
ETH Library

Topomap: Topological Mapping
and Navigation Based on Visual
SLAM Maps

Conference Paper

Author(s):
Blöchliger, Fabian; Fehr, Marius ; Dymczyk, Marcin; Schneider, Thomas ; Siegwart, Roland

Publication date:
2018

Permanent link:
https://doi.org/10.3929/ethz-b-000302130

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICRA.2018.8460641

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3276-4067
https://orcid.org/0000-0002-1383-769X
https://doi.org/10.3929/ethz-b-000302130
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICRA.2018.8460641
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Topomap: Topological Mapping and Navigation
Based on Visual SLAM Maps

Fabian Blöchliger, Marius Fehr, Marcin Dymczyk, Thomas Schneider and Roland Siegwart

Abstract— Visual robot navigation within large-scale, semi-
structured environments deals with various challenges such as
computation intensive path planning algorithms or insufficient
knowledge about traversable spaces. Moreover, many state-
of-the-art navigation approaches only operate locally instead
of gaining a more conceptual understanding of the planning
objective. This limits the complexity of tasks a robot can
accomplish and makes it harder to deal with uncertainties that
are present in the context of real-time robotics applications.

In this work, we present Topomap, a framework which
simplifies the navigation task by providing a map to the
robot which is tailored for path planning use. This novel
approach transforms a sparse feature-based map from a visual
Simultaneous Localization And Mapping (SLAM) system into
a three-dimensional topological map. This is done in two steps.
First, we extract occupancy information directly from the
noisy sparse point cloud. Then, we create a set of convex
free-space clusters, which are the vertices of the topological
map. We show that this representation improves the efficiency
of global planning, and we provide a complete derivation of
our algorithm. Planning experiments on real world datasets
demonstrate that we achieve similar performance as RRT* with
significantly lower computation times and storage requirements.
Finally, we test our algorithm on a mobile robotic platform to
prove its advantages.

I. INTRODUCTION

Mobile robots have recently left the research laboratories
and are becoming more and more ubiquitous. In many of the
resulting applications, including those aimed at the consumer
market, navigation is a key capability. It is hard to imag-
ine robotic vacuum cleaners or surveillance robots without
at least a minimal suite of navigation and path planning
skills. Another rapidly developing market are the Augmented
Reality (AR) and Virtual Reality (VR) applications, where
it is often expected that a mobile device will be able to
guide a user to a certain location. In both of these use-
cases, reliable navigation within a global coordinate frame
is crucial and ideally requires a minimal sensor setup and
limited computational resources.

State-of-the-art navigation and path planning approaches
are often based on an occupancy map representation, e.g. on
Octomap [1]. Then, a planning algorithm, such as RRT [2]
or variants thereof, can be deployed to obtain a global
path within the free space of the given map. Occupancy
maps, however, are usually built using either expensive laser
sensors, RGB-D cameras [3] or computationally demanding
stereo cameras [4]. Additionally, an occupancy map repre-
sentation does not provide a higher-level understanding of
the environment, for example division of the free space into

All authors are with the Autonomous Systems Lab, ETH Zürich. Contact:
blfabian@ethz.ch.

(a) SLAM map

(b) Topological map

(c) Navigation graph

Fig. 1: Three basic elements of Topomap: (a) A sparse visual
map of a multi-floor environment with 423′000 triangulated
3D landmarks. The 3D landmark positions are estimated
based on the multi-view geometry and the feature tracking
pipeline of a visual odometry estimator. The length of the
trajectory is 360m. (b) Using the proposed approach, we
build a topological map consisting of convex voxel clusters
(vertices) and their adjacent areas (edges). The clusters
denote free, traversable areas within the environment. (c)
The derived navigation graph makes global path planning
within the explored environment easy and computationally
inexpensive.



separable parts (e.g. rooms in a building). Finally, planning
and navigation using occupancy maps is a computationally
demanding problem, which limits the capabilities of many
mobile platforms.

This work addresses the aforementioned disadvantages
by introducing a lightweight navigation approach, Topomap,
based on a topological map, directly derived from a vi-
sual sparse feature-based SLAM map. Using only the vi-
sual SLAM output and triangulated 3D features minimizes
the computational cost of the proposed method. Our ap-
proach solely relies on a standard monocular camera that
is lightweight, small and can easily be placed on most
robotic platforms. The main components of our framework
are depicted in Fig. 1. It divides the environment into a set
of free space clusters which correspond to the vertices of
a topological map (Fig. 1b). We enforce the convexity of
their shape and as a result, a robot can cross each of those
regions without the risk of running into a static obstacle.
Fig. 2 visualizes the basic topological map concept: The
topological graph holds the connectivity of the convex voxel
clusters (vertices), whereas the navigation graph (Fig. 1c)
can be used by any graph based algorithm to perform path
planning. To the best of our knowledge, Topomap is the
first system which is designed to extract free space from
sparse visual features in order to create a topological map
representation of the environment. By using sparse features,
efficient 3D structures and a simple navigation concept, our
algorithm can be deployed on mobile platforms with limited
computational resources.

The contributions of this work can be summarized as
follows:
• We propose to use a sparse visual SLAM map to create

a reliable free-space representation and a subsequent
topological map of the area.

• We present an entire processing pipeline that takes a
visual map as input and creates a topological map that
can be used by a global planner.

• We propose an algorithm that employs – based on a
volumetric occupancy grid – voxel cluster growing and
merging to generate convex free space clusters from
noisy and partly incomplete visual SLAM data.

• We present an extensive evaluation of the framework
using real life datasets with different topological charac-
teristics and compare our navigation concept to a state-
of-the-art grid based planner.

II. RELATED WORK

Topological mapping combined with vision sensors has a
long tradition in mobile robotics [5]. In the context of SLAM,
there are multiple reasons to partition an environment into a
number of discrete places: past works include topometric lo-
calization [6], the use of a hierarchical bundle adjustment [7]
or map reduction purposes [8].

One idea related to our proposed algorithm is to construct
topological maps on top of 2D grid-based maps by dividing
the free space into disjoint regions. The regions are delimited
by narrow passages derived from the environment’s Voronoi

(a) Topological graph

(b) Navigation graph

Fig. 2: Our proposed topological mapping approach. (a) The
topological graph contains the relation between the convex
free space clusters (vertices): All adjacent vertices are con-
nected by a topological edge, which indicates that a robot
can directly move between the corresponding vertices. In
fact, the actual places where a safe transition from one to
the other vertex is possible are the adjacency regions, which
we call portals. (b) The navigation graph is the dual graph of
the topological graph. It is obtained by connecting all portals
of each topological vertex. In order to keep the navigation
approach simple, we only use the centers of the portals. An
example of an A-B path planning task is shown.

decomposition [9], which can also be done in an incremental
fashion [10]. Using a Voronoi diagram, however, cannot
directly be applied to visual SLAM maps, as we assume
an accurate 2D laser map is not available, but only noisy
and sparse 3D landmarks.

Another widely spread idea is to divide a map into mean-
ingful keyframe or landmark clusters based on a similarity
measure, e.g. landmark co-visibility [11]–[14]. This approach
might result in meaningful clusters from a human point of
view (e.g., entering a new room results in a new group of
key frames), but co-visibility clusters have no concept of free
space or convexity, which we believe to be key components
for successful path planning. Enforcing convex free space
clusters guarantees that the robot can move freely within
each cluster.

The third group of approaches to topological mapping is
attaching local occupancy grids at different places along the
metric SLAM map [15]. The key part of those algorithms
is the strategy to select places to store the grid. This can
be done, for example, by using fixed size, overlapping
cubes [16]. These approaches may help to capture the



topology of an environment, but they only partially simplify
the navigation process as a local path needs to be planned
through the topological vertices.

The works which are closest to ours but more targeted
towards simplifying polynomial trajectory generation for
MAVs are [17] and [18], which generate large overlapping
convex regions [19] and compute a path through this
regions which can be followed by a MAV. Instead of using
many overlapping clusters, we propose to use a compact
expansion step in the cluster creation to capture more of
the local free space. Furthermore, our voxel based cluster
creation algorithm allows a seamless integration with discrete
occupancy maps from real world data.

III. METHODOLOGY

This section introduces the methodology of the proposed
algorithm. In Section III-A, the topological map represen-
tation is introduced. Then, in Section III-B we describe in
detail how we can derive the occupancy information from
sparse visual SLAM features. In the next step, presented
in Section III-C, we grow the free space clusters using
the occupancy information computed before. The clusters
are then merged, as described in Section III-D, to reduce
their number and simplify the resulting topological map.
In Section III-E, we show how to use the topological map
for global planning by using the dual graph of our derived
topological graph.

A. Topological Map Representation

We propose to construct a topological map by clustering
the free space of the entire environment into a a set of
convex regions (topological vertices). As a result, each vertex
corresponds to a certain partially enclosed area within the
environment (e.g. a room). This is convenient from the
planning perspective, as this topological map representations
resembles the way humans perceive the environment.

The convex regions are represented as clusters of voxels,
which means that they can be directly derived from voxel
based occupancy maps. The occupancy maps, however, do
not need to be stored, which significantly reduces the stor-
age requirements compared to state-of-the-art approaches.
Instead, we only serialize the convex hull of the regions
corresponding to the topological vertices. This way the useful
information of our topological map is preserved (vertex
volume, topological connections and portals). The serialized
data is enough to deduce in which region a given position is
located.

B. Occupancy from Sparse Features

Topomap extracts discrete approximate free space informa-
tion from sparse landmarks by using voxel based Truncated
Signed Distance Fields [20]. TSDFs are commonly used in
combination with depth sensors (e.g. laser rangefinders or
densified multi-camera setups) [21]. We will, however, focus
on using sparse visual SLAM features for this purpose.

Our first steps will be analogous to fusing depth mea-
surements into a volumetric TSDF grid using the traditional

(a) (b)

(c) (d)

Fig. 3: Outline of the cluster growing algorithm. (a) Cluster
shape of the current iteration. (b) Find direct neighbors
of the cluster. (c) Choose all neighbors which make the
cluster compact. (d) Only keep the voxels that preserve the
convexity.

sensor modalities, i.e. by ray tracing the 3D grid from sensor
origin to the measured 3D point. Hence each triangulated 3D
landmark present in the SLAM map is ray traced from its
observer pose. The distance functions in all traversed voxels
are updated according to the distance to the landmark up to
a pre-defined maximum distance value (truncation distance).
Ray tracing observations of all 3D landmarks will result in
a voxel map which contains projective distances to obstacle
surfaces, which is in fact only an approximation to the real
distance. The TSDF construction step is provided by the
volumetric mapping library Voxblox [22].

The TSDF representation based on noisy and sparse visual
features requires some additional post-processing to obtain
reliable information about the voxel occupancy. First of all,
we binarize the information by thresholding the distance
value of each voxel (we chose 90% of the truncation dis-
tance). Secondly, we propose a subsequent filtering step
which removes small occupied voxel groups which are not
connected to any other occupied part. These outliers might
come from dynamic objects while building the SLAM map
or badly triangulated landmarks.

C. Compact Cluster Growing

The next step in the Topomap pipeline is to grow a set of
compact clusters based on the TSDF reconstruction of the
environment. The goal is to find a clustering of the free space
that would yield a small number of clusters that are convex
and compact, i.e. they should have a similar expansion in all
directions.

The cluster growing algorithm consists of four stages
which are also illustrated in Fig. 3:

1) Initialize the initial clusters with random positions



along the explorer trajectory, because there we proba-
bly have the highest certainty about free space.

2) Find all directly adjacent non-occupied voxels for the
current voxel cluster.

3) Perform Principal Component Analysis and find the
principal axes of the current cluster shape that contain
most of the currently included voxels (we use the
threshold of 98%), assuming a ellipsoidal shape for
the clusters. If the smallest half axis of this ellipse
has a length of rmin, we only allow voxels up to a
distance of rmin+δ to be added to the cluster (compact
candidates).

4) Only add compact candidates which fulfill star convex-
ity w.r.t to the existing cluster voxels. Star convexity
means that for all pairs of points (x0, x1) within the
region, a line segment from x0 to x1 is contained
within this region.

The growing of a single cluster terminates after no more
voxels have been added. This means that there are either no
more compact candidates found or that the existing cluster
is not star convex w.r.t. these candidates.

D. Convex Cluster Merging

In the previous section, an algorithm to cluster the free
space into convex, compact regions was described. How-
ever, this algorithm only approximates a globally optimal
clustering of the space as it operates just locally on the
voxels. We therefore introduce an additional post-processing
step, where regions can be merged together only if a new,
merged region is still convex. Our algorithm is inspired by
dynamic region merging [23] which first segments an image
into small and over-conservative segments (superpixels), and
then merges similar segments in an iterative procedure. This
implicitly enables the incorporation of global properties into
the segmentation.

The proposed algorithm is iterative and repeatedly at-
tempts to merge candidate pairs of clusters. In each iteration,
it starts by searching for all merge candidates, that is pairs
of clusters based on direct adjacency of the clusters. Then, it
iterates through all tentative cluster merge pairs in a random-
ized fashion. For each cluster pair, it computes the combined
convex hull of this pair using the Quickhull algorithm [24].
The cluster pair is merged if the relative number of contained
occupied voxels (i.e. obstacles) within this convex hull is
smaller than some set obstacle ratio threshold (usually
1−5%). Increasing this value will lead to a lower number of
clusters, but will indeed leave more responsibility to a local
planner. We elaborate on the influence of this parameter in
Section IV-B. The iterative procedure is terminated when no
more merges were performed based on the merging criterion.

E. Topological Navigation

After building a convex cluster representation of the envi-
ronment we can proceed with the topological navigation. We
interpret the convex clusters as the vertices of our topological
graph. Similarly, the topological edges are created whenever

two clusters are adjacent. Fig. 2 outlines our approach of
path planning on a topological map.

Let us consider a simple A-to-B path planning case: both
A and B have to be located within the clusters as we have
no information about the space outside of them. We start by
building a navigation graph by connecting the portal centers
of all topological vertices. Additionally we connect A and
B to the portal centers of their corresponding topological
vertices. In order to get the shortest path from A to B
based on this graph, we can perform an A* search. The
path planning algorithm would then plan a path where the
agent moves from A to the portal, then starts traversing
intermediate clusters until it reaches cluster that contains B,
where it can move directly from the portal to the desired
destination.

IV. EXPERIMENTAL EVALUATION

In this section, the evaluation of three main parts of
Topomap and the results of the entire framework are pre-
sented. Section IV-A evaluates the performance of TSDF in-
tegration based on sparse visual 3D landmarks and compares
it to the traditional approach based on dense reconstruction
using a stereo camera. It indicates the potential compromises
we are making by avoiding the use of any expensive hard-
ware or significant computational power. Then, we demon-
strate the performance of the cluster creation algorithm on
multiple real world environments in Section IV-B. Finally,
Section IV-C compares our topological planner to RRT*,
a state-of-the-art planner that is commonly used within the
robotics community.

We acquired our datasets using a synchronized visual-
inertial sensor [25] and the experiments were performed
using a dual-core Intel i7-7600U (2.8 GHz) processor. Our
SLAM framework is based on a visual-inertial odometry
system similar to [26]. The batch map postprocessing, such
as loop closure and visual-inertial least squares optimization
were performed using the maplab framework [27].

A. TSDF Maps from Visual Landmarks

In the previous sections we proposed ray tracing free space
from sparse SLAM landmarks that significantly reduces
computational requirements and simplifies the sensor setup,
but it might affect the quality of the TSDF reconstruction.
Capturing both the free space and occupied areas correctly
is essential for a reliable creation of the convex clusters
and navigation in the subsequent steps of our algorithm.
We would therefore like to evaluate the TSDF maps of
the proposed approach and compare them with TSDF maps
that were created from dense stereo images, as commonly
done in robotics. By employing the semi-global matching
algorithm [28] implemented in OpenCV [29], we get dense
depth images from the 10 cm baseline stereo camera. These
are integrated into a TSDF from their corresponding observer
poses in the same way as the 3D landmarks (see Section III-
B) using the identical integration parameters. The most
important parameters are the maximum ray length and the



(a) Depth map integration. (b) Sparse landmark
integration.

Fig. 4: Slice of a 3D TSDF reconstruction of an office envi-
ronment. The voxel size is 0.25m. Integrating the 177′269
landmarks takes 2.1 s and produces a TSDF map of 39′791
voxels, whereas the integration of the 1322 stereo images
lasts for 43.3 s and the corresponding map contains 65′231
voxels. Observe how using sparse landmarks for TSDF
construction preserves most of the relevant environment
structure.

truncation distance, which we set to 4.0-7.0m and 0.1-0.5m,
respectively.

A qualitative comparison between sparse visual landmarks
and depth maps to create a TSDF map is presented in Fig. 4.
Even if the TSDF map based on the landmarks is sparser
and partially occupied by outlier voxels in some of the free
space areas, it still contains the relevant structure which can
be inferred from the dense map (walls, corridors, doorways).
In fact, the Topomap framework handles outliers and missing
information in the subsequent stages by filtering out small
connected components in the occupancy map and by enforc-
ing star convexity for all added voxels during the growing
process. Convexity prevents clusters from growing through
or around obstacles (e.g. walls) even if some occupancy
information is missing.

In the next step, we want to evaluate quantitatively how
much free space can be captured using the sparse visual
landmarks compared to the dense maps generated from
a stereo rig. Here, we take the dense TSDF map as a
reference. Obviously, this is only an approximation, but
should give a good insight about how well the landmark
integration performs in real world scenarios. Fig. 5 shows
the percentage of captured free and occupied space for five
voxel resolutions. More free space can be captured if we
increase the voxel size, but at the same time we will also get
larger discretization errors (e.g. small obstacles will not be
captured in the occupancy map). Evidently, this latter effect
is not captured in the shown plot, as the dense TSDF map
suffers from the same effects.

B. Topological Map Creation

In this section, we want to evaluate the core part of
Topomap – growing and merging of the voxel clusters.
Fig. 6 shows the cluster arrangement after the growing step
and the subsequent iterations of the merging algorithm in
a warehouse environment. While the cluster growing step

0.1 0.2 0.3 0.4 0.5

voxel size [m]

0.0

0.2

0.4

0.6

0.8

1.0

p
er

ce
n
ta

g
e

[%
]

captured free space

captured occupied space

Fig. 5: Influence of the voxel size on the amount of captured
free/occupied space in the sparse TSDF map. The dense
TSDF map is taken as a reference: For each free voxel
in the dense map, we check if the corresponding voxel in
the sparse map is free as well. In order to get the captured
occupied space, we also take into account unmapped space
in the sparse map. This is reasonable as during the voxel
growing, unmapped space is treated as occupied space.

expands the clusters within the free space, the merging
procedure leads to a substantial complexity reduction of
the topological map structure. It is worth to emphasize
how the algorithm captures the complex topology of this
environment by combining multiple small compact clusters
into larger ones along corridors, but preserves more fine-
grained clustering in the corners.

To give more insights into the results of the clustering
algorithm, we also showcase the output from Topomap for
three different datasets in Fig. 7. The office dataset constitutes
a typical example of a structured environment, which is
segmented into clusters in a similar fashion to what a human
would typically do (separation into rooms and corridors).
The second example, open space, is more demanding as
it consists of large open spaces at the one hand and of
some more narrow passages on the other (top part of the
map). Note how our topological map representation succeeds
to simplify the map given the winding explorer trajectory.
Clearly, the merging algorithm did well by creating rather
large clusters in the open space part of the dataset. Fi-
nally, the pillars dataset highlights how Topomap can infer
traversable areas that cannot be deduced purely from the
explorer trajectory. This means that a robot that uses this
topological map could use the passages in between the pillars
even if they have never been traversed by the explorer.
This would not be possible for a teach-and-repeat navigation
strategy.

The Topomap algorithm does not require a large set of
environment specific parameters or tedious fine-tuning for
a specific use case. We would like, however, to highlight
a parameter that affects both the robustness towards outliers



Fig. 6: Iterative cluster merging demonstrated in a warehouse setting. Starting with a large number of small and compact
clusters, we merge cluster pairs which contain only a low number of obstacle voxels within their combined convex hull.
The initial 105 clusters are reduced to 24 clusters within 3 merging steps, and the number of topological edges is reduced
from 121 to 29. In this example, we set the obstacle ratio threshold is set to 5%.

(a) Office dataset, 20m trajectory

(b) Open space, 50m trajectory

(c) Pillars dataset, 10m trajectory

Fig. 7: Clustering result for three evaluation datasets over-
laid with their corresponding navigation graphs. (a) Office:
Typical topological mapping dataset consisting of narrow
corridors and clearly separated rooms. (b) Open space: The
large open spaces of this dataset are correctly represented
by convex clusters. (c) Pillars: The ray traced empty space
between the clusters is sufficient to introduce topological
edges and enable path planning in these areas where the
explorer never traversed.

and the accuracy of the topological map. Fig. 8 demonstrates
the influence of the obstacle ratio threshold (introduced in
Section III-D) on the segmentation result. This parameter
gives us control over the following trade-off: Larger values
of the obstacle ratio threshold will reduce the complexity
of the topological map by accepting small obstacles to be
present within the merged clusters. These slight violations of
a requirement that clusters are completely empty shifts part
of the planning responsibility to the local planner and require
a simple local collision avoidance algorithm to circumvent

0 1 2 3 4 5

obstacle ratio threshold [%]

10

20

30

40

50

n
u
m

b
er

o
f

cl
u
st

er
s

0.0

0.4

0.8

1.2

1.6

o
b
st

a
cl

es
w

it
h
in

cl
u
st

er
s

[%
]

Fig. 8: An evaluation of the obstacle ratio threshold parame-
ter for the open space dataset. As expected, a higher value of
this parameter leads to a lower number of final clusters (red
curve) as many of them are merged. On the other hand, the
blue curve expresses how many obstacle voxels are contained
within the voxel clusters. It increases if we leverage the
condition of contained obstacle voxels.

these obstacles within a cluster. Keeping the values of this
parameter low will have an opposite effect – only few
obstacle voxels will be allowed within the clusters which
will lead to a large number of small clusters.

We claim that Topomap is particularly useful in the appli-
cations that put constraints on the computational power or
limit the available perception hardware. A special care was
taken to guarantee the framework uses a limited amount of
resources, including the storage requirements of the topo-
logical map. Table I summarizes some statistics about the
topological map creation for the datasets presented through-
out this paper. Having the SLAM map as an input to our
system, we could create topological maps for most of these
datasets within less than a minute. The storage requirements
for the topological map are low as only the convex hulls
(hull voxels and vertices) of the voxel clusters are stored.

C. Path Planning

The proposed topological mapping concept is primarily
targeting navigation and path planning. Below, we present
an evaluation of the entire pipeline that includes both the



TABLE I: Timing and storage requirement statistics of the
Topomap pipeline for the datasets used in this paper. The
volume within the brackets shows the volume of all mapped
voxels within the TSDF map. All voxel sizes were set
to 0.25m. The storage requirements of our approach are
significantly reduced when compared to the full TSDF.

computation time [s] storage requirements [kB]
TSDF clusters full clusters convex hulls TSDF

multifloor (2209m3) 4.1 86.1 567 249 4320
warehouse (895m3) 0.4 11.2 147 110 1784
office (622m3) 2.1 9.9 123 73 1162
open space (1464m3) 2.7 42 379 150 2932
pillars (269m3) 0.46 3.1 51.9 62.7 607

warehouse office open space pillars

1.0

1.5

2.0

2.5

n
o
rm

a
li

ze
d

p
a
th

d
is

ta
n

ce

RRT*

Topomap

Fig. 9: A comparison of the normalized path distances of
RRT* operating on a TSDF map from dense stereo images
and our proposed topological planner (100 runs per dataset).
The path distances are normalized by the direct line distance.
Our lightweight topological planner generates paths just
marginally longer than RRT*, but requires much simpler
computations (A* on a small navigation graph).

assessment of the generated paths as well as a deployment
of the system on an real robotic platform.

First, we compare Topomap to the RRT* planner from
OMPL [30], which is provided a TSDF map from stereo
images. We sample 100 trajectories with random start and
goal positions for both planners and compare the path
distances normalized by the direct line distance (see Fig. 9).
The planning time of the RRT* planner is set to 2 s, which led
to successful paths given the complexity of our environments
and the voxel resolution. In general, the path lengths gener-
ated by the topological planner are slightly longer, but at the
same time, our A* planning time is drastically lower than for
RRT* (typically around 10ms). This directly corresponds to
our goal to replace demanding algorithms with a lightweight
counterpart with only a marginal quality loss.

Secondly, we have integrated our proposed navigation
system on a Turtlebot robot equipped with a VI sensor, and
successfully performed path planning tasks within a semi-
structured industrial site. In a first step, the robot localized
itself within the visual SLAM map, and was then given a
target position. The topological planner then computed the
fastest path to the given location, and Turtlebot successfully

Fig. 10: Setup of the Turtlebot experiments. The VI sen-
sor [25] is used for global localization within the SLAM
map, and a laser is used for local obstacle avoidance only
using the dynamic window approach [31].

completed a trajectory of approximately 15m, using a 2D
laser for local obstacle avoidance only. These experiments
proved the usefulness of our system on a mobile platform
equipped only with a camera and a computationally con-
strained processing unit. A video footage demonstrating the
Turtlebot experiment is provided as a supplementary material
to this paper.

V. CONCLUSIONS

In this paper, we have presented Topomap, a novel frame-
work for creating versatile topological maps and reliable
navigation therein. Our approach can handle noisy and
sparse visual measurements, which significantly reduces the
hardware requirements when compared with state-of-the-art
approaches. The core component of the proposed system
is a voxel based growing and merging algorithm, which
segments the free space into convex clusters. This enables
path planning algorithms that are orders of magnitude faster
than conventional grid based planners. Additionally, the
chosen structure of the topological map makes the resulting
maps very compact.

The evaluations of Topomap demonstrate that it is possi-
ble to reliably build TSDF maps from sparse vision-based
measurements. We also have proved that the results of
the framework do not exhibit any significant quality loss
when compared to RRT* operating on a dense TSDF map.
Finally, the system was successfully deployed on a mobile
robotic platform. We believe the results of this work will
be interesting for everyone working on the navigation of
mobile platforms within large-scale environments, and where
the computational resources, size or weight are limited.

For future work, we plan to integrate this framework
on a flying platform, exploiting the full 3D capabilities of
this approach. Furthermore, we intend to include semantic
information in the topological maps, as this has the potential
of pushing boundaries of robotic autonomy even further.

ACKNOWLEDGEMENT

We would like to thank Helen Oleynikova for fruitful dis-
cussions about navigation, path planning and real challenges
of mobile robotics. The research leading to these results has
received funding from Google Tango.



REFERENCES

[1] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[2] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[3] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 177–187, 2014.

[4] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time
visual-inertial mapping, re-localization and planning onboard mavs in
unknown environments,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 1872–
1878.

[5] D. Kortenkamp and T. Weymouth, “Topological mapping for mobile
robots using a combination of sonar and vision sensing,” in AAAI,
vol. 94, 1994, pp. 979–984.

[6] H. Badino, D. Huber, and T. Kanade, “Visual topometric localization,”
in IEEE Intelligent Vehicles Symposium, Proceedings, 2011, pp. 794–
799.

[7] J. Lim, J.-M. Frahm, and M. Pollefeys, “Online Environment Mapping
using Metric-topological Maps,” The International Journal of Robotics
Research, pp. 1–15, 2012.

[8] M. Dymczyk, S. Lynen, M. Bosse, and R. Siegwart, “Keep it brief:
Scalable creation of compressed localization maps,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015, pp. 2536–2542.

[9] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, pp. 21–71, 1998.

[10] M. Liu, F. Colas, L. Oth, and R. Siegwart, “Incremental topologi-
cal segmentation for semi-structured environments using discretized
GVG,” Autonomous Robots, 2014.

[11] Z. Zivkovic, B. Bakker, and B. Krose, “Hierarchical map building
using visual landmarks and geometric constraints,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 2480–2485,
2005.

[12] J. L. Blanco, J. Gonzalez, and J. A. Fernández-Madrigal, “Consistent
observation grouping for generating metric-topological maps that
improves robot localization,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2006, pp. 818–823.

[13] F. Fraundorfer, C. Engels, and D. Nister, “Topological mapping,
localization and navigation using image collections,” IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 3872–
3877, 2007.

[14] R. Vázquez-Martı́n, P. Nunez, A. Bandera, and F. Sandoval, “Spectral
clustering for feature-based metric maps partitioning in a hybrid
mapping framework,” in Proceedings - IEEE International Conference
on Robotics and Automation, 2009, pp. 4175–4181.

[15] K. Konolige, E. Marder-Eppstein, and B. Marthi, “Navigation in
Hybrid Metric Topological Maps,” ICRA, pp. 3041–3047, 2011.

[16] P. Schmuck, S. A. Scherer, and A. Zell, “Hybrid Metric-Topological
3D Occupancy Grid Maps for Large-scale Mapping,” IFAC-
PapersOnLine, vol. 49, no. 15, pp. 230–235, 2016.

[17] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs
in cluttered environments,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. IEEE, 2015, pp. 42–49.

[18] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, pp. 1688–1695, 2017.

[19] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic Foun-
dations of Robotics XI. Springer, 2015, pp. 109–124.

[20] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Mixed and augmented reality (ISMAR), 2011 10th IEEE international
symposium on. IEEE, 2011, pp. 127–136.

[21] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and
R. Siegwart, “Signed Distance Fields: A Natural Representation for
Both Mapping and Planning,” in Robotics: Science and Systems, 2016.

[22] H. Oleynikova, Z. Taylor, M. Fehr, J. Nieto, and R. Siegwart,
“Voxblox: Building 3d signed distance fields for planning,” arXiv
preprint arXiv:1611.03631, 2017.

[23] B. Peng, L. Zhang, and D. Zhang, “Automatic image segmentation by
dynamic region merging,” IEEE Transactions on Image Processing,
vol. 20, no. 12, pp. 3592–3605, 2011.

[24] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4,
pp. 469–483, Dec. 1996.

[25] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
fpga pre-processing for accurate real-time slam,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 431–437.

[26] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visualinertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[27] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitchen-
ski, and R. Siegwart, “maplab: An open framework for research in
visual-inertial mapping and localization (in review),” ICRA, 2018.

[28] H. Hirschmuller, “Stereo processing by semiglobal matching and
mutual information,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 30, no. 2, pp. 328–341, 2008.

[29] Itseez, “Open source computer vision library,” https://github.com/
itseez/opencv, 2015.

[30] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[31] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

https://github.com/itseez/opencv
https://github.com/itseez/opencv
http://ompl.kavrakilab.org

