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ARTICLE

Itch suppression in mice and dogs by modulation
of spinal α2 and α3GABAA receptors
William T. Ralvenius1, Elena Neumann1, Martina Pagani1,2, Mario A. Acuña1, Hendrik Wildner1,

Dietmar Benke 1,2,3, Nina Fischer4, Ana Rostaher4, Simon Schwager5, Michael Detmar 5,

Katrin Frauenknecht6, Adriano Aguzzi 6, Jed Lee Hubbs7, Uwe Rudolph8,9, Claude Favrot4 &

Hanns Ulrich Zeilhofer 1,2,3,5

Chronic itch is a highly debilitating condition affecting about 10% of the general population.

The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn,

which may offer a hitherto unexploited therapeutic opportunity. Here, we found that specific

pharmacological targeting of inhibitory α2 and α3GABAA receptors reduces acute histami-

nergic and non-histaminergic itch in mice. Systemic treatment with an α2/α3GABAA receptor

selective modulator alleviates also chronic itch in a mouse model of atopic dermatitis and in

dogs sensitized to house dust mites, without inducing sedation, motor dysfunction, or loss of

antipruritic activity after prolonged treatment. Transsynaptic circuit tracing, immuno-

fluorescence, and electrophysiological experiments identify spinal α2 and α3GABAA recep-

tors as likely molecular targets underlying the antipruritic effect. Our results indicate that

drugs targeting α2 and α3GABAA receptors are well-suited to alleviate itch, including non-

histaminergic chronic itch for which currently no approved treatment exists.
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Chronic itch affects between 4–17% of the general
population1,2. Most drugs currently used to treat itch are
histamine H1 and H4 receptor blockers that work well

against acute itch. By contrast, chronic itch is mostly histamine-
independent and largely irresponsive to these medications3.
Frequent causes of histamine-independent itch include, besides
atopic dermatitis, cholestatic liver disease, end stage kidney fail-
ure, and opioid-therapy4. Drugs used to treat itch in these con-
ditions include immune suppressants and drugs acting at the
CNS such as gabapentinoids, antidepressants, and opioid receptor
antagonists. In the majority of cases, these treatments do not
provide adequate relief or cause severe side effects5.

Pruritic (itch) stimuli are detected by sensory neurons (pri-
mary pruritoceptors) that innervate the skin and transform
these stimuli into electrical signals, i.e., action potentials. These
action potentials are then relayed via the peripheral and central
axons of primary pruritoceptors to central neurons in the spinal
or medullary dorsal horn6. Only recently have researchers
begun to understand the signaling molecules, receptors, trans-
mitters and neuronal pathways of itch. Several “new” G
protein-coupled receptors expressed by primary sensory neu-
rons have been identified that are activated by pruritogens. One
such receptor is the mas-related G protein coupled receptor A3
(MrgprA3 in mouse, or MRGPRX1 in human), which is acti-
vated by the antimalarial drug chloroquine7. Sensory neurons
expressing this receptor become excited by a wide variety of
pruritogens involved in acute histaminergic and non-
histaminergic itch, as well as in chronic itch8. Other work
addressed neuronal pathways involved in the spinal relay of
itch. These studies identified excitatory interneurons expressing
gastrin releasing peptide (GRP)9 or the GRP receptor (GRPR)
10,11 as key elements of this process. These itch-relay pathways
appear to be under tight control by dorsal horn inhibitory
neurons. Lack of a certain subset of these neurons that depend
on the transcription factor Bhlhb5 leads to severe chronic itch
in mice12. Local ablation of inhibitory neurons of the deep
dorsal horn induces abnormal grooming and biting behavior,
and localized hair loss reminiscent of chronic itch syndromes13.
Conversely, local activation of these neurons through
DREADDs (designer receptors exclusively activated by designer
drugs14) suppressed histamine-dependent and histamine-
independent itch, demonstrating that inhibitory dorsal horn
neurons exert a profound control over spinal itch relay13.

Inhibitory neurons of the spinal dorsal horn release two fast
amino acid transmitters, GABA and glycine, to reduce the
excitability of their postsynaptic target neurons. In the present
study, we focused on the GABAergic system and investigated
whether itch, in particular chronic itch, can be suppressed
through pharmacological modulation of specific subtypes of
spinal GABAA receptors (GABAARs). GABAARs are pentameric
anion channels built from a repertoire of 19 subunits15. Most
GABAARs in the brain and spinal cord are composed of α, β, and
γ subunits in a 2:2:1 stoichiometry. The mammalian genome
harbors 12 genes encoding for these subunits (α1-6, β1-3, and
γ1–3). Spinal GABAARs mainly contain α1, α2, α3, or α5 subunits
together with β2/3 subunits and a γ subunit. α4 and α6 subunits
are only sparsely expressed or completely lacking16,17. Differences
in the physiological functions and pharmacological properties of
these GABAARs are mainly determined by the α subunit18. In the
present study, we first used genetically modified mice to identify
α2/α3 containing GABAARs as key elements of spinal itch con-
trol. Building on this result we assessed potential antipruritic
actions of an α2/α3GABAAR selective compound (TPA023B;
ref. 19) and showed that it not only reduced acute histamine-
dependent and histamine-independent itch in mice but also
chronic itch in mice and dogs without apparent side effects.

Results
Inhibitory input to peripheral and spinal pruritoceptors. We
first verified that itch relaying GRP neurons receive input from
local inhibitory interneurons. Retrograde mono/transsynaptic
rabies virus-based tracing experiments20 initiated from GRP::cre
neurons identified numerous inhibitory and excitatory neurons
presynaptic to GRP neurons (Fig. 1). About half of the inhibitory
neurons were located in lamina II of the dorsal horn, where most
inhibitory neurons are purely GABAergic21. The other half resi-
ded in deeper layers, where most inhibitory neurons co-express
glycine and GABA13.

We next investigated the presence of α1, α2, α3, and
α5GABAAR subunits on spinal axon terminals of primary
MrgprA3 positive pruritoceptors and on spinal GRP neurons
(Fig. 2). Both MrgprA3 fibers and GRP neurons are concentrated
in lamina II8,22, which also harbors α2 and/or α3GABAAR
subunits at high density16,17,23. To visualize MrgprA3 axons and
terminals and GRP neurons, we used GRP::eGFP and MrgprA3::
cre-eGFP;ROSA26lsl-tdTom transgenic mice. Immunostaining of
spinal cord sections of these mice confirmed that the region of α2
and α3GABAAR subunit expression overlapped with that of
MrgrpA3 terminals and GRP neurons (Fig. 2a,c). A similar
GABAAR subunit expression pattern was found in the cervical
spinal cord and the medullary dorsal horn (see Supplementary
Fig. 1). By contrast, α1 and α5GABAAR subunits were largely
missing from lamina II. Confocal analysis at higher magnification
further demonstrated that α2 and α3GABAAR subunits were
located on MrgprA3 fibers and GRP neurons (Fig. 2b,d). To allow
a quantification of α2 and α3GABAAR subunit expressing
neurons, we performed fluorescent in situ hybridization in
sections of lumbar dorsal root ganglia (DRGs) and lumbar spinal
cords (Fig. 2e). In these experiments, we also included spinal cord
sections from GRPR::eGFP transgenic mice. Only about 20% of
MrgprA3 positive DRG neurons expressed α2 and α3GABAAR
subunit transcripts. This low expression is consistent with
previously published single cell RNAseq data24 (Supplementary
Table 1). By contrast, virtually all GRP and GRPR neurons
expressed α3GABAAR subunit transcripts, and more than 60% of
these neurons also expressed α2GABAAR subunits. Co-expression
of α2 and α3GABAAR subunit transcripts with GRP and GRPR
transcripts was also observed in human spinal cord tissue
(Supplementary Fig. 2).

GABAAR subtypes with antipruritic efficacy. We then asked
whether pharmacological targeting of GABAARs containing α2 or
α3 subunits (α2/α3GABAARs) reduces itch. To this end, we
administered diazepam, a classical benzodiazepine that non-
selectively potentiates the activation of benzodiazepine-sensitive
GABAARs. To restrict diazepam’s action to a single GABAAR
subtype (α1, α2, α3, or α5), we used triple GABAAR point
mutated mice, which carry a histidine to arginine (H → R) point
mutation in three of the four benzodiazepine sensitive GABAAR α
subunits23 (designated as HRRR, RHRR, RRHR, and RRRH mice,
for mice in which only α1, α2, α3, or α5GABAARs remained
diazepam sensitive). Because mice of this particular genetic
background (129SvJ) have not yet been systematically analyzed in
itch experiments, we first assessed their sensitivity to different
pruritogens. We found that injection of α-methyl serotonin (α-
methyl 5-HT), a metabolically more stable derivative of the
pivotal itch messenger serotonin25, induced robust dose-
dependent scratching behavior (Supplementary Fig. 3). We then
tested the effect of systemic diazepam (10 mg kg−1, p.o.) on
scratching responses evoked by α-methyl 5-HT (20 µg). Selective
targeting of α2 or α3GABAARs (in RHRR or RRHR mice)
strongly reduced scratching bouts (Fig. 3a–d). No significant
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reduction was observed after activation of α5GABAARs (in RRRH
mice). A possible contribution of α1GABAARs could not be
addressed as their activation induces strong confounding
sedation23,26.

To test whether also chronic itch would respond to α2/
α3GABAAR facilitation, we employed the oxazolone model of
chronic atopic-like dermatitis27 (Fig. 3e–h). Oxazolone was
repeatedly applied to the shaved nape of the neck for 17 days.
This procedure induced profound scratching responses in wild-
type mice and the three lines of triple GABAAR point mutated
mice. Systemic treatment with diazepam (10mg kg−1, i.p.) again
strongly reduced scratching when only α2 or α3GABAARs were
targeted (in RHRR and RRHR mice). It had no obvious effects on
home cage behavior in these mice (see Supplementary Movies 1-4).

Antipruritic efficacy of an α2/α3 selective GABAAR modulator.
We then tested whether the data obtained in genetically modified

mice would translate into therapeutic efficacy of GABAAR
subtype-selective compounds. To this end, we tested the anti-
pruritic efficacy of the α1-sparing GABAAR modulator TPA023B
(ref. 19). As a prerequisite, we verified the in vitro pharmacolo-
gical profile of TPA023B in transiently transfected HEK293 cells.
As reported previously19, TPA023B had partial agonistic activity
at the benzodiazepine binding site of α2β3γ2 and α3β3γ2
GABAARs, but did not potentiate α1β2γ2 GABAARs and had
very weak potentiating effects on α5β2γ2 GABAARs (Fig. 4a). It
did not activate GABAARs in the absence of GABA. We then
asked whether this partial agonistic activity would translate to a
facilitation of GABAergic inhibition in MrgprA3 or GRP neurons
(Fig. 4b, c). In dissociated MrgprA3::cre-eGFP positive DRG
neurons, TPA023B (1 µM) led to a slight statistically insignificant
increase in GABAAR current amplitudes (P= 0.068, two-sided
paired t-test, n= 10) (Fig. 4b). A more pronounced effect was
observed in GRP dorsal horn neurons in which TPA023B (1 µM)
significantly prolonged the decay of GABAergic inhibitory
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Fig. 1 Inhibitory input onto spinal GRP positive itch relaying interneurons. a Neurons providing synaptic input onto GRP positive neurons were identified
using transsynaptic rabies virus based tracing. GRP::cre;ROSA26TVA mice (n= 3) were first injected with AAV.flex.mCherry-RabG into the left lumbar
spinal cord, and 14 days later with an EnvA pseudotyped glycoprotein deficient rabies virus (EnvA.RabiesΔG-eGFP). b–g Transverse sections of the injected
dorsal horn. Cre positive GRP neurons infected with AAV.flex.RabG (red) primary and secondary Rabies virus infected neurons (green). Co-staining with
Lmx1b and Pax2 revealed excitatory and inhibitory neurons, respectively. b primary rabies virus infected neurons express eGFP and mCherry, and appear
yellow. Secondary rabies virus infected neurons are green only. c Co-staining with Lmx1b (blue) reveals the excitatory population of secondary infected
(transsynaptically labeled) neurons (magenta; eGFP and Lmx1b positive but mCherry negative) d Classification of transsynaptically labeled neurons as
excitatory (39%, Lmx1b positive) or inhibitory (45%, Pax2 positive). 16% of transsynaptically infected neurons (eGFP positive but mCherry negative) were
neither stained with antibodies against Lmx1b or Pax2, and remained unclassified. e Co-staining with PKCγ (red) indicates border between lamina II and III.
mCherry was not visible in e-g because it required signal amplification by an mCherry antiserum. f Co-staining against Pax2 revealed transsynaptically
labeled inhibitory neurons (magenta; Pax2 and eGFP positive). Scale bar, 100 µm. We did not find any mCherry/eGFP/Pax2 triple positive neurons (not
shown) consistent with the known excitatory phenotype of spinal GRP neurons22. g Higher magnification of the area indicated in f. Arrow heads indicate
rabies virus infected (eGFP positive) inhibitory (Pax-2 positive) neurons. Of the inhibitory transsynaptically labeled neurons, 48% were in laminae I/II and
52% in laminae III/IV. Quantifications were performed on 9 sections obtained from 3 mice
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Fig. 2 α2 and α3GABAARs are expressed on key elements of a spinal itch relay circuit. Expression of GABAAR α subunits in MrgprA3 positive primary
pruritoceptors (a, b) and GRP positive dorsal horn neurons (c, d). a–d show transverse sections of the lumbar spinal cord of two MrgprA3::cre;ROSA26lsl-
tdTom and three GRP::eGFP transgenic mice stained with antibodies against α1, α2, α3, and α5GABAAR subunits. td-Tom and eGFP are shown in green,
GABAAR α subunits in red. Overlapping expression (light green/yellow) of GABAAR α subunits with tdTom and eGFP was seen for α2 and α3GABAAR
subunits, but not for α1 and α5GABAAR subunits. b, d Confocal analyses. Orthogonal views (stacks of 17–35 sections (1024 × 1024 pixels) at 0.4 µm
intervals) verify co-localization of α2 and α3GABAAR subunits with MrgprA3 positive fibers and terminals (b) and GRP positive dorsal horn neurons (e) at
higher magnification. Arrowheads indicate examples of co-localization. Scales bars, 50 µm (a, c), 5 µm (b, d). e Fluorescent in situ hybridization signals of
α2 (red) and α3 (blue) subunits together with eGFP (to detect MrgprA3 neurons DRG neurons in MrgprA3::cre-eGFP transgenic mice), GRP and GRPR
in situ hybridization signals (green, in wild-type mice). DAPI staining (gray) was used to indicate the location of cells. Bar charts: percent GABAAR α
subunit positive neurons among the marker (MrgprA3, GRP, and GRPR) positive neurons. Each data point represents one mouse. Sections were obtained
from 3–5 mice. Scale bar, 20 µm
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Fig. 3 Antipruritic effects of GABAAR modulation in GABAAR triple point mutated mice. a–d Suppression of acute itch by α2, α3, and α5GABAARs
activation (diazepam 10mg kg−1, p.o., given 60min prior to pruritogen injection) in three lines of triple GABAAR point mutated mice (α2 [RHRR mice], α3
[RRHR], or α5 [RRRH]). a Number of scratching bouts over time after diazepam injection. b Comparisons were made for diazepam (filled circles) versus
vehicle (open circles) for the three genotypes. P values were obtained from unpaired two-sided t-tests corrected for three independent comparisons. n= 8
and 10 (α2, vehicle, diazepam); n= 8 and 8 (α3, vehicle, diazepam); n= 7 and 9 (α5, vehicle, diazepam). c Dose-dependence of the antipruritic effects of
diazepam in RHRR mice (only α2GABAARs sensitive to diazepam). ANOVA followed by Dunnett’s post hoc test F(6,36)= 6.02; *P < 0.05; **P < 0.01, n=
7, 7, 4, 6, 6, 7, 5, for vehicle, and 0.1, 0.3, 1.0, 3.0, 10, and 30mg kg−1. d Same as c but RRHR mice (only α3GABAARs sensitive to diazepam). ANOVA
followed by Dunnett’s post hoc test F(6,37)= 4.42; *P < 0.05; **P < 0.01, n= 7 (vehicle) and 6 for all other groups. e–h Suppression of chronic itch.
Antipruritic effects of α2, α3, and α5GABAARs in the oxazolone model of atopic-like dermatitis. Mice were sensitized to oxazolone over 17 days and treated
with diazepam (10 mg kg−1, i.p.) or vehicle on day 18. Scratching bouts were counted for 6 h starting 15 min after drug or vehicle administration. e–g
Number of scratching bouts plotted versus time after drug or vehicle administration. h P values obtained from unpaired two-sided t-tests for the three
genotypes, corrected for three independent comparisons. Unpaired two-sided t-tests, n= 7 and 8 (α2, vehicle, diazepam); n= 7, 8 (α3, vehicle, diazepam);
n= 8, 8 (α5, vehicle, diazepam). Error bars indicate s.e.m.
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postsynaptic currents by 43 ± 10% (P < 0.01, paired two-sided t-
test, n= 7) (Fig. 4c). Together with the in situ hybridization data,
these results suggest that GABAARs inhibit the spinal relay of itch
signals primarily at the level of dorsal horn interneurons rather
than via inhibition of primary pruritoceptors.

Would the favorable in vitro profile of TPA023B translate into
reduced propensity to side effects? Consistent with the lack of
agonistic activity at α1GABAARs, TPA023B did not induce
sedation at doses up to 3 mg kg−1 (p.o.), but instead increased
locomotor activity at 1 and 3 mg kg−1 (Fig. 5a). TPA023B did not
cause muscle relaxation (Fig. 5b) and did not impair motor
coordination (Fig. 5c).

We then continued investigating the efficacy of systemic (p.
o.) TPA023B against acute itch evoked by α-methyl 5-HT (20
µg), chloroquine (100 µg), or histamine (100 µg) (Fig. 6a).
Chloroquine-induced scratching was reduced by TPA023B in
wild-type mice at doses ≥ 0.03 mg kg−1. Similar effects were
obtained with α-methyl 5-HT and histamine. To verify that the
antipruritic effect of TPA023B was due to its interaction with
the benzodiazepine binding site of GABAARs, we used
GABAAR triple point mutated mice (HRRR mice), in which
all GABAARs susceptible to modulation by TPA023B (α2, α3,
and α5 GABAARs) had been rendered benzodiazepine-
insensitive. The antipruritic action of TPA023B was completely
lost in these mice (Fig. 6b). We also confirmed that the H → R
point mutation prevented potentiation and binding of
GABAARs by TPA023B (Supplementary Fig. 4). TPA023B (3
mg kg−1, p.o.) had no significant effect on responses evoked by
stimulation with a paint brush or von Frey filaments, and did
not reduce responses to acute noxious heat (Fig. 6c–e)
excluding a non-specific block of sensory relay through the
spinal cord.

Subsequent experiments with intrathecal injection of TPA023B
(0.3 mg kg−1) at the level of the lumbar spinal cord in wild-type
mice (Fig. 7a) confirmed that the antipruritic action of TPA023B
originated from the spinal cord. Further support was obtained
with hoxB8-GABAARα2−/− (Fig. 7b) and sns-GABAARα2−/−

mice (Fig. 7c). These conditional knock-out mice lack
α2GABAARs either from all spinal cord and DRG neurons
(hoxB8-GABAARα2−/−)28 or only from small diameter Nav1.8
positive (nociceptive and pruritoceptive) DRG neurons29. Anti-
pruritic effects of systemic TPA023B (3 mg kg−1, p.o.) were
strongly reduced in hoxB8-GABAARα2−/− mice but remained
unaltered in sns-GABAARα2−/− mice. In line with an action on
intrinsic dorsal horn neurons, TPA023B (3 mg kg−1, p.o.) also
reduced scratching behavior elicited by intrathecal injection of
brain-type natriuretic peptide (BNP; 10 nmoles) and GRP (1
nmole) (Fig. 7d, e) consistent with an itch inhibitory effect
occurring primarily via intrinsic dorsal horn neurons.

Would TPA023B also alleviate chronic itch? We first employed
again the oxazolone model of atopic-like dermatitis. Acute
treatment with TPA023B (1 mg kg−1, i.p.) caused a highly
significant reduction in the number of scratching bouts
(determined during the interval 15–210 min after drug injection)
(Fig. 8a; for potential effects of i.p. TPA023B on locomotor
behavior and motor performance see Supplementary Fig. 5). A
similar antipruritic action was observed in the dry skin dermatitis
model30 (Fig. 8b). Treatment of chronic itch conditions with
TPA023B would require that no loss of therapeutic activity occurs
during repeated applications. To test whether TPA023B would
retain therapeutic activity during chronic treatment, we com-
pared the antipruritic activity of TPA023B in drug naïve mice
with that in mice treated with TPA023B (1 mg kg−1 i.p.) once
daily for ten days (Fig. 8c). No significant loss of antipruritic
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activity was observed. Treatment with TPA023B over several days
also alleviated skin lesions. After seven days of once daily
treatment with TPA023B (1 mg kg−1, i.p.), mice showed a
progressive reduction in their dermatitis scores (Fig. 8d).
Furthermore, chronic treatment with TPA023B also reduced
the infiltration of the affected skin by macrophages (Supplemen-
tary Fig. 6). By contrast, topic treatment with TPA023B (100 µl
0.3 µM, once daily) over the same time period neither changed
scratching behavior nor dermatitis scores (Fig. 8e).

Additional experiments verified a spinal site of action also for
chronic itch. First experiments in global α2 R/R point mutated
mice revealed that eliminating diazepam sensitivity from
α2GABAARs was not sufficient to block the antipruritic action
of TPA023B (Fig. 9a). Because selective targeting of α3GABAARs
had an even stronger antipruritic effect than targeting
α2GABAARs (compare Fig. 3h), we focused our efforts on the
α3GABAAR subtype and investigated α3GABAAR subunit knock-
out mice, in which deletion of the α3GABAAR subunit gene was
achieved through the insertion of a duplicated exon (5*) flanked
by loxP sites31. This design allows a cre-dependent (tissue-
specific) rescue of α3GABAAR subunit expression (Fig. 9b). The
antipruritic effect of TPA023B was completely lost after global
deletion of α3GABAAR subunits but was fully restored in spinal
cord-specific hoxB8-GABAARα3resc/resc mice (Fig. 9c).

Antipruritic efficacy of TPA023B in pruritic dogs. Encouraged
by its efficacy in mice and the absence of apparent side effects, we
tested the antipruritic efficacy of TPA023B in a second, hier-
archically higher, species (Fig. 10). We chose dogs because models
of atopic dermatitis that closely mimic natural disease are well-
established in this species32 and because the tolerability of
TPA023B in dogs had already been established33. We performed
a pseudo-randomized observer-blind placebo-controlled cross-
over trial and in twelve beagle dogs sensitized to house dust mites
by repeated exposure of their lower abdomen to lyophilized
extracts of Dermatophagoides farinae34. After a sensitization
period of 8 weeks during which the dogs were exposed to the
extracts once a week, three challenges on three consecutive days
were made in week 12. Nine of the 12 dogs developed clinical
signs of pruritus and were included in subsequent experiments.
These nine dogs were again challenged in weeks 15 and 18 on
three consecutive days. The challenge on day 2 was used to obtain
baseline values. The challenge on day 3 was followed by TPA023B

(20 mg in one tablet, equivalent to about 2 mg kg−1, p.o.) or
placebo administration. The same procedure was repeated in
week 18 with a cross-over design. Both the time spent scratching
and the numbers of scratching bouts were counted over 6 h after
drug administration and normalized to the values on the day
before drug exposure. Compared to placebo, a significant
reduction was observed for both read-outs. Five of the 9 dogs
(56%) responded with a reduction by more than 50% (for
responses of the individual dogs see Supplementary Table 2).
These results indicate that specific targeting of α2/α3GABAARs
alleviates itch not only in mice but also in dogs supporting the
potential for translation to more complex species, including
possibly, also human patients.

Discussion
Local application of TPA023B to the spinal cord and specific
genetic ablation of spinal α2GABAARs have shown that most if
not all of its antipruritic action originates from the spinal (or
medullary) dorsal horn. This is consistent with our finding that
virtually all GRP and GRPR neurons in the mouse spinal cord
express α3GABAAR transcripts and more than 60% of these
neurons also express α2GABAARs. Using post mortem tissue
samples, we confirmed a similar coexpression of α2 and
α3GABAAR subunits on GRP and GRPR neurons for the human
spinal cord, in line with the highly conserved expression pattern
of spinal GABAAR subunits in rodents and humans35,36.

MrgprA3 is primarily activated by chloroquine7. However, the
fibers carrying this receptor respond to many pruritogens and
convey signals related to both histaminergic and non-
histaminergic itch8. A critical role of GRP37 and GRPR38 neu-
rons in spinal itch circuits is meanwhile also well established.
After local spinal ablation of GRP neurons, mice respond less to
pruritic stimuli37. This is also supported by a study that employed
BNP-conjugated saporin to ablate spinal GRP neurons9. Besides
GRP and GRPR positive interneurons, neurokinin 1 (NK1)
receptor expressing neurons of the dorsal horn are also relevant
to spinal itch relay39. Previous work from our group has shown
that these neurons also express α2 and α3GABAARs40.

α2/α3GABAARs do not only control itch but also pain23,40 (for
a review see ref.41). The latter function is supported by the
expression of α2/α3GABAARs receptors on sensory fibers and
dorsal horn nociceptive neurons16,40 and also by the efficacy of
spinal GABAergic neuron transplants against pain and itch42,43.
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Unlike opioids that reduce pain but cause itch44, drugs targeting
α2/α3GABAARs should alleviate both itch and pain. Activation of
α3GABAAR had a stronger impact on scratching responses than
α2GABAARs. This ratio is reverse in case of analgesia23,40 in line
with the view that sensory fibers and dorsal horn neurons pro-
cessing itch or pain are not identical3,45. There were also differ-
ences in the contribution of α2 and α3GABAARs between models
of acute and chronic itch. These may hint at potential neuro-
plastic changes occurring during the transition from acute to
chronic itch.

In the present study, we have assessed unwanted effects that
typically occur with classical non-selective benzodiazepine site
ligands. TPA023B was devoid of sedative effects, did not impair
motor coordination and did not lose antipruritic activity during
prolonged treatment. The absence of a sedative effect is consistent
with the pivotal role of α1GABAARs in benzodiazepine-induced
sedation26. The increase in locomotor activity observed in the
present study is possibly related to the anxiolytic action of
α2GABAARs (see also ref.23). Previous studies in triple GABAAR
point mutated mice have attributed the impairment of motor
coordination and tolerance development to α1 or α3GABAARs23.
The lack of these side effects in TPA023B treated mice may either
come from the absence of activity at α1GABAARs or from the
only partial agonistic activity (relative to the full agonist diaze-
pam) at α3GABAARs.

In human patients, the most challenging type of pruritus is
chronic non-histaminergic pruritus which is often due to liver or
kidney failure or treatment with opioids46. While anti-
histaminergics provide good itch relief in cases associated with
urticaria, other forms respond less well to these drugs or not at all.
At present, these conditions are mostly treated off-label with
systemically applied anticonvulsants, such as gabapentin and
pregabalin, antidepressants, opioid antagonists, or more recently
with NK1 receptor blockers (aprepitant), or immunosup-
pressants47. None of these compounds have been approved for
systemic treatment of chronic itch conditions. In our study,
TPA023B was similarly effective against non-histaminergic and
histamine-induced itch, and, in general, more effective in chronic
than in acute itch. If the antipruritic efficacy combined with good
tolerability observed in the present study translates to human
patients, TPA023B or related compounds should be well-suited
for the treatment of chronic itch in humans.

In a broader context, our study adds to a growing body of
evidence indicating that subtype selective GABAAR modulators
promise not only better tolerability but may also open new ave-
nues to the treatment of disorders that have hitherto not been
considered indications for benzodiazepines. Such potential new
opportunities include, in addition to itch and pain, cognitive
enhancement by inverse agonists at α5 GABAARs48,49, depression
and autism spectrum disorders (for a review see ref. 50). Given the
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wide-spread, almost ubiquitous, expression of GABAARs in the
CNS, such new opportunities should not come as a surprise.

Methods
Mice. Homozygous triple and quadruple (H→R) GABAAR α subunit point-mutated
mice were generated by cross breeding of single point-mutated mice26,51,52. GABAAR
point mutated mice and the corresponding control mice were of the (129 × 1/SvJ)
background. Other transgenic mice (including single GABAAR point mutated mice)
and the corresponding control mice were of the C57BL/6 genetic background. BAC
transgenic GRP::eGFP (Tg(Grp-EGFP)DV197Gsat/Mmucd), GRP::cre (Tg(Grp-cre)
KH288Gsat/Mmucd) and GRPR::eGFP (Tg(Grpr-EGFP)PZ62Gsat/Mmucd) were
obtained from the GENSAT project (http://www.gensat.org). BAC transgenic
MrgprA3::cre-eGFP (Tg(Mrgpra3-GFP/cre)#Xzd)8 were generously provided by
Dr. Xinzhong Dong, Johns Hopkins University. BAC transgenic mouse lines were
maintained in the heterozygous state. TVA reporter mice (Gt(ROSA)26Sor < tm1
(Tva)Dsa)53 expressing the TVA transgene from a ubiquitous promoter in a cre
dependent manner were obtained from Dr. Dieter Saur (Technical University of
Munich). (ROSA)26Sortm14(CAG-tdTomato)Hze/J (ROSA26lsl-tdTom, also known as
Ai14; www.jax.org/strain/007914) were obtained from Jackson Laboratories. Sns-cre
mice (Tg(Scn10a-cre)1Rkun)54 were kindly provided by Dr. Rohini Kuner from
University of Heidelberg. HoxB8-cre (Tg(Hoxb8-cre)1403Uze)55 and GABAARα3−/−

mice (Gabra3tm2Uru)56 have been described previously. Mice were genotyped with
PCR (for primers see Supplementary Table 3). All animal experiments were complied
with the relevant ethical regulations. Permission for all animal experiments was
obtained from the Veterinäramt des Kantons Zürich (licenses 126/2012, 257/2014,
ZH031/16, ZH113/16).

Human spinal cord tissue. came from autopsies done at the Department of
Neuropathology, University of Zurich. Both, tissue samples and data were anon-
ymized. The analysis of the small tissue samples used in this study did not require
special permission (confirmed by the Ethics Committee of the Canton of Zurich,
BASEC Req-2017-01005).

Drugs. Diazepam was obtained from Sigma. TPA023B (6,2′-difluoro-5′-[3-(1-
hydroxy-1-methylethyl)imidazo[1,2-b][1,2,4]triazin-7-yl]biphenyl-2-carbonitrile)
was synthesized by ANAWA, purity was >95%. For oral (p.o.) and intraperitoneal
(i.p.) administration to mice, diazepam and TPA023B were suspended in 0.9%
saline/1% Tween80. For electrophysiological experiments and radioligand binding,
TPA023B was dissolved in DMSO and diluted with extracellular solution to
0.001–1 µM (final DMSO concentration ≤0.12%). For experiments in dogs,
TPA023B was packed into tablets containing 20 mg TPA023B, 38 mg Prosolv®

SMCC90 (JRS Pharma) and 2 mg Ac-Di-Sol® (FMC). Placebo tablets were of the
same weight, size, color and composition but contained 2.4 mg Quinoline Yellow
(E104) instead of 20 mg TPA023B. Quinoline Yellow was added to ensure the same
color of TPA023B and placebo tablets. GRP and BNP were obtained from Tocris.
For intrathecal (i.t.) administration into mice, both peptides were dissolved in
distilled water and diluted in extracellular solution to 1–10 nmoles per 10 µl. For
topical application, TPA023B (0.3 µM 100 µl) was suspended in acetone/olive oil
(4:1 v/v) and applied on the shaved nape of the neck once daily.

AAV preparation. AAV.flex.mCherry-2A-RabG vector was cloned in-house and
packaged at Penn Vector Core (Perelman School of Medicine, University of
Pennsylvania) using their custom service. AAV.flex.mCherry-2A-RabG vector was
cloned by excising the ChR2-mCherry fusion protein from pAAV-Ef1a-DIO-
hChR2(H134R)-mCherryWPRE-pA (kindly provided by Dr. Karl Deisseroth,
Stanford University) with AscI and NheI and replacing it with PCR amplified
mCherry-2A-RabG cDNA. AAV of serotype 1 vector was used in this study.

Intraspinal virus injections. Animals were anesthetized with 2–5% isofluorane
and lumbar vertebrae L4 and L5 were exposed. The animal was then placed in a
motorized stereotaxic frame and the vertebral column was immobilized using a
pair of spinal adaptors. The vertebral lamina and dorsal spinous process were
removed to expose the L4 lumbar segment. The dura was perforated about 500 μm
left of the dorsal blood vessel using a beveled 30 G needle. Viral vectors were
injected at a depth of 200–300 μm using a glass micropipette (tip diameter 30–40
μm) attached to a 10 μl Hamilton syringe. The rate of injection (30 nl min−1) was
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Fig. 7 TPA023B reduces acute itch mainly through spinal α2GABAARs. a
Antipruritic action of intrathecally injected TPA023B (0.3 mg kg−1) in wild-
type mice. Chloroquine (100 µg) was injected intracutaneously into the left
thigh. Time spent biting of the injected skin area (s min−1) and total
number of scratching bouts counted during 0–10 min after pruritogen
injection. P= 0.004, unpaired two-sided t-test, n= 7 and 6, for vehicle
and TPA023B. b Antipruritic action of TPA023B (1 mg kg−1, p.o.) in hoxB8-
α2−/− mice (n= 6 and 6, for vehicle and TPA023B), GABAAR α2fl/fl mice
(n= 5 for both groups) and global α2GABAAR (H→ R) point mutated mice
(n= 6 and 5, for vehicle and TPA023B, respectively). Chloroquine (100 µg)
was injected intracutaneously into the left thigh. Chloroquine-induced
biting responses (total time spent biting the injected skin area) were
virtually identical in all three genotypes (ANOVA followed by Bonferroni
post-hoc test F(14,2)= 0.39, P= 1.0 for all comparisons). By contrast,
biting responses in TPA023B (1 mg kg−1, p.o.) treated mice differed
significantly between genotypes (ANOVA followed by Bonferroni post-hoc
test F(2,13)= 10.6). +P≤ 0.05; ++P≤ 0.01. No significant difference (P=
0.45) was found between hoxB8-α2−/− mice and global α2 R/R mice
indicating that at least the α2GABAAR-mediated component occurred
through a spinal site. c Antipruritic actions of TPA023B (1 mg kg−1 p.o.) in
sns-α2−/− mice lacking α2GABAARs specifically from small diameter
nociceptive and pruritoceptive DRG neurons, n= 5 for all groups.
Chloroquine (100 µg) was injected intracutaneously into the left thigh.
TPA023B exerted similar antipruritic actions in α2fl/fl and sns-α2−/− mice
(ANOVA followed by Bonferroni post-hoc test F(1,16)= 0.36) indicating
that peripheral α2GABAARs do not contribute to the antipruritic actions of
TPA023B. d, e Antipruritic effects of TPA023B (3mg kg−1, p.o.) against
itch evoked by intrathecally injected BNP (10 nmoles) (n= 7 per group)
(d) or GRP (1 nmole) (n= 6 and 7 mice, for TPA023B and vehicle) (e).
Unpaired two-sided t-tests. Error bars indicate s.e.m.
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Fig. 8 Antipruritic actions of TPA023B in chronic itch models. a Oxazolone model of chronic atopic-like dermatitis. Scratching bouts after injection of
TPA023B (1 mg kg−1, i.p.) over time (left). Total numbers of scratching bouts between 15 and 210min after TPA023B/vehicle administration (right).
Unpaired two-sided t-test, n= 10 mice per group. b Same as a but dry skin model of dermatitis, n= 6 mice per group. c Lack of tolerance development after
10 day treatment with TPA023B (TPA, 1 mg kg−1, i.p. once daily). Two-way ANOVA (pretreatment x treatment), F(1,1)= 0.96, P= 0.34. Two-sided t-test
indicates similar antipruritic effects in vehicle and TPA023B pretreated mice, n= 6 (TPA/TPA), n= 5 for all other groups. d Dermatitis score. Chronic
systemic treatment with TPA023B (1 mg kg−1 i.p., once per day) starting on day 11 of oxazolone exposure. Oxazolone challenges were continued during
TPA023B treatment every other day. Only mice with a dermatitis score of 5 or higher on day 11 were included. In TPA023B-treated mice the dermatitis
score decreased from day 6 of treatment onwards (F(9,54) > 38.7; P < 0.026 to P < 0.001) (left), but remained almost constant in vehicle-treated mice
(right). Mixed repeated measures ANOVA revealed a significant treatment x time interaction F(9,117)= 22.6; P < 0.001 for day 8 and 9 (+++). Differences
between both treatment groups were significant at day 8 and 9. ***P= 0.0009 and ****P < 00001. Photographs show the same mice before treatment
(left) and after 9 days of treatment (right). e Chronic topical treatment (0.3 µM TPA023B in 100 µl, once per day). Left: total number of scratching bouts
between 15 and 210min after TPA023B on day 9 after treatment begin. Unpaired two-sided t-test, P= 0.97, n= 6 mice per group. Right: same as left but
dermatitis score (mixed repeated measures ANOVA treatment × time interaction F(9,99)= 0.61; P= 0.78; n= 6 and 7, for vehicle and TPA023B,
respectively). Error bars indicate s.e.m.
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controlled using a PHD Ultra syringe pump with a nanomite attachment (Harvard
Apparatus, Holliston, MA). The micropipette was left in place for 5 min after the
injection. Wounds were sutured and the animals were injected i.p. with 0.03 mg kg
−1 buprenorphine and allowed to recover on a heat mat. Rabies virus injected mice
were subjected to perfusion 3–5 days after injection.

Retrograde tracing experiments. Retrograde monosynaptic tracing experiments
were initiated from GRP::cre expressing neurons of the lumbar spinal cord. A two-
step strategy was used. This involved first an injection of an AAV helper virus
(AAV.flex.mCherry-2A-RabG; 2.9 × 109 GC per injection in 300 nl) containing a
bicistronic Cre-dependent mCherry and rabies glycoprotein (RbG) expression
cassette, and fourteen days later a subsequent injection of an EnvA (avian sarcoma
leukosis virus “A” envelop glycoprotein) pseudotyped glycoprotein-deficient rabies

virus (EnvA.RabiesΔG.eGFP; 1 × 106 GC per injection in 500 nl). The TVA protein
expressed from the Rosa26 reporter mouse line53 enabled cell type specific infec-
tion of Grp::Cre positive neurons, and the RbG was expressed to transcomplement
the glycoprotein-deficient rabies virus in primary infected neurons. For subsequent
neurochemical analyses, mice were perfused with 4% paraformaldehyde (PFA) in
PBS followed by postfixation in 4% PFA in PBS for 1–2 h five days after rabies virus
injection. The tissue was cut into 25 μm thick coronal cryosections, which were
mounted onto Superfrost Plus microscope slides (Thermo Scientific, Zurich,
Switzerland). The following antibodies were used: rat anti-mCherry (1:1000;
Molecular Probes; RRID:AB_2536611), rabbit anti-GFP (1:1000; Molecular Probes;
RRIC:AB_221570), chicken anti-GFP (1:1000; Thermo Fisher Scientific, Waltham,
MA, USA; RRID:AB_2534023), guinea pig anti-Lmx1b (1:10,000; gift from Carmen
Birchmeier57) rabbit anti Pax2 (1:400; Invitrogen, Carlsbad, CA; USA; RRID:
AB_2533990), anti PKCγ (1:1000; Santa Cruz Biotechnology, Dallas, TX, USA;
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RRID:AB_632234) and cyanine 3 (Cy3)-conjugated, Alexa Fluor 488-conjugated,
DyLight 488-conjugated, 647-conjugated, and 649-conjugated donkey secondary
antibodies (1:500; Dianova, Hamburg, Germany). Retrograde tracing experiments
were done in 8–9-week-old mice.

Image analysis. Fluorescent images were acquired on a Zeiss LSM710 Pascal
confocal microscope using a 0.8 NA 20x Plan-apochromat objective or a 1.4 NA
63x EC Plan-Neofluar oil-immersion objective and the ZEN2012 software (Carl
Zeiss). Whenever applicable, contrast, illumination, and false colors were adjusted
in ImageJ or Adobe Photoshop (Adobe Systems, Dublin, Ireland). Cell numbers
were quantified in a total of 9 sections prepared from 3 animals. In order to avoid
double counting of cells in adjacent sections, all sections used for quantification
were taken at a distance of at least 50 µm. The numbers of immune reactive cells
were determined using the ImageJ Cell Counter plug-in.

Immunohistochemistry and image analysis of GABAAR subunits. Colocaliza-
tion of GABAAR α subunits with MrgprA3 axons and GRP neurons was visualized
on 40 µm thick transverse mouse lumbar spinal cord cryosections. Mice were
deeply anaesthetized with pentobarbital (nembutal, 50 mg kg−1, i.p.) and perfused
with oxygenated aCSF. Spinal cords were rapidly collected by pressure ejection and
placed in ice-cold 4% PFA for 90 min. The spinal cords were then cryoprotected
overnight in a 30% sucrose/PBS solution, snap frozen with dry ice and cut in 40 μm
thick coronal free-floating slices kept in antifreeze at −20 °C until the day of
staining16. Antibodies were home-made subunit-specific antisera16,58. Final dilu-
tions were 1:20,000 (α1), 1:1,000 (α2), 1:10,000 (α3), and 1:3,000 (α5). The dis-
tribution of GABAAR α subunits in dorsal horn GRP neurons and MrgprA3 axons
was analyzed by immunofluorescence staining on coronal sections prepared from
2–3 male GRP::eGFP transgenic mice as described above. For staining, the sections
were incubated overnight at 4 °C with a mixture of primary antibodies diluted in
Tris buffer containing 2% normal goat serum. Sections were washed extensively
and incubated for 1 h at room temperature with the corresponding secondary
antibodies conjugated to Cy3 (1:500), Cy5 (1:200) (Jackson ImmunoResearch) or
Alexa488 (1:1000, Molecular Probes, Eugene, OR). Sections were washed again and
cover-slipped with fluorescence mounting medium (DAKO, Carpinteria, CA).

Double-immunofluorescence signals were visualized by confocal microscopy
(LSM 710; Zeiss AG, Jena, Germany) using a 63x Plan-Apochromat objective (N.A.
1.4). The pinhole was set to 1 Airy unit for each channel and separate color
channels were acquired sequentially. The acquisition settings were adjusted to
cover the entire dynamic range of the photomultipliers. Typically, stacks of
confocal images (1024 × 1024 pixels) spaced by 0.3 μm were acquired at a
magnification of 56–130 nm/pixel. For display, images were processed with the

image analysis software Imaris (Bitplane; Zurich, Switzerland). Images from all
channels were overlaid (maximal intensity projection) and background was
subtracted, when necessary. A low-pass filter was used for images displaying α
subunit staining. Analysis of the distribution of α subunit-IR in GRP::eGFP
neurons and dendrites and MrgprA3::cre-eGFP axons was performed in single
confocal sections acquired at a magnification of 78 nm / pixel in 8-bit gray scale
images, using a threshold segmentation algorithm (minimal intensity, 90–130; area
> 0.08 μm2). Distribution of GABAARα3 protein was studied in brain and spinal
cord sections obtained from adult hoxB8-α3resc/resc, global α3−/−, and wild-type
mice. For immunoperoxidase staining, a polyclonal antibody directed against the
N-terminal fifteen amino acids (pGluGESRRQEPGDFVKQ) of the rat GABAAR α3
protein was used as the primary antibody. Sections from GABAAR-mutated mice
and from controls were treated in a strictly parallel fashion.

RNAscope fluorescent in situ hybridization. Multiplex fluorescent in situ
hybridization was performed using RNAscope (Advanced Cell Diagnostics; ACD;
ref. 59). In brief, dissected tissue was snap frozen in liquid nitrogen and later on
embedded in NEC50. Thirty five µm sections were cut on a Hyrax C60 cryostat,
mounted on superfrost+ glass slides and stored at −80 °C until use. The in situ
hybridization was carried out according to the manufactures protocol. The fol-
lowing RNAscope probes were used: GABAAR α1 (catalog number: 435351);
GABAAR α2 (435011-C2); GABAAR α3 (435021-C3); GABAAR α5 (319481); GRP
(317861 and 317861-C2); GRPR (317871 and 317871-C2); EGFP (400281 and
400281-C3). The latter was used to detect eGFP expressed under the genetic
control of the MrgprA3 gene in MrgprA3::cre-eGFP transgenic mice.

Human spinal cord tissue samples. Tissue has been extracted during routine
autopsy from five patients. Two samples had been formalin fixed and paraffin
embedded, and three were fresh frozen tissue samples. All samples were screened
with control RNAscope fluorescent in situ hybridization probes provided by the
manufacturer of the assay [human Polr2a (C1), PPIB (C2) and UBC (C3)]. Tissue
samples of one patient were well enough preserved to yield reliable and specific
in situ hybridization signals. These samples were from a 37 years old male patient
with a post mortem time of 16 h who had died of septic shock and right heart
failure. From this patient, small samples from the cervical, thoracic and lumbar
spinal cord had been fixed in 4% formalin for 14 days, and were then paraffin-
embedded. Ten micrometer thick slices were mounted on superfrost glass slides.
Multiplex fluorescent in situ hybridization on human spinal cord tissue was per-
formed using RNAscope® Multiplex Fluorescent Reagent Kit Version 2 (323100,
Advanced Cell Diagnostics; ACD; ref.59). The in situ hybridization was carried out
according to the manufactures protocol with the following modifications. Target
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Fig. 10 Antipruritic actions of TPA023B in a dog model of allergic itch. a Time line of the study. TPA023B was administered as a tablet (20mg, p.o.) and
dogs (n= 9) were monitored for 6 h starting immediately after drug/placebo administration. An additional round of three challenges (not displayed) was
made on week 12. b, c Effect of TPA023B on the number of scratching bouts per hour (b) and time spent scratching in min hour−1 (c). Both outcome
parameters were normalized to the values obtained on the day before drug treatment. Dots and connecting lines represent values of individual dogs and
changes in these values following treatment with TPA023B. Open and closed circles are dogs that received TPA023B either in round 1 or in round 2,
respectively. P values were determined using paired two-sided t-tests. Error bars indicate s.e.m.
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retrieval was carried out at 94–98 °C for 30 min in target retrieval buffer. Protease
incubation was carried out for 30 min at 40 °C with the protease plus reagent. The
following RNAscope probes were used: α2GABAAR (Hs-GABRA2 448211-C2),
α3GABAAR (Hs-GABRA3 320269-C3), GRP (Hs-GRP 465261-C1) and GRPR
(Hs-GRPR 460411-C1) were used to detect co-expression of GRP / GRPR and
α2GABAAR or α3GABAAR subunit transcripts.

Skin histology and immunofluorescence. Inflamed and healthy back skin was
collected. Tissues were embedded in OCT compound (Sakura Finetek, Torrance,
USA) and frozen on dry ice. Cryostat sections (7 μm) were placed on glass slides,
air dried, fixed with acetone for 2 min at −20 °C and subsequently rehydrated with
80% methanol for 5 min at 4 °C. Specimens were incubated with 5% donkey serum,
0.1% Triton-X and 1% BSA in PBS for 1 h at room temperature, followed by
overnight incubation with rat anti-mouse CD68 (1:200; Abcam, Cambridge, United
Kingdom) at 4 °C. The samples were incubated with Alexa Fluor 488- or 594-
coupled secondary antibodies and Hoechst 33342 (all from Invitrogen, Life
Technologies, Carlsbad, USA) for 30 min at room temperature. CD68-stained
sections were examined on an Axioskop 2 mot plus microscope (Carl Zeiss,
Feldbach, Switzerland), equipped with an AxioCam MRC camera (Zeiss) and a
Plan-Apochromat 0.45 NA ×10 objective (Zeiss). Images of at least four individual
fields of view were acquired per section using Axio-Vision software 4.8. Using
ImageJ v1.49, the fluorescent area was determined between the stratum corneum
and an outline thereof shifted 300 µm into the tissue. Results are expressed as
CD68-positive area (µm2) per µm basement membrane.

Electrophysiological recordings in HEK293 cells recordings. The effects of
TPA023B on currents through recombinant GABAARs were studied in HEK293
cells (ATCC) transiently expressing GABAARs. HEK293 cells were transfected
using lipofectamine LTX28. To ensure expression of the γ2 subunit (required for
modulation of GABAARs by BDZs) in all recorded cells, we transfected cells with a
plasmid expressing the γ2 subunit plus eGFP from an IRES, and only selected
eGFP-positive cells for recordings. The transfection mixture contained (in µg):
1 α1, 1 β2, 3 γ2/eGFP (used as a marker of successful transfection) or 1 αx, 1 β3, 3
γ2/eGFP in case of α2, α3, or α5GABAARs. Recordings were made 18–36 h after
transfection. Whole-cell patch-clamp recordings of GABA-evoked currents were
made at room temperature (20–24 °C) and at a holding potential of −60 mV.
Recording electrodes were filled with solution containing (in mM): 120 CsCl, 10
EGTA, 10 HEPES (pH 7.40), 4 MgCl2, 0.5 GTP and 2 ATP. The external solution
contained (in mM): 150 NaCl, 10 KCl, 2.0 CaCl2, 1.0 MgCl2, 10 HEPES (pH 7.4),
and 10 glucose. GABA was applied to the recorded cell using a manually controlled
pulse (4–6 s) of a low sub-saturating GABA concentration (EC5). EC5 values of
GABA were determined for all subunit combinations analyzed. EC50 values and
Hill coefficients (nH) were obtained from fits of normalized concentration-response
curves to the equation IGABA= Imax [GABA]nH/([GABA]nH+ [EC50]nH). Imax was
determined as the average maximal current elicited by a concentration of 1 mM
GABA. TPA023B was dissolved in DMSO and subsequently diluted with recording
solution was co-applied together with GABA without preincubation.

Primary pruritoceptive neuron preparation and recordings. Lumbar dorsal root
ganglia (DRGs) were dissected from 6–8 weeks old MrgprA3::cre-eGFP mice as
previously described60. After removal of the connective tissue, DRGs were incu-
bated twice in LiberaseTM DL Research Grade (0.09 mgml−1, Roche) for 30 min.
DRGs were washed with phosphate buffered saline PBS (Gibco) and incubated
with Trypsin-EDTA (Gibco) for 15 min. After washing with TNBTM medium
(Biochrom) supplemented with L-glutamine (Gibco), Protein-Lipid-Komplex
(Biochrom), penicillin-streptomycin (PenStrep, Gibco), DRGs were mechanically
dissociated with fire-polished Pasteur pipettes and centrifuged through a 3.5 % BSA
cushion (Sigma) to remove non-neuronal cells. The cell pellets were resuspended in
supplement TNBTM medium and plated on coverslips coated with poly-L-lysine
and laminin (Sigma). The sensory neurons were cultured in supplement TNBTM

medium containing mNGF 2.5 S (Alomone Labs, 10 µg / 100 ml TNB medium) at
37 °C in 5% CO2. Within 48–72 h after plating, whole-cell path-clamp recordings
were performed. TNBTM medium was replaced with extracellular solution con-
taining (in mM): 150 NaCl, 10 KCl, 2.0 CaCl2, 1.0 MgCl2, 10 HEPES (pH 7.4), and
10 glucose. GABAAR membrane currents were recorded from eGFP positive
neurons at a membrane potential of −70 mV. Patch pipettes (borosilicate glass; 3–4
MΩ) were filled with intracellular solution containing (in mM): 120 CsCl, 2 MgCl2,
6 H2O, 10 HEPES, 0.05 EGTA, 2 MgATP, 0.1 NaGTP (pH 7.35). GABAAR cur-
rents were evoked by application of 5–20 µM GABA. TPA023B was dissolved in
DMSO and applied at the concentration of 1 µM.

Electrophysiological recordings in spinal cord slices. Transverse spinal cord
slices (400 µM thick) were prepared from 20 to 29-day old GRP::eGFP mice of
either sex. Slices were cut in an ice-cold solution containing (in mM): 130 K-
gluconate, 15 KCl, 0.05 EGTA, 20 HEPES, and 25 glucose, pH 7.4 (adjusted with
NaOH). D-2-amino-5-phosphonovaleric acid, 50 µM) was added to prevent glu-
tamate toxicity. Slices were maintained in artificial CSF (32 °C) containing (in
mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 2 CaCl2, and
1 MgCl2 (equilibrated with 95% O2, 5%CO2)61. Whole-cell patch clamp recordings

were made at room temperature targeting eGFP positive neurons. During
recordings, slices were continuously superfused at the rate of 1–2 ml min−1 with
aCSF containing (in mM): 120 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaH2CO3, 5
HEPES, 1 MgCl2, 2 CaCl2 and 14.6 glucose (pH 7.4), equilibrated with 95% O2, 5%
CO2. Recorded neurons were voltage clamped at −70 mV using an EPC 9 amplifier
(HEKA Elektronic, Lambrecht, Germany) controlled with Patchmaster acquisition
software. Patch pipettes (borosilicate glass; 3.5–4.5 MΩ) were filled with intracel-
lular solution containing (in mM): 120 CsCl, 2 MgCl2, 6 H2O, 10 HEPES, 0.05
EGTA, 2 MgATP, 0.1 NaGTP, 5 QX-314 (pH 7.35). IPSCs were evoked by elec-
trical stimulation (300 µs, 0.2–50 V) at 0.05 Hz using glass electrode filled with
aCSF and placed 50–100 µm from the soma of the recorded cell. Experiments
were performed in the presence of NBQX (20 µM), AP5 (50 µM), and strychnine
(0.5 µM), in order to isolate the GABAergic component of IPSCs. At the end of
the recordings bicuculline (10 µM) was added to confirm the GABAergic nature of
the recorded IPCSs. The weighted decay time constant (τw) was calculated from
dual-exponential fits using the following equation: τw= (τ1A1+ τ2A2)/(A1+A2)
where τ1 and τ2 are the fast and the slow decay time constants and A1 and A2 are
the equivalent amplitude weighting factors62. Access resistance of each neuron was
continuously monitored with short hyperpolarizing voltage step applied before the
electrical stimulation. Cells in which the access resistance changed more than 20 %
were excluded from the analysis.

[3H]Ro 15-4513 binding. Brain tissue from 8–10 week old quadruple RRRR
(H → R) point mutated mice, in which all high-affinity diazepam-sensitive binding
were inactivated, was homogenized in 20 volumes of 10 mM Tris-HCl, pH 7.4,
100 mM KCl containing protease inhibitors (Complete Mini, Roche Diagnostics)
and centrifuged at 1000 g for 10 min. The supernatant was centrifuged for 20 min
at 30,000 × g and the resulting crude membrane pellet was washed once with
buffer. For radioligand binding, aliquots of the crude membranes (100 µg) were
incubated with increasing concentrations of diazepam (binds to diazepam-sensitive
sites), bretazenil (binds to diazepam-sensitive and insensitive sites63) or TPA023B
and 4 nM [3H]Ro 15-4513 (22.7 Ci mmol−1, PerkinElmer, binds to diazepam-
sensitive and insensitive sites) in a total volume of 0.2 ml for 90 min on ice. Non-
specific [3H]Ro 15–4513 binding was assessed by addition of 10 µM flumazenil to
the reaction. Incubation was stopped by rapid vacuum filtration using a semi-
automatic cell harvester (Skatron Instruments) and washed filters were subjected to
liquid scintillation counting.

Behavioral experiments in mice. All behavioral experiments were performed in
7–12-week-old female and male mice. Care was taken to ensure equal numbers of
female and male mice. All behavioral experiments were made by an experimenter,
blinded either to the genotype of the mice or to their treatment with drug or
vehicle. In experiments involving comparisons between diazepam or TPA023B and
vehicle, mice were randomly assigned to the different groups. No formal sample
size calculation was made. Group sizes were chosen based on previous experience
with the respective behavioral test. Mechanical sensitivity was assessed with elec-
tronic von Frey filaments (no. 7; IITC, Woodland Hills, CA) and quantified as the
change in the paw withdrawal thresholds measured in g. Heat hyperalgesia was
evaluated in the Hargreaves test as the change in the latency of paw withdrawal to a
defined heat stimulus. Responses to light mechanical stimulation of the hairy skin
was tested as the change in the paw withdrawal responses upon gentle stimulation
with a paint brush using the following score: 0 (no evoked movement), 1 (walking
away or brief paw lifting of 1 s or less), 2 (sustained lifting of more than 2 s), 3
(strong lateral lifting above a 90° angle) or 4 (flinching/ licking of the affected paw).
Six measurements were made for each animal for all three tests.

Acute itch. was assessed in mice that received intradermal microinjections of
pruritogens or 0.9% saline into the right cheek, which had been shaved at least
1 day before the experiment. In two sets of experiments that addressed the con-
tribution of GABAARs on primary and secondary pruritoceptors, pruritogens were
injected into the skin of the left thigh (Fig. 7a–c). Before injection, mice were
acclimatized to a 15 cm diameter cylindrical enclosure for more than 30 min with
cage bedding on the floor. Background white noise generated by a radio at ambient
volume was applied to prevent auditory distraction. A 30 gauge needle was inserted
bevel-up and pushed 5 mm horizontally into the skin beyond the point of insertion,
before injection of the pruritogen (in a total volume of 10 µl). No anesthesia was
used. Correct injection was confirmed by the appearance of a slightly domed bulla.
After injection, mice were placed back into the cylindrical enclosure and video-
taped for 30 min. Videos were analyzed off-line. Scratching with the hind paw
directed to the ipsilateral cheek was counted in bouts, with one bout defined as an
instance when the mouse lifted its paw to scratch until it returned the paw to the
cage floor. In case of experiments in which the pruritogen was injected into the skin
of the thigh, the time spent biting the injected skin area was counted in s min−1 as
a measure of itch.

Chronic itch. was investigated in the contact dermatitis model27 and the dry skin
model30. To induce contact dermatitis, mice were treated on day 0 with 10%
oxazolone in acetone/olive oil (4:1 v v−1) on the shaved nape of the neck (100 µl).
After a resting period of 7 days, mice were treated with 1% oxazolone in acetone/
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olive oil (4:1 v v−1) on the nape of the neck (100 µl) every other day for 10 days. On
the day of the experiment, mice were injected with drug or vehicle i.p. under short
light isoflurane anesthesia. Scratching of the hind paw directed to the ipsilateral
cheek was quantified as the number of scratching bouts. In the dry skin model,
mice were treated with a mixture of acetone and diethylether (1:1) on the shaved
nape of the neck for 15 s, followed by distilled water for 30 s, twice daily for
10 days. On the day of the experiment, vehicle or drug was administered i.p. under
short light isoflurane anesthesia.

To quantify the severity of skin lesions a dermatitis score was determined64.
Hemorrhage/erythema, dryness/scaring, and hyperplasia were scored as 0 (none), 1
(mild), 2 (moderate), or 3 (severe) once per day resulting in a score between 0 and
9. Photographs of atopic dermatitis-like skin were taken before treatment (day 11)
and 9 days after treatment (day 20).

Locomotor activity, motor coordination and muscle relaxation. TPA023B (1
mg kg−1, p.o. or i.p.) or vehicle was administered 60 min before the tests.
Locomotor activity was measured in an open field arena (10 cm radius) equipped
with four pairs of light beams and photosensors and analyzed for the time
interval between 60 and 120 min after TPA023B administration. Motor coor-
dination was assessed with a rotarod accelerating from 4 r.p.m. to 40 r.p.m.
within 5 min. Fifteen measurements were taken per mouse. To assess muscle
relaxation, mice were placed with their forepaws onto a metal horizontal wire
placed 20 cm above ground. Successes and failures to grab the wire with at least
one hindpaw were recorded between 60 and 120 min after TPA023B
administration.

Pruritus study in dogs. Twelve 6 months-old beagle dogs (6 females, 6 males)
weighing between 9.0 and 13.0 kg (see Supplementary Table 1) were included in
the study. They were sensitized using lyophilized extracts of the house dust mite
Dermatophagoides farinae in mineral oil. In order to expose the living epidermis,
the skin of the abdomen was tape-stripped. D. farinae extract was gently applied
on the tape-stripped skin once a week for eight weeks. At this time point, dogs
were considered D. farinae-sensitized even though most of them (8 out of 12)
did not exhibit pruritus or clinical signs of atopic dermatitis. Four weeks later,
the dogs were challenged using D. farinae extracts after tape stripping of the
abdominal skin. This challenge was made on three consecutive days (days 1 to
3). Pruritus and clinical signs were assessed on day 2, 3, and 4. All dogs exhibited
pruritus and clinical signs compatible with atopic dermatitis on the site of
challenge but also in remote areas. After the third challenge all dogs exhibited
histological signs of atopic dermatitis and nine dogs showed positive reactions in
intradermal allergen exposure test. These nine dogs were enrolled to assess the
antipruritic effect of TPA023B in a randomized placebo-controlled observer-
blind cross-over study. TPA023B was administered at a dose of 20 mg per dog as
a tablet, 30 min after the challenge. For the following 6 h, dogs were kept in
groups of three in closed arenas of 2 × 4 m and continuously video recorded.
Both the number of scratching bouts and the total time spent scratching per
hour were determined. Recordings were made on the day of the second challenge
(baseline) and on the following day after drug or placebo administration. The
same procedure was done three weeks later with switched treatment (TPA023B
and placebo). Number of scratching bout and total time spent scratching were
normalized to the control values obtained the day before (second challenge). We
did not correct our outcome parameters for baseline scratching present in the
absence of the pruritogenic challenge. Blood samples were taken from all dogs at
the end of the video recording and whole blood concentrations of TPA023B were
measured by high performance liquid chromatography/high resolution electro-
spray time-of-flight mass spectrometry to verify drug exposure.

Statistics. For most experiments, results of individual mice or cells are displayed as
individual symbols. Normal distribution of data was assumed when t-tests or
ANOVAs were applied.

Data availability. Excel files including the data that support the findings of this
study are available at G-Node.org with the identifier doi: 10.12751/g-node.fb5bd5
[https://doid.gin.g-node.org/fb5bd596a1ff2f6e8cd29f51be351ad3/]. Additional
raw data of this study are from the corresponding author upon reasonable request.
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