including total, living trees, and snags. All
densities are presented as ha-1 values.

TreM group	Total TreM density	Carpathians	Dinarides	Snags total	Snags Carpathians	Snags Dinarides	$\begin{gathered} \text { Living trees } \\ \text { total } \\ \hline \end{gathered}$	Living trees Carpathians	Living trees Dinarides
Crown deadwood	33.1	31.6	33.9	1.5	2.8	0.7	31.6	28.8	33.3
Broken tops	17.3	29.6	10.1	3.8	6.9	2.0	13.5	22.7	8.1
Conks of fungi	21.8	33.1	15.2	17.7	26.4	12.6	4.1	6.7	2.6
Woodpecker cavities	13.3	15.9	11.7	11.1	12.5	10.3	2.2	3.5	1.4
Non-woodpecker cavities	41.3	28.8	48.7	10.2	7.2	12.0	31.1	21.6	36.7
Base cavities	65.7	98.9	46.2	8.0	10.5	6.5	57.7	88.4	39.7
Bark characteristics	101.2	112.7	94.4	59.1	53.6	62.3	42.1	59.1	32.1
Cracks	30.3	23.7	34.2	7.9	10.4	6.4	22.5	13.3	27.8
Outgrowth	9.9	14.8	7.0	0.8	0.7	0.8	9.1	14.1	6.2
Patches with exudates	16.0	28.5	8.6	1.1	1.5	0.9	14.8	27.0	7.7
Epiphytes	128.8	60.7	168.7	15.8	11.5	18.3	113.0	49.3	150.4
Dendrothelms	4.2	1.6	5.8	0.2	0.0	0.3	4.1	1.6	5.5
SUM	482.9	480.0	484.6	137.1	144.0	133.0	345.8	336.0	351.6

Table 3

Summary of GLMMs relating diversity (alpha, beta, gamma) and density of microhabitats to fixed and random effects. Likelihood ratio test statistics (χ^{2}), probabilities (p), semi-partial marginal determination coefficients ($\mathrm{R}_{2 \mathrm{~m}}$ [\%]), and intra-class correlation coefficients (ICC [\%]) are displayed. Significant positive/negative partial relationships (r) are designated by $+/-$ signs, respectively; inequality signs are used for comparisons between Carpathians (C) and

311 Dinarides (D). Model parameters were considered significant at 5\% and are highlighted in bold.

Model	Fixed effects																Random effects								
	Tree species richness				RMS DBH				Proportion of snags				Region				Stand			Paired plots			Plot		
	χ_{2}	p	R2m	r	χ_{2}	p	$\mathrm{R}_{2 \mathrm{~m}}$	r	χ_{2}	p	R2m	r	χ^{2}	p	$\mathrm{R}_{2 \mathrm{~m}}$	r	χ^{2}	p	ICC	χ^{2}	p	ICC	χ^{2}	p	ICC
Alpha diversity	6.3	0.0121	0.6	+	64.3	< 0.0001	12.2	+	41.8	< 0.0001	7.2	+	0.3	0.6152	1.4		8.6	0.0034	9.4	84.3	< 0.0001	23.0	107.9	< 0.0001	48.0
Beta diversity	9.9	0.0016	2.2	+	1.5	0.2223	<0.1		12.4	0.0004	4.6	+	2.8	0.0962	9.0		2.2	0.1395	11.7	64.3	< 0.0001	24.3	74.5	< 0.0001	42.1
Gamma diversity	10.5	0.0012	0.2	+	52.9	< 0.0001	13.2	+	16.5	0.0001	2.6	+	1.0	0.3176	5.5		11.8	0.0006	13.6	62.9	< 0.0001	25.2	63.5	< 0.0001	36.5
Density																									
All microhabitats	10.6	0.0011	7.3	$+$	< 0.1	0.8353	< 0.1		29.7	< 0.0001	14.4	$+$	0.1	0.7811	<0.1		4.7	0.0294	5.7	100.9	< 0.0001	33.8	85.7	< 0.0001	44.0
Crown deadwood	0.4	0.5135	0.2		15.2	0.0001	7.2	-	4.4	0.0367	1.9	$+$	0.1	0.7995	< 0.1		8.1	0.0044	12.0	3.5	0.0601	18.0	0.0	0.9708	0.0
Broken tops	4.3	0.0376	< 0.1	$+$	5.6	0.0181	1.5	-	1.0	0.3063	<0.1		3.2	0.0727	13.9		10.3	0.0013	19.7	50.0	< 0.0001	26.3	28.2	< 0.0001	32.8
Conks of fungi	0.4	0.5268	<0.1		15.3	0.0001	7.4	+	11.8	0.0006	6.1	$+$	5.6	0.0178	13.3	C > D	5.4	0.0203	18.3	10.5	0.0012	12.6	15.6	0.0001	41.1
Woodpecker cavities	0.1	0.7610	0.0		< 0.1	1.0000	< 0.1		21.5	< 0.0001	9.9	+	0.1	0.6993	0.8		8.4	0.0038	11.7	60.6	< 0.0001	29.5	50.1	< 0.0001	39.4
Non-woodpecker cavit.	0.6	0.4444	1.4		0.8	0.3672	0.5		3.2	0.0715	2.1		2.2	0.1419	10.5		6.6	0.0103	10.3	29.7	< 0.0001	14.8	55.7	< 0.0001	56.2
Base cavities	0.2	0.6821	0.7		6.4	0.0112	4.6	$+$	3.1	0.0769	4.8		0.8	0.3585	5.7		18.9	< 0.0001	18.7	14.0	0.0002	17.3	2.9	0.0910	40.6
Bark characteristics	0.8	0.3864	0.4		1.3	0.2631	< 0.1		50.9	< 0.0001	18.8	+	0.8	0.3583	2.1		5.4	0.0206	7.1	70.6	< 0.0001	25.8	99.3	< 0.0001	50.6
Cracks	2.8	0.0932	3.4		<0.1	0.8959	< 0.1		1.0	0.3172	0.9		1.5	0.2140	2.4		0.2	0.6855	1.6	26.0	< 0.0001	16.0	32.2	< 0.0001	62.6
Outgrowth	0.1	0.7428	0.7		7.0	0.0082	1.6	+	7.6	0.0058	1.2	-	3.8	0.0507	8.3		3.7	0.0529	13.6	20.3	< 0.0001	22.4	12.5	0.0004	31.3
Patches with exudates	10.2	0.0014	4.3	+	0.3	0.6099	< 0.1		4.7	0.0299	1.2	+	1.6	0.2124	8.1		22.5	< 0.0001	25.8	53.4	< 0.0001	17.8	66.8	< 0.0001	40.3
Epiphytes	11.4	0.0007	8.9	+	5.4	0.0204	0.5	+	0.5	0.4768	0.9		6.4	0.0116	13.9	C < D	<0.1	0.9968	5.6	51.1	<0.0001	37.1	19.9	< 0.0001	27.6
Dendrothelms	< 0.1	0.9658	< 0.1		2.1	0.1446	1.0		2.5	0.1146	1.2		2.6	0.1098	6.9		1.3	0.2572	10.9	42.2	< 0.0001	26.0	35.6	< 0.0001	33.2

313

Figure 2. Effect plots showing the results of GLMMs testing for the effect of tree species richness, RMS DBH, proportion of snags, and region on diversity (alpha, beta and gamma) and density of TreMs. Predicted values (lines, circles) are displayed along with 95% confidence intervals (gray polygons, error bars).

4. Discussion

Preserving the diversity of organisms that rely on specific forest structures is a key conservation challenge as forest management intensifies across the globe (Hansen et al., 2013; Mori and Kitagawa, 2014). Our assessment of TreM densities in primary forests provides a valuable benchmark for forest
managers and policy makers that seek to implement structures that will benefit a host of species of conservation concern (Vuidot et al., 2011). We performed the first quantitative TreM analyses and comparison of TreM diversity in primary mixed beech-dominated forests in two distinct mountainous regions - the Carpathians and Dinarides. The primary drivers of TreM density (number of trees bearing a particular TreM per hectare) and diversity (richness of TreM types) at the plot scale in these forests were structural characteristics, such as RMS DBH, tree species composition, and proportion of snags. Geographical distance between regions did not play an important role in TreM densities and diversity, either at the alpha, beta, or gamma levels. Our study highlights that TreM densities observed in the primary forests were significantly higher in comparison to densities presented in studies from managed forests (e.g., Larrieu et al. 2012; Paillet et al., 2017).

We observed a significant increase in total TreMs density and alpha and gamma diversity of TreM types with an increased proportion of snags and tree species richness. Several studies have already observed the importance of snags, large living trees, and different tree species for densities of TreM types (Larrieu and Cabanettes, 2012; Larrieu et al., 2014a; Vuidot et al., 2011). Tree diameter has also been recognized as an important factor in TreM dynamics across different forest types; it has been observed to influence the abundance of TreMs (Larrieu and Cabanettes, 2012), the diversity of TreM types (Larrieu et al. 2014a; Vuidot et al., 2011), or the occurrence of some TreM types, such as bark characteristics (Michel and Winter, 2009). Large diameter trees were also important in our study, especially for alpha and gamma diversity of TreMs, and densities of some TreM types. We did not find a significant relationship between DBH and total TreM density; most studies that observed a significant relationship between tree diameter and TreM used the DBH of the individual tree bearing the TreM. In contrast, we used RMS DBH of the trees on a plot, which likely introduced noise into the relationship given the mixed severity disturbance regimes of the region, and we also counted only one TreM type on each TreM-bearing tree, which may also further mask any relationship between diameter and density of TreMs. Tree species composition is another factor that has been observed to influence total TreM density and diversity (Larrieu and Cabanettes, 2012; Larrieu et al., 2014a; Vuidot et al., 2011). Tree species diversity has also been observed to positively influence densities of some specific TreMs, such as broken
tops, patches with exudates, and epiphytes. Patches with exudates, such as sap-runs and gummosis, are more likely to be found on deciduous trees (Siitonen, 2012), while the excurrent growth habit of conifers makes them more susceptible to broken tops. The proportion of snags had a significant effect on TreM diversity at the alpha, beta, and gamma levels, and also on the overall density of TreMs (Table 3). However, we observed that all TreM types were present within the living trees and snags as well, which may be due to partial mortality, whereby dead wood occurs on living trees, which is characteristic of very large trees (Siitonen, 2012) that could bear TreMs normally present on dead trees in managed forests (e.g., woodpecker feeding holes). Our findings emphasize the importance of snags in broadleaved stands because they promote increased TreM diversity and densities within beech-dominated primary forests. We also observed higher densities of certain TreM types that are rarer on living trees than on snags (woodpecker cavities, conks of fungi, and bark characteristics), which is consistent with the findings of Vuidot et al. (2011) and Larrieu and Cabanettes (2012) whereby the presence of conks of fungi and woodpecker cavities were significantly higher on snags than on living trees (Appendix 3). Woodpeckers generally prefer to nest and roost in snags, and fungi play an important role in the excavation of woodpecker cavities (Zahner et al. 2012), and woodpeckers are often suggested as a vector for the fungus (Jackson and Jackson, 2004). After the tree dies, the decay process promotes conditions that influence the occurrence of other TreM types, such as bark characteristics and non-woodpecker cavities (Vuidot et al., 2011). Although snags represented only 7-17 \% of all trees per stand, they accounted for one-third of the density of all TreMs tallied in our study (Table 2). Our results generally agree with prior TreM research conducted in different regions, and it highlights the positive effects of high levels of structural heterogeneity (e.g., large trees, and high tree species richness and proportions of snags) to support a diverse array of TreMs. Finally, our results showed higher densities of TreMs associated with certain taxa compared to published conservation guidelines: a minimum of 40 cavities per hectare for the conservation of cavity dwelling birds (Blondel, 2005) or a network of 7 to 10 live cavity- or crack-bearing trees per hectare for bats (Meschede and Heller, 2003). Our data support these findings and demonstrate that the primary forests can reach very high TreM levels.

Here, we compared for the first time TreM densities and diversity between primary forests of the Carpathian and Dinarides mountain ranges. Although precipitation and temperature differ among
the regions (Table 1), we did not observe significant differences in total TreM densities or TreM diversity between the regions. Both of the regions had similarly high diversity values (Table 2). However, we observed significant differences in densities of several TreM types between the regions, including densities of conks of fungi and epiphytes (Table 3), which could potentially be influenced by large-scale climatic differences or soil properties (Ding et al., 2016). However, our results suggested significant variability between TreM densities and diversity on relatively small spatial gradients (stand and plot levels). We observed TreM densities almost two times greater than that of Paillet et al. (2017) in strict mixed mountain forest reserves of France (Table 2; Appendix 2). They determined that strict forest reserves had higher TreM densities, both total and individual densities, than comparable adjacent managed forests. This general trend has also been observed in several other European forests (Winter and Moller, 2008; Winter et al., 2015). Although Paillet et al. (2017) sampled strict forest reserves, the mean time since any previous harvesting was only 48 years; it is impossible to identify the structure of the stands at the beginning of the set-aside period or how intensively the stands were managed prior to their strict reserve designation. We analyzed TreMs exclusively from remote primary forests with very limited access, and it is likely that these stands were never managed; some of the oldest trees are more than 450 years old. Compared to the findings of Paillet et al. (2017), we observed the densities of broken tops was more than 10 times higher on average, and almost 20 times higher in the Carpathians. The higher densities of broken tops may be attributable to the natural disturbance regime that influences structural dynamics in primary forests (Meigs et al., 2017), as well as the high proportion of live trees bearing polypores, such as Fomes fomentarius or Fomitopsis pinicola, which make beech stems more prone to breakage (Zeibig et al., 2005). In addition, the tree dimensions, taller trees with larger primary branches, may be more prone to partial crown loss. Similar conclusions can be drawn for higher densities of other TreM groups. High volumes and diversity of deadwood, which are typical of primary forests (Nagel et al., 2017a), may influence the presence of conks of fungi and even woodpeckers (Jackson and Jackson, 2004). We also observed much higher densities of base cavities compared to Paillet et al. (2017); because large cavities take more time to develop, higher rates of occurrence on very old trees would be expected, thus many primary forests would have higher numbers of older trees with longer periods of time since the last severe disturbance (Siitonen et al., 2012). In contrast, we found lower
densities of outgrowths and bark characteristics in the Dinaric dataset compared to the French strict forest reserves (Paillet et al., 2017); outgrowths and bark characteristics tend to occur more frequently on oaks (Quercus spp.), firs (Abies spp.), and spruces (Picea spp.) compared to beech (Vuidot et al., 2011). However, higher densities of outgrowths and bark characteristics were found in the Carpathian dataset than in Dinarides dataset.

5. Conclusions

We conducted the first assessment of tree-related microhabitats in beech-dominated primary forests of the Carpathian and Dinaric mountain ranges; these sites represent some of the last remnants of primary forests in Europe. Our study provides an empirical analysis of TreM variability and reference values from these primary forests, both of which will help inform forest managers, conservation strategies, and policy decisions. These reference values provide a means to assess the influence of forest management on TreM profile. However, our study sites represent a relatively small fraction of these two vast mountain ranges. To improve our understanding of TreM dynamics, we suggest a more thorough survey of primary forest study areas across the Dinaric and Carpathian Mountains, as well as other mountain ranges where similar forest types occur. Climate characteristics, topographical features, such as the presence of cliffs that can increase the occurrence of certain TreMs, such as bark loss, by rock falls, or biotic factors, such as woodpecker density (or diversity) or the presence of large ungulates, may also play an important role in the availability of TreMs. A potentially important driver of TreM density and diversity may be the natural disturbance regime that may play an important role in creation and maintenance of TreMs. Future research will include the analysis of disturbance history variables in relation to TreMs. In particular, a dendroecological approach could be used to link natural disturbance history with TreM diversity and density, and to assess how forest development influences the distribution of TreMs. Finally, our results show that primary forests maintain high TreM diversity, and that they may significantly contribute to the overall species diversity across forested landscapes. Although our paper did not directly compare primary forests with managed forests under similar environmental conditions, we also plan to establish plots in managed forests near primary forests in
future studies to better understand TreM dynamics and the critical role of protected areas to maintain and enhance biodiversity in our modern world.

Acknowledgement: This project was supported by the institutional project MSMT CZ.02.1.01/0.0/0.0/ 16_019/0000803, MSMT project LTC17055, through the Czech University of Life Sciences (Grant IGA no. B09/17 and CIGA no. 20184304), by institutional project MSMT EVA4.0 CZ.02.1.01/0.0/0.0/16_ 019/0000803 and by the European Regional Development Fund-Project "Mechanisms and dynamics of macromolecular complexes: from single molecules to cells" (No. CZ.02.1.01/0.0/0.0/15_003/0000441).

References

Bates, D., Machler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1-48. https://doi.org/10.18637/jss.v067.i01

Bauhus, J., 2009. Silviculture for old-growth attributes. For. Ecol. Manage. 258, 525-537. https:// doi.org/10.1016/j.foreco.2009.01.053

Blondel, J., 2005. Bois mort et cavités: leur rôle pour l'avifaune cavicole. Vallauri D, André J, Dodelin B, Eynard-Machet R, Rambaud D, Bois mort et à cavités: une clé pour des forêts vivantes. Lavoisier, Paris, 137-144.

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.-S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127-135. https://doi.org/10.1016/j.tree.2008.10.008

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45-67. Stable URL : http://www.jstor.org/stable/43187596

Commarmot, B., Brändli, U.-B., Hamor, F., Lavnyy, V., 2013. Inventory of the Largest Primeval Beech Forest in Europe. A Swiss-Ukrainian Scientific Adventure.

Courbaud, B., Pupin, C., Letort, A., Cabanettes, A., Larrieu, L., 2017. Modelling the probability of microhabitat formation on trees using cross-sectional data. Methods Ecol. Evol., 8(10), 1347-1359. https://doi.org/10.1111/ijlh. 12426

Ding, Y., Liu, G., Zang, R., Zhang, J., Lu, X., Huang, J., 2016. Distribution of vascular epiphytes along a tropical elevational gradient: Disentangling abiotic and biotic determinants. Sci. Rep. 6. https://doi.org/ 10.1038/srep 19706

ESRI ArcGIS, 2011. "Release 10." Redlands, CA: Environmental Systems Research Institute 437.
Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21 st-century forest cover change. Science (80-.). 342, 850-853. https://doi.org/10.1126/science. 1244693

Hunter, Jr., M.L., 1999. Maintaining biodiversity in Forest Ecosystems. Cambridge Univ. Press. https:// doi.org/10.1046/j.1365-2664.1999.00459-3.x

Jackson, J.A., Jackson, B.J.S., 2004. Ecological Relationships Between Fungi and Woodpecker Cavity Sites. Condor 106, 37. https://doi.org/10.1650/7483

Keren, S., Diaci, J., 2018. Comparing the quantity and structure of deadwood in selection managed and
old-growth forests in South-East Europe. Forests 9, 1-16. https://doi.org/10.3390/f9020076

Keren, S., Diaci, J., Motta, R., Govedar, Z., 2017. Stand structural complexity of mixed old-growth and adjacent selection forests in the Dinaric Mountains of Bosnia and Herzegovina. For. Ecol. Manage. 400, 531-541. https://doi.org/10.1016/j.foreco.2017.06.009

Kraus, D., Krumm, F., 2013. Integrative approaches as an opportunity for the conservation of forest biodiversity, European Forest Institute.

Larrieu, L., Cabanettes, A., 2012. Species, live status, and diameter are important tree features for diversity and abundance of tree microhabitats in subnatural montane beech-fir forests. Can. J. For. Res. 42, 1433-1445. https://doi.org/10.1139/x2012-077

Larrieu, L., Cabanettes, A., Brin, A., Bouget, C., Deconchat, M., 2014a. Tree microhabitats at the stand scale in montane beech-fir forests: Practical information for taxa conservation in forestry. Eur. J. For. Res. 133, 355-367. https://doi.org/10.1007/s10342-013-0767-1

Larrieu, L., Cabanettes, A., Delarue, A., 2012. Impact of silviculture on dead wood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. Eur. J. For. Res. 131, 773-786. https://doi.org/10.1007/s10342-011-0551-z

Larrieu, L., Cabanettes, A., Gonin, P., Lachat, T., Paillet, Y., Winter, S., Bouget, C., Deconchat, M., 2014b. Deadwood and tree microhabitat dynamics in unharvested temperate mountain mixed forests: A life-cycle approach to biodiversity monitoring. For. Ecol. Manage. 334, 163-173. https://doi.org/ 10.1016/j.foreco.2014.09.007

Larrieu, L., Paillet, Y., Winter, S., Bütler, R., Kraus, D., Krumm, F., Lachat, T., Michel, A.K., Regnery, B., Vandekerkhove, K., 2018. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecol. Indic. 84, 194-207. https://doi.org/ 10.1016/j.ecolind.2017.08.051

Lindenmayer, D.B., Franklin, J.F., Fischer, J., 2006. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433-445. https://doi.org/
10.1016/j.biocon.2006.02.019

McCullagh, P., Nelder, J. A., 1989. Generalized Linear Models, 2nd. edition. Chapman and Hall/CRC, USA.

Meigs, G.W., Morrissey, R.C., Bače, R., Chaskovskyy, O., Čada, V., Després, T., Donato, D.C., Janda, P., Lábusová, J., Seedre, M., Mikoláš, M., Nagel, T.A., Schurman, J.S., Synek, M., Teodosiu, M., Trotsiuk, V., Vítková, L., Svoboda, M., 2017. More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. For. Ecol. Manage. 406, 410-426. https://doi.org/10.1016/j.foreco.2017.07.051

Meschede, A., Heller, K.G. ,2003. Ecologie et protection des chauvessouris en milieu forestier. MHN de Genéve. Le Rhinolophe 16:1-248.

Meyer, P., Tabaku, V., von Lupke, B., 2003. Structural characteristics of Albanian beech (Fagus sylvatica L.) virgin forests - Deductions for semi-natural forestry. Forstwissenschaftliches Cent. 122, 47-58. https://doi.org/10.1046/j.1439-0337.2003.02041.x

Michel, A. K., Winter, S., 2009. Tree microhabitat structures as indicators of biodiversity in Douglasfir forests of different stand ages and management histories in the Pacific Northwest, USA. For. Ecol. Manage. 257(6), 1453-1464. https://doi.org/10.1016/j.foreco.2008.11.027

Mori, A.S., Kitagawa, R., 2014. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biol. Conserv. 175, 65-73. https:// doi.org/10.1016/j.biocon.2014.04.016

Nagel, T.A., Firm, D., Pisek, R., Mihelic, T., Hladnik, D., de Groot, M., Rozenbergar, D., 2017a. Evaluating the influence of integrative forest management on old-growth habitat structures in a temperate forest region. Biol. Conserv. 216, 101-107. https://doi.org/10.1016/j.biocon.2017.10.008

Nagel, T.A., Mikac, S., Dolinar, M., Klopcic, M., Keren, S., Svoboda, M., Diaci, J., Boncina, A., Paulic, V., 2017b. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. For. Ecol. Manage. 388, 29-42. https://doi.org/10.1016/j.foreco.2016.07.047

Nakagawa, S., Johnson, P.C.D., Schielzeth, H., 2017. The coefficient of determination R2 and intraclass correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213

Paillet, Y., Archaux, F., Boulanger, V., Debaive, N., Fuhr, M., Gilg, O., Gosselin, F., Guilbert, E., 2017. Snags and large trees drive higher tree microhabitat densities in strict forest reserves. For. Ecol. Manage. 389, 176-186. https://doi.org/10.1016/j.foreco.2016.12.014

Parviainen, J., 2005. Virgin and natural forests in the temperate zone of Europe. For. Snow Landsc. Res. 79, 9-18.

Peterken, G.F., 1996. Natural woodland: ecology and conservation in northern temperate regions, Cambridge University Press.

R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ray-Mukherjee, J., Nimon, K., Mukherjee, S., Morris, D.W., Slotow, R., Hamer, M., 2014. Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity. Methods Ecol. Evol. 5, 320-328. https://doi.org/10.1111/2041-210X. 12166

Regnery, B., Couvet, D., Kubarek, L., Kerbiriou, C., 2013a. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests 34, 221-230. https://doi.org/10.1016/j.ecolind.2013.05.003

Regnery, B., Paillet, Y., Couvet, D., Kerbiriou, C., 2013b. Forest Ecology and Management Which factors influence the occurrence and density of tree microhabitats in Mediterranean oak forests? 295, 118-125.

Remm, J., Lõhmus, A., 2011. Tree cavities in forests - The broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manage. 262, 579-85. https://doi.org/10.1016/j.foreco.2011.04.028

Sabatini, F.M., Burrascano, S., Keeton, W.S., Levers, CH., Lindner, M., Potzchner, F., Verkerk, P.J., Bauhus, J., Buchwald, E., Chaskovsky, O., Debaive, N., Horváth, F., Garbarino, M., Grigoriadis, N., Lombardi, F., Duarte, I.M., Meyer, P., Midteng, R., Mikac, S., Mikoláš, M., Motta, R., Mozgeris, G.,

Nunes, L., Panayotov, M., Ódor, P., Ruete, A., Simovski, B., Stillhard, J., Svoboda, M., Szwagrzyk, J., Tikkanen, O.P., Volosyanchuk, R., Vrska, T., Zlatanov, T., Kuemmerle, T., 2018. . Where are Europe's last primary forests? Divers. Distrib. 00:1-14. https://doi.org/10.1111/ddi. 12778

Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda, P., Kulakowski, D., Lábusová, J., Mikoláš, M., Nagel, T.A, Seidl, R., Synek, M., Svobodová, K., Chaskovskyy, O., Teodosiu, M., Svoboda, M., 2018. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global change biology. https://doi.org/10.1111/gcb. 14041

Siitonen, J., 2012. Microhabitats, in: Biodiversity in Dead Wood. pp. 150-182. https://doi.org/10.1017/ CBO9781139025843.008

Standovár, T., Kenderes, K., 2003. A review on natural stand dynamics in beechwoods of east central Europe. Appl. Ecol. Environ. Res. 1, 19-46.

Van Oldenborgh, G.J., Drijfhout, S., Van Ulden, A., Haarsma, R., Sterl, A., Severijns, C., Hazeleger, W., Dijkstra, H., 2009. Western Europe is warming much faster than expected. Clim. Past 5, 1-12. https://doi.org/10.5194/cp-5-1-2009

Veen, P., Fanta, J., Raev, I., Biriş, I.A., de Smidt, J., Maes, B., 2010. Virgin forests in Romania and Bulgaria: Results of two national inventory projects and their implications for protection. Biodivers. Conserv. 19, 1805-1819. https://doi.org/10.1007/s10531-010-9804-2

Vuidot, A., Paillet, Y., Archaux, F., Gosselin, F., 2011. Influence of tree characteristics and forest management on tree microhabitats. Biol. Conserv. 144, 441-450. https://doi.org/10.1016/ j.biocon.2010.09.030

Whittaker, R.H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. https://doi.org/10.2307/1943563

Winter, S., 2015. Association of tree and plot characteristics with microhabitat formation in European beech and Douglas-fir forests. Eur. J. Forest. Res. 134, 335-347. https://doi.org/10.1007/s10342-014-0855-x

Winter, S., Möller, G.C., 2008. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manage. 255, 1251-1261. https://doi.org/10.1016/j.foreco.2007.10.029

Zahner, V., Sikora, L.,Pasinelli, G. 2012. Heart rot as a key factor for cavity tree selection in the black woodpecker. For. Ecol. Manage. 271, 98-103.

Zeibig, A., Diaci, J., Wagner, S. 2005. Gap disturbance patterns of a Fagus sylvatica virgin forest remnant in the mountain vegetation belt of Slovenia. For. Snow Landsc. Res. 79, 69-80.

Appendices

Appendix 1

Example of the nested plot structure. The red cross indicates the randomly generated navigation point used to locate the pair of circular sample plots.

Appendix 2

Tree-related microhabitats densities for all surveyed TreM types for the Carpathian and Dinaric mountain ranges, including total, living trees, and snags. All
densities are presented as ha-1 values.

TreM group	Correlation with typology from Larrieu et al. 2018	TreM type	Total number of TreMs	Total TreM density	Total Carpathia ns	Total Dinarides	Total snags	Carpathia ns snags	Dinaride s snags	Total living trees	Carpathia ns living trees	Dinarid es living trees
Woodpecker cavities	X	Woodpecker cavities with $>2 \mathrm{~cm}$ aperture, woodpecker breeding or feeding holes	289	13.2	15.9	11.6	11.1	12.5	10.2	2.1	3.5	1.4
Non-woodpecker cavities	X(partially)	Non-woodpecker cavities with $>5 \mathrm{~cm}$ aperture anywhere on the trunk: formed after injury, branch fall	744	34.0	22.7	40.6	4.1	2.6	4.9	29.9	20.1	35.7
Non-woodpecker cavities	X	Cavity string: at least three woodpecker cavities in a stem with a maximum distance of two meters between two cavity entrances. Cavity strings are an important starting point for the development of deep and long lasting stem cavities	161	7.4	6.0	8.1	6.1	4.6	7.0	1.2	1.5	1.1
Woodpecker cavities		Shallow cavities in the bark arranged in a ring; usually woodpecker	2	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.1
Base cavities	X	Deep stem cavities: a tubular cavity in the base of the tree without mold	884	40.4	62.3	27.5	2.4	3.6	1.7	38.0	58.8	25.8
Base cavities	X	Deep stem cavities: a tubular cavity in the base of the tree with mold	525	24.0	35.9	17.0	5.4	6.8	4.6	18.6	29.1	12.4
Base cavities	X	Tree with hollow> 30 cm aperture	30	1.4	0.6	1.8	0.2	0.1	0.3	1.1	0.5	1.5
Dendrothelms	X	Dendrothelms with $>5 \mathrm{~cm}$ aperture. Water-filled holes in wood.	93	4.2	1.6	5.8	0.2	0.0	0.3	4.1	1.6	5.5
Patches with exudates	X	Sap or resin drop: Only a few sap or resin drops (shorter than 30 cm or <6	264	12.1	20.9	6.9	0.9	1.2	0.7	11.2	19.6	6.2

		flows) indicating a minor injury										
Patches with exudates	X	Heavy sap or resin: fresh heavy flow of sap or resin at least 30 cm long or >5 flows of sap or resin of smaller size	86	3.9	7.7	1.7	0.3	0.2	0.3	3.7	7.4	1.4
Conks of fungi	X(partially)	Conks of fungi (both perennial and annual; including agarics). Fruiting bodies, diameter $>5 \mathrm{~cm}$	285	13.0	18.0	10.1	10.1	13.6	8.0	2.9	4.4	2.0
Conks of fungi	X(partially)	Conks of fungi (both perennial and annual; including agarics). Fruiting bodies $>5 \mathrm{~cm}$ in diameter or occur in 10 cm long cascades of smaller fruiting bodies.	193	8.8	15.1	5.1	7.6	12.8	4.6	1.2	2.2	0.6
Bark characteristics	X	Bark loss: patches with bark loss of at least $5 * 5 \mathrm{~cm}$ mainly caused by felling, natural falling of trees and rock falls	1768	80.7	95.6	72.0	45.9	44.4	46.8	34.8	51.1	25.2
Bark characteristics	X(partially)	Bark burst: black burst of bark at least 2 cm wide often with resin indicating injury/disease	41	1.9	2.7	1.4	0.1	0.1	0.1	1.8	2.6	1.3
Bark characteristics		Gnaw and peeling by ungulates	20	0.9	1.5	0.6	0.3	0.1	0.4	0.6	1.4	0.1
Broken tops	X(partially)	Splintered stem: the split-up results in numerous scales (minimum 5) of wood > 50 cm long; caused by another tree fall etc.	70	3.2	4.2	2.6	2.1	3.0	1.5	1.1	1.2	1.1
Cracks	X	Lightning scar: a crack caused by lightning; at least 3 m long and reaching the sapwood	4	0.2	0.0	0.3	0.0	0.0	0.1	0.1	0.0	0.2
Cracks	X	Cracks: cleft into the sapwood $>25 \mathrm{~cm}$ long along the stem and at least 2 cm deep in the sapwood	660	30.1	23.7	33.9	7.8	10.4	6.3	22.3	13.3	27.6
Bark characteristics	X	Bark pocket: space between loose bark and the sapwood with a minimum extension of $5 * 5 * 2 \mathrm{~cm}$	357	16.3	11.4	19.2	11.9	7.7	14.4	4.4	3.7	4.8

Bark characteristics	X	Bark pocket with mold: same structure and size as Bark loss but with mold.	30	1.4	1.6	1.2	0.8	1.2	0.6	0.5	0.4	0.7
Crown deadwood	X(partially)	Between 10\% and 25\% of dead crown: one or more main branches are dead. The living crown represents 75% of the former total crown.	434	19.8	16.8	21.6	0.0	0.0	0.1	19.8	16.8	21.5
Crown deadwood	X(partially)	Between 25\% and 50\% of dead crown: one or more main branches are dead. The living crown represents between 50 and 75% of the former total crown.	127	5.8	6.8	5.2	0.0	0.0	0.1	5.8	6.8	5.1
Crown deadwood	X(partially)	More than 50% of dead crown: one or more main branches are dead. The living crown seems to be < 50% of the former total crown.	163	7.4	8.0	7.1	1.4	2.8	0.5	6.1	5.2	6.6
Broken tops	X	Broken stem: the primary crown is totally absent with or without presence of a secondary crown. Main parts of the tree stem are already dead with decomposing processes.	265	12.1	25.1	4.5	1.7	4.0	0.4	10.4	21.1	4.1
Broken tops	X	Broken fork: complete fracture of one of the two forking branches; the loss of one forking branch results in a severe damage of the main stem.	44	2.0	0.4	3.0	0.0	0.0	0.0	2.0	0.4	3.0
Outgrowth	X	Canker: proliferation of cell growth; irregular cellular growth on stems or branches, which is caused by bark-inhabiting fungi, viruses and bacteria. We recorded areas of canker $>10 \mathrm{~cm}$ in diameter	211	9.6	14.7	6.7	0.8	0.7	0.8	8.9	14.0	5.9
Outgrowth	X	Witch broom: dense agglomeration of branches from a parasite or epicormic branching	6	0.3	0.1	0.4	0.0	0.0	0.0	0.3	0.1	0.4

Epiphytes	X	Bryophytes developed on $>50 \%$ of the base or trunk area (height < 1 m)	2762	126.1	57.2	166.6	15.5	11.5	17.9	110.6	45.7	148.7
Epiphytes	X	Ivy developed on >50\% of the base or trunk area (height < 1 m)	18	0.8	0.0	1.3	0.2	0.0	0.4	0.6	0.0	0.9
Epiphytes	X	Mistletoe: presence of a hemiparasitic plants (e.g. Viscum spp., Arceuthobium oxycedri, Loranthus europaeus)	40	1.8	3.6	0.8	0.0	0.0	0.1	1.8	3.6	0.7
		SUM	10576	482.9	480.0	484.6	137.1	144.0	133.0	345.8	336.0	351.6

Appendix 3

Comparison of densities of TreM groups between snags and living trees.

