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High-Quality Immunohistochemical Stains through
Computational Assay Parameter Optimization

Nuri Murat Arar†, Pushpak Pati†, Aditya Kashyap, Anna Fomitcheva Khartchenko,
Orcun Goksel, Govind V. Kaigala, Maria Gabrani

Abstract—Accurate profiling of tumors using immunohisto-
chemistry (IHC) is essential in cancer diagnosis. The inferences
drawn from IHC-stained images depend to a great extent on the
quality of immunostaining, which is in turn affected strongly by
assay parameters. To optimize assay parameters, the available
tissue sample is often limited. Moreover, with current practices
in pathology, exploring the entire assay parameter space is not
feasible. Thus, the evaluation of IHC stained slides is convention-
ally a subjective task, in which diagnoses are commonly drawn
on images that are suboptimal. In this work, we introduce a
framework to analyze IHC staining quality and its sensitivity to
process parameters. To that extent, first histopathological sections
are segmented automatically. Then, machine learning techniques
are employed to extract disease-specific staining quality metrics
(SQMs) targeting a quantitative assessment of staining quality.
Lastly, an approach to efficiently analyze the parameter space is
introduced to infer sensitivity to process parameters. We present
results on microscale IHC tissue samples of five breast tumor
classes, based on disease state and protein expression. A disease-
type classification F1-score of 0.82 and a contrast-level classifi-
cation F1-score of 0.95 were achieved. With the proposed SQMs
an area under the curve of 0.85 was achieved on average over
different disease types. Our methodology provides a promising
step in automatically evaluating and quantifying staining quality
of IHC stained tissue sections, and it can potentially standardize
immunostaining across diagnostic laboratories.

Index Terms—automated standardization protocol, HER2, im-
munostaining, quality assessment, quantitative evaluation

I. INTRODUCTION

MALIGNANCIES are often studied and detected by ac-
quiring a protein expression profile on a tissue section.

Such a protein expression map on a tissue is obtained by
immunohistochemical (IHC) staining thereby generating a
visual signal while retaining the tissue structure of tissues
(histology). IHC has been an invaluable tool in the field of both
cancer diagnostics and research, owing to a rapidly obtainable
snapshot of status of cells within tissue samples. In this paper,
we focus on a new methodology for realizing high-quality
immunostaining both at the micrometer-length scale and for
conventional whole-tissue staining for tumor stratification.

Manuscript received February 19, 2018; revised August 24, 2018 and
February 7, 2019; accepted January 25, 2019. Date of current version
February 7, 2019. A. Kashyap, A. Fomitcheva Khartchenko and G. Kaigala
acknowledge funding from the European Research Council (Project No.
311122). All authors acknowledge support from E. Delamarche, W. Riess,
C. Bekas and P. Buhler. (N.M. Arar† and P. Pati† contributed equally to this
work.) (Corresponding author: M. Gabrani)

N.M. Arar, P. Pati, A. Kashyap, A. Fomitcheva Khartchenko, G. Kaigala and
M. Gabrani are with IBM Research-Zurich, Saeumerstrasse 4, 8803 Rüsch-
likon, Switzerland (e-mail: mga@zurich.ibm.com). P. Pati and O. Goksel are
with ETH Zurich, Switzerland.

Fig. 1. Immunostaining process and staining quality variability due to process
parameter variation of IHC. (A) illustration of microfluidic probe platform for
microscale IHC, (B) sample HER2-stained tissue images using an MFP, (C)
staining quality variability on healthy and primary tumor tissues. For HER2
non-expressing healthy tissue, low and high HER2 expression indicates high-
quality staining (true negative) and over-staining (false positive), respectively.
For HER2 overexpressing primary tumor tissue, low HER2 expression indi-
cates under-staining (false negative). HER2 expression solely on membranes
implies high-quality staining (true positive), whereas expression in cytoplasm
and stroma indicates over-staining (false positive).

IHC is implemented by exposing a tissue to antibodies
which bind to a specific protein, thus identifying prognostic
and treatment-related biomarkers. The commonly used IHC
protocol is a multi-step and multi-parametric process [1] and
involves binding of a primary antibody specific to a protein
of interest on the tissue, followed by a secondary antibody
that binds to the primary. The colored signal on the tissue
is obtained using a chromogenic moiety coupled with the
secondary antibody, where the chromatic signal strength is a
function of the density of the proteins of interest in the tissue,
their accessibility, and the concentration of the antibody that
is exposed to the antigen, among several other parameters.
The IHC signal can provide vital information in a diagnosis
workflow. However, when the process parameters are not
optimal, this may lead to difficult-to-interpret images and
potential misdiagnosis, e.g., false positive and false negative
staining as demonstrated in Fig. 1.
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Although IHC has been used now for decades, standardiza-
tion and reproducibility remain two major concerns. Pathology
laboratories manually determine the parameters leading to a
good staining quality. Such a manual process comprising trial-
and-error is cumbersome and tissue exhaustive. Besides, it is
characterized by high inter- and intra-laboratory variability,
leading to poor reproducibility. Nordic Immunohistochemical
Quality Control (NordiQC), an international external quality-
assurance organization, found that about 20% of the staining
results in a breast-cancer IHC cross-lab examination were
insufficient for diagnostic use [2]. Inaccurate and/or equivocal
results are mostly obtained because of inappropriate param-
eters used in the staining process (protocol), less specific
antibodies, insufficiently calibrated antibody dilutions, variable
fixation processes and erroneous epitope retrieval methods.
To improve the standardization in immunostaining, efforts
have been made by ad-hoc committees on pathology [3]–[8],
by external quality-assurance schemes [9]–[12], and by field
researchers [13], [14] through addressing one or more of the
factors affecting the staining results. The effect of specific
process parameters on the quality is hard to deconvolve owing
to limited tools that allow for the scanning of a range of
process parameters on the same tissue. Thus, strategies that
perform automated analysis of process parameter sensitivity
and contextual quantitative analysis are crucial in improving
the IHC standardization, and thus reproducibility.

More recently, the advent of digital pathology has priori-
tized the extraction of quantitative information from scanned
histopathological sections to aid pathologists in the diagnostic
process, while attempting to reduce or eliminate observer
biases [15], [16]. Furthermore, computational pathology aims
at automating the analysis of stained sections, as manually
analyzing numerous biopsy slides can be tedious and labor
intensive. Recent advances enabled the automated recognition
of pathological patterns, which has the potential to provide
valuable assistance to a pathologist. There exist several stud-
ies which demonstrate the agreement between digital image
analysis- based methods and pathologistsvisual examination.
For instance, Dobson et al. [17] and Brugmann et al. [18]
demonstrated that HER2 antibody protein expression can be
classified with a high accuracy by analyzing the staining
intensity and membrane connectivity on IHC images with
optimal staining quality. Differently from the previous work,
this work deals with IHC-stained tissue images with both
optimal and sub-optimal staining quality. The combination of
such quantification-aided diagnosis with quantified grading has
the potential to improve diagnostic accuracy.

Limited prior work exists on the quantitative analysis of the
immunostaining quality. Pinard et al. [13] proposed a system
that extracts quantitative quality indicators and compares them
with the respective user-defined minimum acceptable quality
thresholds. Failure of one or more of the indicators to meet
its respective threshold suggests that the sample is unsuitable
for a subsequent automated pathological evaluation. Similarly,
Grunkin and Hansen [14] described a method for assessing
the staining quality of specimens in a working laboratory.
Their system compares the quality parameters, e.g., staining
intensity, connectivity, number of cells, Allred-score, Not-

tingham index, obtained from a reference specimen prepared
at a standardized laboratory according to a predetermined
staining protocol with the quality parameters obtained from
a specimen prepared at the working laboratory. The relative
quality measure is computed using a distance metric between
the quality parameters of the test and reference specimen. Both
studies output relative quality estimates with respect to either
a user-defined threshold or a reference specimen, which limits
the standardization of the process and thus the reproducibility.
Instead, we propose to use reference standards for quality
labeling during the training phase and use the trained quality
metrics during the testing phase, thereby removing the need
of posterior standards. The proposed methodology does not
completely remove the need of an external standard but
reduces the dependency on it on a daily practice. In addition,
neither of the aforementioned studies takes into account the
diagnostical relevance of the signals on the stained images,
which can potentially hamper the computed quality indicators.
For an alternate perspective, our automated methodology first
segments the diagnostically relevant and the contextually im-
material signals in an IHC-stained image, followed by machine
learning models for estimating the quality indicators.

Addressing IHC assay limitations requires technologies that
enable precise control of the various steps of the assay, includ-
ing the ability to create multiple assay conditions on the same
tissue section. Here we use a microfluidic probe (MFP) [19], a
scanning microfluidic device that localizes nanoliter volumes
of antibodies on micrometer scale areas of tissue sections.
By leveraging the ability of the MFP to perform multiple
microscale IHC tests on the same tissue section [20], [21],
we not only can perform experimental parameter optimization
of IHC by exposing adjacent areas on a sample to different
experimental conditions (antibody concentration, incubation
time), but can also be conservative of the tissue sample.

In this work, we introduce a complete methodology to quan-
tify and analyze the staining quality and its sensitivity to IHC
process parameters using well-established image processing
and machine learning techniques. The proposed methodology
first extracts quantitative information from scanned histopatho-
logical sections using an automated diagnostically relevant
signal segmentation algorithm. It then learns multiple metrics
for the quantitative assessment of the staining quality. Lastly,
it performs an analysis of the sensitivity of staining quality to
process parameters for the optimal parameter-space determi-
nation. Preliminary results of this work were presented in [22].
These have been extended herein with improvements on the
methodology and validation. First, we refined our framework
in order to account for different disease types. To achieve
this, we conducted a comprehensive analysis of the impact of
various image representation and classification-related param-
eters of the framework. We additionally explored alternative
feature extraction and classification techniques, including deep
learning strategies. We provide herein a comprehensive vali-
dation on a cohort of annotated breast cancer tissues from five
different disease types. Moreover, we compared the proposed
approach against the current clinical staining approach and
demonstrate the superiority of the proposed staining approach.
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Fig. 2. Overview of the proposed methodology. Images are segmented to extract different levels of information, which is used for generating various staining
quality indicators. These are fed into a machine learning algorithm to learn multiple staining quality metrics. Lastly, an analysis of the quality sensitivity to
the staining process parameters is performed for the identification of process parameter space resulting in optimal staining quality.

Fig. 3. Sample outputs of the segmentation algorithm: (a) input IHC-stained tissue, (b) stained region, where the probe is applied (footprint), (c) unstained
region (off-footprint), (d) diagnostically relevant signal, e.g., staining of the cell membrane (foreground), (e) contextually immaterial signal (background).

II. METHODS

The proposed methodology for staining quality and sen-
sitivity assessment has 4 main components: a) separation of
diagnostically relevant and contextually immaterial signals,
b) staining quality metric learning, c) image and quality
representation, and d) sensitivity analysis to staining process
parameters. An overview of the methodology is illustrated in
Fig. 2.

A. Diagnostically Relevant Signal Segmentation

Staining quality is directly proportional to the diagnostically
relevant signal, i.e., the staining on interesting cell structures
or regions (true positive staining), and is inversely proportional
to the contextually immaterial signal, i.e., the staining on the
remaining areas (false positive staining). An optimal staining
quality is achieved when the ratio of the relevant signal to the
immaterial signal is the highest. Therefore, our methodology
essentially focuses on a good delineation of the two signals
in IHC-stained tissue images prior to further analysis. Note
that the definition of the two signals may vary depending on
the choice of the biomarker used in the staining process, as
each biomarker binds to a specific antigen present in stipulated
cell structures. For instance, HER2 biomarker binds to the
HER2 antigen in the cell membrane; developing diagnostically
relevant signal on the cell membrane and arising immaterial
signal on the remaining cell structures, i.e., the cytoplasm and
stroma. Whereas, p53 biomarker produces the relevant signal
on the nuclei of the tumor cells and develops the immaterial
signal on the cell membrane and stroma.

Our methodology begins with an automatic segmentation
algorithm based on a combination of well-known image pro-
cessing techniques for separating aforementioned two signals
in the images of µIHC-stained breast tissue. The algorithm
firstly segments an image into two regions as off-footprint and

footprint. The latter is further partitioned into two: foreground
and background, as shown in Fig. 3 for a HER2-stained tissue.
The segmentation process begins with finding and delineating
the localized footprint, the tissue area where the MFP head is
applied. To that end, we first estimate the footprint by Otsu
binarization, followed by a morphological opening to generate
highly confident masks for both the footprint and off-footprint;
with the remaining regions considered as uncertain. Second,
the obtained masks are fed into the Watershed algorithm to
assign the uncertain areas into either footprint or off-footprint
(Fig. 3B-C). Next, the footprint is subdivided into the relevant
(foreground) and immaterial (background) regions as shown
in Fig. 3D-E. Considering the intensity distribution differ-
ence between two regions, global thresholding with a robust
threshold value is sufficient to extract the foreground. Here,
we set the threshold value as the mean of the most frequent
and maximum intensity values within the footprint region.
To determine the threshold value more robustly, particularly
in the presence of experimental or imaging artifacts (often
resulting in a significantly high intensity), we calculate a 16-
bin intensity histogram of the inverted gray-scale footprint,
and extract the corresponding values from the histogram bins.
Subsequently, we extract the background, i.e., false positive
stain. Assuming that false positive staining highly occurs
around the foreground, we subtract the binary foreground mask
from the dilated foreground mask to extract the background
within a close proximity of the foreground. We then ensure
the connectivity of the background through a morphological
closing operation and remove any remnants of the foreground
pixel. Lastly, we derive the statistics on the amount of true pos-
itive and false positive staining within the segmented regions
as part of the quality features and for an early assessment of
the tissue sufficiency.
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Fig. 4. Variability in immunostaining quality expectations with HER2 antibody for different disease types: (top row) Samples of high-quality immunostaining,
and (bottom row) cross-sectional intensity profiles across a cell for each category. Note that for transmembrane HER2 antibody, high expression is expected
only on the cell membrane for tumorous tissues.

B. Staining Quality Metric Learning

Optimal staining of cell structures reveal the disease type
of an IHC-stained tissue, therefore, we consider that the
definition of staining quality varies across disease types for
a particular tissue type. Fig. 4 presents high-quality HER2-
staining of 5 disease types. HER2 is a transmembrane receptor,
thus the quantification of its overexpression can be modelled
as detecting ‘peaks’ (cell membranes) versus ‘valleys’ (cell
cytoplasm and stroma), as also depicted in Fig. 4. The ‘peaks’,
and ‘valleys’ model represents the intensity profiles along
the cross-sectional view of a cell for each disease type. The
model indicates that a HER2+ tumorous tissue exhibits a high
contrast, whereas a HER2- tumorous tissue or a healthy tissue
exhibits low or no contrast between the ‘peaks’ and ‘valleys’.
Considering the variability in staining quality expectations, a
unique SQM per disease type must be developed. Note that,
previous works on staining quality assessment employed a
reference-based staining quality estimation, e.g., [13], [14].
In contrast, herein we propose a machine learning-based no-
reference SQM learning method, which enables to assess the
staining quality of a tissue without the need of any reference
specimen or user-defined quality threshold.

As per our experimental observations across various disease
types, we hypothesize that an immunostaining can be of high-
quality, a) if it contains sufficient information (signal) to
reflect its disease type, and b) if the contrast level between
diagnostically relevant and contextually immaterial signals
aligns with the expected contrast level for the corresponding
disease type. We develop our quality assessment metrics based
on these two quality indicators (Fig. 5). For an IHC-stained
tissue, we first capture the disease type information via a
probability map indicating its likelihood of being a certain
disease type. Secondly, we acquire the contrast information via
another probability map indicating the relevant-to-immaterial
signal contrast level irrespective of its disease type. We then

learn disease type-specific SQMs based on these two pillars in
our proposed staining quality assessment framework. Through
further analysis, additional quality indicators may be included
to improve the framework.

1) Disease Type Quality Indicator: Breast tissues can be
categorized into 3 types, namely, healthy tissue adjacent to
the tumor (HT), primary tumor tissue (PT), and lymph-node
metastasis tissue (MT). On staining the tissues with HER2
biomarker, the latter two can present either an overexpression
(HER2+) or a weak overexpression (HER2-) based on the
aggressiveness of the cancer. Thereby, HER2-stained breast
tissues can be categorized into 5 disease types, namely, HT,
HER2+ PT (PT+), HER2- PT (PT-), HER2+ MT (MT+) and
HER2- MT (MT-). We propose to train a 5-class supervised
probabilistic classifier to identify the disease type of an IHC-
stained tissue, and capture the first quality indicator.

2) Contrast Level Quality Indicator Extraction: HER2-
stained breast tissues exhibits a certain degree of contrast
between the cell membranes and, the cytoplasm and extra-
cellular space depending on the aggressiveness of cancer, as
presented by the ‘peaks’, and ‘valleys’ model in Fig. 4. To
obtain the second quality indicator, we propose to train a
binary-class supervised probabilistic classifier to identify the
contrast level between the diagnostically relevant membrane
and contextually immaterial background.

3) SQM Learning & Quality Assessment: We propose to
learn disease type specific SQMs considering the unique
expectation of staining quality per disease type. The quality
indicators acquired for the samples of a particular disease
type are used to train an individual SQM. An SQM is
learned in a supervised manner using the quality labels for
the respective samples obtained from a group of experts.
In general, the experts evaluated each sample with various
metrics, namely tissue type, antibody expression status, tissue
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Fig. 5. Overview of the disease-specific staining quality metric (SQM) learning. It involves learning various quality indicators, which currently rely on the
output probability maps of two classifiers such as a disease type classifier and a membrane-to-background contrast classifier.

sufficiency, membrane-to-background contrast etc., to assign
a quality label ∈ {Acceptable, NotAcceptable}. An SQM
is a probabilistic classifier that learns to predict the quality
labels of images using respective two quality indicators. The
P (Image= Acceptable) is termed as the quality value (QV )
of the image that indicates the acceptability of the image. For
instance, a PT+ sample with low membrane-to-background
contrast depicts a high-quality staining. Thus, a QV obtained
from SQMPT+ will have a low value for that sample indicat-
ing its low acceptability. In summary, the SQM learning can
be defined as:

QI1 = P (Image = DiseaseTypei=1:5),

DiseaseTypei ∈ {HT,PT−,PT+,MT−,MT+},
QI2 = P (Image = ContrastLevelj=1:2),

ContrastLevelj ∈ {High,Low},
SQMi = P (Image = QualityLabelk=1:2|QI1, QI2,

Image ∈ DiseaseTypei),

QualityLabelk ∈ {Acceptable,NotAcceptable},
QVi = P (Image = Acceptable|QI1, QI2, SQMi)

C. Image & Quality Representation
The supervised probabilistic classifiers for identifying dis-

ease type and contrast level in an immunostained tissue are
trained using a set of quality relevant features extracted from
HER2-stained training images. We propose a comprehensive
feature extraction followed by feature selection to obtain a
more efficient representation for individual classification task.
We experiment with traditional machine learning and deep
learning approaches for training the classifiers. The machine
learning-based system relies on hand-crafted features, which
are shown to be successful in the prior work, whereas the
deep architecture is trained with features extracted from a pre-
trained network. The individual feature sets are discussed in
details in following sections.

1) Hand-crafted Features: Hand-crafted features are ex-
tracted both holistically, features from individual segmented
regions to capture information about relevant and immaterial
signals in the whole image, and locally, patch-wise features
from relevant regions to capture local structural and morpho-
logical information. Local features are extracted from patches
containing a sufficient amount of foreground, as segmenting
each cell for the analysis is not feasible.

Holistic features: Intensity-based features directly relate to
the amounts of relevant and immaterial signal in an image. We
extract mean foreground intensity (relevant signal strength),
mean footprint intensity (immaterial signal strength), mean
footprint intensity from segmented regions, and relative inten-
sity of relevant to immaterial signal. Note that relative intensity
feature is used a major quality indicator in [13] and [14].

Percentile features, namely % of foreground in the image,
% of foreground within the footprint and % of footprint within
the image are included to encode the amount of relevant area
in the whole image.

Difference of Gaussians is used to detect keypoints on the
foreground of an image, and SIFT features [27] are extracted
around the keypoints. We combine the SIFT features using
K-means clustering, K decided by Bayesian information crite-
rion, with bag-of-words to define a fixed-dimensional feature
representation for the image.

Local features: We extract texture, spatial and frequency
domain features in a patch-wise manner. Texture features in
terms of contrast and entropy statistics are obtained from Gray-
level co-occurrence matrices with two distance values and
four orientations. Additional image-gradient-based sharpness
features namely, mean gradient magnitude, mean and standard
deviation of blur difference, sharpness and Tenengrad response
are extracted as suggested in [28].

We acquire morphological and topological clues in the
neighborhood of cells using spatial and frequency domain
wavelet features at multi-scale resolution. Gabor wavelet based
rotation- and scale-invariant features are extracted using com-
plete and non-orthogonal basis set of Gabor filters with eight
rotations and five scaling factors, as in [29]. Discrete Haar
wavelet transformation at 3 levels is performed per patch to ex-
tract mean, variance, rotation-invariant energy and anisotropy
of energy features along horizontal, vertical and diagonal sub-
bands, as in [30] and [31]. Visual perceptual directionality,
contrast and coarseness features are extracted using [32]. More
comprehensive shift invariant Haralick features are extracted
from individual sub-images obtained via Dual tree complex
wavelet transform of patches [33].

The patch-wise features are extracted from patches with
sufficient amount of foreground, thereby, making them homo-
geneous in nature over an image. Hence firstly, we exclude
the outlier patches for an image, based on the distance
between the per patch feature representation and the mean
feature representation, computed using all patches from the
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image. Secondly, we compute the mean feature representation
across all the remaining patches to define the final feature
representation for the complete image.

Feature Selection: Classification-task specific feature selec-
tion is performed on the extracted set of features to remove
irrelevant and redundant attributes. We use recursive feature
elimination with Random forest feature importance to select
the optimal set of features.

2) Deep Learning-Based Features: Popular pre-trained
networks on ImageNet dataset, such as, VGG19 [35] and
ResNet50 [36], are used to extract feature representations for
the images. Considering the difference between HER2-stained
image dataset and ImageNet, we extract more generalizable
lower level features using the pre-trained networks. Subse-
quently, the extracted features are used to train supervised
convolutional neural networks (CNNs) to generate the desired
staining quality indicators.

D. Sensitivity to Process Parameters

Sensitivity analysis of the staining quality to the staining
process parameters benefits in obtaining optimal range for the
process parameters for high-quality immunistaining. As the
staining expectations differ across disease types, the optimal
parameter space depends on the disease type. Therefore, we
utilize the quality values (QV ) of samples per disease type
to perform the sensitivity analysis to parameters, namely
antibody concentration/dilution (C) and residence time (RT ).

First, QV s are interpolated for all C and RT configura-
tions over the entire parametric space to have a dense and
smooth distribution of QV . We triangulate the input data (C,
RT , QV ), available at specific configurations, with Quickhull
algorithm [37] and construct a piece-wise cubic interpolating
Bezier polynomial on each triangle [38] for interpolating at
desired C and RT configurations using a Clough–Tocher
scheme [39]. Second, a smooth 3D manifold is fitted to the
QV s on a 3D coordinate system with C, RT and QV as the
major axes. The 3D manifold enables a better visualization
and more comprehensive statistical analysis of the sensitivity
of QV with respect to the staining process parameters.

We perform sensitivity analysis at every configuration
using variation quantification, similar to [24]. At a point
pi=(Ci, RTi, QVi) on the surface, we calculate the difference
vector, vi, between pi and its 8-connected neighbors. Then,
covariance matrix is computed for vi, as Ci = viv

H
i , where vi

and Ci signify the degree of change in QV in the neighboring
configurations. Eigenvalue decomposition of Ci quantifies the
degree of variation at pi in different directions. The maximum
eigenvalue indicates the degree of maximum variation at pi
and the corresponding eigenvector indicates the direction of
maximum deviation. The higher the eigenvalue at a point, the
higher the degree of variation, implying a higher sensitivity of
staining quality to slight variations in corresponding process
parameters at the point. Subsequent to obtaining the disease
type specific sensitivity information at all parametric config-
urations, we can select the operational parameter bounds that
produce a high staining quality with a low sensitivity of the
quality to variations in the process parameters.

III. MATERIALS

Tissue microarrays (TMAs) (Novusbio, USA) of HT, PT,
and MT from different patients were obtained to perform
HER2-staining. HER2 is a clinically relevant protein, since
it is related to an aggressive tumor progression and is target
of the immunoherapeutic agent trastuzumab. TMA cores were
graded as HER2+ or HER2- by the vendor depending on
their expression levels of protein. TMAs were dried at 60◦C
for 15 min, dewaxed, rehydrated, and processed with heat
induced - antigen retrieval. Peroxidase and protein blocks
were applied to the TMA prior to staining as recommended
by the vendor. Monoclonal HER2 antibodies (Thermo Fisher
Scientific, USA) with concentrations of 6.25, 12.5 or 25
µg/mL were exposed on to the core using an MFP head,
that stained the tissue section in a diameter of 300 µm.
Each TMA core was patterned with 8 footprints of increasing
incubation time between 12 and 289 seconds to generate a
gradient. Images of each stained regions were acquired at 40x
magnification using a bright field microscope. Exposure time
was set to 24 ms with a lamp voltage of 6V, field stop is set to
30.5 mm, and aperture stop to 30.5 mm. The neutral density
filter was adjusted for 5.8% transmittance. White balance was
automatically adjusted with a region clear of cells on the tissue
as a reference prior to imaging. Several tissue specimens were
collected per TMA core and each specimen was stained for
only a particular antibody concentration and residence time
configuration.

IV. EVALUATION AND RESULTS

The image dataset used for empirical evaluation of the
proposed staining quality assessment and sensitivity analysis
to process parameters methodology consisted of 488 IHC-
stained images from 61 TMA cores across five disease types,
namely, HT, PT-, PT+, MT-, MT+. Each image is annotated
as Acceptable and NotAcceptable regarding the quality of
immunostaining. Our methodology starts with a segmenta-
tion of each image into footprint, off-footprint, foreground
and background regions. Subsequently, hand-crafted and deep
learning-based features were extracted to train disease type and
membrane-to-background contrast level identifying supervised
probabilistic classifiers that returns the two quality indicators.
The conducted experiments and the impact of experimental
hyperparameters on the extraction of individual quality indi-
cators are explained in detail in the following subsections.

A. Extraction of First Quality Indicator

The first quality indicator conveys the disease type informa-
tion for an image, which is obtained via a 5-class supervised
classifier. A balanced subset of 267 images across all disease
types was selected that contained sufficient cell materials
and represented the respective disease types for both poor
(over- and insufficient staining) and high-quality staining. Both
statistical machine learning-based and deep learning-based
disease type classifiers were trained to maximize the 10-fold
cross-validation F1 score. Details on the training and tuning
of individual classifiers are presented below.
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TABLE I
DISEASE TYPE CONFUSION MATRIX FOR THE BEST CLASSIFIER TRAINED

WITH HAND-CRAFTED FEATURES.

HT PT- PT+ MT- MT+

HT 52 2 1 0 3
PT– 0 41 2 6 1
PT+ 0 2 51 1 6
MT– 1 5 1 51 1
MT+ 1 2 9 3 25

1) Traditional Machine Learning-Based Classifier: We ex-
tracted 584 hand-crafted features for each image, namely
intensity (5), segmentation statistics (3), SIFT (128), texture
(22), Gabor (26), discrete wavelet transform (100) and dual-
tree complex wavelet transform (300) based features. The
acquired features and disease type labels, obtained from the
vendor, were used to train a Support Vector Machine (SVM)
classifier. To obtain the optimal classifier, several hyperpa-
rameters, such as patch size for extracting local features,
feature categories, and feature combinations, kernel types and
hyperparameters, were fine-tuned as described below in order.

Most of the features are extracted from local patches, hence
the choice of patch size has a significant impact on the overall
classification performance. We examined with different patch
sizes, i.e., 48×48, 64×64, 96×96, 128×128 and 160×160
pixels. The best F1 score was achieved for the classifier trained
with a patch size of 64×64 pixels.

We evaluated the impact of individual feature categories on
the disease type classification by training separate classifiers
for each feature group. Rotation- and scale-invariant Gabor
wavelet features performed the best as individual feature types,
followed by texture and dual-tree complex wavelet features.
Combination of different feature groups significantly improved
the classification performance. The combination of intensity,
texture, Gabor wavelet and dual-tree complex wavelet feature
groups (353 features in total) achieved the best F1 score. A
further improvement was attained by ranking and selecting the
top features. After feature selection, we obtained the best accu-
racy by including 70 features, which reduced the total number
of features by 5-folds and provided an increment of 5% in
overall accuracy, with the optimal set of hyperparameters.

Different types of kernels, namely linear, polynomial with
degrees of 3, 5, 7 and 10, sigmoid, radial-basis function
(RBF), Hellinger, Jensen-Shanon, with appropriate fine-tuning
of hyperparameters were examined with SVM classifier. The
best F1 score of 0.823 was achieved for an SVM classifier
trained with RBF kernel and optimal feature set. Table I
presents the confusion matrix obtained for 5-class disease
type classification for the best-trained classifier. The confu-
sion matrix indicates the efficacy of the trained classifier in
identifying the tissue-types and HER2-expression status. As
expected, most of the confusion occurs between PT- and MT-
and between PT+ and MT+, which corresponds to a high
similarity in the staining behaviors of the HER2- and HER2+
disease types.

2) Deep Learning-Based Classifier: We augmented the
dataset for training a deep network by extracting 50 random
patches per image, which were of size 224×224 pixels and

TABLE II
CNN ARCHITECTURE AND NETWORK HYPERPARAMETERS FOR DISEASE

TYPE CLASSIFICATION.

Type Output Size Block Strides

convolution 28x28x16 [1x1, 16] 1
max pool 14x14x16 - 2

convolution 14x14x8 [3x3, 8] 1
max pool 7x7x8 - 2

convolution 7x7x4 [3x3, 4] 1
flatten 196 - -

dropout (50%) 196 - -
linear 196 - -

softmax 5 - -
convolution layer = (convolution + ReLU + batch normalization),

batch size = 128, He uniform initialization, Adam optimizer,
cross-entropy loss, learning rate=0.01

TABLE III
COMPARISON OF MACHINE LEARNING-BASED AND DEEP

LEARNING-BASED DISEASE TYPE CLASSIFICATION RESULTS.

Approach Task F1 Kappa

Hand-crafted + SVM 5-class disease type 0.823 0.779
3-class HER2 expression 0.921 0.878

3-class tissue type 0.854 0.773

VGG19 + CNN 5-class disease type 0.761 0.699
3-class HER2 expression 0.884 0.820

3-class tissue type 0.802 0.692

ResNet50 + CNN 5-class disease type 0.835 0.793
3-class HER2 expression 0.925 0.884

3-class tissue type 0.865 0.791

5-class disease type = (HT, PT-, PT+, MT-, MT+)
3-class HER2 expression = (HT, HER2+, HER2-)

3-class tissue type = (HT, PT, MT)

hold more than 70% overlapping with the foreground. The
patches extracted from an image were annotated with the
disease type label of the complete image. We employed a Con-
vNet, pre-trained on ImageNet, to process the patches. Consid-
ering the dissimilarity between the HER2-stained IHC patches
and ImageNet, we extracted more generalizable features from
a lower layer of the network. Subsequently, another shallow
CNN was trained using the per-patch extracted representations
and disease type labels.

We experimented with two pre-trained ConvNets, VGG19
and ResNet50, in Keras version 2. The features were extracted
after the third block in both the architectures that resulted
in outputs of size 28×28×256 and 28×28×512 for VGG19
and ResNet50 respectively. The subsequent CNN architecture
and network training parameters are presented in Table II.
In the testing phase, the trained network predicted disease
types for 50 extracted patches from a test image, and majority
voting was performed to assign the final disease type to the
image. The trained networks with features from VGG19 and
ResNet50 pre-trained models achieved 0.758 and 0.834 F1
scores respectively.

The results in Table III indicate that the hand-crafted
feature-based method performs similarly to the CNN in the
disease type, HER2 expression and tissue type identification
tasks. The computed F1 score and Cohen’s kappa coefficient
indicates very good agreement between the original labels and
the predicted labels. The kappa coefficient conveys that the
trained classifiers perform well in spite of class-imbalance in
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Fig. 6. Misclassified samples by the Hand-crafted + SVM classifier. (top
row) False positives, where PT- and MT- samples were interpreted as PT+
(A, B) and false negatives, where PT+ samples were interpreted as PT- and
MT- respectively (C, D). (bottom row) Ambiguous PT+ (E), MT+ (F) and
PT- (G), MT- (H) samples.

the training dataset. SVM is faster and easier to train, easier
to tune hyperparameters and possess easier explainability
compared to a deep network. As the results from the SVM
and the (ResNet50 + CNN) were comparable, we proceeded
with SVM-based development in subsequent tasks. With the
inclusion of more images in the dataset in future, the deep
networks may then become the method of choice. Fig. 6
presents the misclassified images by the SVM. Overstained
PT- and MT- samples (A, B respectively) displayed compara-
ble membrane staining to HER2+, thus being misclassified
as PT+ (false positive). Understained and overstained PT+
(C, D respectively) lack sufficient staining contrast between
the foreground and the background, similar to HER2- images,
thus being misclassified as PT- and MT- (false negative). The
bottom row presents the ambiguous PT+ (E), MT+ (F) and
PT- (G), MT- (H) samples. Owing to the similarity in the
staining behaviour between HER2 overexpressing tissues (PT+
and MT+) and HER2 no over-expressing tissues (PT- and MT-
), a few images were misclassified by the classifier.

B. Extraction of Second Quality Indicator

The second quality indicator conveys the membrane-to-
background contrast level information of a stain, which is
obtained via a binary-class supervised probabilistic classifier.
A balanced subset of 77 images were selected that clearly
represented high and low contrast levels irrespective of the
disease type. We used the 584 features extracted per image
to train the contrast level classifier and tuned the same hy-
perparameters similar to the first quality indicator. The best
trained classifier achieved a 5-fold cross validated F1 score
of 0.947. The best classifier was an SVM trained with RBF
kernel and with 63 features, which predominantly included
features from intensity, Gabor wavelet and dual-tree complex
wavelet transform categories.

C. Staining Quality Assessment

The disease type specific SQMs were trained with the two
quality indicators extracted from the two supervised proba-
bilistic classifiers. We selected sets of 91, 106, 96 and 60
images from PT-, PT+, MT- and MT+ disease categories re-
spectively with balanced sets of images from both Acceptable

Fig. 7. ROC curves and computed AUC scores for individual SQMs,
aggregated behavior of individual SQMs and direct SQM, trained directly
with feature sample features and sample quality labels.

Fig. 8. Disease type specific 95% confidence ellipses fitted to quality values
in the process parameter space of antibody concentration and residence time.

and NotAcceptable staining qualities. Individual SQMs were
trained in supervised manner using quality labels acquired
from the consensus of three experts. Individual SQMs were
analyzed using the area-under-the-curve (AUC) measure of
the respective receiver operating characteristic (ROC) curves.
The optimal SQMs were obtained for SVM with RBF kernel,
which achieved AUC scores of 0.84, 0.83, 0.82 and 0.90
for the PT-, PT+, MT- and MT+ disease types respectively.
An average AUC score of 0.85 is achieved for the proposed
methodology with individual SQMs. For comparison, we
trained an SQM that learns the staining quality labels for
samples directly using their respective feature representations.
After tuning all the hyperparameters of the direct SQM, we
achieved an overall AUC score of 0.63. The ROC curves for
individual SQMs, the aggregated SQM and the direct SQM
are presented in Fig. 7.

The QV s for the samples were acquired from the indi-
vidual SQMs and the QV s were interpolated over the entire
parameter space of C and RT . Subsequently, the disease type
specific 3D manifolds were fitted to the QV s, C and RT
configurations, as shown in Fig. 9[A-D]. Fig. 9E displays the
2D contour plot of fitted 3D manifold for SQMPT+, where the
yellow region corresponds to the parameter space with ≥95%
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Fig. 9. Manifold fitting to quality values (QV s) acquired using disease type specific SQMs, (a) PT-, (b) PT+, (c) MT-, and (d) MT+. The manifolds are
fitted using QV s of samples across all configurations of antibody concentrations (C) and residence times (RT ). Also shown is, the sensitivity analysis for
PT+: (e) 2D contour map of QV s and (f) 2D contour map of the staining sensitivity to process parameters (C and RT ).

Fig. 10. IHC stained images of a sample PT+ TMA core for the entire parametric configurations of antibody concentration and residence time. The PT+
specific quality values are noted at the top left corner of each image. The best QVs, corresponding to the optimal staining region, are highlighted in red.

staining quality. Fitting an ellipse to this region corresponds
to the 95% confidence interval of QV . We evaluated the
robustness of our SQM algorithm by generating confidence
ellipses for individual SQMs using 200 over-sampled boot-
strap datasets for different disease type categories. Fig. 8
displays the confidence ellipses for all the trained disease type
specific SQMs. For PT+ and MT+, the confidence ellipses
are concentrated in a specific parameter region, whereas for
PT- and MT- they are more dispersed. The consistency of
the confidence ellipses for PT+ and MT+ indicate that the
staining process parameters can be confidently confined to
a specific parameters space to achieve high-quality staining,
whereas this sort of confinement is not possible for PT- and
MT- disease types. Usually in HER2+ tissue sections, the
overexpression of the HER2 protein is consistent, resulting
in consistent stained-expressions. For HER2- tissue samples,
the HER2 protein has weak HER2-overexpression, which can
have a high variability in staining expressions. The degree of
variability in HER2 overexpression can explain the resulting
behavior of the confidence ellipses.

D. Sensitivity to Process Parameters

The disease type specific SQM manifolds were used to
evaluate the variability of the staining quality scores with
respect to variations in the process parameters. Using the
eigenvalue based variational quantification approach, we in-
spected the sensitivity of the staining quality for all possible
process parameter configurations. For instance, Fig. 9E and
Fig. 9F present the 2D contour plot of the staining quality and
the 2D contour plot of the sensitivity analysis for SQMPT+.
Fig. 9E shows that high-quality staining can be obtained
when operating in the range of 9 < C < 17µg/mL and
90 < RT < 160 s and that the best quality is obtained for
C = 14µg/mL and RT = 120 s. It also illustrates that the
staining quality is low for low-end and high-end C and RT
values, which is consistent with the concepts of under-staining
and over-staining, respectively. These observations can help
reduce false negative and false positive staining, but this
map does not convey the stability in operating with these
parameter settings. Fig. 9F presents the sensitivity information
by plotting the degree of variation in the staining quality for
each C and RT configuration. It shows that the staining quality
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is slightly sensitive towards the lower-end and the upper-
end of the aforementioned range of C values. Combining
the knowledge from both the maps, an operational range
of 11 < C < 15µg/mL and 90 < RT < 130 s can be
selected for generating stable and high-quality stains for PT+.
Fig. 10 presents stained images of a PT+ TMA core for
the entire parametric configurations of antibody concentration
and residence time showing the staining and quality value
variability within a core. The PT+ specific quality values per
image are indicated at the top left corner of each image. The
best QVs, corresponding to the optimal staining region, are
highlighted in red. Similarly, optimal parameter configurations
and best practices for other tissue categories and biomarkers
can be inferred from their sensitivity analyses.

E. Comparison with a clinical staining protocol

To gauge the value of the proposed method, we aimed to
understand whether the methodology can be transferred to
a clinical setting. Thus, we performed staining M1, using a
protocol used currently in a hospital, and staining M2, the
proposed optimized parametrization. These evaluations were
performed using in vitro diagnostics antibodied (Herceptest,
Dako) with an on-bench approach, i.e. without the use of an
MFP for primary antibody deposition. Since the antibody for
these tests differs from the antibody used for developing the
proposed methodology (anti-Her2 antibody, ThermoFisher),
the trained classifiers, SQMs and derived optimum stain-
ing configurations could potentially present variations, due
to differences in antibody kinetic parameters. However, we
expected that the results can be transferable between different
antibodies, showing the robustness of the method. Therefore,
we analyzed M1 and M2 using the parametric space from our
development dataset. To remove bias to antibody selection, we
extracted feature representations for the stained cell blocks and
scaled the features to the same range as of the features used
during the training phase.

For M1, SKBR3 cell blocks were stained using an antibody
concentration of 2 µg/mL for 30 minutes, as recommended by
the provider (Fig. 11A). The proposed disease type classifier
categorized SKBR3 to be MT+, as expected since SKBR3
cells were acquired from a metastatic site. Then for M2, we
applied the MT+ specific optimal staining condition, 25 µg/mL
for 58 s, as derived by the proposed method (Fig. 11B). The
QVs were computed using SQMMT+, and resulted to QVs
of 0.12 and 0.88 for M1 and M2 respectively. Both visual
inspection and qualitative assessment demonstrate that M2
produced clearer diagnostically relevant information, namely
sharper stained membrane signal compared to M1.

Despite the change in antibody, the optimized staining
approach delivered a better QV. Hence, we proceeded to stain
PT+ tissues with the PT+ specific optimized configuration (an-
tibody concentration of 12.5 µg/mL for 135 s) using clinically
validated antibodies on-bench. Fig. 12[A−C] depicts three
stained PT+ images. Their QVs were computed to be 0.83,
0.51 and 0.87 respectively using SQMPT+. Despite the much
shorter residence time than recommended by the provider (135
s vs 30 minutes), these samples present appropriate staining

Fig. 11. IHC images of SKBR3 cell blocks stained with clinical protocol and
proposed optimized staining method.

Fig. 12. IHC images of PT+ tissue samples stained with the proposed
optimized staining method.

on the cell membranes and possess good relative intensity
between the membrane and the cytoplasm, as confirmed by
our experts. The estimated QVs classified the images to be in
the good staining range.

V. CONCLUSIONS

In this paper, we introduce a methodology to analyze
the immunostaining quality sensitivity with respect to the
staining process parameters, i.e., antibody dilution and resi-
dence time. The proposed methodology initially delineates the
diagnostically relevant and contextually immaterial signals in
a given immunostained tissue. It then learns machine learning
based disease type specific staining quality metrics using
extracted comprehensive features relevant to staining quality.
Subsequently, it performs statistical sensitivity analysis of
the staining quality with respect to the process parameters.
The proposed quantitative quality metric and the sensitivity
analysis contribute to the process parameter optimization to
achieve high-quality staining for various disease types. As
a model system, the proposed methodology is validated on
a cohort of HER2-stained breast cancer tissues from five
different disease types, stained using µIHC under various
parameter configurations of the MFP. Utilization of the MFP
allowed to stain a small fraction of a tissue section for the
analysis and extrapolation of suitable process parameters.

We believe that the entire methodology can be extended
for other types of staining, disease types, and tumor types as
it does not involve any prior assumptions about the staining
method. It can easily be applied to the conventional whole-
slide-staining and staining with other biomarkers. This allows
the comparison of different antibodies leading to the choice
of the best and finding the corresponding optimal staining
protocols.

With the proposed method, the number of false positives and
false negatives produced by incorrect parametrization can be
reduced substantially. For instance, when the disease state is
unknown, the optimal configuration of PT+ could be applied
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as a first approximate set of parameters. In case of a low-
quality result for PT+, one of the parameters can be kept fixed,
while the other is modified to the closest optimal value from
MT+. Performing this sequentially with the aim to maximize
the quality metric, a set of optimal parameters can easily be
scanned on a tissue. Comparing the information known about
the disease type and the one obtained with the algorithm can
provide potential information on the developmental status of
the tumor.

Digital and computational pathology have received increas-
ing attention from the medical community as they can aid
the accuracy of decisions made by pathologists, while also re-
ducing workloads and removing subjective artifacts. However,
the underlying aspects of staining quality still remain only
partially solved. The suite of methods outlined in this paper
can assist pathologists and improve the reproducibility since it
establishes an objective metric and reduces the human factor.
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