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Trajectory Optimization for Wheeled-Legged
Quadrupedal Robots using Linearized ZMP

Constraints
Yvain de Viragh, Marko Bjelonic, C. Dario Bellicoso, Fabian Jenelten, and Marco Hutter

Abstract—We present a trajectory optimizer for quadrupedal
robots with actuated wheels. By solving for angular, vertical, and
planar components of the base and feet trajectories in a cascaded
fashion and by introducing a novel linear formulation of the zero-
moment point (ZMP) balance criterion, we rely on quadratic
programming only, thereby eliminating the need for nonlinear
optimization routines. Yet, even for gaits containing full flight
phases, we are able to generate trajectories for executing complex
motions that involve simultaneous driving, walking, and turning.
We verified our approach in simulations of the quadrupedal
robot ANYmal equipped with wheels, where we are able to run
the proposed trajectory optimizer at 50 Hz. To the best of our
knowledge, this is the first time that such dynamic motions are
demonstrated for wheeled-legged quadrupedal robots using an
online motion planner.

Index Terms—Legged Robots, Wheeled Robots, Motion and
Path Planning, Optimization and Optimal Control

I. INTRODUCTION

WHEELED-LEGGED robots offer the potential to com-
bine the best of two locomotion domains: The effi-

ciency and speed of wheels with the ability of legged robots to
cope with challenging terrain. Search and rescue, where time
can be a matter of life and death, is only one example of tasks
that could greatly benefit from such systems. However, so far
no locomotion framework has been published that would allow
to fully exploit one of the main advantages of this combination,
that is, the ability to simultaneously walk and drive. This work
bridges this gap by presenting a trajectory optimizer (TO) that
finds online highly dynamic motions for hybrid1 locomotion
of wheeled-legged quadrupedal robots, such as the one shown
in Fig. 1, that has no wheel steering. The ability to cope
with the latter is attractive from an engineering point of view
in the sense that it allows reducing mechanical complexity,
total weight, and leg inertia in favor of reliability, energy
consumption, and agility, respectively.
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simultaneous walking and driving.

Fig. 1. Gazebo simulation of ANYmal [1] equipped with actuated, non-
steerable wheels executing a hybrid, full flight trotting gait while tracking
a reference trajectory (orange) that includes a 90° turn. The center of mass
(CoM) and wheel trajectories (shown in red, green, and blue) for this highly
dynamic motion were generated by our trajectory optimizer (TO). A video
demonstrating many more can be found at https://youtu.be/I1aTCTc0J4U.

A. Related Work

Finding input and state trajectories for legged robots using
a model-based approach is an involved problem due to the
high nonlinearity of the system dynamics. To obtain a problem
that can be solved online, three techniques are commonly
employed: 1) introducing assumptions to reduce model com-
plexity 2) solving the problem in a hierarchical cascade such
that a set of simpler subproblems is obtained, and 3) using
heuristics to obtain parts of the solution.

An example using all three techniques is the policy-
regularized model predictive controller (MPC) for the
quadrupedal robot MIT Cheetah [2]. Their robot model is a
floating base with massless legs and quadratic velocity terms
neglected. The swing timings of the legs are found a priori and
a heuristic based on Raibert’s foothold prediction [3] is used
as an objective to guide the optimization search direction. The
reported solver times are in the order of 100 ms for a planning
horizon of one stride duration2.

A TO that also optimizes over the swing timings is presented
in [4]. Again, the robot model is a floating base with massless
legs. Heuristics enter in the form of the initial guess and
the prefixed number of steps. The resulting solver times for
a planning horizon of one stride duration were stated as
100 ms [5].

2The authors used a MATLAB implementation, while all other works
mentioned rely on C++.

https://youtu.be/I1aTCTc0J4U
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Previous work of Winkler et al. showed a TO formula-
tion which finds the planar CoM and feet trajectories using
nonlinear programming (NLP) [6]. The swing timings are
determined a priori, and the robot is modeled as a linear
inverted pendulum, with constant height and fixed orientation.
For a planning horizon of one stride duration, these drastic
simplifications resulted in solver times between 10 and 120 ms,
depending on the gait.

If the feet trajectories are computed first using heuristics
such as Raibert’s foothold prediction, the CoM trajectory can
be obtained by quadratic programming (QP)3 and solver times
decrease to a few milliseconds [7]. The authors have recently
generalized their approach to include the vertical CoM motion
into an NLP problem [8]. This allows to find trajectories for
gaits containing full flight phases, but also increased solver
times more than fivefold.

The model simplifications in [6]–[8] rely to a large extent on
the so-called zero-moment point (ZMP) balance criterion. It
allows for considerable abstractions by formulating a condition
for dynamic balancing that relates the stance feet positions to
the linear and angular momentum of the system. Its application
has a long history in legged robotics [9]. However, it is
important to realize that the associated gain in computational
efficiency comes at the cost of reduced generality. For instance,
the extension to uneven terrain [10] and the inclusion of
friction cone constraints is not straightforward – a drawback
from which computationally more involved methods such as
[4] do not suffer.

As illustrated by above works, there has been a large interest
in generating dynamic motions for conventional legged robots.
By contrast, research on wheeled-legged robots [11]–[21] has
typically focused on statically stable locomotion over uneven
terrain. Examples include the space exploration vehicles [11]–
[13], which use their limbs rather as sophisticated suspension
systems than as legs with wheels as end-effectors. The ap-
proach to traverse flat terrain by driving and irregular terrain
by walking was further explored in [14]–[17]. However, the
possibilities offered by simultaneous walking and driving were
not much investigated, even for statically stable motions. In
this regard, two important exceptions are Boston Dynamic’s
wheeled biped Handle [22] and the recent contribution [23],
which has shown a generic approach to motion generation for
wheeled-legged robots based on NLP. However, little is known
about Handle’s control framework, and the computation times
of [23] are typically a multiple of the planning horizon, making
it prohibitively slow for online application in its present form.

B. Contribution

We present a TO for quadrupedal robots with actuated
wheels that finds trajectories for walking, driving, and hybrid
combinations thereof, given the gait pattern and the desired
goal state. We solve for the planar components of the CoM
and feet trajectories in a single optimization and, in contrast to
[6]–[8], we compute the angular components and the vertical

3Strictly speaking, QP is a subset of NLP. However, we here use the term
NLP to explicitly denote optimization problems that contain constraints that
are not linear, and can thus not be solved using QP.

Fig. 2. Model of a wheeled-legged quadrupedal robot with massless legs
and planar, nondeformable wheels. The current support polygon is shown in
shaded blue. I denotes an inertial frame with z-axis collinear to the ground
plane normal n, and B the base frame with origin at the robot’s CoM. We let
the frame F be fixed at a leg’s endpoint, i.e., the point that during stance is in
contact with the ground (shown for the left hind (LH) leg only), and define this
point as a leg’s foot. This is a useful definition for our case, as we can model
conventional point-contact feet and wheels simply by changing the kinematic
constraints at F . Namely, by defining the z-axis of F to be aligned with the
plane normal and the x-axis to be perpendicular to the wheel’s rotation axis,
the difference between the two becomes only whether F may have a non-zero
velocity component along its x-direction.

CoM motion prior to the optimization. This allows us to find
trajectories for driving curves and executing gaits with full
flight phases without solving an NLP problem. Further, we
introduce a parameterization of the stance feet trajectories that
inherently fulfills the kinematic rolling constraint. To the best
of our knowledge, we present a novel way of formulating the
ZMP balance criterion as a linear constraint.

As we demonstrate in simulations, this allows us to generate
trajectories for dynamic, hybrid locomotion of wheeled-legged
quadrupedal robots with unprecedented speed. We complete
the presentation of our TO by a discussion on its applicability
to real systems and irregular terrain.

II. PROBLEM FORMULATION

For our TO we assume a simplified robot model where
the legs are massless. The single floating body has the total
mass of the robot and an inertia that corresponds to a default
configuration. Furthermore, we model the wheels as flat,
nondeformable disks.

Fig. 2 illustrates our definitions of the inertial, base, and foot
frames I , B, and F , respectively. In the case of a wheeled
foot, the motion of F is subject to the kinematic rolling
constraint during stance. As we solve for the planar base
and feet trajectories simultaneously in our TO, but seek to
avoid nonlinear constraints, we need the following condition
to hold: The kinematic constraints on F must not depend on its
relative position to the base. For a conventional point-contact
foot, this is trivially satisfied, as it is fixed during stance.
However, in case of a wheel, it imposes restrictions on the
motion. For ANYmal [1] equipped with non-steerable wheels,
the condition is satisfied if the base pitch angle is zero with
respect to (w.r.t.) the inertial frame. This is outlined further in
the Appendix.

A. Cascaded Trajectory Generation
Fig. 3 shows the complete architecture of our TO. The

high-level inputs are the gait pattern4 and a reference goal

4The gait pattern defines the swing and stance timings of each leg, i.e.,
when the leg’s endpoint F should be in contact with the ground.
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Gait Pattern Reference Goal State

Tracking Controller
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Feet Trajectories

Planar Reference
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Vertical Feet
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Fig. 3. Architecture of our cascaded TO. As explained in Section III, we
are able to generate all trajectories by solving systems of linear equations
(denoted as Aξ = b) or, in the case of the planar base and feet trajectories,
a single QP problem. Note that, instead of a reference goal state, one may
also directly provide the angular trajectories and the planar reference base
trajectory.

state consisting of linear and angular base position and/or
velocity. If the gait pattern contains full flight phases, i.e.,
all legs are in swing phase, a time-varying trajectory for the
z-component of the base is computed that accounts for these
ballistic free-fall phases. The goal state is used to compute
the angular trajectories and a planar reference base trajectory.
Alternatively, these can also directly be provided, for instance
by a high-level path planner. As the vertical foot motion does
not affect the optimization, we compute it separately, whereby
we parameterize each swing phase by a quintic polynomial. To
track the trajectories and compute actuation torques, a whole-
body controller (WBC), such as the one described in [24], can
for instance be used.

B. Linearized ZMP Balance Criterion

One of our main contributions consists of a linear formula-
tion of the ZMP balance criterion. We derive it starting from
our simplified robot model. Namely, assuming mass-less legs,
the dynamics of the robot are those of a free-floating rigid
body given by[

m IaIB −m Ig

BΘBBω̇IB + BωIB × BΘBBωIB

]
=

[
IFext

BΓext

]
, (1)

where m denotes the robot’s mass, ΘB its inertia tensor, g the
gravity vector, and Fext, Γext the external forces and torques
acting at the CoM. The left-hand subscripts specify in which
frame the quantities are expressed. We let the symbols a, v,
r, and ω denote linear acceleration, velocity, position, and
angular velocity, respectively. As an example, IrBF is the
position vector of F w.r.t. B expressed in I . For a flat ground
plane, the ZMP is defined as the point on the ground where the
moment induced by the gravito-inertia forces – the left-hand

LF

RF

RH

LH

ZMP

Fig. 4. Different formulations of the ZMP balance criterion as constraint for
the case of a three-leg support phase where the left fore (LF), right fore (RF),
and right hind (RH) leg are in stance phase and the left hind (LH) leg is
swinging. Left image: Constraint on the ZMP (magenta circle) to lie within
the current support polygon (blue shaded area). Middle image: An equivalent
formulation where the constraint edges (dotted lines) have been shifted such
as to intersect at the ZMP and where the feet (blue circles) are constrained
to lie in the associated convex cones. In other words, the edge directions
(represented by normal vectors in brown) are those of the lines connecting
the feet. This formulation leads to doubling of the constraint number. Right
image: Linear constraints are obtained by fixing the constraint edge directions
a priori. If the angular motion of the base is known, this can, for instance,
be done by choosing them as the directions of the lines connecting the hips
(orange).

side (LHS) of (1) – has only a component in the direction of
the plane normal n. I.e., it must hold that

In× (IrIB − IrIZMP)× (m IaIB −m Ig)

= In×RIB (BΘBBω̇IB + BωIB × BΘBBωIB) , (2)

where RIB is the passive rotation matrix from the inertial
frame to the base frame such that Ir = RIB Br. As we let
the inertial frame’s z-axis coincide with the plane normal, (2)
can be solved for the x,y-components of the ZMP as

Ir
xy
IZMP = Ir

xy
IB −

1

z̈B − gz
(
zB (Ia

xy
IB − Ig

xy) +Lxy
)
, (3)

where zB and gz are the z-component of IrIB and Ig,
respectively, and (·)xy denotes a quantity’s planar components.
The angular contributions are given by

Lxy =

[
−RIB,2

RIB,1

]
(BΘBBω̇IB + BωIB × BΘBBωIB) ,

(4)
where RIB,i denotes the i-th row of RIB . Note that for
zB constant, (3) represents the equations of motion (EoM)
of a linear inverted pendulum with pivot at the ZMP. For
dynamic balancing, the planned ZMP must always lie within
the support polygon [10]. In an optimization, this criterion
takes the form of polyhedral constraints. These are nonlinear
when solving simultaneously for the feet and base trajectories,
due to the constraint edge directions depending either on the
feet positions or on auxiliary optimization variables, such as
in [6]. To obtain a linear constraint, the edge directions must
thus be fixed a priori. We propose to do this as illustrated in
Fig. 4 for the case of a three-leg support phase. Namely, we
require the feet to lie in the convex cones spanned by a set
of lines with fixed directions that intersect at the ZMP, such
that the resulting support polygon always contains the ZMP.
The main drawback of this linearization is that it restricts the
optimization variables to lie in a subset of the ones that satisfy
the ZMP balance criterion, thus requiring careful selection of
the edge directions to obtain a feasible optimization problem.
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Intuitively speaking, this subset is characterized by the loss of
one rotational degree of freedom (DoF) per edge.

We found that it works well to select the edge directions as
the ones that result from connecting the hip positions of the
stance legs at touchdown. That is, we start with a set of six
direction vectors – one for each combination of feet pairs – and
whenever a foot switches from swing to stance, we recompute
the associated directions by connecting that foot’s hip position
with the hip positions of all other stance legs. This procedure
ensures that for pairs of grounded feet the directions remain
constant w.r.t. the inertial frame during nonzero yaw motions.
Otherwise, in the case of pure walking with gaits containing
two-leg support phases, the problem would become infeasible.
For the same reason, we initialize the edge directions of
initially grounded feet pairs by connecting the measured feet
positions instead of the hips.

III. TRAJECTORY OPTIMIZATION

We formulate the task of finding the x,y-components of the
feet and base trajectories as a QP problem of the form

min
ξ

1

2
ξTQξ + cT ξ, subj. to Aξ = b, Dξ ≤ f , (5)

where the variables parameterizing the trajectories are stacked
in the vector of optimization variables ξ. In the following,
this parameterization is presented in more detail, and we
introduce the objectives and constraints that contribute to the
QP problem. Furthermore, we propose a warm-starting scheme
and briefly discuss how the remaining trajectories, which serve
as inputs to the QP problem, can be generated by solving
systems of linear equations.

A. Parameterization
We parameterize the planar trajectories by sequences of

connected polynomials. We write an n-th order polynomial
starting at time tstart as

p(t) = ηn(t, tstart)T α, (6)

where α ∈ Rn+1 is the vector of coefficients and

ηn(t, tstart) =
[
τn τn−1 . . . τ 1

]T ∈ Rn+1, (7)

with τ := t − tstart. Derivatives w.r.t. time are obtained by
differentiation of ηn(t, tstart), e.g., ṗ(t) = η̇n(t, tstart)T α.

1) Base segments: We compose each base segment of two
quintic polynomials describing the planar components of the
base position:

Ir
xy
IB(t) =

[
η5(t, tstart

B,k )T 01×6

01×6 η5(t, tstart
B,k )T

]
︸ ︷︷ ︸

:=TB(t,tstartB,k )

[
αB,k,x

αB,k,y

]
︸ ︷︷ ︸

:=sB,k

, (8)

where tstart
B,k is the start time of the k-th base segment.

2) Swing foot segments: Similarly, we compose segments
describing the motion of a foot in swing using pairs of cubic
polynomials:

Ir
xy
IF (t) =

[
η3(t, tstart

F,l )T 01×4

01×4 η3(t, tstart
F,l )T

]
︸ ︷︷ ︸

:=TF,l(t,tstartF,l )

[
αF,l,x

αF,l,y

]
︸ ︷︷ ︸

:=sF,l

, (9)

where tstart
F,l is the start time of the l-th foot segment.

3) Stance foot segments: For a wheeled foot, the trajectories
must satisfy the rolling constraint in stance phase. That is, the
instantaneous velocity must have no component along the y-
axis of the foot frame F . We thus parameterize such segments
by quadratic polynomials describing the velocity of F along its
x-axis and the position Ir

start
IF,l at the beginning of the segment.

That is, the velocity of F in the inertial frame is given by5

Iv
xy
IF (t) = Rxy

IF (t)

[
η2(t, tstart

F,l )T 0 0

01×5

]
︸ ︷︷ ︸

:=ṪF,l(t,tstartF,l )

[
αF,l

Ir
start,xy
IF,l

]
︸ ︷︷ ︸

:=sF,l

, (10)

and the position is obtained by integration as

Ir
xy
IF (t) =

( [
02×3 I

]
+

∫ t

tstartF,l

ṪF,l(t̃, t
start
F,l ) dt̃

)
︸ ︷︷ ︸

=TF,l(t,tstartF,l )

sF,l,

(11)
where I ∈ R2×2 denotes the identity matrix. Since (11) has no
analytic solution for nontrivial angular motions, a numerical
integration scheme must be used. However, the complexity
of the QP problem is not increased, as the integral does not
depend on any optimization variables.

4) Segment durations: We set the solution complexity indi-
rectly through upper bounds on the maximal durations of base,
swing foot, and stance foot segments. Given these bounds,
we divide each swing and stance phase into a number of
equally spaced swing and stance foot segments, respectively,
and choose the base segments such that whenever a foot
switches between stance and swing, there is also a new base
segment starting. This is important for transitions between
disjoint support polygons, see Section III-C2.

B. Objectives

The following list gives an overview of the cost terms
contributing to the objective function in (5). In order for
the resulting Hessian Q to be positive definite, we add a
regularizer ρ to its diagonal elements, e.g., ρ = 10−8 as in
[7]. This ensures the convexity of the resulting QP problem.

1) Acceleration minimization: As done for instance in [8]
and [25], we minimize the acceleration of the polynomials
forming the trajectories using a cost of the form

αT

∫ ∆t

0

η̈n(τ, 0) η̈n(τ, 0)T dτ α, (12)

where ∆t denotes the segment duration. The integral has an
analytic solution for all n-th order polynomials and can be
computed offline as function of ∆t.

2) Reference base state: To drive the robot toward the
desired goal state, we penalize the deviation of the final
base position, velocity, and acceleration from the ones of the
reference trajectory. Furthermore, to enable tracking of the
desired path with tunable accuracy, we sample the position
deviation from the reference trajectory, which is also useful
as regularization to counteract drift.

5Since the sequence of swing and stance segments is fixed prior to the
optimization, the segment type is known from l. Accordingly, the definitions
of TF,l and sF,l can be inferred from the value of their subscripts.
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3) Hip to foot distance: To avoid solutions with excessively
wide or narrow footprints, we penalize the distance between
the hip and foot of a leg as

‖IrxyIB(t) +Rxy
IB(t) Br

xy
BH − Ir

xy
IF (t)‖22, (13)

where rBH is the position from base to hip. We sample this
objective a fixed number of times per stance segment.

4) ZMP and support polygon center: Regarding robust
balancing and load distribution on the legs, it is desirable to
keep the ZMP away from the edges and vertices of the support
polygon. We thus penalize its distance from the geometric
center of the support polygon by∥∥∥IrxyIB(t)− 1

z̈B(t)− gz
(
zB(t) (Ia

xy
IB(t)− Ig

xy) +Lxy(t)
)

− 1

nG(t)

∑
F∈G(t)

Ir
xy
IF (t)

∥∥∥2

2
, (14)

where G(t) denotes the set of grounded legs at time t and
nG(t) their number.

C. Constraints

The following list gives an overview of the constraints that
contribute to (5).

1) Initial states: We constrain the initial trajectory positions
and velocities to match a fused state obtained from linear in-
terpolation between the measured robot state and the previous
solution. We do not constrain the initial base acceleration,
because it decreases the reactivity against disturbances and
could prevent fulfillment of the ZMP balance criterion.

2) Segment junctions: To obtain a twice continuously dif-
ferentiable base trajectory, position, velocity, and acceleration
of successive segments need to match at the junctions:TB(tstart

B,k+1, t
start
B,k ) −TB(tstart

B,k+1, t
start
B,k+1)

ṪB(tstart
B,k+1, t

start
B,k ) −ṪB(tstart

B,k+1, t
start
B,k+1)

T̈B(tstart
B,k+1, t

start
B,k ) −T̈B(tstart

B,k+1, t
start
B,k+1)

[ sB,k

sB,k+1

]
= 0.

(15)
However, we omit the constraint on the acceleration at junc-
tions that mark the transition between two potentially disjoint
support polygons6 since, in such a case, the ZMP needs to be
able to jump between the two7.

We apply similar constraints on the position and velocity
of successive feet segments to obtain once continuously dif-
ferentiable trajectories. However, successive stance segments
need special consideration in order not to introduce redundant
constraints, as numerical optimization routines might require
the equality constraint matrix to have full rank. We thus write
the corresponding constraints as[
TF,l(t

start
F,l+1, t

start
F,l ) −TF,l(t

start
F,l+1, t

start
F,l+1)

V (tstart
F,l+1, t

start
F,l ) −V (tstart

F,l+1, t
start
F,l+1)

] [
sF,l

sF,l+1

]
= 0,

(16)

6For instance, the support polygons of a pacing gait with non-overlapping
stance phases are disjoint. However, even for overlapping stance phases, the
support polygons in the QP problem may be disjoint depending on the size
of the margins chosen for the ZMP balance criterion constraint below.

7As noted in [7], discontinuities in the acceleration are undesirable from
a controls perspective. However, they are not necessarily unphysical, in
particular, if a hard contact model is assumed.

where V (t, tstart
F,l ) =

[
(t− tstart

F,l )2 (t− tstart
F,l ) 1 0 0

]
.

The third row of (16) requires the x-component of the ve-
locities expressed in the foot frame to be equal. Since the
y-component is zero by construction, see (10), it must not be
constrained.

3) Leg extension: To prevent the legs from reaching kine-
matic limits, we require each foot to lie within a regular
polygon centered at the hip position. We sample this inequality
constraint at a fixed frequency.

4) ZMP balance criterion: The formulation of the ZMP
balance criterion as proposed in Section II-B leads to inequal-
ity constraints on the base and stance feet of the form

Ie
T
(
Ir

xy
IB(t)− 1

z̈B(t)− gz
(
zB(t) (Ia

xy
IB(t)− Ig

xy)

+Lxy(t)
)
− Ir

xy
IF (t)

)
≤ ε, (17)

where e ∈ R2 is a normal vector describing the direction of an
edge. The scalar ε can either be a positive relaxation margin for
one- and two-leg support phases or a negative safety margin
that prevents solutions where the ZMP lies near the support
polygon boundaries. We sample the resulting constraints at a
fixed frequency, except during full flight phases, as the ZMP
does not exist during these.

5) Pure walking: If a solution should be found that keeps
the stance feet in place, we add equality constraints that require
the stance coefficients parameterizing the quadratic velocity
polynomials to be zero, i.e., αF,l = 0. This enables our TO
to be used for conventional quadrupedal robots that have no
wheels.

D. Warm Starting

In terms of optimality, using an initial guess is not re-
quired, since we solve a convex QP problem, which thus
has a unique optimum. However, the number of iterations of
numerical optimization routines can be significantly reduced
by providing a suitable initial guess. We thus initialize the
coefficients describing the initial state of each segment with
the state of the solution from the previous optimization at the
corresponding, shifted time instant t̂start and set the remaining
segment coefficients to zero. By “shifted” we mean that, for a
segment start time tstart, the previous solution is evaluated
at t̂start = tstart + ∆tp, where ∆tp is the time elapsed
since the start of the previous optimization (we assume that
internally the trajectories start at zero). By consequence, there
is no solution available for the last ∆tp long portion of the
trajectories. As a simple remedy, we set the associated segment
coefficients to match the final state of the previous solution.
In particular, for large position offsets, this is a better choice
than setting them to zero.

E. Input Trajectories

As shown in Fig. 3, our optimization takes the angular
trajectory components, the vertical base motion, and a planar
reference base trajectory that should be tracked as inputs.
These can be represented by any parameterization ensuring
twice continuous differentiability. We choose sequences of
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quintic polynomials with equality constraints similar to (15),
which we shape using cost terms of the form (12) and equality
constraints on junction positions, velocities, and/or accelera-
tions. The latter are obtained by fusing information from the
previous solution, the reference goal state, the measured state,
and the gait pattern in the case of full flight phases. Namely, we
require the vertical base acceleration to match gravity during
these.

Since the resulting minimization problems contain linear
equality constraints only, their solutions can directly be ob-
tained by formulating the dual problems and solving the asso-
ciated systems of linear equations, thus requiring no iterative
optimization routines.

IV. RESULTS AND DISCUSSION

We have implemented our TO in C++. For matrix computa-
tions we use the open-source linear algebra library Eigen [26]
and for solving (5) the open-source, state-of-the-art solver
OSQP [27], which is based on the alternating direction method
of multipliers and exploits the sparseness of our problem.
Kinematics and dynamics computations are performed with
the open-source libraries Kindr [28] and RBDL [29], and the
simulations are carried out in the robot simulation environment
Gazebo [30] with ODE [31] as physics engines.

A. Setup

We tested our framework in simulations of ANYmal
equipped with actuated, non-steerable wheels8. Based on its
joint configuration, we set the base pitch trajectory to zero in
order to fulfill the condition stated in Section II. This ensures
that the integral in (11) does not depend on any optimization
variables. We further set the roll motion to zero, since we did
not consider it essential to execute the motions we show in the
following. For tracking of the trajectories, we used the WBC
described in [24], that generates joint and wheel actuation
torques at 400 Hz while accounting for various constraints,
such as actuator limitations and friction cone constraints.

Regarding solution complexity, we choose the maximal
segment durations uniformly as 0.2 s, and enforce sampled
objectives and constraints every 0.1 s, except for the ZMP
balance criterion which we sample at 0.05 s. For a planning
horizon of 2 s, this leads to QP problem sizes in the order of
6× 102 optimization variables, 3× 102 equality constraints,
and 7× 102 inequality constraints. The resulting total compu-
tation times of the TO are in the order of 20 ms, where solving
the QP problem makes up roughly half of the time9.

B. Simulations

Fig. 5 illustrates trajectories generated by our TO for
different gaits and references. Thanks to the pure walking

8For realistic simulation, we use the full body dynamics, where the base,
leg, and wheel inertia values are obtained from the computer-aided design
(CAD) model of ANYmal. The actuator torque and velocity limits are
considered as well.

9The times stated in this work and the video are always for the complete
TO, i.e., they include the computation times of all blocks enclosed by the
dotted rectangle in Fig. 3. All results were obtained on a 2.5GHz quad-core
Intel Core i7 laptop.

(a) Dynamic lateral walk (pure walking).

(b) Static walk (hybrid).

(c) Pace (hybrid).
Fig. 5. Trajectories generated by our TO for different gaits and reference
motions (dotted orange). The base trajectory is shown in red, the planned
ZMP trajectory in magenta, and the fore and hind feet trajectories in green
and blue, respectively, with the solid and dotted portions representing stance
and swing phases, respectively. The initial feet and base positions are marked
by circles. The yaw motion, which is a prescribed input, is shown as black
arrows that indicate the robot’s heading direction.

constraint in Section III-C5, our TO can be employed to
generate motions for quadrupedal robots with point-contact
feet, as shown in Fig. 5a for dynamic lateral walking (see
Fig. 7 for an illustration of the gait patterns). However, the
real strength of our approach is demonstrated in Fig. 5b and
5c, where driving considerably reduces the length and number
of the steps required to reach the goal position. Remarkable is,
in particular, the solution obtained for the reference in Fig. 5c.
Instead of trying to directly reach the goal state by laterally
pacing, our TO finds a solution similar to backwards parking
with a car. In comparison, this considerably reduces lateral
shifting of the base, which in our experience is crucial for
robust execution of pacing gaits, since these inherently exhibit
large lateral accelerations10. This result highlights the benefit
of computing the planar components of the feet and base
trajectories in a single optimization, as this behavior could not
be expected by independently computing the feet trajectories
using heuristics.

The reader is encouraged to watch the accompanying
video11, as it shows the execution of these motions and
presents further results, including locomotion with a hybrid
gait that conventional quadrupedal robots cannot execute.

Fig. 6 shows tracking of a reference trajectory with a full
flight trotting gait. The motion is demanding to execute, as

10It should be emphasized that we did not impose a large cost on deviations
from the sampled reference trajectory compared to the desired final state and
the acceleration minimization. Note that we used the same weights in all
presented simulations, including the video.

11Also available at https://youtu.be/I1aTCTc0J4U.

https://youtu.be/I1aTCTc0J4U
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Fig. 6. Tracking of a reference trajectory in simulation with our TO running
in receding horizon fashion and the planning horizon set to 2 s. The gait is
trotting with full flight phases. Shown are the continuously updated setpoints,
that is, the positions that were to be tracked by the WBC. The choice of colors
and symbols is the same as in Fig 5.
LF
RF
LH
RH

LF
RF
LH
RH

LF
RF
LH
RH

LF
RF
LH
RH

Fig. 7. Gait patterns of the motions shown in the previous figures. From left
to right, with the stride durations in brackets: Dynamic lateral walk (0.6 s),
static walk (1.7 s), pace (1.0 s), flying trot (0.6 s). Swing and stance phases
are shown in white and color, respectively. Note that the time scales are
normalized w.r.t. the stride durations.

it does not only contain full flight phases but also requires
the robot to drive a curve and even change its orientation by
90° while moving forward. However, by running our TO in
receding horizon fashion12, we are able to follow the reference
and compensate for the various sources of disturbances, such
as the simplified robot model, computation delays, and the
accumulation of tracking errors. For the chosen planning
horizon of 2 s, the update frequency was measured to be in
the order of 50-60 Hz. We furthermore found that not using
the warm starting scheme of Section III-D increases the QP
solver time by up to 40 %.

C. Discussion of real-world applicability

As indicated by the simulation results, our TO is a promising
candidate for application on real robots, since it can be run
online at high frequency in receding horizon fashion and gen-
erates a rich set of motions. Conceptually, it is closely related
to the ZMP-based approaches [6]–[8], which have demon-
strated impressive performance on hardware. In particular,
the implementations of [7], [8] successfully run on ANYmal,
despite using the imperfect on-board state estimation [32] and
the TOs not accounting for the leg inertias, which are relatively
large due to the knee actuators. From our experience with [7],
[8], we expect that the main step required to bring our TO from
simulation to real hardware will be related to handling the drift
in the state estimation and accounting for unperceived terrain
irregularities. A simple and effective measure for these two
purposes consists of always computing the trajectories w.r.t.
the currently estimated ground plane, see the plan frame in

12In our context, this means that we continuously update the trajectories by
rerunning the TO. Therefore, each set of trajectories is only tracked as long
as it takes to compute a new one.

[8] for details. In combination with the compliant behavior of
the WBC [33], this should allow to blindly traverse significant
irregularities, as demonstrated for steps and inclines in [24].

Further measures that we found to be important for ro-
bustness are accounting for early and late touchdowns and
reacting to unexpected loss or gain of contact. These issues
can be addressed by an online adaptation of the vertical feet
trajectories and the gait pattern. Note that recomputation of
the vertical feet trajectories can be done instantaneously since
it is decoupled from the QP problem.

V. CONCLUSION AND OUTLOOK

We have shown how trajectories for wheeled-legged
quadrupedal robots can be generated, such that complex
motions requiring simultaneous driving and stepping can be
executed. By solving for angular, vertical, and planar trajec-
tory components in a cascaded fashion and using a linear
formulation of the ZMP balance criterion, we rely on QP
only. Nevertheless, we are able to execute gaits with full flight
phases. In addition, our implementation meets and, depending
on the motion, even beats the computation speed of competing
TOs for quadrupedal robots, despite solving a problem that due
to the motion of the wheels in stance phase is more complex.

In the future, we plan to investigate how much the condition
of zero pitch can be relaxed for ANYmal, in order to execute
gaits such as bounding, which would be useful to cross
obstacles and steps at high driving speed. Further, we would
like to generate the gait pattern online as function of the
reference trajectory, terrain irregularities, and obstacles such
as to ensure robust dynamic balancing and to minimize the
number of steps in favor of energy consumption.

APPENDIX

ANYmal: Condition for Linear Rolling Constraint

For ANYmal, it holds that under the condition of zero base
pitch angle w.r.t. the ground plane, the wheel rotation axes
and the ground projected x-axis of the base frame – which we
define as the heading direction – are always perpendicular.
According to our definition of the frame F (see Fig. 2),
this implies that the x-axis of F is parallel to the heading
direction. Since we have from the rolling constraint that the
velocity of F must be parallel to its x-axis, it follows that
the rolling constraint is independent of the relative position of
F w.r.t. the base. To prove this claim, we thus verify in the
following that the wheel axes and the heading direction are
indeed perpendicular for zero base pitch.

To this end, we parameterize the base orientation by an
intrinsic z-y’-x” sequence of Euler angles13:

RIB = Rz(ψ)Ry(χ)Rx(φ), (18)

where ψ, χ, φ are the base yaw, pitch, roll angles, respectively,
and where Ra(·) denotes the rotation matrix with rotation axis
a. The joint configuration of ANYmal’s legs corresponds to

13We do not provide any intermediate results due to the corresponding
terms being very long and of limited interest. However, the correctness of our
findings can easily be verified with a symbolic computation tool.
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an intrinsic x-y’-y” sequence of Euler angles, which describes
the orientation from base to shank S14:

RBS = Rx(α)Ry(β)Ry(γ), (19)

where α, β, γ are the hip abduction/adduction, hip flexion/ex-
tension, knee flexion/extension angles, respectively. Note that
the shank frame does not coincide with the foot frame F , but
that the projections of their y-axes onto the ground plane are
parallel. The orientation from the inertial frame to the shank
frame is given by

RIS = RIBRBS . (20)

Accordingly, the direction of the wheel axis is given by the
second column of RIS , and the heading direction by

IhB =
[
cos(ψ) sin(ψ) 0

]T
. (21)

As can be shown, their dot product evaluates to

sin(φ+ α) sin(χ). (22)

Thus, it follows that the wheel axis is perpendicular to the
robot’s heading direction for a base pitch angle equal to zero.
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