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SUMMARY

Breast cancer is a heterogeneous disease. Tumor
cells and associated healthy cells form ecosystems
that determine disease progression and response
to therapy. To characterize features of breast cancer
ecosystems and their associations with clinical data,
we analyzed 144 human breast tumor and 50 non-
tumor tissue samples using mass cytometry. The
expression of 73 proteins in 26 million cells was eval-
uated using tumor and immune cell-centric antibody
panels. Tumors displayed individuality in tumor cell
composition, including phenotypic abnormalities
and phenotype dominance. Relationship analyses
between tumor and immune cells revealed charac-
teristics of ecosystems related to immunosuppres-
sion and poor prognosis. High frequencies of PD-
L1+ tumor-associated macrophages and exhausted
T cells were found in high-grade ER+ and ER� tu-
mors. This large-scale, single-cell atlas deepens
our understanding of breast tumor ecosystems and
suggests that ecosystem-based patient classifica-
tion will facilitate identification of individuals for pre-
cision medicine approaches targeting the tumor and
its immunoenvironment.
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INTRODUCTION

Breast cancer is the major cause of cancer death among women

worldwide (Torreetal., 2017).Amajorobstacle for implementation

ofprecisionmedicine isour lackof understandingofbreastcancer

ecosystems. Tumor ecosystems are comprised of cancer cells,

infiltrating immune cells, stromal cells, and other cell types

together with non-cellular tissue components (McAllister and

Weinberg, 2010). Cancer cells and tumor-associated cells are

phenotypically and functionally heterogeneous because of ge-

netic and non-genetic sources. Targets of current therapies and

therapies under development, including the estrogen receptor

(ER), HER2, the phosphatidylinositol 3-kinase (PI3K), the AKT

serine/threonine kinases (AKTs), the mammalian target of rapa-

mycin (mTOR), the androgen receptor (AR), the epidermal growth

factor receptor (EGFR), thepoly (ADP-ribose) polymerase (PARP),

BCL-2, Survivin, CDK4, CDK6, and methyltransferases, are het-

erogeneously expressed within and between patients (Marusyk

et al., 2012). This heterogeneity equips cancer cells for

proliferation, survival, and invasion and likely underlies differential

treatment efficacies (Ramos and Bentires-Alj, 2015). Recent sin-

gle-cell genomic and transcriptomic analyses of breast cancer

provided insights into intratumorgenomicdiversity and intertumor

differences in clonal composition, but very few cells and tumors

were analyzed (Chung et al., 2017; Nik-Zainal et al., 2012). In the

healthymammary gland, phenotypes of luminal andmyoepithelial

(basal) cells are tightly controlled (Visvader and Stingl, 2014).
hed by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Luminal cells heterogeneously express ER, the progesterone re-

ceptor (PR), and the cytokeratins K7, K8, and K18, whereas basal

cells express K5, K14, and smooth muscle actin (SMA) for proper

tissue function (Santagata et al., 2014).

Tumor ecosystems are further shaped by cellular relationships

and strategies targeting relationships that promote tumor devel-

opment hold considerable promise (McAllister and Weinberg,

2010). Examples are immune checkpoint inhibition therapies tar-

geting exhausted and regulatory T cells (T-regs) (Wherry and Kur-

achi, 2015; Vargas et al., 2018). T cell exhaustion can bemediated

by tumor cells, tumor-associatedmacrophages (TAMs), and stro-

mal cells through activation of co-inhibitory receptors such as

PD-1, CTLA-4, and TIM-3. T-regs can secrete immunosuppres-

sive cytokines (Quail and Joyce, 2013). Ongoing clinical trials

suggest that the response rates to checkpoint inhibition therapies

in breast cancer are not comparable with those of melanoma

or lung cancer patients, likely because of lower immunogenicity

(Dieci et al., 2016). However, in cohorts selected for patients

with PD-L1+ breast tumors, higher overall response rates have

been reported (Wein et al., 2018). TAMs canmodulate tumor eco-

systems either through immunosuppressive actions (e.g., PD-L1

expression) or by promoting tumor growth, angiogenesis, and in-

vasion (Cassetta and Pollard, 2018; Quail and Joyce, 2013) and

are thus promising therapeutic targets.

Given the heterogeneity of cell phenotypes and cellular rela-

tionships in breast cancer, patient classification and treatment

should ideally consider the entire tumor ecosystem. Recent sin-

gle-cell RNA sequencing studies provided a glimpse into breast

cancer immune cell phenotypic diversity and ecosystems (Azizi

et al., 2018;Chunget al., 2017), laying a foundation for studies us-

ing large patient cohorts. Currently, however, breast tumors are

stratified for clinical purposes based on tumor cell expression

of ER, PR, HER2, and the proliferation marker Ki-67 (Coates

et al., 2015). These biomarkers are used for treatment decisions,

serve as surrogates for prognostic gene expression profiles, and

categorize tumors as luminal A (ER+ and/or PR+, HER2�, Ki-67+ <
20%), luminal B (ER+ and/or PR+,HER2�, Ki-67+R20%), luminal

B-HER2+ (ER+ and/or PR+, HER2+), HER2+ (ER�PR�HER2+), and
triple-negative (TN; ER�PR�HER2�) (Perou et al., 2000). Alterna-

tive classification schemes based on gene expression and

genomic alterations have been proposed (Curtis et al., 2012). In

addition, pathological tumor grading assesses morphological

deviation of tumor tissue and cells from normal to predict patient

prognosis (American Joint Committee on Cancer, 2017).

Although these stratifications have improved therapy success,

patient responses vary within each subtype, demanding better

characterization of breast cancer ecosystems.

Here we applied single-cell mass cytometry (Bandura et al.,

2009; Bendall et al., 2011) to millions of cells from 144 human

breast tumor samples covering all clinical subtypes to elucidate

the phenotypic diversity and tumor-immune cell relationships in

breast cancer ecosystems. Non-tumor controls comprised 46

samples juxtaposed to tumor tissue (‘‘juxta-tumoral’’) and four

mammoplasty samples from breast cancer-free individuals.

Our data revealed vast phenotypic diversity among tumor and

immune cells in breast cancer ecosystems. To quantify aspects

of tumor heterogeneity, we introduced computational scores

describing tumor phenotypic abnormality, individuality, and rich-
ness. Each tumor ecosystem was composed of tumor cells with

varying phenotypic abnormalities, and tumor cell phenotypes

associated with therapy resistancewere abundant.We identified

tumor and immune cell phenotypes and phenotype relationships

linked to poor prognosis, immunosuppression, and response to

checkpoint inhibitor immunotherapy in high-grade ER� tumors

and in high-grade ER+ tumors, which are typically not associated

with immunogenicity. This single-cell atlas provides a foundation

for patient classification based on the breast cancer ecosystem.

RESULTS

A Single-Cell Proteomic Atlas of Breast Cancer
Ecosystems
We performed large-scale mass cytometry profiling of 144 pro-

spectively collected tumor samples, including 54 luminal A, 71

luminal B, six luminal B-HER2+, one HER2+, and six TN tumors

(Tables S1 and S2; Coates et al., 2015). Histopathology divided

the samples into 106 invasive ductal, 15 invasive lobular, and 19

mixed or other tumors (Table S2). An automated system was

used to generate single-cell suspensions from all tissue samples

(STAR Methods). These samples and seven breast cancer cell

lines were mass tag-barcoded (Zunder et al., 2015), pooled

for antibody staining with 73 antibodies, and simultaneously

analyzed by mass cytometry (Figures 1A and S1A; STAR

Methods). An immune cell-centric antibody panel focused on im-

mune phenotyping and was based on our recent immune cell

atlas of clear cell renal cell carcinoma (ccRCC) (Chevrier et al.,

2017; Table S3). A tumor cell-centric panel was built to quantify

markers that identify mammary cell types, signaling, prolifera-

tion, and survival (Table S4). Application of our workflow yielded

26 million single-cell profiles with an average of 84.7% live, non-

apoptotic cells per sample (Figures S1B and S1C).

To ensure high data quality, we confirmed the similarity of

marker expression of duplicate samples across barcoding plates

and of live cell and immune cell frequencies across antibody

panels (Figures S1D and S1E). Neither sample collection nor pro-

cessing led to batch effects (Figures S1F and S1G; STAR

Methods). Minimal spillover between mass detection channels

was corrected using a bead-based compensation workflow

(Chevrier et al., 2018). The frequencies of ER+, PR+, HER2+,

and Ki-67+ tumor cells, determined by mass cytometry, were

comparable with the matched pathological immunohistochem-

istry scores (Figures S1H–S1L; STAR Methods).

To visualize the diversity of tumor and non-tumor cells, we

generated two-dimensional graphs using the dimensionality

reduction algorithm t-distributed stochastic neighbor embed-

ding (t-SNE; Van Der Maaten and Hinton, 2008; Figure 1B;

STAR Methods). Most cells were epithelial (expressing the

epithelial cell adhesion molecule [EpCAM], E-Cadherin, and

epithelial cytokeratins) or immune (CD45+). Endothelial cells

(CD31+) and fibroblasts (FAP+/�SMA+/�) were less abundant

(Figure 1B). Additional fibroblast subsets (Costa et al., 2018)

and adipocytes were likely among the cells described as ‘‘other’’

(Figure 1C). To compare cell type frequencies between tumor

and non-tumor tissue, we applied the PhenoGraph algorithm

(Levine et al., 2015), which partitioned our high-dimensional sin-

gle-cell data into 42 clusters (Figures S1M and S1N; STAR
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Figure 1. A Single-Cell Proteomic Atlas of Breast Cancer Ecosystems

(A) Experimental approach.

(B) t-SNE plots of EpCAM, CD45, CD31, and FAP expression in 58,000 cells from all samples using a 0 to 1 normalization.

(C) t-SNE as in (B), colored by cell type.

(D and E) Frequencies of live epithelial cells, immune cells, endothelial cells, and fibroblasts for (D) mammoplasty (M), juxta-tumoral (JT), and tumor (T) samples

and (E) tumor subtypes.

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S1.
Methods). Marker expression profiles reliably assigned these

clusters to cell types (Figures 1C and S1M). Breast tumors

were enriched for epithelial cells and contained fewer endothelial

cells and fibroblasts than non-tumor tissues (Figure 1D).

FAP+SMA+ fibroblasts were more abundant in tumors than in

juxta-tumoral tissue (Figures S1O and S1P). The cell type fre-

quencies varied among and between tumor subtypes, with a
1332 Cell 177, 1330–1345, May 16, 2019
higher frequency of immune cells observed in TN and HER2+

samples than in other breast cancer types (Figures 1E and S1P).

The Immune Landscape of Breast Cancer
T cells and myeloid cells were the most abundant immune cell

types in our study; fewer natural killer (NK) cells, B cells, granu-

locytes, plasma cells, basophils, and plasmacytoid dendritic



T05 T06 T07T10 T11T12 T14T15 T16 T19

CD8
PD-1 Eff/Mem

T01T02 T03 T04 T08 T09 T13T17 T18T20
Reg

CD4
PD-1 CM Eff/Mem

J

A C

T01
T02
T03
T04
T05
T06
T07

T08
T09
T10
T11
T12
T13
T14

T15
T16
T17
T18
T19
T20

tSNE1tS
N

E
2

tSNE1tS
N

E
2

L

Fr
eq

ue
nc

y 

0.0

0.2

0.4

0.6

0.8

1.0

T ce
lls

Gran
ulo

cy
tes

Natu
ral

 ki
lle

r 

ce
lls B ce

lls

Plas
ma c

ell
s

Plas
mac

yto
id

de
nd

riti
c c

ell
s

Bas
op

hil
s

Mye
loi

d c
ell

s

***

*** *** *** *** ***

tSNE1tS
N

E
2

B

F

K

0.0

0.2

0.6

1.0

Normalized 
intensity

0.4

0.8

M11
M12
M13
M14
M15
M16
M17
M18
M19

M01
M02
M03
M04
M05
M06
M07
M08
M09
M10

CD8+

CD4+

PD-1
Eff/Mem 

Reg

CM

0.0

0.2

0.6

1.0

Normalized 
intensity

0.4

0.8

C
D

16
C

D
12

3
C

D
38

C
D

19
2

C
D

93
C

D
11

c
S

la
m

f7
C

D
86

C
D

36
C

D
14

C
D

11
b

C
D

64
C

D
16

9
C

D
20

4
C

D
16

3
C

D
20

6
C

D
32

C
D

4
H

LA
-D

R
C

D
19

7
C

D
68

P
D

-L
1

M19
M08
M09
M16
M14
M01
M02
M04
M05
M03
M11
M13
M17
M12
M10
M07
M18
M06
M15

0.0

0.2

0.6

1.0

Normalized 
intensity

0.4

0.8

E. im.
T.-res.

TAM

Mono

MDSC

FO
X

P
3

TI
M

-3
H

LA
-D

R
C

D
25

C
TL

A
-4

C
D

27
8

P
D

-1
C

D
4

C
D

19
7

C
D

38
C

D
7

C
D

3
C

D
45

R
A

C
D

11
b

C
D

8a

T01
T09
T18
T13
T03
T04
T02
T08
T17
T20
T16
T10
T05
T12
T07
T06
T15
T14
T19
T11

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Fr
eq

 P
D

-1
+ C

D
4+

Freq PD-1+CD8+

0

25

50

75

100

0 25 50 75 100
Mean PD-1 in CD8+

M
ea

n 
P

D
-1

 in
 C

D
4+

0

10

20

30

0.0 0.2 0.4 0.6

r=0.47

0

25

50

75

0.0 0.1 0.2 0.3 0.4

r=0.62

M
ea

n 
P

D
-1

 in
 C

D
8+

M
ea

n 
P

D
-1

 in
 C

D
4+

Freq PD-1+CD8+

Freq PD-1+CD4+

G

0.0

0.2

0.4

0.6

0.8

E

****** *** ********* ********* *****
Fr

eq
ue

nc
y 

* ***

D

H I

OM

tSNE1tS
N

E
2

Fr
eq

ue
nc

y 

N

0.0

0.2

0.4

0.6

0.8

T01 T09 T13 T18 T03 T11 T07 T14 T10 T12

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y 

PD-1 Reg
CD8CD4

T01 T09 T13 T18 T03 T11 T07 T14 T10 T12
PD-1 Reg

CD8CD4
PD-1 PD-1 

** ** ***** ***** *** *** * *

Fr
eq

ue
nc

y 

Fr
eq

ue
nc

y 

Fr
eq

ue
nc

y 

M06 M15 M08 M09 M16 M03 M11 M13 M17 M01 M02 M04 M14 M07 M10 M12 M05 M18 M19
Mono E. im.T.-res. PD-L1 MDSC

0.0

0.2

0.4

0.6

0.8
*** *** ****** ****** *** ****** ****** *** **

M06 M03 M17 M01 M02 M04 M05 M07 M10 M12
PD-L1 Mono E. im. MDSC

M06 M03 M17 M01 M02 M04 M05 M07 M10 M12
PD-L1 Mono E. im. MDSC

0.0

0.2

0.4

0.6

0.8 * **** ***** **** ***

0.0

0.2

0.4

0.6

0.8 *** ****

CD11b CD16 CD197 CD32 CD64 HLA-DR

CD11c CD163 CD204 CD36 CD68 SLAMF7

CD123 CD169 CD206 CD38 CD86

CD14 CD192 CD274 (PD-L1) CD4 CD93

CD11b CD197 CD25 CD278 CD3

CD38 CD4 CD45RA CD7 CD8a

CTLA-4 FOXP3 HLA-DR PD-1 TIM-3

LumA
LumB

ER
ER

+
-

ER+ ER- LumA LumB

0.0

0.2

0.6

1.0

Normalized 
intensity

0.4

0.8

Juxta-
tumoral
Tumor

Juxta-tumoral Tumor

Juxta-tumoral Tumor

(legend on next page)

Cell 177, 1330–1345, May 16, 2019 1333



cells were detected (Figures 2A and S2A–S2D). Breast tumors

were enriched for T cells and B cells and contained a lower fre-

quency of NK cells and granulocytes than juxta-tumoral tissue

(Figure 2A). There was considerable inter-patient variation in

tumor-associated immune cell frequencies (Figure 2A), as

described previously (Azizi et al., 2018; Chevrier et al., 2017;

Lavin et al., 2017).

T cells andmacrophages can exert pro-tumor or anti-tumor ac-

tivities (Quail and Joyce, 2013). In-depth analyses of T cells by

t-SNE and PhenoGraph identified ten CD4+ and ten CD8+ T cell

clusters (T01–T20; Figures 2B–2D). Most T cell clusters had an

effector memory phenotype (CD197low, CD45RAlow), and tu-

mor-associated T cells existed as a phenotypic continuumacross

the CD4+ and CD8+ lineages (Figures 2D and S2E; Azizi et al.,

2018; Egelston et al., 2018). Various levels of PD-1 and heteroge-

neous co-expression of co-inhibitory receptors and activation

markers were detected among CD8+ (T11, T14, and T07) and

CD4+ T cell clusters (T09, T13, and T18). An increase in PD-1

levels and receptor co-expression likely represent increasingly

exhausted T cell states (Wherry and Kurachi, 2015). PD-

1highCD8+ T cells (T11) expressed the co-inhibitory receptors

TIM-3 and CTLA-4 and the activation markers HLA-DR and

CD38 (Figure 2D). This phenotype was associated with T cell

exhaustion and anti-PD-1 therapy response in melanoma (Daud

et al., 2016; Sade-Feldman et al., 2018). PD-1highCD4+ T cells

(T09 and T13) were positive for CTLA-4, CD38, and CD278 but

negative for TIM-3 and HLA-DR. PD-1intCD8+ (T07 and T14)

and PD-1intCD4+ T cells (T18) were negative for CTLA-4, TIM-3,

HLA-DR, and CD38 (Figure 2D). T-regs (T01) were identified

based on expression of CD4, FOXP3, CD25, and CTLA-4.

T-regs and PD-1highCTLA-4+CD38+ T cells (T09, T11, and T13)

were enriched in tumors comparedwith juxta-tumoral tissue (Fig-

ure 2E). The majority of patients showed PD-1+ T cells, which

comprised up to 26.6% of total tumor-associated T cells but

were rare in juxta-tumoral tissue (Figure S2F). Most PD-1+

T cells were found within the CD8+ compartment (Figure 2F,

top). However, the mean expression level of PD-1 was higher in

CD4+ than in CD8+ T cells (Figure 2F, bottom). The mean expres-

sion level of PD-1 and the PD-1+ T cell frequency correlated in the

CD4+ and CD8+ compartments, supporting the hypothesis that

these cells result from T cell expansion (Figure 2G; Keren et al.,

2018; Li et al., 2019).
Figure 2. The Breast Cancer Immune Landscape

(A) Frequencies of selected immune cell types in juxta-tumoral and tumor sampl

(B) t-SNE plots of the normalized marker expression of 40,000 T cells from all sa

(C) t-SNE of T cells colored by PhenoGraph cluster.

(D) Heatmap of normalized T cell marker expression for 20 T cell clusters. CM, c

(E) Boxplots showing the frequencies of the CD4+ (left) and CD8+ T cell clusters

(F) PD-1+ T cell frequency (top) and mean PD-1 expression (bottom) among tum

(G) Comparison of the PD-1+ T cell frequency and mean PD-1 expression for CD

(H and I) Frequencies of selected T cell clusters in (H) ER+ and ER� tumors and

(J) t-SNE plots of normalized marker expression of 40,000 myeloid cells from all

(K) t-SNE of myeloid cells colored by PhenoGraph cluster.

(L) Heatmap of normalized myeloid marker expression for 19 myeloid clusters. M

associated macrophage; MDSC, myeloid-derived suppressor cell.

(M) Frequencies of the myeloid clusters in juxta-tumoral and tumor samples.

(N and O) Frequencies of the indicated myeloid clusters in (N) ER+ and ER� tumo

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, **
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ER� breast cancer subtypes reportedly respond better to im-

mune checkpoint blockade than ER+ subtypes (Dieci et al.,

2016). We observed differences in the T cell landscapes of

ER� and ER+ tumors, including a higher frequency of T-regs in

ER� disease (Figure 2H). In more than half of ER� tumors (6 of

10) but only 12% of ER+ tumors (16 of 132), over 10% of

T cells expressed PD-1 (Figure S2G). Distinct PD-1+ phenotypes

were separately enriched: PD-1highCTLA-4+CD38+ T cells (T09,

T11, and T13) were more frequent in ER� tumors, whereas

PD-1intCTLA-4�CD38� T cells (T14) were enriched in ER+ tumors

(Figure 2H). Many ER+ tumors did, however, show frequencies of

PD-1highCTLA-4+CD38+ T cells and T-regs comparable with or

higher than ER� tumors (Figure 2H). Therefore, our data support

that patients with ER� tumors are candidates for immunotherapy

(Dieci et al., 2016) and indicate that a subset of patients with ER+

tumors should benefit, too.

ER+ tumors can be divided into luminal A and luminal B based

on low and high proliferation, respectively. More than 10% of

T cells expressed PD-1 in 18% of luminal B tumors but only

7% of luminal A tumors (Figure S2H). PD-1intCTLA-4�CD38�

T cells (T07) were more frequent in luminal A disease, and

T-regs were enriched in luminal B tumors (Figure 2I). We also

observed distinct T cell landscapes in tumors of different grades.

PD-1+ T cells accounted for more than 10% of T cells in 28% of

grade 3 tumors, 9% of grade 2 tumors, and 10% of grade 1

tumors (Figure S2I). Grade 3 tumors had more PD-1highCTLA-

4+CD38+ T cells (T09 and T11) and fewer PD-1intCTLA-

4�CD38� T cells (T07 and T14) than tumors of lower grades (Fig-

ure S2J). This demonstrates that an immunosuppressed T cell

landscape is linked to poor-prognosis tumors, including ER�,
high-proliferation, and high-grade tumors, but is also observed

in a subset of ER+ tumors.

Breast Tumors Are Enriched for Immunosuppressive
Macrophage Phenotypes
To characterize TAM populations, t-SNE and PhenoGraph were

applied to all myeloid cells (Figures 2J and S2D), resulting in 19

myeloid clusters (M01–M19) of five categories: (1) CD14-ex-

pressing classic (M06, CD14+CD16�) and inflammatory mono-

cytes (M15, CD14intCD16+), (2) early immigrant macrophages

(M03, M11, M13, HLA-DRintCD192+), (3) tissue-resident macro-

phages (M08, M09, M16, CD206+HLA-DRint), (4) TAMs (M01,
es.

mples.

entral memory; Eff/Mem, effector and memory; Reg, regulatory; PD-1, PD-1+.

(right) in juxta-tumoral and tumor samples.

or-derived CD4+ and CD8+ T cells.

8+ (top) and CD4+ T cells (bottom).

(I) luminal A and B tumors.

samples.

ono, monocyte; T.-res, tissue-resident; E. im., early immigrant; TAM, tumor-

rs and (O) luminal A and B tumors.

*p < 0.001. See also Figure S2.
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Figure 3. Tumor Cell Phenotypic Landscape in Breast Cancer

(A) t-SNE plots of normalized marker expression of 180,000 epithelial cells from all samples.

(B) t-SNE highlighting the distribution of cells from tumor, juxta-tumoral, and mammoplasty tissue.

(legend continued on next page)
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M02, M04, M14, M17, CD64highHLA-DRhigh), and (5) myeloid-

derived suppressor cells (MDSC; M07, M10, M12, HLA-DR�/low)

(Figures 2K and 2L). Consistent with previous reports (Azizi et al.,

2018; Chevrier et al., 2017), the myeloid phenotypic space

differed between tumor and juxta-tumoral regions (Figure 2M).

In 80% of tumors, at least 10% of myeloid cells were PD-L1+

(Figure S2K; Cimino-Mathews et al., 2016). The PD-L1+ TAMs

were phenotypically heterogeneous. TAMs in cluster M01 ex-

pressed CD38, the pro-tumor markers CD204, CD206, and

CD163 and the anti-tumor marker CD169; TAMs in M02 ex-

pressed CD204, CD169, and intermediate levels of CD163

and CD38; and TAMs in M17 expressed CD169 and CD38 (Fig-

ure 2L). Expression of CD38 is associated with immunosuppres-

sive macrophages in ccRCC patients and with MDSC-mediated

T cell suppression in colorectal cancer (Chevrier et al., 2017;

Karakasheva et al., 2018). Our results therefore link CD38 and

PD-L1 and confirm co-expression of pro- and anti-inflammatory

markers by tumor-associated myeloid cells, including PD-L1+

TAMs (Azizi et al., 2018; Chevrier et al., 2017). Tumors were en-

riched for TAMs and depleted of tissue-resident macrophages

(M08 and M09), classical circulating (M06), and pro-inflamma-

tory (M15) monocytes compared with juxta-tumoral tissue

(Figure 2M).

Infiltration by TAMs is associatedwith aggressive disease (Quail

and Joyce, 2013). ER� tumors contained higher frequencies of

M01 and M17 PD-L1+ TAMs and fewer myeloid cells with M04,

M05, M10, or M12 phenotypes compared with ER+ tumors (Fig-

ure 2N). A subset of ER+ tumors had M01 and M02 PD-L1+

TAMs at frequencies comparable with or higher than ER� tumors

(Figures 2N and S2L). Luminal B tumors contained more myeloid

cells with the M07 or M17 phenotype, less with the M04 pheno-

type, and more PD-L1+ TAMs compared with luminal A tumors

(Figures 2O and S2M). PD-L1+ TAMs were enriched in grade 3

tumors compared with grade 2 tumors (Figure S2N). Grade 3

tumors contained fewer cells with the M04 or M05 phenotype

but more classical monocytes (M06) than lower-grade tumors

(Figure S2O).

Tumor Epithelial Cells Are Heterogeneous and
Phenotypically Abnormal
The analysis of epithelial cells from tumor and non-tumor tissues

(STAR Methods) revealed bimodal and gradient-like expression

of epithelial markers, indicative of many distinct cell phenotypes

(Figures 3A and 3B). A consensus clustering approach imple-

mented in PhenoGraph (Figure S3A; STAR Methods) revealed

45 epithelial clusters (Ep01–Ep45). Hierarchical clustering classi-

fied these into seven luminal groups, L1–L7, and two basal

groups, B1 and B2, based on marker expression (Figures 3C,

S3B, and S3C).

We identified luminal and myoepithelial cells in mammoplasty

and juxta-tumoral tissue based on lineage marker expression

patterns (Figures 3C, 3D, and S3D; Santagata et al., 2014; Vis-
(C) Heatmap of normalized epithelial cell marker expression for 45 epithelial cluste

tumoral (JT), and tumor (T) tissue for each cluster (right).

(D and E) Histograms of the expression of epithelial lineage markers in (D) cells d

(F) Frequencies of cells of individual cluster groups by tumor subtype.

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, **
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vader and Stingl, 2014). Mammary epithelial cell lines confirmed

the reliability of these patterns (Figure 3E; Neve et al., 2006).

About 63% of cells from mammoplasties and 77% of juxta-tu-

moral tissue-derived cells were members of groups L1 and L2,

characterized by expression of K7, K8, and K18 and low levels

of or no ERa (Figures 3C and 3D). Strong expression of EpCAM

and low levels of the adhesion integrin CD49f indicated luminal

cell maturity (Figures 3C and S3D; Stingl et al., 2001). Prolifer-

ating (Ki-67+) non-tumor luminal cells were also identified (Fig-

ure S3E; Santagata et al., 2014). About 55% of tumor-derived

cells were members of groups L1 and L2, showing that differen-

tiated normal-like luminal cells were abundant in tumor samples.

Groups L3–L7 were dominated by tumor cells (Figure 3C).

Group L3 phenotypes showed high levels of EpCAM and

CD49f and low ERa expression (Figures 3C and S3D–S3F), char-

acteristics of luminal progenitor cells (Stingl et al., 2001). Group

L4 phenotypes displayed high levels of the hormone receptors

ERa, progesterone receptor B (PRB), and AR and the receptor

tyrosine kinases HER2, EGFR, and the hepatocyte growth factor

receptor (c-MET) (Figures 3C and S3F), which are involved in

tumor cell proliferation and migration (Hsu and Hung, 2016).

Co-expression of these receptors with ERa or HER2 can confer

resistance to anti-ERa and anti-HER2 treatments (Hsu and

Hung, 2016; Murphy and Dickler, 2016). Strong receptor tyrosine

kinase expression and high levels of ERa, the methyltransferase

EZH2, its target H3K27me3, and the anti-apoptotic factors Sur-

vivin andBCL-2were observed in group L5 (Figures 3C andS3F).

EZH2-induced epigenetic alterations can equip tumor cells for

expansion and invasion (Visvader and Stingl, 2014). Survivin

and BCL-2 are associated with cell death evasion and risk of

recurrence in ER+ disease (Parker et al., 2009). Group L6 pheno-

types expressed K7, K8, K18, ERa, HER2, low levels of CD49f,

and high levels of E-Cadherin and CD24 (Figures 3C and S3F),

indicative of luminal cell maturity with ERa and HER2 pathway

activity. Group L7 phenotypes were ERa� and HER2low and ex-

pressed HLA-DR, a surface receptor associated with tumor

immunogenicity (Figures 3C and S3F; Park et al., 2017). Lack

of ERa and HER2 is associated with resistance to anti-ERa

and anti-HER2 treatments. Ki-67+ luminal tumor cells were found

in all luminal cluster groups and were most frequent in group L7

(Figure S3G).

Group L1–L7 phenotypes were differently distributed across

tumor subtypes. Group L1 and L2 phenotypes indicative of

mature luminal cells and group L4 and L5 phenotypes strongly

expressing ERa were more frequent in luminal A and B tumors

than in HER2+ and TN tumors (Figure 3F). Proliferating group

L7 phenotypes were frequent in several luminal B tumors, a

few luminal A tumors, and one TN tumor. Luminal B-HER2+

and HER2+ tumors contained cells from groups L3 and L6

(Figure 3F). Many luminal tumors contained fewer K7+ and

more K8+ and K18+ cells than adjacent non-tumor tissue (Fig-

ure S3H), suggesting a cytokeratin switch possibly induced by
rs (left) and percentage and total number of cells frommammoplasty (M), juxta-

erived from juxta-tumoral tissue and (E) cell lines.

*p < 0.001. See also Figure S3.



C

Fr
eq

ue
nc

y

0.00

1.00

0.50

0.25

0.75

Grade

0.00

0.01

0.02

0.03

Median for
juxta-tumoral
tissuePh

en
ot

yp
ic 

ab
no

rm
ali

ty

G1 G2 G3

P
he

no
ty

pi
c 

ab
no

rm
al

ity

***
*

***

P
he

no
ty

pi
c 

ab
no

rm
al

ity

Lu
mA

Lu
mB

Lu
mB-H

ER2
HER2 TN

P
he

no
ty

pi
c 

ab
no

rm
al

ity

ER
+

ER
-

D

F G H

G1
G2
G3
na

Grade

I

0.00

1.00

0.50

0.25

0.75

E

Fr
eq

ue
nc

y

Average 
juxta-tumoral

Tumors

Cells CA9+ [%]Cells Ki-67+ [%]

P
he

no
ty

pi
c 

ab
no

rm
al

ity

Cluster group
B1
B2
L1
L2
L3
L4
L5
L6
L7
Ep39
Not assigned

Cluster 
group

B1
B2
L1
L2
L3
L4
L5
L6
L7
Ep39
Not 
assigned

C
lu

st
er

 ID
 a

nd
 c

lu
st

er
 g

ro
up

N

Mammoplasty
Juxta-tumoral
Tumor

Tissue

Tissue

Frequency 

Grade

G1
G2
G3
na

Grade

J

In
di

vi
du

al
ity

L

K

In
di

vi
du

al
ity

Phenotypic abnormality

M

Cells ERα+ [%]

In
di

vi
du

al
ity

ER+ tumors

Sample

A

0.00

0.02

0.04

0.06

0.08

Ep4
5
Ep3

1
Ep3

0
Ep1

8
Ep1

4
Ep0

5
Ep0

9
Ep3

9
Ep3

3
Ep1

5
Ep3

6
Ep0

6
Ep0

8
Ep1

7
Ep1

3
Ep3

4
Ep2

6
Ep2

9
Ep1

0
Ep0

7
Ep1

9
Ep1

1
Ep3

2
Ep3

5
Ep4

1
Ep1

6
Ep1

2
Ep2

0
Ep2

7
Ep0

4
Ep2

8
Ep2

2
Ep4

0
Ep2

1
Ep0

3
Ep3

8
Ep2

5
Ep2

3
Ep2

4
Ep3

7
Ep4

2
Ep0

1
Ep4

3
Ep4

4
Ep0

2

Cluster 
group

B1
B2
L1
L2
L3
L4
L5
L6
L7
Ep39
Not 
assigned

B

Q

Ep45
Ep31
Ep30
Ep18
Ep14
Ep05
Ep09
Ep39
Ep33
Ep15
Ep36
Ep06
Ep08
Ep17
Ep13
Ep34
Ep26
Ep29
Ep10
Ep07
Ep19
Ep11
Ep32
Ep35
Ep41
Ep16
Ep12
Ep20
Ep27
Ep04
Ep28
Ep22
Ep40
Ep21
Ep03
Ep38
Ep25
Ep23
Ep24
Ep37
Ep42
Ep01
Ep43
Ep44
Ep02

Phenotypic
abnormality

Cluster group
B1
B2
L1
L2
L3
L4
L5
L6
L7
Ep39
Not assigned

Ph
en

ot
yp

ic 
ab

no
rm

ali
ty

PO

Tumor 1 Tumor 2 Tumor 3 Tumor 4

Phenotypic abnormality
Individuality
Richness

Medium MediumLow High

Low LowMedium High

High HighMedium Low

Phenotypic 
abnormality

Normal Tumor

0.00

0.01

0.02

0.03

0 20 40 60 80
0.00

0.01

0.02

0.03

0 20 40 60 80

ρ= 0.54
p= 3.1e-12

ρ= 0.52
p= 7.4e-120.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.01 0.02 0.03

ρ= 0.74
p= 2.2e-16

***
* *

***
** ***

0

2

4

6

8

10

12

14

16

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10121416

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

ρ= -0.47
p= 2.14e-9

ρ= 0.38
p= 3.5e-6

In
di

vi
du

al
ity

ER
+

ER
-

0.0

0.2

0.4

0.6

0.8

1.0
**

In
di

vi
du

al
ity

R
ic

hn
es

s

RichnessJT TM

Cl
us

te
r I

D

0.00
0.02

Ep45
Ep31
Ep30
Ep18
Ep14
Ep09
Ep39
Ep36
Ep17
Ep10
Ep19
Ep32
Ep35
Ep41
Ep20
Ep27
Ep04
Ep40
Ep03
Ep25
Ep24
Ep37
Ep02

Frequency 

Tumor

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Phenotypic
abnormality

ERα
ERα

JT T

+
-/dim

(legend on next page)

Cell 177, 1330–1345, May 16, 2019 1337



upregulated PI3K and AKT signaling (Fortier et al., 2010). ERa+

cells varied between 2% and 91% (median, 26.7%; interquartile

range [IQR], 26.8%), and ERa+AR+ cells varied between 0% and

44% (median, 1.7%; IQR, 4.3%) in ER+ tumors.

We identified basal cell phenotypes in group B1 based on

expression of K5, K14, and Vimentin and in group B2 based on

expression of SMA, Vimentin, and low levels of K5 and K14. All

basal phenotypes lacked expression of K7, K8, K18, ERa, and

HER2 (Figure 3C). Non-tumor cells with a basal phenotype

were likely myoepithelial cells (Figure 3E; Santagata et al.,

2014). In contrast to juxta-tumoral tissue, myoepithelial cells

were sparse in mammoplasty samples, possibly as a conse-

quence of obesity (Chamberlin et al., 2017). Basal-like tumor

cells displayed high levels of Ki-67, EGFR, and the tumor sup-

pressor p53 (Figures S3F and S3G). Overexpression of EGFR

and p53 and lack of ERa andHER2 are characteristics of aggres-

sive, difficult-to-treat cancers (Perou et al., 2000). Both basal-like

and luminal ERa�HER2�PRBdim phenotypes expressed high

levels of Survivin, indicative of survival pathway activity. The ma-

jority of luminal tumor samples (130 of 135) contained few cells

with a basal phenotype (0% to 5%, median, 0.35%), consistent

with a loss of myoepithelial cells (Sternlicht and Barsky, 1997).

Cells of group B2 were abundant in TN tumors (Figure 3F), in

line with a basal-like molecular subtype (Perou et al., 2000).

Tumor cells with a basal phenotype and tumor cells in luminal

clusters Ep16 and Ep32 co-expressed EpCAM, E-Cadherin,

and Vimentin, an epithelial-mesenchymal transition (EMT)

phenotype associated with tumor cell invasion and resistance

to chemotherapy (Fischer et al., 2015). Tumor cells with

the EMT phenotype were found in TN tumors and in several

luminal A and B tumors (Figure S3I). All subtypes except luminal

A had elevated frequencies of proliferating cells compared with

juxta-tumoral tissue (Figure S3J). Proliferation was strongest in

grade 3 tumors (Figure S3K).

Phenotypic Abnormalities and Tumor Individuality Are
Linked to Features of Poor Prognosis
Tumor cell heterogeneity is believed to drive disease progression

and to hamper therapies to eliminate all cells of the tumor

ecosystem (Ramos and Bentires-Alj, 2015). We established

three computational scores to quantify different aspects of
Figure 4. Molecular Phenotypic Abnormalities and Tumor Individuality

(A) Phenotypic abnormality, individuality, and richness shown schematically usin

(B) Phenotypic abnormality scores of all epithelial clusters.

(C) Phenotypic abnormality scores of tumors and the median score of juxta-tum

(D and E) Stacked histograms of (D) frequencies of cells per epithelial cluster grou

frequencies for juxta-tumoral tissue.

(F–H) Tumor phenotypic abnormality scores by (F) grade, (G) ER status, and (H)

(I) Phenotypic abnormality scores versus the percentage of Ki-67+ and CA9+ cel

(J) Individuality scores for juxta-tumoral (JT) and tumor (T) tissue.

(K) Individuality scores versus phenotypic abnormality scores for tumors.

(L) Individuality scores for ER+ and ER� tumors.

(M) Individuality scores versus the percentage of ERa+ cells for ER+ tumors.

(N) Heatmap of presence and proportion of the 45 epithelial clusters for all samp

(O) Richness scores for mammoplasty (M), juxta-tumoral (JT), and tumor (T) sam

(P) Individuality scores versus richness scores for tumors.

(Q) Cluster frequency map for ten tumors that had not regressed despite neoadj

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, **
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tumor heterogeneity (Figure 4A). Phenotypic abnormality de-

scribes the extent of tumor cell phenotypic deviation from non-

tumor epithelial cells. Tumor individuality quantifies the similarity

of tumors based on cell phenotypes. Tumor richness represents

the number of different co-existing tumor cell phenotypes within

an ecosystem.

To describe phenotypic abnormalities, we trained an artificial

neural network (autoencoder) (Goodfellow et al., 2016; Hinton

and Salakhutdinov, 2006) with multidimensional single-cell data

from the juxta-tumoral samples (STAR Methods). When trained,

the autoencoder recognized non-tumor epithelial cell phenotypes

and calculated a mean squared error (MSE) for every tumor cell

(Figure S4A). High MSE values indicated high levels of abnormal-

ity. The most abnormal tumor cells were detected in the epithelial

cluster groups L6, L7, B1, and B2 (Figure 4B). These included

ERa+PRB+HER2+AR+ (Ep42 and Ep43) and ERa�PRB+HER2�

AR+HLA-DR+ luminal phenotypes (Ep37 and Ep38) and

ERa�PRB�HER2�AR� basal-like EMT phenotypes (Ep01, Ep02,

Ep23, Ep24, and Ep25). Tumors containing mainly cells from

these clusters deviated more from juxta-tumoral tissue than tu-

mors enriched for cells from groups L1 and L2 (Figures 4C–4E).

Phenotypically abnormal cells were enriched in high-grade tu-

mors, most ER� tumors, a subset of ER+ tumors, and tumors of

subtypeswith poor prognosis (Figures 4F–4H). Phenotypic abnor-

mality correlated with hypoxia and proliferation marker expres-

sion (Figure 4I), reflecting abnormal growth conditions within the

tumor ecosystem (Marusyk et al., 2012). About 25% of CA9+ tu-

mor cells exhibited an EMT phenotype compared with 4% of

CA9� tumor cells. Some juxta-tumoral tissue samples in our

cohort contained phenotypically abnormal cells and high fre-

quencies of CA9+ or Ki-67+ cells (Figures S4B and S4C; Table

S5), possibly representing areas of the pre-cancerous lesion

ductal carcinoma in situ.

To assess the individuality of tumor ecosystems, we applied a

graph-based approach to the epithelial cell data from all samples

(Figure 4A; STAR Methods). The individuality score indicated

whether cells of a sample were more similar to cells of the

same sample (score close to 1) or to cells of other samples (score

close to 0) (Figure S4D). Tumors displayed higher individuality

scores than juxta-tumoral tissues (Figure 4J). Importantly, tumor

individuality correlated with phenotypic abnormality (Figure 4K),
Are Linked to Features of Poor Prognosis

g hypothetical phenotypes (shape) and tumors (color).

oral samples.

p per tumor ordered by increasing phenotypic abnormality and (E) the average

subtype.
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*p < 0.001. See also Figure S4.



suggesting that themore tumor cells deviate phenotypically from

non-tumor cells, the less likely they are to be found in tumors

from different patients (Figure S4D). Tumor individuality was

more prominent in high-grade tumors and in tumors of the

luminal B, luminal B-HER2+, or TN subtype (Figure S4E). Individ-

uality varied extensively among ER+ tumors and correlated with

the percentage of ERa+ cells (Figures 4L and 4M). No association

between individuality and invaded lymph nodes or distant

metastasis was detected (Figure S4F).

To explore the concept of tumor richness (Figure 4A), we

calculated the frequency of each epithelial cell cluster per sam-

ple and reported the number of clusters above 1%. All tumors

and non-tumor samples contained cells from multiple clusters

(Figure 4N). Remarkably, most tumors did not display increased

richness compared with non-tumor tissue, and tumor richness

anti-correlated with individuality (Figures 4O and 4P). In 43% of

tumor samples (62 of 144), at least 50% of all cells of the tumor

belonged to a single cluster, possibly reflecting the expansion of

a distinct cancer cell clone (Figure 4N). This cluster dominance

was observed in 58% of grade 3 tumors, 33% of grade 2 tumors,

and 35% of grade 1 tumors. Cluster dominance was observed in

51% of luminal B, 50% of luminal B-HER2+, and 67% of TN tu-

mors but only 29% of luminal A tumors. Among the 45 epithelial

cell clusters, 37 clusters (82%) comprised at least 50%of all cells

in one ormore tumors (Figure 4N). Seven dominant clusters were

tumor-specific, and four displayed high phenotypic abnormality

(Figures 4B and S4G).

Analysis of ten tumors in our cohort that had not considerably

regressed despite neoadjuvant chemotherapy revealed individ-

ual phenotype compositions, indicating that different tumor cell

phenotypes had survived therapy (Figure 4Q). These included

highly abnormal tumor cells with the ERa�HER2� phenotype

(Ep02, Ep37, and Ep24) and with the ERa+HER2+ phenotype

(Ep40 and Ep41) (Figures 4B and 4Q). Two different regions of

the same tumor had been collected from four other patients. In

three cases, similar phenotype compositions were observed in

both regions. In the fourth tumor, the dominant clone was pre-

sent in both regions but at different frequencies, and one region

had a more proliferative character (5% Ki-67+) than the other

(0.6% Ki-67+) (Figure S4H).

Tumor Ecosystem-Based Classification Reveals
Distinct Groups and Multiple Tumor Singletons
To exemplify a classification that considers all aspects of the tu-

mor ecosystem, we grouped all tumor and non-tumor samples in

our cohort by shared ecosystem patterns. We applied hierarchi-

cal clustering to the frequencies per sample of all epithelial,

T cell, and myeloid clusters identified in this study (Table S5;

STAR Methods). The resulting heatmap revealed three groups

containing many tumors (Tu1–Tu3), four groups containing three

or four tumors (Tu4–Tu7), 36 tumor singletons, and three groups

of non-tumor samples (N1–N3) (Figure 5A). Principal-component

analysis identified the clusters explaining the highest variability

between the different groups. Group Tu1 included 42 tumors

with high levels of specific epithelial clusters (Ep14, Ep18, and

Ep45), T cell clusters (T10, T14, and T17), and macrophage clus-

ters (M05, M10, and M12) (Figures 5A, orange rectangle, and

5B). All of these clusters were observed frequently in non-tumor
samples, except the PD-1intCTLA-4�CD38� T cell phenotype

T14 and the CD38+ MDSC phenotype M12. The nine tumors of

group Tu2 displayed high frequencies of ERadim cells (Ep19;

Figure 5A, red rectangle #1), T-regs (T01), and PD-L1+ TAMs

(M01 and M02) and intermediate frequencies of exhausted PD-

1highCTLA-4+CD38+ T cells (T09, T11, and T13; Figures 5A, red

rectangle #2, and 5B). Group Tu2 tumors had higher individuality

and phenotypic abnormality scores, more proliferating cells, PD-

L1+ TAMs, and PD-1+ T cells than tumors of groups Tu1 and Tu3

(Figures 5C–5G). Group Tu3 included 44 tumors with high levels

of the ERa+ luminal phenotypes Ep09 and Ep14 and the

ERa� luminal phenotypes Ep17 and Ep18 (Figure 5A, green rect-

angles #1). Group Tu3 tumors were enriched for immune cell

phenotypes T02, T06, T07, andM03 (Figures 5A, green rectangle

#2, and 5B), which were also common in non-tumor tissue. Strik-

ingly, groups Tu1–Tu7 were heterogeneous for clinical subtypes

and grades (Figures S5A and S5B).

All mammoplasty samples and 54% of juxta-tumoral samples

were found in group N2, indicating closely related ecosystems

(Figure 5A). Similar to non-tumor tissue, the five tumors found

in group N2 contained mainly group L1 and L2 epithelial pheno-

types, circulating T cells (T16), and tissue-resident macrophages

(M08) (Figure 5A). All five tumors were of the luminal A subtype

and low-grade, suggesting that the tumors were phenotypically

similar to non-tumor tissue or that the tumor content was partic-

ularly low in these samples.

Many of the tumor singletons had high frequencies of PD-1+

T cell and PD-L1+ TAMphenotypes associatedwith immunosup-

pression (Figures 5A, red arrows, 5B, 5F, and 5G). Tumor single-

tons generally did not share tumor cell phenotypes, reflecting

high tumor individuality, and had higher phenotypic abnormality

scores and more proliferating cells than tumors of groups Tu1

and Tu3 (Figures 5C–5E). Luminal B-HER2+, HER2+, and TN

tumors were either part of a small tumor group or singletons

(Figure 5A).

To identify clusters and cluster combinations with the power to

distinguish a given group from all other samples, we employed a

random forest classifier (STAR Methods). The respective groups

were distinguished with an accuracy of 94% (Tu1), 83% (Tu2),

and 89% (Tu3); multiple epithelial, T cell, and macrophage clus-

ters drove the separation (Figures S5C–S5E). Thus, patterns in

both the tumor epithelium and its immunoenvironment contained

tumor-stratifying information.

Breast Tumors and Their Immunoenvironment Are
Interwoven Entities, and Both Are Important for
Classification
Networks of tumor cell and tumor-host cell interactions drive

disease progression and are promising targets for drug interven-

tion (Marusyk et al., 2012; McAllister and Weinberg, 2010). To

systematically elucidate homotypic and heterotypic tumor and

immune cell relationships, we performed pairwise Spearman

correlation analyses of the frequencies of all cell phenotype clus-

ters in all samples (Figures 6A–6C; Table S5; STAR Methods).

Homotypic epithelial cell relationships were found between phe-

notypes from different cluster groups (Figure 6A, black rectan-

gles). Non-tumor luminal phenotypes such as Ep30 and Ep31

(group L1) were correlated, whereas tumor-specific phenotypes,
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Figure 5. Relationships in the Tumor Ecosystem Correlate with Features of Disease Progression

(A) Heatmap of frequencies of epithelial, T cell, andmyeloid PhenoGraph clusters inmammoplasty, juxta-tumoral, and tumor tissues. For tumors, the subtype and

grade are indicated by color. Cosine distance and average linkage were used.

(B) Biplots of first two principal components (PCs) of cluster frequencies. Dots represent samples colored by group (top). The arrow length and direction indicate

the importance of the cluster to the PC (bottom).

(C–G) Boxplots of (C) individuality and (D) phenotypic abnormality scores and frequencies of (E) Ki-67+ cells, (F) PD-L1+ macrophages, and (G) PD-1+ T cells

by group.

Wilcoxon rank-sum test was used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S5.
such as Ep09 and Ep10 (group L4) or Ep19 and Ep15 (group L2),

were often separately enriched, reflecting phenotype dominance

and tumor individuality (Figure 6A). Immunosuppressive pheno-

types T-regs (T01), PD-1highCTLA-4+CD38+ exhausted T cells

(T09, T11, and T13), and PD-L1+ TAMs (M01, M02, and M17)

correlated with tumor cell phenotypes from L4, L5, L6, and

B1 (Figure 6B, rectangles without arrow). The frequencies of

non-tumor phenotypes in groups L1 and L2 and cluster Ep39

were inversely linked to these immunosuppressive phenotypes

(Figure 6B, rectangles marked with arrow) but correlated with

PD-1intCTLA-4�CD38� phenotypes T07 and T18 (Figure 6B,

rectangles marked with asterisk). Relationship analysis among

tumor-associated immune cells revealed that T-regs and PD-

L1+ TAM phenotypes correlated with PD-1highCTLA-4+CD38+

exhausted T cell phenotypes, suggesting immunosuppressive

interactions (Figure 6C, square and biaxial plots). T-regs and

PD-L1+ TAMs did not or only inversely correlated with PD-1int

CTLA-4�CD38� T cell phenotypes (Figures 6C, rectangles
1340 Cell 177, 1330–1345, May 16, 2019
marked with arrow, and S6A). Furthermore, immunosuppressive

patterns correlated with tumor phenotypic abnormality and

individuality scores, hypoxia, and proliferation (Figure 6D). We

also observed a correlation between immunosuppressive

TAMs and T cells and the abundance of ERa+ cells (Figure 6D),

indicating that estrogen signaling is a shaping force in the tumor

ecosystem (Straub, 2007). The epithelial-immune relationships in

tumors differed from those of matched juxta-tumoral tissues

(Figures S6B and S6C; STAR Methods); higher numbers of ho-

motypic epithelial and T cell and heterotypic T cell-TAM relation-

ships were detected in tumors (Figures S6B–S6D).

In our ecosystem-based classification, 24% of tumors were

singletons. Because the relationship analyses indicated consid-

erable structure within the tumor immunoenvironment, we

hypothesized that singleton tumors might be grouped based

on immunoenvironmental similarities to guide patient selection

for immune-targeted therapies. Repeating the hierarchical clus-

tering using only the immune cluster frequencies resulted in three
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Figure 6. Breast Tumors and Their Immunoenvironment Are Interwoven Entities

(A–C) Spearman correlation analyses using the frequencies of (A) epithelial clusters, (B) T cell,myeloid, and epithelial clusters, and (C) T cell andmyeloid clusters in all

samples. Euclidean distance and average linkage were used (top). Also shown are frequencies of selected clusters in juxta-tumoral and tumor samples (bottom).

(legend continued on next page)
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tumor immune groups (TIG1–TIG3) heterogeneous for tumor

subtypes. Juxta-tumoral and mammoplasty tissues grouped

together (Figure 6E). Of the previous singleton tumors, 6%

were placed into TIG1, 32% in TIG2, and 50% into TIG3. Tumors

in TIG1 were enriched for clusters M05, M10, M12, T10, T14, and

T17 (Figure 6E, black rectangle). TIG3 tumors displayed high fre-

quencies of PD-L1+ TAMs (M01 and M02) and PD-1intCTLA-

4�CD38� T cells (T07) (Figure 6E, blue rectangles #1) but low

levels of PD-1highCTLA-4+CD38+ exhausted T cells (T09, T11,

and T13) (Figures 6E, blue rectangles #2, and S6E). In contrast,

tumors in TIG2 exhibited high frequencies of T-regs (T01), PD-

L1+ TAMs, and PD-1highCTLA-4+CD38+ exhausted T cells (Fig-

ure 6E, red rectangles). Therefore, the tumor immune groups

presented distinct relationships among T-regs, PD-1+ T cells,

and PD-L1+ TAM phenotypes (Figure S6E). Juxta-tumoral sam-

ples found in TIG1 and TIG3 displayed high frequencies of

PD-1intCTLA-4�CD38� T cells or PD-L1+ TAMs, unlike other

non-tumor samples (Figure 6E). In four of the five patients with

juxta-tumoral tissue in TIG1 or TIG3, lymph nodes near the tumor

had been invaded, suggesting that these phenotypes resulted

from a tumor-associated immune response.

Tumors of different subtypes, including ER+ and ER� tumors,

grouped in TIG2, raising the question whether immune cells

abundant in TIG2 were localized proximally in the tumor

ecosystem. We assessed the spatial distribution of PD-L1+

TAMs and PD-1+ and PD1+CTLA-4+ T cells in tissue sections

of TIG2 tumors by immunofluorescence imaging (STAR

Methods) and found these cells both in the tumor stroma and

within tumor epithelium in ER+ and ER� disease (Figures 6F

and S6F). The TIG2 tumors had higher phenotypic abnormality

scores than TIG1 and TIG3 tumors (Figure 6G), suggesting that

tumor phenotypic deviation from non-tumor tissue is associ-

ated with changes in the tumor immune landscape. TIG2 tu-

mors also had higher individuality scores than TIG1 and TIG3

tumors and revealed unique tumor cell phenotype composi-

tions (Figures 6H and 6I). All TIG2 tumors contained ERa� cells,

ranging from 98% to 15% of the tumor cell population. Among

ERa� cells, we found EMT phenotypes (Ep01, Ep02, Ep16,

Ep23–25, and Ep32) in 61% of TIG2 tumors and HLA-DR+

phenotypes (Ep01, Ep37, and Ep38) in 39% of TIG2 tumors

(Figure 6I). ERa+ phenotypes were mainly from groups L4

(Ep07–Ep11) and L5 (Ep26–Ep29) and co-expressed PRB,

HER2, and AR with high levels of pro-survival BCL-2 and

Survivin. Thus, in addition to an immunosuppressive environ-

ment, TIG2 tumor ecosystems contained multiple tumor cell

populations with the potential to escape common cancer

therapies.
(D) Spearman correlation analysis of T cell and myeloid cluster frequencies with p

and Ki-67+ cells in tumors.

(E) Heatmap of frequencies of T cell and myeloid clusters in all samples by hiera

subtype, grade, and three main groups, Tu1–Tu3, from Figure 5A are indicated b

(F) Pseudo-bright-field images of immunofluorescence staining of the indicated tu

(right). Scale bar, 25 mm.

(G and H) Boxplots of (G) phenotypic abnormality and (H) individuality scores for

(I) Cluster frequency map for tumors in TIG2.

Tumors and epithelial clusters were sorted by increasing phenotypic abnormality

used for (G) and (H). *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S6.
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DISCUSSION

Communication between heterogeneous tumor cells, infiltrating

T cells, and macrophages shapes the breast cancer ecosystem,

with an effect on disease progression and clinical outcome (Mar-

usyk et al., 2012; Quail and Joyce, 2013). We constructed an

extensive single-cell atlas of human breast cancer ecosystems

by large-scale mass cytometry profiling of 26 million cells from

144 tumor samples, 46 juxta-tumoral samples, and tissue from

four reduction mammoplasties. This atlas reveals the vast pheno-

typic diversity of mammary epithelial and immune cells, pheno-

typic abnormalities of tumor cells, and tumor individuality and

highlights homotypic and heterotypic tumor-immune cell relation-

ships, enabling ecosystem-based patient classification.

Most cases in our study were luminal ER+ breast cancers.

Despite a generally favorable prognosis, about 30% of patients

with ER+ disease develop therapy resistance and metastases

(Reinert and Barrios, 2015). We found that tumor-derived epithe-

lial cells were phenotypically much more diverse than cells from

non-tumor tissue. Tumors of all clinical subtypes displayed strik-

ing individuality in cellular phenotypic composition. These find-

ings might underlie the differential treatment responses and

relapse rates among ER+ breast cancer patients. Although mul-

tiple tumor cell phenotypes co-existed in all tumor ecosystems,

frequently one phenotype was dominant, possibly reflecting the

expansion of the fittest tumor subclone, as suggested by geno-

mics (Nik-Zainal et al., 2012). Phenotype dominance can be

particularly important for disease progression when associated

with resistance, such as the dominant ERa�HER2�Survivinhigh

phenotypes we found in tumors resistant to neoadjuvant chemo-

therapy. Phenotypic abnormality scores were higher for tumor

cells of luminal B, luminal B-HER2+, TN, and grade 3 tumors

than of luminal A and lower grades. Given that HER2+ and TN tu-

mors were underrepresented in our cohort, we expect that

expanded analyses of these subtypes will also reveal tumor

cell heterogeneity and tumor individuality, as apparent in ER+

tumors.

Single-cell RNA sequencing of a few tumors suggested that

tumor-associated T cells and myeloid cells are phenotypically

diverse (Azizi et al., 2018; Chung et al., 2017), which is supported

by our analysis of a large cohort. We found that PD-1+ T cells and

PD-L1+ TAMs were common in all breast cancer subtypes (Buis-

seret et al., 2016). Receptors relevant to T cell exhaustion (PD-1,

CTLA-4, and TIM-3) and activation (HLA-DR and CD38) as well

as CD38, pro-tumor (CD204, CD206, and CD163), and anti-tu-

mor TAM markers (CD169) were heterogeneously expressed,

reminiscent of findings in breast cancer and ccRCC (Azizi
henotypic abnormality and individuality scores and frequencies of ERa+, CA9+,

rchical clustering using cosine distance and average linkage. For tumors, the

y color.

mor samples. Arrowheads indicate PD-1+CTLA-4+ T cells (left) or PD-L1+ TAMs

tumors in tumor immune groups TIG1–TGI3.

score. A cutoff of p % 0.01 was used in (A)–(D). Wilcoxon rank-sum test was



et al., 2018; Chevrier et al., 2017). Recent work indicated that

PD-1+ T cells follow a gradient of dysfunction ranging from low

to high exhaustion (Li et al., 2019; Sade-Feldman et al., 2018;

Wherry and Kurachi, 2015). Our data confirmed a continuum of

T cell exhaustion states linked to increasing PD-1 levels. We

found different combinations of immune checkpoint molecules

associated with high PD-1 expression in both CD4+ and CD8+

T cell populations and identified CD38 as a marker of T cell

exhaustion in breast cancer. Immunosuppressive T cell and

TAM phenotypes correlated with tumor-specific luminal ERa+

and ERa� phenotypes that expressed specific receptor tyrosine

kinases and pro-survival proteins. Because interactions be-

tween tumor cells, T cells, and TAMs are promising targets for

therapy (Quail and Joyce, 2013), follow-up experiments should

elucidate the functional roles of distinct tumor and immune cell

populations in breast cancer ecosystems.

Our data revealed that the frequency of ERa+ cells in ER+

tumors was linked to tumor individuality. In luminal B tumors,

the frequency of ERa+ cells correlated with PD-L1+ TAMs and

exhausted T cell phenotypes, supporting the notion that hor-

mone receptor signaling shapes the tumor ecosystem (Straub,

2007). The success of immune checkpoint therapy in ER+ breast

cancer patients has been limited (Shih et al., 2014). Here we

showed that 18% of luminal B tumor samples exhibited patterns

of strong T cell exhaustion akin to ER� tumors, suggesting that

some ER+ patients could benefit from neoadjuvant or early

adjuvant anti-PD-1 and anti-PD-L1 therapy targeting the primary

tumor (Wein et al., 2018). Our study identified patterns within the

tumor and immune ecosystem that are tumor-stratifying inde-

pendent of subtype and grade. Therefore, assessing the entire

cancer ecosystem should be considered for the design of preci-

sion therapies targeting the tumor and its immunoenvironment

and for patient selection for immunotherapy clinical trials.

Further studies are needed to confirm this suggestion.

Our mass cytometry approach has limitations. First, antibody

choices might bias phenotyping. Antibodies in our tumor panel

were selected based on studies delineating mammary epithelial

cell states, gene expression, and protein signatures enriched in

breast cancer subtypes (Neve et al., 2006; Parker et al., 2009;

Perou et al., 2000; Santagata et al., 2014). The immune anti-

body selections were based on our recent ccRCC immune

atlas (Chevrier et al., 2017). All antibodies were thoroughly vali-

dated. Second, tissue dissociation into single-cell suspensions

potentially alters cell surface molecules. The recapitulation of

known cell phenotypes using our panels indicates small effects

(Chevrier et al., 2017). Third, data-driven clustering is sensitive

to the choice of clustering parameters. PhenoGraph is a repro-

ducible single-cell clustering method (Weber and Robinson,

2016) and yielded epithelial and immune clusters that recapitu-

lated known mammary epithelial, T cell, and TAM phenotypes.

The spatial context and functional roles of these phenotypes

must be addressed in additional experiments (Angelo et al.,

2014; Giesen et al., 2014). Fourth, although our tumor samples

were of about 0.125 cm3 volume, which is much larger than vol-

umes typically analyzed in pathology studies, tumor regions

might differ. Fifth, our ecosystem-based patient grouping is a

function of the measured markers and the patient cohort.

Because our samples were collected prospectively, relation-
ship analysis to clinical outcome or treatment response was

not possible.

New treatment approaches are needed to increase the suc-

cess of breast cancer precision medicine. A first step is to

comprehensively describe the complex cellular and phenotypic

diversity of tumor ecosystems and the relationships among its

components for a large number of patients. Here we provide

such an atlas of breast cancer ecosystems. This atlas will be a

valuable resource for future research to identify clinically relevant

cell phenotypes and relationships in the tumor ecosystem for pa-

tient stratification and precision medicine applications.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Antibodies used for mass cytometry

AKT (C67E7) - purified Cell Signaling Technologies Cat# 4691; RRID:AB_915783

Anti-rabbit IgG (polyclonal) - purified Vector Labs Cat# AI-1000; RRID:AB_2336193

AR (D6F11) - purified Cell Signaling Technologies Cat# 5153; RRID:AB_10692774

BCL-2 (100) - purified Biolegend Cat# 658702; RRID:AB_2562959

c-MET (D1C2) - purified Cell Signaling Technologies Cat# 8198; RRID:AB_10860590

c-MYC (D84C12) - purified Cell Signaling Technologies Cat# 5605; RRID:AB_1903938

CA9 (polyclonal) - purified R&D Systems Cat# AF2188; RRID:AB_416562

CD11b (M1/70) - purified Biolegend Cat# 101202; RRID:AB_312785

CD11c (Bu15) - purified Biolegend Cat# 337221; RRID:AB_2562834

CD123 (6H6) - purified Biolegend Cat# 306002; RRID:AB_314576

CD14 (RMO52) - purified Beckman Coulter Cat# A22331; RRID:AB_10639528

CD15 (HI98) - purified Biolegend Cat# 301902; RRID:AB_314194

CD16 (3G8) - purified Biolegend Cat# 302002; RRID:AB_314202

CD163 (GHI/61) - purified Biolegend Cat# 333602; RRID:AB_1088991

CD169 (7-239) - purified Biolegend Cat# 346002; RRID:AB_2189031

CD192/CCR2 (K036C2) - purified Biolegend Cat# 357202; RRID:AB_2561851

CD197/CCR7 (G043H7) - purified Biolegend Cat# 353202; RRID:AB_10945157

CD20 (H1(FB1)) - purified BD Biosciences Cat# 555677; RRID:AB_396030

CD204 (351615) - purified R&D Systems Cat# MAB2708; RRID:AB_2235696

CD206 (15-2) - purified Biolegend Cat# 321112; RRID:AB_571921

CD24 (ML5) - purified BD Biosciences Cat# 555426; RRID:AB_395820

CD25 (M-A251) - purified Biolegend Cat# 356102; RRID:AB_2561752

CD274/PD-L1 (E1L3N) - purified Cell Signaling Technologies Cat# 13684; RRID:AB_2687655

CD278/ICOS (C398.4A) - purified Biolegend Cat# 313502; RRID:AB_416326

CD279/PD-1 (EH12.2H7) - purified Biolegend Cat# 329902; RRID:AB_940488

CD3 (UCHT1) - purified Biolegend Cat# 300402; RRID:AB_314056

CD31 (HC1/6) - purified EMD Millipore Cat# CBL468-K; RRID:AB_1586934

CD32 (FUN-2) - purified Biolegend Cat# 303202; RRID:AB_314334

CD36 (5-271) - purified Biolegend Cat# 336215; RRID:AB_2563745

CD38 (HIT2) - purified Biolegend Cat# 303502; RRID:AB_314354

CD4 (RPA-T4) - purified Biolegend Cat# 300516; RRID:AB_314084

CD44 (IM7) - purified BD Biosciences Cat# 550538; RRID:AB_393732

CD45 (HI30) - purified Biolegend Cat# 304002; RRID:AB_314390

CD45RA (HI100) - purified Biolegend Cat# 304102; RRID:AB_314406

CD49f (GoH3) - purified Biolegend Cat# 313614; RRID:AB_893371

CD64 (10.1) - purified Biolegend Cat# 305002; RRID:AB_314486

CD68 (KP1) - purified Biolegend Cat# 916104; RRID:AB_2616797

CD68 (Y1/82A) - purified Biolegend Cat# 333802; RRID:AB_1089058

CD7 (M-T701) - purified BD Biosciences Cat# 555359; RRID:AB_395762

CD86 (233(FUN-1)) - purified BD Biosciences Cat# 555655; RRID:AB_396010

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CD8a (RPA-T8) - purified Biolegend Cat# 301002; RRID:AB_314120

CD93 (R139) - purified eBioscience Cat# 14-0939-82; RRID:AB_891508

Cleaved CASPASE-3 (C92-605) - purified BD Biosciences Cat# 559565; RRID:AB_397274

Cleaved PARP-1 (F21-852) - purified BD Biosciences Cat# 552596; RRID:AB_394437

CTLA-4 (L3D10) - purified Biolegend Cat# 349902; RRID:AB_10642827

Cyclin B1 (GNS-11) - purified BD Biosciences Cat# 554179; RRID:AB_395290

E-CADHERIN (24E10) - purified Cell Signaling Technologies Cat# 3195; RRID:AB_10694492

E-CADHERIN (67A4) - purified Biolegend Cat# 324102; RRID:AB_756064

EGFR (EP38Y) - purified Abcam Cat# ab52894; RRID:AB_869579

EpCAM (9C4) - purified Biolegend Cat# 324202; RRID:AB_756076

ERa (EP1) - purified Epitomics Cat# AC-0015; RRID:AB_10704040

EZH2 (D2C9) - purified Cell Signaling Technologies Cat# 5246; RRID:AB_10694683

FAP (polyclonal) - purified R&D Systems Cat# AF3715; RRID:AB_2102369

FOXP3 (236A/E7) - purified ThermoFisher Cat# 14-4777-82; RRID:AB_467556

H3K27me3 (C36B11) - purified Cell Signaling Technologies Cat# 9733; RRID:AB_2616029

HER2 (3B5) - purified BD Biosciences Cat# 554299; RRID:AB_395352

HLA-DR (L243) - purified Biolegend Cat# 307602; RRID:AB_314680

K14 (polyclonal) - purified ThermoFisher Cat# PA5-16722; RRID:AB_10980222

K5 (EP1601Y) - purified Abcam Cat# ab52635; RRID:AB_869890

K7 (RCK105) - purified BD Biosciences Cat# 550507; RRID:AB_2134456

K8/18 (C51) - purified Cell Signaling Technologies Cat# 4546; RRID:AB_2134843

Ki-67 (8D5) - purified Cell Signaling Technologies Cat# 9449; RRID:AB_2715512

P53 (EPR17343) - purified Abcam Cat# ab179477; RRID:AB_2737134

Pan Keratin (AE1) - purified EMD Millipore Cat# MAB1612; RRID:AB_2132794

Pan Keratin (AE3) - purified EMD Millipore Cat# MAB1611; RRID:AB_2134409

PRB (YR85) - purified Abcam Cat# ab32085; RRID:AB_777452

PTEN (138G6) - purified Cell Signaling Technologies Cat# 9559; RRID:AB_390810

SLAMF7 (162.1) - purified Biolegend Cat# 331802; RRID:AB_961330

SMA (1A4) - purified Abcam Cat# ab8207; RRID:AB_306356

SURVIVIN (71G4B7) - purified Cell Signaling Technologies Cat# 2808; RRID:AB_10691694

TIM-3 (F38-2E2) - purified Biolegend Cat# 345035; RRID:AB_2566086

VIMENTIN (EPR3776) - purified Abcam Cat# ab92547; RRID:AB_10562134

Antibodies used for immunofluorescence

CD3e (LN10) Leica Cat# NCL-L-CD3-565; RRID:AB_563541

CD68 (KP1) eBioscience/ThermoFisher Cat# 14-0688-82; RRID:AB_11151139

CTLA-4 (BSB-88) BIOSB Cat# BSB2884; RRID:AB_2762365

PD-1 (D4W2J) Cell Signaling Technologies Cat# 86163S; RRID:AB_2728833

PD-L1 (E1L3N) Cell Signaling Technologies Cat# 13684S; RRID:AB_2687655

Pan Keratin (h-240) Santa Cruz Cat# sc-15367; RRID:AB_2134438

EpCAM (EPR20532-225) Abcam Cat# ab223582; RRID:AB_2762366

Anti-mouse IgG (min X reactivity), HRP-

conjugated (polyclonal)

JacksonImmunoReseach Cat# 715-035-151; RRID:AB_2340771

Anti-rabbit IgG (min X reactivity), HRP-

conjugated (polyclonal)

JacksonImmunoReseach Cat# 711-035-152; RRID:AB_10015282

Anti-goat IgG (min X reactivity), HRP-

conjugated (polyclonal)

JacksonImmunoReseach Cat# 705-035-147; RRID:AB_2313587

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Breast cancer and adjacent non-tumor

tissue samples

University Hospital Basel, University

Hospital Zurich, Patient’s Tumor Bank

of Hope (PATH), St. Johannes Hospital

Dortmund and Institute of Pathology at

Josefshaus, University Hospital Giessen

and Marburg, Marburg site

Reduction mammoplasty samples University Hospital Zurich

Peripheral blood mononuclear cells

(PBMCs)

Zurich Blood Transfusion Service N/A

Chemicals, Peptides, and Recombinant Proteins

40,6 diamidine-2-phenylindole (DAPI) ThermoFischer Cat# D1306

Antibody Stabilizer PBS Candor Bioscience Cat# 131 050

Bis(2,20-bipyridine)-40-methyl-4-

carboxybipyridine-ruthenium-N-

succidimyl ester-bis(hexafluorophosphate)

(96Ru, 98-102Ru, 104Ru)

Sigma Aldrich Cat# 96631

Bismuth trichloride (209Bi) Sigma Aldrich Cat# 450723

Bromoacetamidobenzyl-EDTA (BABE) Dojindo Laboratories Cat# B437-10

Cisplatin Fluidigm Cat# 201064

DMSO Sigma Aldrich Cat# D2438

EDTA StemCell Technologies, Inc. Cat# EDS-100G

EQTM Four Element Calibration Beads Fluidigm Cat# 201078

FcR Blocking Reagent, human Miltenyi Biotech Cat# 130-059-901

Indium (113In, 115In) Fluidigm N/A

Iridium (191Ir, 193Ir) Fluidigm Cat# 201192A

Lanthanide (III) metal isotopes as chloride salts Fluidigm N/A

MACS Tissue Storage Solution Miltenyi Biotech Cat# 130-100-008

Magne Protein A Beads Promega Cat# G8781

Magne Protein G Beads Promega Cat# G7471

Maleimido-mono-amide-DOTA (mDOTA) Macrocyclics Cat# B-272

Palladium (105Pd, 106Pd, 108Pd, 110Pd) Fluidigm N/A

Paraformaldehyde Electron Microscopy Sciences Cat# 15710

ProLong� Diamond Antifade Mountant Thermo Fisher Cat# P36961

Rhodium trichloride (103Rh) Sigma Aldrich Cat# 450286

Saponin Sigma Aldrich Cat# S7900

Trilogy 20x Concentrate CellMarque Cat# 920P-06

Yttrium (89Y) Sigma Aldrich N/A

Critical Commercial Assays

Opal 7-Color IHC Kit PerkinElmer Cat# NEL821001KT

Tumor Dissociation Kit, human Miltenyi Biotech Cat# 130-095-929

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300

Deposited Data

Mass cytometry data This paper Mendeley Data https://doi.org/10.17632/

gb83sywsjc.1

Immunofluorescence images This paper Mendeley Data https://doi.org/10.17632/

gb83sywsjc.1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

MCF-10A American Type Culture Collection (ATCC) Cat# CRL-10317

MDA-MB-134-VI American Type Culture Collection (ATCC) Cat# HTB-23

MDA-MB-231 American Type Culture Collection (ATCC) Cat# HTB-26

MDA-MB-453 American Type Culture Collection (ATCC) Cat# HTB-131

SK-BR-3 American Type Culture Collection (ATCC) Cat# HTB-30

ZR-75-1 American Type Culture Collection (ATCC) Cat# CRL-1500

Fibroblasts Gift from the laboratory of Prof. Silvio

Hemmi at the University of Zurich

Software and Algorithms

CATALYST Chevrier et al., 2018 http://bioconductor.org/packages/

release/bioc/html/CATALYST.html

circlize (R package) version 0.4.4 Gu et al., 2014 https://github.com/jokergoo/circlize

Concatenation tool Cytobank, Inc https://support.cytobank.org/hc/en-us/

articles/206336147-FCS-file-

concatenation-tool

Cytobank Kotecha et al., 2010 https://www.cytobank.org/

Fiji Schindelin et al., 2012 https://imagej.net/Welcome

InForm Cell Analysis PerkinElmer http://www.perkinelmer.com

MATLAB R2018a Neural Network Toolbox MathWorks, Inc., 2018 https://www.mathworks.com/

Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-

normalization/releases

PhenoGraph Levine et al., 2015 https://github.com/jacoblevine/

PhenoGraph

Python Python Software https://www.python.org/

R 3.4.1 R Core Team, 2016 https://www.R-project.org

t-SNE Van Der Maaten and Hinton, 2008 https://github.com/jkrijthe/Rtsne
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Bernd

Bodenmiller (bernd.bodenmiller@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical samples
Primary mammary gland tissue and health-related data were collected after obtaining written informed consent from patients at the

University Hospital Basel (Switzerland), the University Hospital Zurich (Switzerland), and in collaboration with the Patient’s Tumor

Bank of Hope (PATH, Germany) at the breast cancer centers at St. Johannes Hospital Dortmund and Institute of Pathology at Josef-

shaus (Germany) and the University Hospital Giessen and Marburg, Marburg site (Germany). Tissue and health-related data were

collected under approval of the Ethics Committee Northwest/Central Switzerland (#2016-00067), the Ethics Committee Zurich

(#2016-00215), and the faculty of medicine ethics committee at Friedrich-Wilhelms-University Bonn (#255/06). Certified pathologists

with extensive experience in preparation and analysis of breast cancer surgery resectates for diagnostics and research performed

pathological staging for the tumor cohort in this study. Tumor histology, grading, and expression assessment of standard clinical

biomarkers (ER, PR, HER2, Ki-67) were determined at the time of diagnostic pathological work-up according to the current

ASCO/CAP recommendations (Rakha et al., 2014) and are reported in Table S2. Areas of tumor in the surgery resectates were

identified macroscopically prior to sample-taking or microscopically in fast frozen section analyses. Part of the tumor was formalin

cross-linked, embedded in paraffin, and stained with hematoxylin and eosin and if necessary with standard immunohistochemistry

(IHC) procedures as part of standard diagnostics. For mass cytometry analysis, a tissue sample of about 5x5x5mm (about 0.125 cm3

volume) was taken prior to paraffin embedding, thus the tumor area processed for mass cytometry analysis was spatially separate

from the tumor area stained for prognostic and predictive biomarkers. However, the pathologists selected a research sample for this
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study that wasmacroscopically representative of the whole tumor based onmany years of experience. From the clinical perspective,

the presence of DCIS is of less importance for diagnosis than detection of tumor invasiveness, and invasive tumor tissues were cho-

sen as tumor-representative samples for this study. It is likely that DCIS surrounding the tumor was also sampled and possible that

some DCIS was present in non-cancerous tissue juxtaposed to the tumor. This might underlie the grouping of some juxta-tumoral

tissue samples with their matched tumor in Figure 5A. Since the specific tissue areas used in this study could not be examined

by frozen section or hematoxylin and eosin because they were dissociated during the mass cytometry workflow, we unfortunately

do not know whether and how much DCIS was present in each of the samples. We have an indication based on the pathological

histology analysis; see notes in Table S2. It is highly unlikely, however, that extensive areas of DCIS in the non-cancerous juxta-tu-

moral tissue were overlooked preoperatively, since the patients underwent extensive imaging of the breast before surgery, and no

abnormalities were noted. The small differences between the percentages of cells positive for ER, PR, HER2, and Ki-67 as assessed

by pathological IHC compared to the mass cytometry analysis (Figures S1I and S1J) are likely caused by usage of differences in

antibody clones, in assay sensitivities, and in sampled tumor volumes (mass cytometry, large volume about 0.125 cm3; IHC,

small volume). Tumor subtype definitions in this study were as follows: Luminal A (ER+ and/or PR+, HER2-, Ki-67+ < 20%), Luminal

B (ER+ and/or PR+, HER2-, Ki-67+ R 20%), Luminal B-HER2+ (ER+ and/or PR+, HER2+), HER2+ (ER-PR-HER2+), and triple negative

(TN; ER-PR-HER2-). Some tumor ecosystems grouped together with juxta-tumoral and mammoplasty samples in Figure 5A. These

were of Luminal A subtype and low grade, possibly reflecting that the tumor was phenotypically similar to non-cancerous tissue or

that the tumor content was particularly low in these samples. Ten patients had received neoadjuvant (NA) chemotherapy prior to sam-

ple collection for this study including one of 54 Luminal A, five of 71 Luminal B, two of six Luminal B-HER2+, and two of six TN patients

(Table S2). We did not see any significant difference between tumors fromNA-treated patients and tumors from untreated patients in

terms of cell type frequency, epithelial and immune phenotype frequencies, phenotypic abnormality, or individuality. For four pa-

tients, two different areas of the same tumor had been sampled.

Cell lines
Human mammary epithelial cell lines were obtained from the American Type Culture Collection (ATCC) and cultured according to

ATCC recommendations. Cell lines included MCF-10A, MDA-MB-134-VI, MDA-MB-231, MDA-MB-453, SK-BR-3, and ZR-75-1.

Fibroblasts were a gift from the laboratory of Prof. Silvio Hemmi at the University of Zurich and were cultured in DMEM medium

(Sigma Aldrich) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, and 10% fetal bovine serum (FBS). Peripheral blood

mononuclear cells (PBMCs) from healthy donors were obtained from the Zurich Blood Transfusion Service and were isolated by

histopaque (Sigma Aldrich) density gradient centrifugation.

METHOD DETAILS

Tissue preparation
Following surgical resection, fresh tissue samples were immediately transferred to pre-cooled MACS Tissue Storage Solution

(Miltenyi Biotec) andwere shipped at 4�C. Tissue processing was completed within 24 hours of collection. For dissociation, the tissue

was minced using surgical scalpels and further disintegrated using the Tumor Dissociation Kit, human (Miltenyi Biotech) and the

gentleMACSDissociator (Miltenyi Biotech) according tomanufacturer’s instructions. The resulting single-cell suspensionwas filtered

sequentially through sterile 70-mm and 40-mm cell strainers. The cell suspension was stained for viability with 25 mM cisplatin (Enzo

Life Sciences) in a 1-min pulse before quenching with 10% FBS. Cells were then fixed with 1.6% paraformaldehyde (PFA, Electron

Microscopy Sciences) for 10 min at room temperature and stored at �80�C.

Mass-tag cellular barcoding
To minimize inter-sample staining variation, we applied mass-tag barcoding to fixed cells (Zunder et al., 2015). A 126-well barcoding

scheme composed of unique combinations of four out of nine barcoding metals was used for this study; metals included palladium

(105Pd, 106Pd, 108Pd, 110Pd, Fluidigm) conjugated to bromoacetamidobenzyl-EDTA (Dojindo) as well as indium (113In and 115In,

Fluidigm), yttrium, rhodium, and bismuth (89Y, 103Rh, 209Bi, Sigma Aldrich) conjugated to maleimido-mono-amide-DOTA (Macrocy-

clics). The concentrations were adjusted to 20 nM (209Bi), 100 nM (105-110Pd, 115In, 89Y), 200 nM (113In), or 2 mM (103Rh). Cells were

randomly distributed across two 96-well plates, and about 0.3 million cells per well were barcoded using a transient partial

permeabilization protocol. Cells were washed oncewith 0.03% saponin in PBS (Sigma Aldrich) prior to incubation in 200 ml barcoding

reagent for 30 min at room temperature. Cells were then washed four times with cell staining medium (CSM, PBS with 0.3% saponin,

0,5% bovine serum albumin (Sigma Aldrich) supplemented with 2 mM EDTA (StemCell Technologies, Inc.) and pooled for antibody

staining. Two 126-well barcoding plates, with a set of standard samples on each plate, were used for antibody staining with the tumor

cell-centric and the immune cell-centric panels (Tables S3 and S4, respectively).

Antibodies and antibody labeling
All antibodies and corresponding clone, provider, and metal tag are listed in Tables S3 and S4. Target specificity of the antibodies

was confirmed in our laboratory. Antibodies were obtained in carrier/protein-free buffer or were purified using theMagne Protein A or

G Beads (Promega) according to manufacturer’s instructions. Metal-labeled antibodies were prepared using the Maxpar X8
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Multimetal Labeling Kit (Fluidigm) according to manufacturer’s instructions. After conjugation, the protein concentration was deter-

mined using a Nanodrop (Thermo Scientific), and the metal-labeled antibodies were diluted in Antibody Stabilizer PBS (Candor

Bioscience) to a concentration of 200 or 300 mg/ml for long-term storage at 4�C. Optimal concentrations for antibodies were deter-

mined by titration, and antibodies were managed using the cloud-based platform AirLab as previously described (Catena

et al., 2016).

Antibody staining and cell volume quantification
Antibody staining was performed on pooled samples after mass-tag cellular barcoding. The pooled samples were incubated with

FcR Blocking Reagent, human (Miltenyi Biotech) for 10 min at 4�C and then washed once with CSM. For staining with the immune

cell-centric antibody panel (Table S3), cells were incubated for 45 min at 4�C followed by three washes with CSM. For staining

with the tumor cell-centric antibody panel (Table S4), purified rabbit anti-human ERa (Epitomics) was applied at 3 mg/ml for

45 min at 4�C, and then samples were washed twice with CSM. Goat anti-rabbit IgG (Vector Labs) conjugated to 165Ho was then

applied at 0.25 mg/ml for 45min at 4�C followed by twowasheswith CSM. The sample was then stainedwith the remaining antibodies

of the panel (Table S4) for 45 min at 4�C followed by three washes with CSM. For mass-based cell detection, cells were stained with

500 mM nucleic acid intercalator iridium (191Ir and 193Ir, Fluidigm) in PBS with 1.6% PFA (Electron Microscopy Sciences) for 1 h at

room temperature or overnight at 4�C. Cells were washed once with CSM and once with 0.03% saponin in PBS. For cell volume

quantification, cells were stained with 12.5 mg/ml Bis(2,20-bipyridine)-40-methyl-4-carboxybipyridine-ruthenium-N-succidimyl

ester-bis(hexafluorophosphate) (96Ru, 98-102Ru, 104Ru, Sigma Aldrich) in 0.1 M sodium hydrogen carbonate (Sigma Aldrich) for

10 min at room temperature as previously described (Rapsomaniki et al., 2018). Cells were then washed twice with CSM, twice

with 0.03% saponin in PBS, and twice with doubly distilled water (ddH2O). For mass cytometry acquisition, cells were diluted to

0.5 million cells/ml in ddH2O containing 10% EQTM Four Element Calibration Beads (Fluidigm) and filtered through a 40-mm filter-

cap FACS tube. Samples were placed on ice and introduced into the Helios upgraded CyTOF2 (Fluidigm) using the Super Sampler

(Victorian Airship) introduction system; data were collected as .fcs files.

Gadolinium contamination test
Some patients were scanned by magnetic resonance imaging for medical diagnosis and received a gadolinium-based contrast

agent. A small aliquot of each sample was tested for the presence of gadolinium after fixation using mass cytometry. Gadolinium-

positive cells were removed from data analysis by gating (Figure S1C).

Immunofluorescence imaging
We selected formalin-fixed paraffin embedded (FFPE) sections of breast cancer resectates for which mass cytometry analysis has

been performed on a different region of the same tumor. FFPE sections were stained using the Opal 7-Color IHC Kit (PerkinElmer)

according to manufacturer’s protocol. Briefly, slides were deparaffinized, rehydrated, and antigen retrieved using Trilogy buffer

(CellMarque) by autoclaving for 15 min. Slides were treated with 3% H2O2 for 15 min, washed, and blocked using 4% BSA/PBS/

0.1% Triton X-100 (all from Sigma). Primary antibodies and consecutive HRP-conjugated secondary antibodies (Table S6) were

diluted in 1% BSA/PBS/0.1% Triton X-100. Primary antibodies were incubated over night at 4�C and secondary antibodies were

incubated for 1 h at room temperature. Slides were then incubated in Amplification diluent containing a tyramide-conjugated fluo-

rophore for 10 min. Prior to the next primary antibody incubation, the slides were heated for 10 min in 10 mM citric acid, pH 6.0

at 95�C to strip the antibodies of the previous staining round. The protocol was repeated from the blocking step until a total of six

markers were co-stained. After the last staining round, the slides were washed, incubated with 0.5 mg/ml 40,6 diamidine-2-phenyl-

indole (DAPI; ThermoFischer) for 5min, washed again, andmounted using Prolong Diamondmedium (ThermoFischer). The following

set of markers was analyzed for each sample (indicated in the order of staining): CTLA-4, PD-L1, PD-1, CD68, CD3e, PanK+EpCAM.

Slides were scanned using themultispectral imaging system Vectra 3.0 (PerkinElmer), andmultispectral images were analyzed using

the InForm Cell Analysis software (PerkinElmer). Images were processed in Fiji and contrast was enhanced to improve visibility.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass cytometry data preprocessing
Mass cytometry data were concatenated using the .fcs File Concatenation Tool (Cytobank, Inc.), normalized using the MATLAB

version of the Normalizer tool (Finck et al., 2013), and debarcoded using the CATALYST R/Bioconductor package (Chevrier et al.,

2018). Debarcoded files were compensated for channel crosstalk using single-stained polystyrene beads as previously described

(Chevrier et al., 2018). The compensated .fcs files were uploaded to the Cytobank server (Cytobank, Inc.) for manual gating on pop-

ulations of interest. For Figure 1, manual gates were set to exclude nonspecific background signal and cisplatin-positive dead cells

(Figure S1C). The resulting population was exported as .fcs files and loaded into R (R Core Team, 2016) for downstream analysis.

Sample duplicates that were used to ensure high data quality between two barcoding plates (Figure S1D) were concatenated for

downstream analysis.
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Dimensionality reduction and clustering
For dimensionality reduction visualizations using the t-SNE algorithm (Van Der Maaten and Hinton, 2008), signal intensities

(dual counts) per channel were arcsinh-transformed with a cofactor of 5 (counts_transf = asinh(x/5)). The R t-SNE package for

Barnes-Hut implementation was used. For marker expression level visualization on t-SNE plots, the expression was normalized

between 0 and 1 to the 99th percentile and the top percentile was set to 1.

Exploration of batch effects
To assess the presence of batch effects in the data originating from possible confounding factors related to, for example,

sample origin or sample preparation, an approach based on principal component analysis was followed, similar to the one

proposed previously for high-throughput data analysis (Leek et al., 2010). Initially, 1000 cells from each sample were randomly

selected and then the principal components (PC) of the multidimensional protein abundance measurements of these cells were

computed. To assess how much of the variability in the PCs was due to the actual protein measurements, the values of Spearman’s

correlation coefficients between the two first PCs (in total 61% of variance explained) and all protein measurements were computed

(Figure S1F); values were highly correlated. To address the presence of possible batch effects, the same process was repeated using

all possible confounders (namely the operator, barcoding plate, hospital of origin, date of sample receipt, and transport time). This

time the computed correlation values were negligible (Figure S1G), indicating absence of batch effects related to sample origin or

processing.

Epithelial cell selection and immune cell type selection
To generate an in-depth phenotypic characterization of epithelial and immune cells, we applied PhenoGraph (Levine et al., 2015), a

state-of-the-art graph based clustering algorithm able to partition high-dimensional data into groups. Since the original data size was

prohibitive in terms of computational resources, a combined approach coupling artificial neural networks (ANNs) and PhenoGraph

was employed. We first created a representative cell pre-selection using a custom down sampling approach to address the discrep-

ancies in total numbers of cells per sample: for sampleswith less than 1000 cells, all cells were considered; for samples between 1000

and 2000 cells, half of the cells were randomly sampled; for samples between 2000 and 5000 cells, 30% of the cells were randomly

selected; and for all other samples, 20% of the cells were randomly selected. This down sampling scheme resulted in a dataset of

approximately 700,000 cells. This process balanced the discrepancies in terms of number of cells per sample, while at the same time

adequately representing all samples. All cells were clustered using PhenoGraph, and the clusters were labeled as epithelial based on

expression of one or more of the following epithelial markers: EpCAM, E-Cadherin, pan cytokeratin, K5, K7, K8, K18, and/or K14

(Figure S1M). All other cells were labeled as non-epithelial. This labeled dataset was used as input to train an ANNclassifier consisting

of one hidden layer of 20 neurons (with a hyperbolic tangent sigmoid transfer function) and one output layer of one neuron (with a

softmax transfer function). The dataset was randomly split into training (50%), validation (25%), and test (25%) sets. The ANN

was trained using the scaled conjugate gradient method (Møller, 1993), and its performance was evaluated using a standard

cross-entropy function. Training was terminated upon convergence after 254 epochs, when the ANN’s performance failed to improve

for 10 consecutive validation runs. The ANN’s performance on the test set indicated very high concordance with the expert labeling

with an overall accuracy of 99.5% (true positive rate of 99.1%, true negative rate of 99.6%). The ANNwas then applied to the remain-

ing data. It successfully classified a total of approximately 4 million cells as epithelial. The same down sampling scheme as above

was employed to limit their number to a computationally manageable subset of approximately 850,000 cells, which were subse-

quently used for all downstream analysis. The same process was used for all immune cells (CD45+ cells, Figure S2A), but this

time, the cells were assigned to belong to eight different cluster types (T cells, natural killer cells, granulocytes, B cells, plasma cells,

plamacytoid dendritic cells, myeloid cells, and basophils) based on expression of immune cell type-specific markers (Figure S2D).

The same ANN settings were used, apart from the output layer, which consisted of eight nodes. The ANN’s performance on the

test set yielded an accuracy of 99.5%. All of the above computations were implemented using MATLAB’s R2018a Neural Network

Toolbox (MathWorks). For the heatmaps shown in Figures 2D, 2L, and 3C, clustering was performed on the abundance levels of the

shown markers, using Spearman correlation as a distance function and average linkage. The FAP and SMA gates used to identify

different fibroblast subsets in Figure S1P were estimated based on Costa et al. (2018).

Clustering consensus
To address the inherent stochasticity of the used clustering algorithm, we performed an extensive comparison between different

PhenoGraph runs with different random initializations. We tested values of parameter k (number of nearest neighbors) of 30 (default

value, as recommended by the authors of PhenoGraph) and 100. For each of these values of k, we executed PhenoGraph 100 times

and computed the agreement between different assignments using the adjusted Rand index (ARI) (Hubert and Arabie, 1985), a stan-

dardmetric of similarity between individual clustering runs. The ARI was computed between any two clustering assignments to quan-

tify the probability that a pair of cells were assigned to the same cluster (independently of cluster label) in both runs, while additionally

adjusting for chance. An ARI of 1 indicates identical cluster outcomes, whereas values close to zero indicate random assignments.

For the epithelial cells, the runswith k= 30 had ameanARI of 0.63, and the runswith k = 100 had amean ARI of 0.81. Examination of all

pairwise agreements (Figure S3A) showed a few outliers. Without these outliers, themean ARI was approximately 0.85. For the rest of
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the analysis, we selected the clustering with the highest mean ARI as the most representative. The ARI computations were imple-

mented in Python using the module metrics in the package scikit-learn.

Quantification of phenotypic abnormality
To quantify how patterns found in tumor cells deviate from ‘‘normal’’ mammary cells, we used a novelty detection method based on

autoencoders. Autoencoders are a class of ANNs that attempt to reconstruct their input by initially transforming the data to a lower-

dimensional representation via an encoding function, and then reconstruct the input from the compressed representation using a

decoding function. Due to the compression, the reconstruction is by definition lossy. Thus, the model learns to capture the most

prominent features and interdependencies that minimize information loss. We created an undercomplete, dense autoencoder

network and used as input a data matrix X; where the rows corresponded to the pool of cells from juxta-tumoral tissue samples,

and the columns to the 27 protein channels considered. The network consisted of five layers of the following sizes: 27, 10, 2, 10,

and 27. The dataset was randomly split into training and validation (70%) and test (30%) sets, and the data was scaled to [0,1].

We used the Rectified Linear Unit (ReLU) as a transfer function between all layers, apart from the output layer where a softmax

function was used to compress the output to the same dynamic range as the input. To evaluate the performance of the reconstruc-

tion, we used a mean squared error (MSE) as a loss function:

MSE =
1

m

Xm
i = 1

Xi � dXi 2 =
1

m

Xm
i = 1

Xi � gðfðXiÞÞ2
wheremdenotes the trainingsamples,g : =gw ;w the encoding fun

1 2

ctions, and f : = fw3 ;w4
thedecoding functions.WeemployedAdam

(Kingma and Ba, 2015) as an optimizer with a batch size of 256; training was terminated upon convergence with an early stopping cri-

terion of ten epochs with no significant decrease in the validation loss function (the maximum number of epochs was set to 500). The

trained network was able to create a reconstruction with high agreement with the real input with a median test set MSE of 0.007. The

model was implemented in Python using the neural network API Keras with a TensorFlow backend. Once the network was trained, we

fed it with the equivalent tumor single-cell data and quantified MSE for each tumor cell. Since the autoencoder was trained to recon-

struct patterns found in juxta-tumoral tissue-derived cells, high values ofMSE indicate strongdeviations fromnormal. ThemedianMSE

for each tumor served as a measure of tumor phenotypic abnormality from the average juxta-tumoral tissue. We detected known

normal luminal andbasal cell phenotypes inournon-cancerousmammaryglandcontrols (Figure 3D) andobservedastrongphenotypic

overlap between juxta-tumoral tissue and mammoplasty tissue (Figures 3B, 3C, and 4N), therefore we are confident that the non-

cancerous juxta-tumoral tissue can be used as a ‘‘close-to-normal’’ control for comparisonswith tumor.We did not use the fourmam-

moplasty samples for training the autoencoder to determine tumor cell phenotypic abnormality, because not enough mammoplasty

tissue-derived cells were measured and the mammoplasty samples contained very few basal cells.

Tumor individuality
To assess tumor individuality, we devised a graph-based approach based on k-nearest neighbor (k-NN) classification. We started

with i = 1;.; n single cells that originated from c= 1;.;C samples. Each cell was described by a multidimensional data vector xi
that contains the proteinmeasurements, and its sample ID Yi. Initially, a k-NNgraphwas constructed, where each cell was connected

to the k = 100 nearest neighbors as computed using the Euclidean distance in the high-dimensional space. The probability that a cell

originated from sample c was equal to the sample’s frequency in the dataset:

Wc =
nY = c

n
:

Then, for each cell i, we retrieved its k = 100 nearest neighbors ðbi
Þ and their sample IDs ðYbi
Þ and computed the posterior probability

that cell i originated from sample c by assessing the neighbors’ votes, weighted by the priors:

pðc j xiÞ=
P

i˛biWcYbi = cP
i˛biWc
The cell was assigned to the sample with the highest posterior (i.e
., argmax
c

pðc j xiÞ), which was the sample ‘‘voted’’ by the majority of

its neighbors. Last, for all cells from the same sample, we computed the mean of all posterior probabilities:P
xi jYi = cpðc j xiÞ

nYi = c

:

This step simply averaged the results so that we saw sample-to
-sample probabilities and not cell-to-sample probabilities, and it

resulted in a c3c matrix, expressing similarities between samples based on patterns of neighboring cells in the graph. Values

on the diagonal of this matrix expressed how ‘‘self-contained’’ each sample was in the graph and are referred to as the tumor

individuality score. Values close to 1 indicate that the sample is localized within an isolated region of the graph, and smaller values

indicate that the sample is intermixed with cells from other samples.
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Chord diagram
Pairwise correlations between clusters were visualized as chord diagrams in R using the circlize package (Gu et al., 2014). Links are

shown for all cluster pairs with p < 0.01 using Spearman correlation.

Tumor grouping
To group the samples based on shared patterns in their ecosystem, we clustered the frequencies per sample of all epithelial and

immune clusters. The population frequencies quantify to which extent each sample belongs to the different clusters and, as such,

can be seen as a probability distribution across all populations that sum to 1. For this reason, we employed the Jensen-Shannon

divergence (JSD) as an appropriate method of measuring the similarity between probability distributions. Here P;Q denotes the

probability density of samples p;q over all populations. The JSD between samples p;q is defined as follows:

JSDðP kQÞ= 1

2
DKLðP kMÞ+ 1

2
DKLðQ kMÞ
where M= 1 ðP+QÞ and DKL is the Kullback-Leibler (KL) divergen
2 ce:

DKLðP kQÞ=
X
i

Pi log
Pi

Qi
In contrast to the KL divergence, the JSD is symmetric and boun
ded between 0 and 1. To cluster the samples and populations, we

used a hierarchical biclustering algorithm. Similarities between samples based on their cluster assignments were computed using the

JSD, similarities between clusters were computed using a cosine distancemetric, and an average linkagewas used for both rows and

columns. To derive sample groups from the resulting dendrogram, we used a distance cutoff of 0.16. To identify the populations

responsible for the grouping, we used a feature selection/classification approach based on random forests (Breiman, 2001). For

each group considered, we created a dataset that included all samples belonging to the group (class 1) and an equal number of

samples from all other groups (class 0). We fitted a random forest classifier with 1000 trees; in all cases, we were able to separate

the classes with reasonable accuracy. To identify how relevant each population was to the separation, we derived the feature

importance of all populations from the ensemble of trees. All methods were implemented in Python using the packages seaborn

(clustermap), scipy (hierarchy), and scikit-learn (decomposition, RandomForestClassifier).

DATA AND SOFTWARE AVAILABILITY

The mass cytometry data (.fcs files) and immunofluorescence images generated in this study are deposited in Mendeley Data

(https://doi.org/10.17632/gb83sywsjc.1).
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Figure S1. Cell Type Identification for a Single-Cell Atlas of Breast Cancer, Related to Figure 1

(A) Antibody staining strategy. (B) Viable cell frequencies of mammoplasty (M), juxta-tumoral (JT), and tumor (T) samples. (C) Gating strategy used to isolate live,

non-apoptotic cells without gadolinium background staining. (D) Correlation of the intensity of measured markers in cell lines between barcoding plates.

(E) Correlation of live cell and immune cell frequency of the same tumor samples between staining panels. (F and G) Correlations between principal

components and F) marker abundances and G) possible experimental confounders. (H) Histograms showing the expression of ERa, PRB, and HER2 in breast

cancer cell lines, single tumors, and cells from all tumors combined. (I and J) Comparison of the percentages of receptor-positive cells in tumors to pathological

receptor status. (K) Gate for Ki-67+ cells. (L) Spearman correlation of the percentages of Ki-67+ cells determined by immunohistochemistry versus mass

cytometry. (M) Heatmap showing normalized marker expression for the cell phenotype PhenoGraph clusters. (N) t-SNE plot colored by cluster. (O) Gating

strategy to identify fibroblast subsets based on FAP and SMA. (P) Fibroblast subset frequencies in mammoplasty (M), juxta-tumoral (JT), and tumor (T) tissues

(left) and by tumor subtype (right).
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Figure S2. Immune Cell Phenotyping in Breast Tumor and Non-Tumor Tissue, Related to Figure 2

(A) Gate for immune cells. (B) t-SNE plots of normalized expression of markers used to identify the main immune cell types among 40,000 representative immune

cells of all samples. (C) t-SNE plot of immune cells colored by cluster. (D) Heatmap of normalized marker expression for 27 clusters. NK cells, natural killer cells;

pDCs, plasmacytoid dendritic cells. (E) Diffusion maps showing the CD4+ and CD8+ T cell clusters as a phenotypic continuum. T-regs were omitted. (F-I) PD-1+

T cell frequencies in F) juxta-tumoral and tumor samples, G) ER+ and ER- tumors, H) juxta-tumoral tissue and tumors by subtype, and I) tumors by grade. (J) T cell

cluster frequencies in tumors by grade. (K-N) PD-L1+ TAM frequencies in K) juxta-tumoral and tumor samples, L) ER+ and ER- tumors, M) juxta-tumoral

tissue and tumors by subtype, and N) tumors by grade. (O) Myeloid cluster frequencies in tumors by grade. Wilcoxon rank-sum test was used for statistical

analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure S3. In-Depth Analysis of Breast Tumor Cell Phenotypes, Related to Figure 3

(A) Adjusted Rand index (ARI) values for 100 independent PhenoGraph runs using k = 100. Each boxplot corresponds to the distribution of the ARI between each

run and all other runs. (B and C) t-SNE plots of epithelial cells colored by B) cluster and C) cluster group as defined by hierarchical clustering. (D) Biaxial plots

showing luminal progenitor (LP, blue), luminal differentiated (L, green), and basal cells (B, red). (E) Expression of K8, K18, K7, K5, K14, ERa, and Ki-67 in clusters

Ep31 (top) and Ep39 (bottom) of juxta-tumoral tissue-derived cells. (F) Histograms showing the expression of epithelial markers in tumor-derived cells by cluster

group. (G) Expression of Ki-67 and EpCAM in tumor-derived cells by cluster group. (H) Percentages of K14+, K5+, K7+, K8+, and K18+ cells in juxta-tumoral and

tumor samples by subtype. (I) Percentage of cells with EMT phenotype in tumors by subtype. (J and K) Percentage of Ki-67+ cells in juxta-tumoral and tumor

samples by J) subtype and K) grade. Wilcoxon rank-sum test was used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.



Figure S4. Phenotypic Abnormality and Individuality of Tumor and Non-tumor Tissue Samples, Related to Figure 4

(A) Computation of phenotypic abnormality scores using an autoencoder trained with juxta-tumoral tissue-derived ‘‘normal-like’’ cells. Tumor phenotypic

abnormality represents the median Mean Squared Error of all cells of a tumor. (B) Barplot of the phenotypic abnormality scores of mammoplasty and juxta-

tumoral tissues and stacked histogram of the frequencies of cells per epithelial cluster group per sample. (C) Phenotypic abnormality scores for mammoplasty

(M), juxta-tumoral (JT), and tumor (T) samples. (D) Computation of tumor individuality scores using a k-nearest neighbor graph, where cells of all tumors are

grouped based on their phenotype. (E) Tumor individuality scores by grade and subtype. (F) Tumor individuality scores by lymph node status and distant

metastasis. (G) Diagram of epithelial clusters that are dominant (D, > 50% of all cells of a sample) or tumor specific (T). (H) Cluster frequency map showing tumors

for which two areas of the same tumor were sampled. Wilcoxon rank-sum test was used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure S5. The Importance of Tumor and Immune Cell Phenotypes for Tumor Grouping, Related to Figure 5
(A and B) Biaxial plot of the first two principal components of the analysis shown in Figure 5B. A) Dots represent tumor samples colored by group. B) Dots

represent tumor samples colored by subtype (top) and grade (bottom). (C-E) The importance of epithelial, T cell, and myeloid clusters for predicting whether

tumors belong to group C) Tu1, D) Tu2, or E) Tu3 using random forest classification.
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Figure S6. In-Depth Analysis of Relationships in the Tumor Ecosystem, Related to Figure 6

(A) Frequencies of selected T cell clusters for juxta-tumoral and tumor samples. (B) Chord diagrams of the relationships between T cell, myeloid, and epithelial

clusters in tumors and matched juxta-tumoral tissue for 41 patients (p % 0.001). (C) Frequencies of selected clusters that differed in correlation between tumor

and juxta-tumoral tissue. (D) Absolute number of correlations between clusters for juxta-tumoral (JT) and tumor (T) tissue and table of the fold change between JT

and T tissue. (E) Frequency of T cell and TAM phenotypes associated with immunosuppression for TIG1-3. (F) Pseudo-brightfield images of EpCAM and pan

cytokeratin on tumor tissue. Rectangles highlight the areas shown at higher magnification in Figure 6E. Scale bar, 50 mm. Spearman correlation and Wilcoxon

rank-sum test were used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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