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Abstract

Urban building energy models aspire to become key planning tools for the holistic optimization of buildings, urban
design, and energy systems in neighborhoods and districts. The energy demand of buildings is largely influenced
by the behavior of the occupants. The insufficient consideration of occupant behavior is one of the causes to the
"performance gap" in buildings - the difference between the simulated and the actually observed energy consumption.
On the urban-scale impacts of different occupant behavior modeling approaches onto the various purposes of urban
building energy models are still largely unknown. Research shows that the inappropriate choice of occupant behavior
model could result in oversized district energy systems, leading to over-investment and low operational efficiency.
This work therefore reviews urban building energy models in terms of their occupant behavior modeling approaches.
Three categories of approaches are established and discussed: (1) deterministic space-based approaches, (2) stochastic
space-based approaches, and (3) stochastic person-based approaches. They are further assessed in terms of their
strategy to consider diversity in occupant behavior. Stochastic models, especially stochastic person-based models, seem
to be superior to deterministic models. However, there are no stochastic models available yet that can be used for case
studies of mixed-districts, comprising buildings of various occupancy types. In the reviewed urban-scale approaches,
only single-use residential or office districts are modeled with stochastic techniques. However, people interact with
various buildings on a daily basis. Their activities relate to their presence in different spaces at the urban-scale and to
their use of appliances in those spaces. Their individual levels of comfort and behavioral patterns govern the control
actions towards building systems. Therefore, a novel activity-based multi-agent approach for urban occupant behavior
modeling is proposed as alternative to current approaches.

Keywords: urban building energy model, energy-related occupant behavior, occupancy, occupant behavior model

1. Introduction

Urban areas house more than half of the global population and cities are responsible for more than 70% of the
global carbon dioxide emissions. At the same time, cities are crucial actors in the transition towards sustainable energy
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supply [1]. Urban districts and communities play an important role in the implementation of building energy efficiency
policies and low-carbon energy supply and distribution systems [2]. The extent of required information on the building
stock status, however, makes it difficult to obtain useful data about energy consumption in buildings. Time consuming
monitoring campaigns to collect measured data of high granularity, suitable for scenario analysis or the evaluation of
policies, are often infeasible [3]. Urban-scale building energy modeling aims to tackle this challenge by generating the
required data via simulation.

1.1. From building-scale to urban-scale energy models

Urban-scale modeling tools are becoming increasingly available. They are expected to become a key planning tool
to seek the most effective energy policies and strategies at the neighborhood, district and city levels [3, 4, 5]. Bottom-up
physics-based engineering [6, 7, 8, 9] urban building energy models (UBEM) [4] forecast the performance of several
dozens to thousands of buildings. The approach of UBEM is to apply physical models of heat and mass flow in and
around buildings to predict operational energy uses as well as indoor and outdoor environmental conditions for groups
of buildings [4]. Bottom-up engineering UBEMs are more versatile than statistical models, and allow planners to
quantitatively assess retrofit strategies and energy supply options [10]. Integrated with urban form generation such
models can be used in an early stage of planning for energy-driven urban design [11]. This is a concept that uses urban
design parameters, such as density and land use (building occupancy types) to achieve a better performance of the
district energy systems.

For this type of models, typically building-scale methods and models are directly scaled up to multiple buildings with
little or no modifications. However, the switch from building-scale to district-scale is not just the simple aggregation of
buildings due to the complex interactions within the urban fabric [12]. Physical properties such as building design,
district layout and the local microclimate influence the energy demand of a district as well as occupancy-related
properties like building indoor conditions and socioeconomic factors [13].

1.2. Urban building energy modeling for energy systems planning and urban planning

Many of these emerging urban-scale models are largely demand-focused, in that the purpose of modeling is to
predict annual energy demand of buildings and quantify the efficacy of energy saving retrofit measures. The authors’
research focus, however is a different one. We are using energy demand predictions of highly dense mixed-use districts
with urban energy supply systems in mind. We propose to use urban building energy models for two main purposes:
(1) for the planning and optimization of urban energy systems and (2) for the planning and optimization of urban
development.

To optimize supply systems, considering control strategies like peak shaving and load shifting, spatiotemporal
patterns of energy demand in the district are needed. The spatial aspect is of significance because thermal systems,
such as district heating or cooling networks have spatial constraints. To identify advanced concepts of supply, such
as the heat cascade [14] or the cold cascade, information about the spatiotemporal usage patterns of buildings in the
district are needed.

To make use of concepts of energy-driven urban design [11], we need to understand how cities change with people,
i.e., how scenarios of demographic and socioeconomic changes impact the future energy demand patterns of a district
and with it the requirements for district energy supply and distribution systems. This is important given the long
planning time horizons of district infrastructure. The official "London Heat Network Manual" for example recommends
to aspire to a 50 year life-span for properly designed and installed heating networks [15].

1.3. Key challenges in simulating on the urban-scale versus the building-scale

Simulating spatiotemporal patterns of building energy demand at urban-scale is more complex than at building-scale.
On the one hand large amounts of information about built structures are needed and the urban environment of each
building has to be considered, while on the other hand also the diversity of occupant behavior at the urban-scale
influences the spatiotemporal patterns of energy demand [16]. It is for example well known that the maximal total
power demand in a district is different from the sum of the individual buildings’ maximal power demands [17]. For a
case study in China An et al. [18] demonstrated that oversimplified assumptions about occupant behavior leads to a
significant overestimation of the peak cooling loads resulting in the design of oversized, inefficient district cooling
systems.
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A key difference between building-scale and urban-scale energy modeling are the various system interactions that
should be considered in urban contexts [19]. They include interactions between buildings and their surroundings and
interactions between buildings and occupants. One such interaction, that seems to be somewhat overlooked until now
in urban building energy modeling, is the interaction of single occupants with multiple buildings in the district. E.g., an
occupant that is absent from an office at lunch time is likely to be present in a restaurant nearby. Such considerations
are common in land-use and transport modeling and simulation [20].

On top of that, building-scale energy modeling rarely considers the long time spans of urban development in which
changes in socioeconomic boundary conditions could change occupant behavior and thus impact buildings’ energy
demand. In residential electric load curve models for the planning of electric infrastructure for example, scenarios of
socioeconomic evolutions and behavioral changes of occupants are commonly considered [21].

Occupant activities and behavior, their diversity and their evolution over time should therefore be looked at in the
context of urban building energy modeling.

1.4. Occupant behavior - one reason for the performance gap
Occupant behavior is one of the main reasons for systematic discrepancies between the calculated or expected

energy demand in buildings and the actual energy consumption - the performance gap [9, 22]. The cause is related to the
use of unrealistic input parameters regarding occupant behavior and facilities management in building energy models
[22] and the high sensitivity of occupant behavior parameters [23]. In a recent model that generates detailed thermal
energy demand profiles at the district level, the behavior of occupants was the most important variable [24]. Especially
heating and cooling set point temperatures, which directly relate to occupant comfort preferences and behavior are
some of the most influential parameters in simplified building stock models [25] and bottom-up engineering urban
building energy models [26].

First research that looks at the interdependencies between occupant behavior and urban design showed that age
and family structure of occupants should be considered when designing low carbon residential districts. For a case
study based on surveys and building energy simulation in China Ruan et al. [27] found that the energy demand of older
occupants is more affected by urban design parameters (Floor Area Ratio, Building Coverage Ratio, and Aspect Ratio)
as a result of their higher heating energy demand.

1.5. Occupant behavior in urban-scale building energy models
Different aspects of occupant behavior are usually modeled separately. Occupant presence models, which are often

called occupancy models, describe the presence, absence and movement of occupants in spaces. Occupant action
models describe various types of adaptive and non-adaptive behavior, such as adjusting blinds, opening windows,
switching lights, and the use of appliances. Occupant activity models link presence and activities of occupants and
can consider the use of appliances, lighting or water related to these activities [28, 29]. Recently, extensive reviews
about existing models, the current state-of-the-art research and future challenges for occupant behavior modeling on
the building-scale have been published [30, 31, 32, 33, 34].

Urban building energy models typically use databases of archetypical construction properties or define a number of
prototypical reference buildings. Archetypes and reference buildings are usually classified according to their occupancy
type and contain typical occupant behavior properties. Often, a building occupancy type is primarily distinguished by
its occupant presence schedule [35].

The main concerns with occupant behavior on the urban-scale are the diversity among buildings of the same
occupancy type, that should be accounted for to obtain realistic energy demand patterns [36, 37] and the impacts of
behavioral changes over time onto building energy demand [9]. Preliminary research on urban-scale occupant behavior
models concludes that stochastic approaches, rather than deterministic, should be considered when high resolution
temporal behavior and realistic peak loads are important [18, 38, 39]. On the other hand, for studies based on monthly
or yearly energy consumption, the effect of human behavior might not be significant due to averaging effects [39]. In
their review on building stock modeling Brøgger and Wittchen [9] speculate that it might not be necessary to model the
energy demand of individual buildings exactly, but general trends of socioeconomic and behavioral changes have to be
captured.

Recent publications point out that appropriate occupant behavior models and the impact of occupant behavior on
energy use at various temporal and spatial resolutions have to be further studied [35, 18]. This work aims to be a
contribution towards research on occupant behavior models for urban building energy simulations.
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The objective of this work is therefore to review, categorize and compare occupant behavior modeling approaches
used in bottom-up engineering models for urban building energy modeling.

2. Categorization

2.1. Selection criteria

This work aims at presenting a comprehensive review of occupant behavior in urban building energy models. 43
publications between 2003 and 2017 are considered. Many use cases of such models require at least hourly resolution
energy demand profiles. That is why approaches that use a low time resolution, defined here as a simulation time step
larger than 1 hour, are excluded.

We categorize the occupant behavior modeling approaches according to two modeling techniques (deterministic
vs. stochastic) and two levels of granularity (space-based vs. person-based). Their combination would in principle
result in four categories, see figure 1. However, only three were encountered. They are: (1) deterministic space-based
approaches, (2) stochastic space-based approaches, and (3) stochastic person-based approaches. These three categories
were further divided into sub-categories according to whether they are able to account for inter-individual diversity
among spaces or persons, respectively. The modeling techniques, levels of granularity and strategies for diversity are
introduced in the following sections.

Figure 1: Logic of the categorization of occupant behavior modeling approaches in urban building energy models according to modeling technique
and level of granularity.

2.2. Modeling techniques

We distinguish between two main occupant behavior modeling techniques usually used for building performance
simulations: Deterministic models and stochastic models. In sections 2.2.1 and 2.2.2 the main characteristics of the
two are introduced.
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2.2.1. Deterministic models
Deterministic models include schedules and deterministic rule sets. To model occupants’ presence and non-adaptive

actions usually schedules are used. Schedules, also called diversity factors, profiles, or typical load shapes, are
represented by numbers between zero and one. They relate the variable consumption of appliances, lighting, etc.
to its respective peak consumption/installed power density or the number of occupants present in a certain space to
its design capacity/occupant density. Different sets of 24-hour schedules for weekdays, weekends and other sets of
important daily variations are usually based on monitored data or a mix of engineering methods and data monitoring
[40]. Examples are schedules of occupant presence, lighting use, appliance use, etc. for every hour of a typical day.
They are usually published in standard calculation procedures for building energy demand, e.g. [41, 42], or building
science literature, e.g., [43, 44, 45, 46]. To model occupants’ adaptive actions in buildings deterministic rule sets can
be used. Deterministic rule sets assume direct causal links between certain drivers and an action. E.g., occupants open
windows as a function of a fixed indoor air temperature threshold or according to a minimum required ventilation rate.
They are often implicitly included in building energy models, e.g., [47]. Deterministic models result in fully repeatable
and predictable behavior without any variation.

2.2.2. Stochastic models
Stochastic occupant behavior models typically sample from statistical distributions to predict the likelihood that

certain situations or actions occur. They take into account correlations between observed behavior and environmental
stimuli or the occurrence of specific events, e.g., the arrival of an occupant in the space or the clock time. Stochastic
occupant presence models are usually based on first-order Markov chain techniques. A variety of residential active
occupancy models based on time-inhomogeneous Markov Chain Monte Carlo techniques exist [28, 48, 49, 37, 50].
Their transition probability matrices are commonly derived from local time-use survey (TUS) data, describing human
activities in form of a journal. Residential activity chain models are usually also based on TUS data. They stochastically
model the daily activities of household members, e.g., [29]. Activities can be linked to power demand of lights or
appliances used during a certain activity. With this approach it is possible to generate residential electric load, gas, and
water usage profiles [51, 52, 53, 54, 55, 56] as a function of household demographics. Office occupant presence models
based on Markov Chain techniques are usually derived in a similar way from measured occupancy data [57, 58, 59].
Action models for environmental controls, e.g., window openings [60], lights [61] or thermostat adjustments [62]
employ various stochastic methods and rely usually on sensor or observation data. By predicting probabilities of actions
these models capture more variations in behavior and they can include behavior that cannot be explained by external,
objective variables, such as e.g., indoor air temperature or daylight illuminance.

Recent publications for the building-scale researched on the sensitivity of simulation results to modeling techniques
[63] and the effects of using stochastic models for occupant presence at different spatial scales within a single-use
building [64]. They concluded that reliable estimations of real occupant behavior are more important than the question
of modeling technique [63] and that for a large number of buildings deterministic models suffice due to the averaging
effects of stochastic models [64]. However, both studies focused on annual energy demand and single building peak
loads and not on temporal characteristics of aggregated load patterns.

2.3. Levels of granularity

We distinguish between two levels of granularity in occupant behavior modeling approaches: Space-based and
person-based approaches. The main characteristics of the two are introduced below.

2.3.1. Space-based approaches
Space-based approaches directly model the impact of aggregated occupant behavior in a space of a certain category.

A space in an urban building energy model could be an archetypical building, or a thermal zone or a functional zone
inside a building, depending on the spatial resolution of the overall model. Examples of space-based approaches include
models for occupant presence, space heating and cooling controls and ventilation rates for typical space occupancy
types in building energy modeling standards, e.g., [41, 42]. The output of space-based approaches are e.g., the number
of occupants present in a space, the status of a heating system in a space or the aggregated electrical power consumption
of appliances in a space. Space-based approaches are governed by space-based model parameters, e.g., the nominal
occupant density, the heating set point temperature, or the installed appliance power density.
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2.3.2. Person-based approaches
Person-based approaches model every individual’s presence, activities and actions. The outputs of person-based

approaches are e.g., the presence of a specific person in a certain space, the control action of a specific person towards
the heating system, or the appliance used by a specific person. Person-based approaches are governed by the individual
characteristics and behavioral patterns of each person-category (e.g., full time employed resident, part time employed
resident, unemployed resident, etc.). The aggregated presence and actions of all persons in a certain space yield
the same model output as a space-based approach. Examples of person-based approaches include the agent-based
stochastic occupancy simulator for office buildings by Chen et al. [65, 66].

2.4. Strategies for diversity

As introduced in section 1.3 the inter-individual diversity of occupant behavior is of concern at the urban-scale.
Following the observations by O’Brien et al. [67] and Haldi [68] on the building-scale, we consider three general
strategies to account for inter-individual occupant diversity on the space-level or person-level: (1) the use of measured
data for simulation (e.g., real occupant densities for individual buildings), (2) the use of distinct models for distinct
person-types (e.g., active and passive occupants) or space-types (e.g., residential space with high appliance power
density and low appliance power density), and (3) the use of a general model with metamodels that define the model
parameter distributions (e.g., occupant densities for individual buildings sampled from a probability distribution). Novel
statistical models that consider inter-occupant diversity on the building-scale include e.g., the models by Haldi et al.
[69, 68] for occupant actions on windows, shading and lighting in office and residential environments.

We primarily distinguish between approaches that do not consider diversity and approaches that do consider
diversity by any of the possible strategies. We encountered diversity in space-based as well as person-based modeling
approaches using deterministic as well as stochastic techniques. We sub-categorize the three occupant behavior
modeling approach categories into non-diverse and diverse approaches and describe the chosen method to consider
diversity.

2.4.1. Diversity in space-based approaches
Variations of all three strategies were encountered in space-based approaches: The use of real data, e.g., building

occupant density in [19], the use of discrete space typologies, e.g., the use of discrete sets of appliances in residences
[17], and the use of probabilistic distributions of model parameters. One way of obtaining such parameter distributions
is by automated calibration of occupant behavior model parameters. There are three techniques for the automated
calibration of bottom-up building energy models: meta-modeling, optimization, and Bayesian calibration [36, 70].
Studies that use Bayesian calibration [71, 10] characterize each parameter undergoing calibration as a probability
distribution. Each realization of such a model will therefore contain a different set of parameters. This is equivalent to
diversity strategy 3. On the other hand, Studies that use optimization calibration [72] result in a unique but constant
value of each parameter. This is very similar to using actual data for simulation, i.e., diversity strategy 1. Calibration
with meta-modeling, involving the creation of a simplified surrogate model, has not been encountered in the review
process.

2.4.2. Diversity in person-based approaches
In person-based approaches we only encountered variations of diversity strategy 2. Persons are assigned typical be-

havioral patterns according to their observed prevalence in surveys using clustering methods e.g., [18, 73]. Approaches
considering synthetically sampled persons or persons exhibiting changing or emerging behavioral patterns were not
encountered.

3. Models

Figure 3 shows the number of publications in each category and sub-category per year. It includes journal, books
and conference publications. The first models emerged in 2003/2004 in Japan using stochastic person-based approaches.
It seems that urban building energy modeling became popular in 2015, with deterministic space-based occupant
behavior models as overwhelming majority of approaches. Also since 2015 more and more approaches consider
diversity in behavior. The following sections 3.1, 3.2 and 3.3 describe and discuss each of the three categories.
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Figure 2: Logic of sub-categorization of urban occupant behavior modeling approaches according to their level of diversity.

Figure 3: Number of publications on urban building energy modeling per year in each category and sub-category of occupant behavior modeling
approach.
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3.1. Deterministic space-based approaches
Urban building energy models and tools that use deterministic space-based approaches often focus on the automated

generation of building models from 2D GIS or 3D CAD data in conjunction with databases of archetypical construction
and typical occupant behavior. They use detailed multi-zone (EnergyPlus, eQuest, DOE-2 or IDA-ICE) building energy
simulation tools or simplified existing (Modelica AixLib, HASP) or custom thermal resistance-capacitance-models
(R-C-models). Their space-based deterministic occupant behavior models often use standard schedules of building
energy standard calculation procedures such as ASHRAE 90.11 [74, 41] or SIA 20242 [42]. Alternatively, they use
predefined reference building energy models from the U.S. Department of Energy (DOE)3 [75, 76] ready available
as EnergyPlus models. One study uses the occupant behavior model of commercial software another one extracts
schedules from measured data.

3.1.1. Deterministic space-based approaches without diversity
Urban building energy models with deterministic space-based approaches without diversity are listed in table 1. All

models and tools are briefly introduced in this section.
Heiple and Sailor [77] simulate 22 commercial building prototypes and 8 residential building prototypes to obtain

hourly, spatial anthropogenic heat emission profiles. Schedules for occupancy, lighting, internal loads and HVAC
systems are based on ASHRAE and the National Renewable Energy Laboratory (NREL) benchmark definitions [74, 94]
.

Kämpf and Robinson [78] present the CitySim tool. According to [79] deterministic rules and schedules describing
occupants’ presence and behavior are implemented. In a case study, envelope retrofit strategies are optimized.

Caputo et al. [3] simulate the annual final energy consumption for heating, cooling, domestic hot water, cooking,
and lights and equipment of 56 reference buildings with EnergyPlus. Two building occupancy types, residential
and office, are diversified in terms of internal loads, air changes and occupant presence schedules obtained from
context-specific literature. The model is used to assess the potentials of building envelope and system retrofits.

The urban modeling interface (UMI) by Reinhart et al. [80] couples building geometries to EnergyPlus. Cerezo Davila
et al. [5] auto-generate multi-zone thermal models of around 100000 buildings with UMI. A set of 52 archetypes for
4 periods of building age and 13 building occupancy types4 is considered. Occupancy-related parameters including
internal peak loads for equipment and lighting use, HVAC system settings and usage schedules are defined for each
archetype based on ASHRAE standards. Hourly load profiles of electricity and heating fuel usage are produced for the
hottest and the coldest day of the year. Three mixed-use neighborhoods are selected for a study on demand response
operation strategies of district energy systems, including the controlled manipulation of HVAC set point temperatures.

Orehounig et al. [81] use EnergyPlus to generate hourly space heating demand by simulating one representative
building for 6 categories differing in occupancy type and age of building. Schedules of occupant presence and appliance
use according to building occupancy type are taken from SIA. The results are used to assess the integration potential of
distributed energy systems at neighborhood-scale, the evaluation of the retrofitting potential, and the identification of
the optimal mix of renewable energy sources together with energy conversion technologies.

The City Energy Analyst (CEA) is a tool by Fonseca et al. [2, 82]. Geometric properties of buildings are combined
with occupancy-related properties from an archetypes database. The combination of 16 building occupancy types5,
6 construction periods and 6 renovation periods result in 172 building archetypes. Each building occupancy type is
linked to an SIA standard schedule of occupant presence, minimum ventilation rates, temperature and humidity set
points, and hourly electric load values for appliances, lighting, server rooms and cold rooms. Additional values for

1The American Society of Heating, Refrigerating and Air-Conditioning Engineers compiled various schedules in [74] that were later published in
the Guidebook for the building performance calculation method in Standard 90.1 - Energy Standard for Buildings Except Low-Rise Residential
Buildings [41].

2The Swiss Society of Engineers and Architects published room-level standard occupant presence, lighting and appliance use schedules as well
as HVAC settings for various building functions to be used in the standard calculation procedure of ISO 13790 - Energy performance of buildings -
Calculation of energy use for space heating and cooling [42].

3The U.S. Department of Energy Commercial Reference Building Models contain detailed deterministic occupant behavior schedules [75, 76].
4Residential, Retail, Office, School/Daycare, Medical/Lab/Production, Fire/Police, Convention/Assembly, Supermarket, Hotel, Restaurant,

Worship, Garage, Warehouse/Storage
5multiple dwelling unit, single dwelling unit, administrative, hotel, self-service restaurant, restaurant, multipurpose hall, ice hockey stadium,

sport arena, fitness studio, cold room, data center, store/department store, supermarket, public building, deposit/garage
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Table 1: Reviewed urban building energy modeling studies and tools that use space-based deterministic approaches and do not consider inter-individual
diversity (sub-category 1A). Publications about the same urban building energy model are combined in one row.

category study / tool implemented occupant behav-
ior sub-models

origin of sub-models no. occupancy
types

building simulation
engine

source

1A Heiple and Sailor presence,
lighting, appliance and HVAC
use

ASHRAE,
NREL

12 eQuest, DOE-2 [77]

1A CitySim presence,
behavior rulesa

n/a n/a custom R-C-model [78, 79]

1A Caputo et al. presence,
internal loads,
ventilation

literature 2 EnergyPlus [3]

1A UMI presence,
lighting, appliance and HVAC
use

ASHRAE 13 EnergyPlus [80, 5]

1A Orehounig et al. appliance and lighting use SIA 3 EnergyPlus [81]

1A CEA presence,
lighting, appliance and HVAC
use,
hot water use

SIA 16 R-C-model based
on ISO 13790

[2, 82, 83, 26,
47]

1A TEASER presence,
lighting and appliance use

SIA 3 Modelica AixLib [84, 85, 86]

1A CityBES occupant presence,
lighting, appliance and HVAC
use

DOE 2 EnergyPlus [87, 88, 89]

1A Params-NZP occupant presence
lighting, appliance and HVAC
use,
hot water use

DOE,
customb

34 EnergyPlus [90]

1A Nageler et al. presence,
internal gains,
HVAC use,
window ventilation

SIA, IDA ICE 4 IDA ICE [91]

1A Ahmed et al. presence,
lighting, appliance and HVAC
use,
hot water use,
activity level,
clothing level

DOE 6 EnergyPlus [92]

1A Wu et al. presence,
lighting, appliance and HVAC
use,
hot water use

SIA 1 EnergyPlus [93]

a "Behavior rules" not further specified.
b 14 types of army buildings not disclosed.
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local domestic hourly water consumption are taken from literature. In [2] the simulation results are used for studies of
building retrofits and for the design of district multi-energy systems. In [82] the tool is used to generate spatiotemporal
patterns of energy demand for four different scenarios of urban retrofit (changing building form and occupancy types)
on the same site. Based on that, district energy supply systems are designed using optimization methods.

The Tool for Energy Analysis and Simulation for Efficient Retrofit (TEASER) by Remmen et al. [84] features a
fully automated building model generation from geometry data and archetypical building properties. From the geometry
and occupancy type of a building, an interior design is estimated based on thermal zones. Thermal zones are defined as
aggregated areas of similar user behavior and thermal conditions. Hourly schedules for occupant presence and internal
gains, divided into lighting and technical equipment, are based on SIA standards. TEASER generates reduced order
building models in Modelica. For a university campus case study heat loads for the period of 2020–2050 are predicted,
considering a yearly retrofit rate. In this way it can be ensured that the designed central heating systems will not be
over sized in future scenarios.

The tool of Nageler et al. [91] produces 2.5D IDA ICE building models based on an archetype database according
to building type and age. One building is represented by maximum three vertical layered thermal zones. Each zone
corresponds to a different use. With the separation of the zones according to different user profiles, different set
points for the room air temperature can be considered. The occupant presence model of IDA ICE is used6. Occupant
presence also controls the ventilation air exchange and window opening behavior. The model is validated against
annual measured data for a case of a district heating network connected to a group of 69 buildings consisting of office,
school and residential building occupancy types.

Ahmed et al. [92] present a tool based on U.S. DOE EnergyPlus models of reference buildings, including determin-
istic occupant behavior. In a case study on the building stock of New York City each building is simulated using an
individual localized weather file from an urbanized weather forecast model. Spatiotemporal energy demand patterns
for heat wave and non heat-wave days are compared.

Wu et al. [93] use EnergyPlus to generate hourly space heating and electricity demand profiles for 11 representative
residential buildings. Deterministic occupant presence schedules, heating set points, hot water, lighting, and electricity
demands are taken from SIA standards. Up to nine envelope retrofit scenarios are considered for each representative
building. The resulting energy demand patterns are used to simultaneously optimize the building energy systems and
envelope retrofits.

The City Building Energy Saver (CityBES) by Hong et al. [89] is a tool for retrofit analysis of small and medium-
sized office and retail buildings. Chen et al. [88, 87, 96] present case studies using CityBES in downtown San Francisco.
EnergyPlus models are created from data on building footprint, age, type, gross floor area, and number of stories, using
the Commercial Building Energy Saver Toolkit (CBES) [97]. CBES contains EnergyPlus models of prototypical office
and retail buildings, including various envelope and building system retrofit measures. Deterministic occupant behavior
models are based on the DOE reference buildings [97].

Params-NZP [90] is a tool based on EnergyPlus for the parametric analysis of communities. It was developed by
the US Army Corps of Engineers as a decision-making aid for Army planners and energy managers. The collection
of prototypical building models includes 14 Army building types, 16 commercial building types, and 4 residential
building types. The tool allows for building-level optimization and optimization of supply and distribution systems.
The 16 commercial prototypical buildings are derived from the DOE reference buildings. Details about Army and
residential building types and their occupant behavior models are not provided.

3.1.2. Deterministic space-based approaches with diversity
Urban building energy models with deterministic space-based approaches with diversity are listed in table 2. All

models and tools are briefly introduced in this section.
The later models by Yamaguchi et al. [99] (see section 3.3 for the earlier models) include up to 21 building-level

and room-level occupancy types7. Deterministic electricity demand profiles for lighting and appliances is given to

6This is not further specified, but in IDA ICE the user can select from a set of predefined occupant presence schedules with default smoothing
applied [95]

7office, retail, hotel, hospital in [99]; normal office, offices closing early, offices closing late, office lobby, meeting room, data center, parking,
hotel lobby, hotel restaurant, hotel conference, hotel accommodation, hospital lobby, hospital medical treatment, hospital office, hospital bedroom,
conference, library, museum, restaurant, shop, vacant in [101]
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Table 2: Reviewed urban building energy modeling studies and tools that use deterministic space-based approaches and do consider inter-individual
diversity (sub-category 1B). Publications about the same urban building energy model are combined in one row.

category study / tool implemented oc-
cupant behavior
sub-models

origin of
sub-models

diversity strategy no. of occu-
pancy types

building simulation
engine

source

1B Yamaguchi et al. presence,
lighting, appliance
and HVAC use

custom buildings modeled individu-
ally (strategy 1)

4-22 HASPa [99, 100,
101]

1B Urban-EPC presence,
lighting, appliance
and HVAC use

DOE occupant density obtained
from census data (strategy 1)

16 R-C-model based
on ISO 13790

[19]

1B Suesser and Dogan presence, appliance
use

SIA,
measured data

occupant density obtained
by optimization calibration
(strategy 1)

1 EnergyPlus [72]

1B Cerezo et al. presence, lighting and
appliance use

survey data occupant density, HVAC
settings, lighting power ob-
tained by Bayesian calibration
(strategy 3)

1-4 EnergyPlus [71]

1B Sokol et al. presence, lighting and
appliance use

n/a occupant density, HVAC
settings, equipment power,
domestic hot water obtained
by Bayesian calibration
(strategy 3)

1 EnergyPlus [10]

1B DiDeProM presence, lighting and
appliance use

DOE occupant density, lighting
power, appliance power ob-
tained by random sampling of
parametric models (strategy
3)

1 EnergyPlus [24]

a HASP/ACLD is a Japanese HVAC simulation tool based on the response factor (or weighting factor) method [100].

each floor usage [100]. The approach is considering real data for inter-individual diversity among spaces of the same
occupancy type in terms of occupant densities, as Yamaguchi et al. seem to model each building individually based on
site surveys (diversity strategy 1). In [99] the model is used to evaluate building level retrofits, district energy system
designs and changes to urban form (replacing small prototypical buildings with large ones). In [100] it is studied how
the spatial distribution of building forms and occupancy types in commercial districts influences the district energy
demand and how different designs of district energy systems and building-level energy conversion systems impact
primary energy consumption and anthropogenic sensible heat release. In [101] scenarios of building-level envelope,
lighting, appliance and HVAC retrofits are simulated to estimate the reduction potential of operational carbon dioxide
emission in a commercial district in Osaka.

URBAN-EPC is a tool by Quan et al. [19] which couples a simplified building energy model to a GIS platform. In
their case study of Manhattan the properties of the DOE commercial reference buildings are used. Occupant densities
for residential and commercial usages are taken from block-level population and job census data. This corresponds to
diversity strategy 1, using real data to consider inter-individual diversity among spaces of the same occupancy type.
The tool’s intended use is to inform urban energy policy making.

Suesser and Dogan [72] model three buildings on a university campus using EnergyPlus. Appliance schedules are
extracted from metered electricity consumption and occupant presence schedules are based on SIA with adjustments
to start and end time according to the metered electricity data. Occupant density and infiltration rate are calibrated
to measured heating energy consumption using optimization. The calibration yields significantly different occupant
densities for the three buildings. This method of using measured data and optimization can be considered as strategy 1
to account for inter-individual diversity among spaces of the same occupancy type. The model is used to study various
retrofitting scenarios and the impacts of climate change onto the buildings’ energy demand.

Cerezo et al. [71] address uncertainty related to the inter-individual diversity of occupant behavior by defining
certain archetype parameters as probability distributions rather than fixed deterministic values (diversity strategy
3). They simulate 140 residential buildings with generic multi-zone EnergyPlus models based on an archetypes
database. Some occupant behavior model parameters are probabilistically defined according to probability distributions
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estimated by Bayesian calibration to measured annual building energy consumption data. They are the cooling set
point, the installed lighting, and the buildings’ occupant density. Plug loads and the maximum hourly domestic hot
water consumption are modeled as linear functions of occupant density. Schedules of occupants’ presence and use of
appliances are taken from context-specific literature and are not subject to the probabilistic modifications of archetypes.
The simulation is used for potential analysis of envelope retrofits in terms of yearly energy demand.

Sokol et al. [10] apply the methodology of Cerezo et al. [71] to a larger sample of buildings. 8 archetypes (4
age bands determining envelope properties and 2 heating system configurations) are defined to study a low-rise
residential district. No details about the origin of the deterministic occupant behavior models are provided. 6 selected
uncertain parameters are defined as probability distributions: infiltration, heating set point temperature, cooling set
point temperature, occupant density, plug load and lighting power density, and the domestic hot water flow rate. A
Bayesian calibration procedure against annual and monthly metered data is performed on a training set of buildings.
This leads to posterior distributions for uncertain parameters on the district-scale, which are then used to simulate a
different set of similar buildings. The authors conclude that probabilistic archetypes rather than fully-deterministic
definitions result in a more realistic spread of energy demands. Probabilistic archetypes allow the model to account for
inter-individual diversity of occupant behavior within buildings of the same occupancy type. By performing multiple
Monte Carlo simulations of such a model, results are presented as probability distributions rather than single values.
This allows for example to predict the energy savings from a retrofit measure with a confidence interval around the
expected value. However, the authors strongly advise against using such a model to generate hourly load data. Hourly
load data is strongly correlated with occupant behavior, and all buildings are using the same archetypical schedules.
They state that the time resolution of the calibration data set should be at least as high as the time resolution of any
analysis based on the urban model.

Another approach to introduce inter-individual diversity among spaces of the same occupancy type is to vary
occupant-behavior-related parameters within certain bounds and randomly select simulated energy demand profiles
(diversity strategy 3). Kazas et al. [24] present a District Demand Profile Model (DiDeProM). It a combines a fully
deterministic building simulation with a stochastic district demand profile generation method. A detailed EnergyPlus
model of a real building is simulated for 4 scenarios of varying building orientation and shading and 75 scenarios
of combinations of infiltration rate, occupant density, installed lighting and appliances power densities (total 300
scenarios). The deterministic schedules of occupant presence and appliance and lighting use in the building model
are based on the DOE reference buildings [102]. In the second step, these normalized demand profiles are assigned
randomly to buildings of similar orientation. The authors state that with this random selection uncertainties regarding
occupant behavior can be considered.

3.2. Stochastic space-based approaches

Urban building energy models that use stochastic space-based approaches are listed in table 3. They couple building
energy models to stochastic space-based occupant behavior models from literature, such as the Richardson models
[28, 56, 103].

Table 3: Reviewed urban building energy modeling studies and tools that use stochastic space-based approaches without diversity (sub-category 2A)
and stochastic space-based approaches with diversity (sub-category 2B). Publications about the same urban building energy model are combined in
one row.

category study / tool implemented oc-
cupant behavior
sub-models

origin of sub-
models

diversity strategy occupancy
type

building simulation
engine

source

2B (2A) TEASER presence,
lighting and appli-
ance use

Richardson lighting
use model [103]

HAVC settings, number of
occupants obtained by Quasi-
Monte-Carlo method (strategy
3)

residential Modelica AixLib [104,
105]

2B Bollinger and Evins presence,
activities,
appliance use

Richardson appli-
ance use model
[56]

use of different appliance sets
(strategy 2)

residential EnergyPlus [17]

2B He et al. active presence,
HVAC use

Richardson active
presence model
[28]

number of occupants obtained
by random choice (strategy 3)

residential EnergyPlus [39]
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Richardson et al. [28] define the term "active occupant" as a person who is at home and not asleep and pioneered
in the use of time-use survey (TUS) data - using a journal to describe what people do and when. Their two-state
active occupancy model is based on the first order non-homogeneous Markov Chain Monte Carlo technique that
generates synthetic data with the same overall statistics as the original survey data. From UK TUS data separate
transition probability matrices were constructed for weekdays and weekends and for different numbers of household
residents (one to six residents). This is assumed to better represent simultaneous state changes in households, e.g. the
whole family leaving the house at the same time. Building up on this model Richardson et al. [56] present a domestic
electricity demand model for individual dwellings based on the activities of the occupants and their associated use of
electrical appliances. A similar model for residential lighting use was also developed by Richardson et al. [103]. These
models will be called "Richardson active presence model", "Richardson appliance use model" and "Richardson lighting
use model" for the rest of this work.

3.2.1. Stochastic space-based approaches without diversity
Schiefelbein et al. [104] use the TEASER tool to generate building models of an existing residential district with

248 old buildings. The aim of their case study is to estimate the state of retrofit for district. Building models are
generated for different retrofit years. Annual stochastic profiles of occupant presence, appliances and lighting use are
generated with a modified version of the Richardson active presence model [28].

3.2.2. Stochastic space-based approaches with diversity
In another case study by Schiefelbein et al. [105] TEASER is used to generate and calibrate a model of a reference

residential district. Autogenerated building models and stochastic occupant presence and residential electrical load
profiles based on the Richardson lighting use model [103] are used to simulate the spatiotemporal thermal and electric
energy demand patterns of 55 buildings. The reference district model is calibrated via Quasi-Monte-Carlo uncertainty
analysis to measured thermal energy demand of the district. One of the calibration parameters is the number of
occupants per thermal zone. This corresponds to strategy 3 (probabilistic parameters) for inter-individual diversity. The
electrical load of buildings is then used in an electricity grid model of the district to simulate the operating conditions.

Bollinger and Evins [17] use a stochastic demand module, based on the Richardson appliance use model [56] to
generate different occupant presence and electricity demand data for 50 identical residential buildings with different,
distinct appliance sets. This corresponds to strategy 2 (distinct models) for inter-individual diversity of spaces. This
data is then used as an input in EnergyPlus simulations to produce heat and electricity demand patterns at one-minute
time resolution. The results are used to design a district multi-energy system.

He et al. [39] use the Richardson active presence model [28] in EnergyPlus simulations of a residential neighborhood
with 125 new buildings. 125 stochastic occupancy profiles are generated to derive the stochastic heating patterns of
different rooms according to actively-occupied hours, i.e., the heating system is turned on when at least one occupant is
present and active. Each of these heating patterns is then randomly assigned to one of the buildings. This corresponds
to strategy 3 (probabilistic parameters) for inter-individual diversity.

3.3. Stochastic person-based approaches

Urban building energy models that use stochastic person-based occupant behavior approaches are listed in table 4.
They often combine custom-developed behavior models with models from building-scale literature. Their models are
typically very data intensive. They build upon measured data or large-scale questionnaire surveys, like national time
use surveys. They are therefore limited to building occupancy types for which such data is available, i.e., residential
and office occupancy. The individual models are introduced in this section.

3.3.1. Stochastic person-based approaches without diversity
For their district energy simulation model, Yamaguchi et al. [98, 106] develop a detailed bottom-up energy demand

model including stochastic occupant behavior. They simulate the working states of commercial building occupants.
First, working hours are decided based on distribution functions. Each occupant gets the time when he starts and ends
work and the times when he leaves to and returns from the lunch break assigned. During the working hours the working
state is determined by a homogeneous Markov chain. Properties for four types of jobs (manager, clerk, sales, and
engineer) and four working states (using PC, not using PC, being out, and using two PCs) are assumed to generate the
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Table 4: Reviewed urban building energy modeling studies and tools that use stochastic person-based approaches without diversity (sub-category 3A)
and stochastic person-based approaches with diversity (sub-category 3B). Publications about the same urban building energy model are combined in
one row.

category study / tool implemented oc-
cupant behavior
sub-models

origin of sub-
models

diversity strategy no. of occu-
pant types

building
occupancy
type

building
simulation
engine

source

3A Yamaguchi
et al.

presence,
activities,
appliance use

custom - 4 office HASPa [98, 106,
107]

3A Shimoda et al. presence, activities,
lighting, appli-
ance and HVAC
operation,
hot water use

custom,
(SHASE)

- 8 residential custom R-C-
model
(HASP)

[108, 109,
110]

3A SUNtool presence,
appliance use,
window opening

literatureb, custom - n/a officec custom R-C-
model

[111]

3B StROBe presence,
activities,
lighting and appli-
ance use,
hot water use

custom,
literatured

typical presence patterns,
space heating settings from
clustering TUS and large-
scale questionnaire survey
(strategy 2)

5 residential Modelica
IDEAS

[73]

3B SOB presence,
lighting, appliance,
HVAC and window
operation

literaturee typical cooling set points,
lighting control, window
operation, HVAC control
from clustering large-scale
questionnaire survey (strategy
2)

3 residential DeSTf [18]

a HASP/ACLD is a Japanese HVAC simulation tool based on the response factor (or weighting factor) method [100].
b The model of Page et al. [58] for occupant presence considering intermediate long absences.
c assumed to be office as the model of Page et al. [58] was developed for office occupant presence.
d The model of Richardson et al. [56] for activity-chain, appliance use and hot water use, the model of Widén et al. [49] for lighting use.
e The model of Wang et al. [59] for occupant presence and movement for zone to zone. The model of Wang et al. [112, 113] was adapted for the operation of HVAC
systems, lights and windows.
f The Designer’s Simulation Toolkit (DeST) is a building energy modeling program based on a state-space multi-zone heat balance calculation method developed in
China [114].
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transition matrices for the Markov chain. The working states of each occupant are translated into a power consumption
and heat release from appliances. This approach is considered to be non-diverse, as no inter-individual diversity in
behavior among the same occupant type is modeled. The model is used to evaluate options for district energy systems
design for two neighboring office buildings of varying size and energy efficiency measures. The same model is used
in [106, 107] for envelope and building systems retrofit studies of 55 large office buildings in a commercial district
in Osaka. However, it is unclear whether the original stochastic occupant behavior model is still used, as "common
operational conditions" were assumed for all buildings in [107].

In [108, 109] Shimoda et al. create 460 representative residential buildings from 20 categories of buildings and
23 household types8. Stochastic schedules of living activities are considered for each family member category9. The
energy use for electric appliances, lighting and cooking are simulated from occupants’ living activities at each time
step. Detailed models of appliance dissemination10 in households and appliance electricity consumption are developed.
Later in [110] Shimoda et al. update their model’s simulation of the occupant activity-chains. 380 representative
buildings are created from 19 household demographics categories and 20 residential building types. For each of the
8 occupant categories11 the activity-chain is simulated in time steps of five minutes for 500 days of weekdays and
holidays. Simultaneous activities such as watching television while having a meal are considered. For each household
category, the activity-chain of each household member for a day is selected at random from the above mentioned
500-day schedules on a daily basis. Each living activity calculated by this simulation is linked with the energy use of
appliances and hot water use. The probability of appliance use is also considered for each time period. The location of
each living activity is also identified to determine the energy use for heating, cooling, and lighting of specific rooms. A
fixed AC cooling set point temperature for all occupants is assumed. This approach is considered to be non-diverse,
as no inter-individual diversity in behavior among the same occupant type is modeled. The model is used to study
building envelope efficiency improvements, appliance efficiency improvements, and the influence of the urban heat
island onto building energy demand. In addition, the authors state that this model has the capability to examine the
effects of life style changes on energy consumption, as appliance use is directly linked to occupants’ activities. They
also state that by considering scenarios of changes in population demographics the model is able to predict the change
of energy consumption in the future.

SUNtool by Robinson et al. [111] includes and combines various stochastic models for occupant presence, window
opening, lights and shading devices, electrical and water appliances, and waste produced for single buildings or
zones. The occupant presence model of Page et al. [58] is implemented. The model of Page et al. [58] is a two-state
(absent/present) single occupant, single zone simulation for office spaces based on a time-inhomogeneous Markov-
chain interrupted by occasional periods of long absence. The transition probabilities are estimated based on aggregate
measured occupancy. An assumed parameter of mobility describes the probability of state changes. An additional
algorithm for the random start of a period of long absence is executed at each time step. Aggregated hourly occupant
presence values produce loads that are considered in the building thermal model. For window opening, a behavioral
model relating indoor environmental stimuli with interaction probability is developed. Indoor temperature and pollutant
concentration are used to predict interaction probability. People already present in a zone and new arrivals have distinct
acceptability of indoor pollutant concentration. People also have a random, normally distributed higher or lower critical
temperature limit of comfort. Interactions take place when critical limits of the stimuli are reached, except when
occupants are about to leave for a long absence. The consumption of electrical and water appliances is simulated by
using a set of stochastic rules depending on the presence of occupants, switch-on probability profiles, exponential
distributions of use duration, and, for appliances with varying demand, a Gaussian distribution of power demand. No
interactions with HVAC systems are included. This approach is considered to be non-diverse, as no inter-individual
diversity in behavior among the same occupant type is modeled. In one case study the building energy consumption as
a function of facade glazing ratio and urban street canyon proportions is studied. In a another case the relationship

8According to number of household members, family type of household and employment status of husband and wife, e.g., 2 household members
/ aged mother and child / neither husband nor wife is employed, or 6 household members / couple, children and parents / Both husband and wife are
employed, etc.

9The simulation software ‘SCHEDULE’ developed by SHASE (The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan)
generates schedules of heating and cooling, lighting and other energy use in dwellings from Japanese TUS data.

10Active power consumption and stand-by power consumption of 23 appliances are considered.
11The types employed male, employed female, housewife, elementary school student, junior high school student, high school student, aged male,

and aged female, correspond to the Japanese TUS occupant categories.
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between building form, urban form and energy consumption is studied and options for on-site generation of solar
energy technologies are explored. SUNtool was further developed into CitySim without keeping the stochastic occupant
behavior models.

3.3.2. Stochastic person-based approaches with diversity
Baetens and Saelens [73] developed a stochastic residential occupant behavior (StROBe) model for district energy

simulations. It simulates plug loads, internal heat gains, thermostat settings and hot water use based on occupant
presence and activities. First a household composition is sampled according to the distributions found in Belgian
TUS data. 4 types of occupants are distinguished12. For each household member one of 7 typical occupant presence
patterns13 is selected. A three-state stochastic active-occupancy model (awake at home, asleep at home, and absent) is
based on a heterogeneous discrete-time Markov chain. The transitions are determined by event density and a survival
time density parameters for each of the typical presence patterns. Residential activities, appliance use and hot water
use is modeled with an adaptation of the Richardson appliance use model [56]. Lighting loads are modeled with the
stochastic domestic lighting demand model of Widén et al. [49]. For space heating behavior patterns an approach using
clustered questionnaire data from 15000 Dutch dwellings is developed 14. The most-active household member at a
certain time step determines the heating set point of the living area. In this way StROBe implements strategy 2 (distinct
models) for inter-individual diversity in presence and space heating behavior of persons of the same type. A two zone
thermal model representative of the Belgian building stock is used. The model is able to produce district energy demand
patterns with simultaneity and autocorrelation measures close to the respective design standards. The model is then
used to quantify the uncertainty introduced by stochastic occupant behavior on electrical district infrastructure design.
Various scenarios of 5 - 30 identical residential buildings and different energy system configurations consisting of PV
systems and heat pumps are simulated.

An et al. [18] present a stochastic occupant behavior method (the SOB method) to consider the behavior of multiple
occupants for residential district load prediction in China. The SOB method considers variability in occupant presence,
cooling set point temperatures and the operation of HVAC systems, lighting and windows. For occupant presence and
movement from zone to zone they adopt the approach of Wang et al. [59] originally developed for multi-zone office
buildings. It combines time-related events (e.g., reaching home) and stochastic movements from zone to zone in a
homogeneous Markov chain. The parameters of the model are the expected proportion of time the occupants spend in
every zone in the apartment and the earliest, expected and latest time of each arrival and departure from the apartment
[59]. Six typical set of parameters based on household size and type of occupants15 are extracted from a large-scale
questionnaire survey. Typical cooling set point distributions are derived from the same survey. The approach of Wang
et al. [112, 113] is adapted for the operation of HVAC systems, lights and windows. Their conditional probability
model considers environment-triggered (e.g., action in response to indoor temperature) and event-triggered (e.g., action
when arriving at home) control actions. Environment-triggered action probabilities are defined by three-parameter
Weibull cumulative functions - increasing the probability of actions with with increasing exceedance of the threshold
value. Probabilities of event-triggered actions are set to a constant value. The case study model parameters are based
on reference studies that are not further specified and the authors’ assumptions. The frequency of four to five typical
behavior modes for each occupant action model (e.g., “AC off when leaving living room", "AC off when sleeping",
etc.) are extracted from the questionnaire survey. For appliance loads deterministic schedules are created for each
combination of household and apartment type based on experiments. For the case study in a residential district seven
prototype apartment energy models are created, a questionnaire is used to survey the frequencies of each typical
household composition and occupant behavior type. Stochastic sampling is used to assign household compositions
and occupant behaviors to each apartment in the district. In this way SOB implements strategy 2 (distinct models) for
inter-individual diversity in presence and HVAC use behavior among persons of the same type. The energy demand of

12Full time employed, part time employed, unemployed, retired, and minor.
13The patterns were clustered from the Belgian TUS data by Aerts [115]. They are: Mostly at home, very short daytime absence, short daytime

absence, daytime absence, afternoon absence, night-time absence, mostly absent.
146 out of 7 typical household heating behavior patterns including set point and set back temperatures and the extent of heated spaces as described

by Leidelmeijer and Van Grieken [116] are considered. E.g., Pattern 3: 18.5◦C if home and awake, 18.5◦C if home and asleep, 15.0◦C if absent,
day-zone-space and bathroom are heated.

15One office worker; Two office workers; Two retirees; Two office workers and one student; Two office workers, one student, and one retiree; Two
office workers, one student, and two retirees
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each apartment is simulated using the multi-zone dynamic building simulation tool DeST [114]. The district cooling
load pattern is simulated and compared to measured data using three occupant behavior modeling approaches: The
SOB method, deterministic schedules from literature and a Chinese HVAC design standard method (assuming constant
internal heat gains and constant AC operation). Five relevant performance metrics for district energy systems design
and policy making are compared: The total cooling load, the peak load (relevant for infrastructure sizing), the load
duration curve (relevant for conversion systems’ sizing), the load profile (relevant for operation strategies) and the
total load distribution among households (relevant for policy making). The results show that deterministic schedules
and stochastic occupant behavior models can be used to predict total cooling consumption. For peak load estimation
only the stochastic method is sufficient. The use of deterministic schedules results in a large error of 150%. None of
the methods is able to accurately reproduce the district load duration curve and the load profile. However, the SOB
method outperforms the two deterministic methods. Regarding the load distribution, the SOB method predicts similar
distributions as the measurement data. Although only occupant behaviors of the majority of the population in the
district (no extreme behaviors) are considered.

4. Discussion

4.1. Summary

Table 5 compares all reviewed urban building energy models in terms of their capabilities to model different building
occupancy types. Table 6 lists the actual and intended modeling purposes of the reviewed publications. Intended
modeling purposes are often mentioned in the outlook sections of publications.

4.1.1. Deterministic space-based approaches
Deterministic space-based approaches seem to be the primary choice of developers of urban building energy model-

ing toolsets (CitySim, UMI, CEA, TEASER, CityBES). These tools are usually capable of modeling various building
occupancy types. UMI and CEA offer the most comprehensive set of building occupancy types by implementing
standard occupant presence and behavior schedules, see table 5. Other reviewed urban building energy models of this
category are based on classical building-scale simulation tools (DOE-2, eQuest and EnergyPlus), which rely on the
input of schedules of occupant presence, lighting use, appliance use and so on. Such models and tools are usually used
for larger city-scale or district-scale case studies. Their purposes include building retrofit studies and district energy
system design and operation studies, see table 6. In the case of retrofit potential analysis the choice of deterministic
occupant behavior seems appropriate, as the optimized retrofit strategies are obtained as an indicative value for classes
of buildings. The design of district energy systems, however, relies on accurate estimation of peak demands. Models
with deterministic occupant behavior might not be the optimal choice for this application. Studies using stochastic
occupant behavior models showed that peak loads on the district-scale are affected by the stochasticity of demand
patterns in buildings. However, deterministic models based on standard schedules of occupant presence seem to be
the only option if mixed-use case studies with buildings of various occupancy types ought to be modeled. They are
available in norms and standards or in the respective building-scale simulation literature and they can easily be input to
the commonly-used building energy simulation tools.

Diversity in deterministic space-based approaches is considered via real data (diversity strategy 1) either by setting
parameter values to actual observations from other data sources, e.g., office occupant density according to job census
data [19] or by calibrating parameter values to measured energy consumption using optimization algorithms, e.g., [72].
Two options of diversity strategy 3 (probabilistic model parameters) for deterministic space-based approaches were
discovered: (1) Equip archetypes with probabilistic occupant-behvaior-related parameters, e.g., [71, 10, 105], or (2)
simulate sensitivity-like variations of occupant-behavior-related parameters to generate a database of heating patterns
or normalized load curves and randomly assign such patterns to buildings in the case study e.g., [24]. By performing
multiple Monte Carlo simulations of such a model, results are obtained as probability distributions rather than single
values. This allows for example to predict the energy savings from a retrofit measure with a confidence interval around
the expected value. Residential buildings are the only occupancy type considered in approaches using this diversity
strategy, see table 5.
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Table 5: Building occupancy type categories considered in the reviewed occupant behavior modeling approaches. Publications are ordered according
to their occupant behavior modeling approach category and the number of included building occupancy types.
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1A UMI [80, 5]

1A CEA [2, 82, 83]

1A Heiple and Sailor [77]

1A Params-NZP [90]

1A Ahmed et al. [92]

1A Nageler et al. [91]

1A Orehounig et al. [81]

1A CityBES [87, 88, 89]

1A TEASER [84, 85, 86]

1A Caputo et al. [3]

1A Wu et al. [93]

1A CitySim [78, 79]

1B Urban-EPC [19]

1B Yamaguchi et al. [99, 100, 101]

1B Suesser and Dogan [72]

1B DiDeProM [24]

1B Cerezo et al. [71]

1B Sokol et al. [10]

2B (2A) TEASER [104, 105]

2B Bollinger and Evins [17]

2B He et al. [39]

3A Yamaguchi et al. [98, 106, 107]

3A SUNTool [111]

3A Shimoda et al. [108, 109, 110]

3B StROBe [73]

3B An et al. [18]
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Table 6: Demonstrated (dark gray) and intended (light gray) purposes of the reviewed urban building energy models. The models are ordered
according to their occupant behavior modeling approach category.

category study/tool
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1A UMI [80, 5]

1A CEA [2, 82, 83]

1A Ahmed et al. [92]

1A Params-NZP [90]

1A CityBES [87, 88, 89]

1A TEASER [84, 85, 86]

1A Nageler et al. [91]

1A Heiple and Sailor [77]

1A CitySim [78, 79]

1A Wu et al. [93]

1A Caputo et al. [3]

1A Orehounig et al. [81]

1B Yamaguchi et al. [99, 100, 101]

1B Suesser and Dogan [72]

1B Urban-EPC [19]

1B DiDeProM [24]

1B Cerezo et al. [71]

1B Sokol et al. [10]

2B (2A) TEASER [104, 105]

2B Bollinger and Evins [17]

2B He et al. [39]

3A Yamaguchi et al. [98, 106, 107]

3A SUNTool

3A Shimoda et al. [108, 109, 110]

3B StROBe [73]

3B An et al. [18]
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4.1.2. Stochastic space-based approaches
Only a small number of stochastic space-based approaches were encountered in the review process. The reviewed

publications of this category couple existing building energy models (in EnergyPlus or Modelica) to existing stochastic
space-based occupant behavior models of Richardson et al. [28, 103, 56]. The models of of Richardson et al. were
developed for the residential context and build upon data of UK TUS, which is maybe not appropriate in other contexts.
Unless new stochastic occupant behavior models for other building occupancy types and contexts are developed,
this category remains limited by the availability of suitable building-scale models. The publications that use this
approach primarily research the impacts of stochastic vs. deterministic occupant behavior on resulting spatiotemporal
patterns of energy demand [39] and their respective implications for district energy systems design [17]. In [17] it is
demonstrated that stochastic occupant behavior affects the sizing of district energy systems. In [39] stochastic occupant
presence in residential buildings results in aggregated heating demand patterns on weekends that are different from
commonly-assumed standard heating hours. However, the effects on the design of district energy systems were not
quantified in any of the studies. The approaches in this category make use of diversity strategy 2 (distinct models) and
diversity strategy 3 (probabilistic model parameters).

4.1.3. Stochastic person-based approaches
Stochastic person-based approaches are implemented in some of the earliest urban building energy models. They

originated from Japan and typically require access to large TUS and behavior questionnaire survey data in the
relevant context. The approach by Shimoda et al., using stochastic residential activity chains according to household
demographics is used to study impacts of building retrofits and the urban heat island. It does not seem that occupant
behavior directly influences any of the scenarios under investigation and that for these modeling purposes a simpler
modeling approach could be appropriate. However, the model of Shimoda et al. [108] is the only one among the
reviewed literature that has the theoretical capability to predict future energy consumption considering changes in life
style and population demographics. Baetens and Saelens [73] and An et al. [18] present the most comprehensive and
most diverse stochastic person-based occupant behavior modeling approach for the residential context so far. They
are considering diversity of distinct behavioral patterns amongst persons of the same category according to clustered
observations. An et al. were also the only ones who examine the effects of using deterministic space-based approaches
vs. a stochastic person-based approach onto district energy systems design. They demonstrate the superiority of
stochastic person-based approaches for this purpose of urban building energy models.

Overall it can be observed that for the urban-scale various deterministic and stochastic models have been adopted
from building-scale research with little or no modifications. Among the reviewed publications there are no stochastic
approaches that cover more than a single building occupancy type. On the district-scale only residential and office
occupancy types are modeled using stochastic approaches. Two studies were reviewed that directly compare the effects
of using stochastic occupant behavior approaches to deterministic ones on the urban-scale [39, 18], see table 6. Both of
them are considering residential buildings only. Both of them confirm the superiority of stochastic occupant behavior
models over deterministic ones. Urban building energy models with deterministic space-based occupant behavior
approaches have been used for district energy sizing and operation strategies, but first results of comparative studies
advise against using such models, because relevant performance metrics were predicted with large errors when using
deterministic approaches [18]. However, in many publications the occupant behavior modeling approaches are still
only side notes. An approach considering the potential evolution of occupant behavior over time was not encountered
in the review process.

4.2. Activity-based multi-agent approaches as an alternative for stochastic urban-scale occupant behavior

In general, stochastic person-based occupant behavior approaches offer the most capabilities and allow for the
inclusion of inter-individual diversity of behavior on the person-level. They can therefore be potentially used for
all applications of urban building energy models. However, due to the shortcomings discussed in section 4.1 they
are currently not ready to model mixed-use scenarios. Instead of developing stochastic space-based models for
additional building occupancy types, other options, including urban-scale activity-based multi-agent approaches could
be considered. People interact with various buildings on a daily basis. Their activities relate to their presence in different
spaces at the urban-scale and to their use of appliances. Their individual level of comfort and behavioral patterns
govern the control actions towards building systems. Modeling people as agents in a multi-agent approach, therefore,
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seems to be a promising option to explore. Inspiration can be taken from earlier attempts to couple transportation and
land use models to urban building energy simulations [117], from more general urban energy systems models [118],
and from transport science itself.

The integration of transport simulation for modeling presence and activities of occupants in urban building energy
simulation has been proposed for CitySim [117]. A multi-agent simulation platform (MATSim [119]) was intended
to couple the simulation of individual journeys in the city and associated transport energy use to the building energy
demand. The proposed platform consists of a synthetic population generator that assigned the agents with relevant
socioeconomic parameters using a Monte Carlo method. The presence of occupants, specified by arrival time, location
and departure time, would then be an output of the transport simulation’s daily journeys of agents. For the generation
of synthetic activity sequences an approach based on inhomogeneous Markov chain, e.g., [54, 120] was proposed.

The urban energy systems modeling toolkit SynCity [118, 121] contains an agent-based microsimulation agent-
activity model to generate spatially and temporally varied patterns of resource-demand. The model simulates the daily
activities of each citizen. It is implemented as a stochastic four-stage transportation model: at each time step, citizens
select an activity, an activity provider (specific location), a transport mode, and a route. From the generated daily
schedules of the agents, demands for electricity and heat are calculated. The necessary inputs to the model include
the average activity profiles of the citizens. At the time of publication a fully detailed agent-activity model was under
development. A simpler model was used to test for realistic resource demands. This model first assigns the estimated
population to houses and employers within the city layout. Activity profiles for 16 different time periods (4 times per
day, 2 types of day, and 2 seasons) and different socioeconomic characteristics control the performed activities of each
citizen [118].

With agent-based approaches it is possible to model systems where agents influence each other, learn from their
experiences and adapt their behavior. Agents’ behavior is described by relatively simple rule sets. Interactions with
other agents influence their behavior. These rule sets result in patterns, structures and behavior of the system as a whole.
This self-organization and the emphasis on modeling the heterogeneity of agents in a population are two features that
distinguish agent-based models from other techniques [122]. Agent-based approaches can reproduce the properties of
classical stochastic occupant presence models based on Markov-chains [123]. They are used to create activity-chains
of occupants in single buildings [124, 125]. Recent developments on the building-scale demonstrated the capabilities
for incorporating different personality traits [126], agent learning [127], hierarchies among agents [128], goal-driven
behavior [129] and behavioral changes over time [130]. These could all be valuable additions to scenario-based urban
energy systems planning use cases.

5. Conclusion

Based on this review of current urban building energy models and their occupant behavior modeling approaches it
can be concluded that occupant behavior is still considered at the individual building-scale and not at the urban-scale.
The common approach to model mixed-use districts is to couple archetypical construction properties of buildings
with standardized deterministic space-based occupant behavior models according to building occupancy type. This is
currently also the only viable approach, as stochastic space-based and person-based occupant behavior models are only
available for a limited number of building occupancy types.

Compared to deterministic approaches, models considering stochastic occupant behavior are able to generate more
realistic spatiotemporal energy demand patterns at the district level. However, not all purposes of urban building energy
models require such patterns. In general there should be a consistency in modeling approach and model purpose. For
example an urban-scale building retrofit potential analysis evaluating overall annual energy savings most likely does not
require a sophisticated stochastic occupant behavior model, whereas district energy system design, requiring realistic
and robust peak demand estimations, would potentially profit from such models.

Given the capabilities of agent-based building-scale occupant behavior models and the prevalent usage of urban-
scale multi-agent simulation approaches in transport science, the option for an agent-based urban-scale occupant
behavior model for urban building energy simulations should be explored.

Such advanced urban-scale occupant behavior models could be capable of incorporating changes in population
demographics, changes in behavior over time, and occupants’ adaptation to economic or environmental changes.
By adding the possibility to simulate scenarios of urban development under changing boundary conditions, such
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models would upgrade urban building energy models to tools for holistic urban planning and optimization of energy
infrastructure.
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