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Abstract

Electricity infrastructure confronts societies with immense costs as it must ensure the generation

of power and its transmission to locations with consumption requirements. We minimize these

costs by formulating an electricity generation and transmission problem that facilitates the design

of electricity infrastructure on a macro level. Our problem specifies the capacity, type, and location

of power plants and, at the same time, determines the appropriate arrangement of high-voltage

transmission lines in order to fulfill the demand of individual cities. We specifically incorporate

the non-linear nature of cost functions for power generation that are common in practice. This

results in a mixed integer non-linear problem, for which the branch-and-reduce solver from GAMS

exceeds runtime constraints, even for small instances with 25 locations. As a remedy, we develop

heuristics based on the reduced variable neighborhood search and the greedy randomized adaptive

search procedure (GRASP). Their performance enables us to address large-scale problems that arise

in real-world applications. We demonstrate this with an actual, nationwide example that spans all

4,537 municipalities in Germany.

Keywords: Energy, Electricity generation and transmission planning, Neighborhood heuristics,

Metaheuristics, Variable neighborhood search, Real-world application
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1. Introduction

Electricity infrastructure burdens societies with immense costs. According to expert estimates,

the present value of the U. S. electricity system from 2010 to 2040 stands at about $6.2 trillion (RMI,
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2011). In Germany, the investment costs of the electricity network in 2015 amounted to AC2.4 billion

and a total of AC24.2 billion was paid to providers of renewable energy (Bundesnetzagentur, 2016).

Furthermore, multiple studies indicate an increase in generation plant cost in Europe by a factor of

2.6 between 2000 and 2013 and find that 3 out of 4 power plants overrun their originally projected

construction costs (Sovacool et al., 2014). Hence, it is inevitable for individuals, businesses, organi-

zations, and societies as whole to seek cost reductions by optimizing the infrastructure of electricity

systems (Capros et al., 1988; Samouilidis et al., 1984).

Strategic planning of electricity infrastructure presents a highly complex task, as one must

simultaneously decide upon both the location of power plants and the design of the transmission

network in order to come up with a cost-efficient solution (Hobbs, 1995). The challenges include,

for instance, the fact that the costs of power generation are variable and location-specific. In

addition, generation and transmission are highly intertwined, yet subject to competition (Vasin

& Dolmatova, 2016) and long-term planning (Wang & Deng, 2018). Moreover, strategic decisions

must incorporate the different costs for initial investments and operation, as well as the physical

constraints of electricity (Antunes & Gomes, 2009). In realistic settings, this translates into large,

complex decision problems involving millions of constraints.

We facilitate the design of large-scale electricity infrastructure by proposing an optimization

problem that minimizes the combined costs of power generation and transmission. More specif-

ically, we are given a set of locations, i. e. cities or municipalities, each coming with a certain

demand for electricity. The model then determines the optimal capacity, type, and location of

power plants, along with corresponding transmission lines, in order to fulfill the electricity demand

at each location. In the following, we refer to this as the electricity generation and transmission

problem, or EGTP for short. This problem supports practitioners and policy-makers in the complex

undertaking of designing cost-efficient electricity systems.

The EGTP adapts to the specific requirements and features of electricity infrastructure. The

model thus allows for different types of electricity sources, such as solar or nuclear power plants.

Furthermore, it incorporates a non-linear cost function for power generation infrastructure in or-

der to account for the actual costs and physical constraints in practice (Black and Veatch, 2011;

Christensen & Greene, 1976; Walla & Schneeberger, 2008). That is, as size increases, the unit cost

of electricity first decreases due to economies of scale. However, this reduction is limited, as every

generation type features a unique, optimal size at which unit costs are lowest. If plants are larger

than this optimal size, unit costs increase again due to physical constraints.
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For the above reasons, the EGTP differs in several aspects from the simple plant location problem

(SPLP; see Krarup & Pruzan, 1983), as well as plant location problems with multiple facilities

(Ghiani et al., 2002). As mentioned earlier, the EGTP distinguishes between different energy

carriers in use for power generation, while the SPLP optimizes over a single type of production.

Second, we specifically incorporate varying unit cost for different plant sizes. This results in a

non-linear objective function in contrast to the usually linear specifications in the SPLP. Third,

transmission costs scale with the net-energy transferred and include an additional fixed component.

Furthermore, we are interested in high-voltage transmission infrastructure (i. e. connecting cities)

which introduces a set of physical constraint that differs from the usual mesh networks of low-voltage

distribution grids (i. e. connecting household within a single city or district). Considerable research,

especially in electrical engineering, has been spent on designing distribution infrastructure such as

bus systems, whereas the high-voltage transmission setting has received less attention.

The formulation of EGTP presents a problem from mixed-integer non-linear program-

ming (MINLP) and can thus be solved optimally by, for instance, the branch-and-reduce approach

(Tawarmalani & Sahinidis, 2005). However, our computational experiments show that branch-and-

reduce (even including customized variants for convex MINLP or with linearization) quickly exceeds

practical runtime limits, even for small problem instances with N ≥ 25 locations. This presents a

severe barrier to solving large-scale scenarios with N ≥ 1000 nodes, which arise in practice. In fact,

we later show that EGTP is NP-hard. This thus motivates the development of a tailored heuristic

exploiting the geometric structure. These heuristics are based on a centralized/decentralized con-

struction, neighborhood search, and the greedy randomized adaptive search procedure (GRASP).

These heuristics allow us to solve a real-word case study with actual costs for electricity generation

and high-voltage transmission infrastructure that spans all 4,537 municipalities in Germany.

This work entails several practical implications. First, the EGTP presents a holistic approach to

electricity infrastructure planning with the combined focus on both power plants and the transmis-

sion network. Our problem specifically supports practitioners grappling with the complex design

decisions of electricity systems for whole states or nations. The results of our optimization problem

may reveal considerable differences between actual and optimal system design. The EGTP thereby

provides strategic guidance for practitioners seeking to improve the power infrastructure with the

goal of minimizing costs. The problem can easily be extended by additional constraints that reflect

regulations or policies, such as a minimum production quota for renewable energy sources. Accord-

ingly, the insights gained from our problem can provide valuable decision support for policy-makers,
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planners of infrastructure expansions, and all remaining stakeholders in electricity systems.

This paper is organized as follows. Section 2 provides an overview of previous research concerning

general plant location problems, as well as specific work related to the design of electricity generation

and transmission infrastructure. Section 3 then introduces the specification of our EGTP problem,

for which we propose different heuristics in Section 4. The corresponding performance is compared

in Section 5, while Section 6 presents results from a large-scale case study with real-world data.

Finally, Section 7 concludes.

2. Related work

This section reviews previous work related to plant location problems and, in particular, strategic

infrastructure planning for large-scale electricity systems.

2.1. Plant location problems

The selection of facility locations and delivery routes has a long history within operational

research. Especially noteworthy is the simple plant location problem (Krarup & Pruzan, 1983;

Sridharan, 1995), which minimizes the production and transportation costs for a single product by

choosing the optimal placement for plants from a finite set of locations. The uncapacitated SPLP

describes a problem where the plant size is unlimited. Thus, any plant may produce an arbitrary

number of products. In contrast, the capacitated SPLP features a limit on plant size.

A common extension is the capacitated plant location problem with multiple facilities in the

same site (e. g. Ghiani et al., 2002; Nickel & da Gama, 2015; Sabet et al., 2019). Here multiple

copies of the same plant type may exist in one location. Such problems have been utilized for

determining the optimal locations of, e. g., battery swapping stations for electric vehicles (Sun

et al., 2018), emergency response facilities (Adenso-Dı́az & Rodŕıguez, 1997; Paul et al., 2017) and

pharmaceutical companies (Meijboom & Obel, 2007). Some problems model distribution costs (e. g.

Albareda-Sambola et al., 2012; Darvish et al., 2016) or even location routing (Albareda-Sambola

et al., 2012; Schiffer & Walther, 2018), yet these works are tailored to the unique characteristics of

logistics and not transmission infrastructure as in our research. Other works specifically address the

question of sizing (e. g. Chen, 2013). However, a key difference becomes evident, since our problem

must simultaneously identify the optimal location and sizing of multiple plants, while additionally

considering the transmission infrastructure (note that, in electricity transmission, flows in opposite

direction are not simply added but actually cancel out).
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Similar to the EGTP, plant location problems frequently incorporate economies of scale, since

larger plants benefit from efficiency gains (Baumgartner et al., 2012; Christensen & Greene, 1976).

This lowers the total costs per unit, which is commonly modeled by splitting the costs into a fixed

and variable component (Feldman et al., 1966; Manne, 1964). The variable part is typically assumed

to be linear and thus provides no limits to efficiency. One could potentially consider the latter by

exchanging the linear term with a non-linear function; however, this is rarely practically relevant in

physical facility problems.

There are various approaches to addressing economics of scale in energy research; however, these

are highly problem-specific and thus not directly applicable to our problem. Dornburg & Faaij

(2001) present a bottom-up calculation and demonstrate that the unit cost of electricity generation

decreases due to economies of scale in biomass fuel preprocessing and transport, as well as the heat

distribution for combined heat and power plants. Similarly, Singh (1990) investigates economies of

scale within coal-thermal power plants. The inclusion of economies of scale in a location problem

may be solved using non-linear cost curves, as shown in Fleten et al. (2007) for an optimization

problem with only one source and load. However, none of the known plant location models actually

makes use of this.

The SPLP is formulated as mixed-integer linear programming and has been proven to be NP-

hard (Krarup & Pruzan, 1983). Hence, different techniques and heuristics have been developed for

solving plant location problems. Among others, Prodhon & Prins (2014) and Jarboui et al. (2013)

propose the use of a variable neighborhood search, since it entails high computational performance.

The GRASP metaheuristic can provide a beneficial choice in this case, as it should increase the

likelihood of finding a global rather than a local optimum due to its multi-start characteristic and

randomization (Duhamel et al., 2010; Resende & Ribeiro, 2010). This motivates the choice of the

optimization methods developed in this paper, as we later adopt the aforementioned techniques

used for solving plant location problems and modify them to handle the geometric properties of the

EGTP.

Extensive decision problems are located in the broader realm of plant problems, but do not

address the unique characteristics of investment decisions for large-scale electricity generation and

transmission infrastructure. For instance, there are works that study operational issues such as

dispatching (Zugno & Conejo, 2015) or valuation problems (Ernstsen & Boomsma, 2018), including

the effects of different support schemes (Boomsma et al., 2012). Other research also considers

uncertain electricity prices (Zhan et al., 2017) and contributes equilibrium approaches as tailored
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expansion strategies for renewable generation (Pineda et al., 2018). Furthermore, prior literature

has leveraged electricity drivers in regular production planning (Golari et al., 2017).

We later develop a specific multi-location planning problem which involves both facilities and a

network layout, while considering non-linear costs due to economics of scale and the physical prop-

erties of electricity transmission. As the distinguishing characteristic of our problem, the objective

function consists of costs that entail a fixed and a (non-linear) variable component.

2.2. Strategic planning of electricity infrastructure

The predominant goal in the strategic design of electricity infrastructure is the reduction of

investments and/or operational costs (Antunes et al., 2004; Antunes & Gomes, 2009; Grimm et al.,

2016; Guo et al., 2016; Hobbs, 1995; Huppmann & Egerer, 2015; Lohmann & Rebennack, 2016).

These problems are typically concerned with the placement of power plants and thus utilize mixed-

integer linear programming (Hobbs, 1995). In other streams of research, the focus is shifted to the

reliability of the electricity supply (Billionnet et al., 2016), environmental metrics, or combinations

in the form of multi-objective optimization (Antunes et al., 2004).

The previous works show considerable variety in the choice of decision variables. These primarily

contribute to one (or more) of three areas, namely the dimensions of the power plant, its location,

and the transmission network:

• Plant dimensions. For instance, Antunes et al. (2004) are concerned with power generation

itself, such as the type and size of plants. Other research papers focus on the selection of

the optimal generation mix. For instance, Billionnet et al. (2016) and Gupta et al. (2011)

utilize standard solvers to find the optimal energy mix based on a mixed-integer linear prob-

lem for small hybrid stand-alone energy systems in remote villages and islands. Some works

specifically incorporate demand-side management as this entails an interdependence with gen-

eration (Antunes et al., 2004). Furthermore, Parpas & Webster (2014) employ Markov chains

to model generation capacities on a long-term horizon.

• Location. A different stream of research is related to the placement of power plants. For

instance, some studies evaluate the placement of specific power plant types. In this regard,

Mustakerov & Borissova (2010) address a mixed-integer non-linear discrete combinatorial

problem to identify the optimal placement of wind turbines. In the discussion regarding

where to locate distributed generation in electricity networks, some works refer to location

planning (Kumar et al., 2016; Meneses de Quevedo & Contreras, 2016; Thrampoulidis et al.,
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2015). However, these frequently prevail to local distribution grids (e. g. as presented by the

IEEE bus system). Research in this direction is relevant when deciding where to place a power

source in a local neighborhood or how to design the surrounding grid, including converters

and transformers.

• Transmission. In addition, multiple researchers present approaches to optimizing the trans-

mission network design (Sherali & Staschus, 1990; Villumsen & Philpott, 2012). Qi et al.

(2015) minimize transmission infrastructure costs for the delivery of wind power by adding

energy storage systems close to wind farms in existing networks. For general network ex-

pansion planning, Mı́nguez & Garćıa-Bertrand (2016) implement a computationally efficient

decomposition approach. In contrast, Rossi et al. (2012) optimize the design of newly built

radial power distribution networks by minimizing voltage drops between feeder and customer.

Similarly, Kocuk et al. (2016) along with Villumsen & Philpott (2012), evaluate how to im-

prove network topologies by switching individual transmission lines on and off. With regards

to transmission planning, Sherali & Staschus (1990) as well as van der Weijde & Hobbs (2012),

present stochastic two-stage approaches to improve transmission line planning. In terms of

operational costs, Hobbs & Ji (1999) demonstrate how to estimate these by developing upper

and lower cost bounds and employing stochastic programming to solve the problem.

It should be noted that a different stream of literature is concerned with planning local elec-

tricity networks (Marinakis et al., 2017); however, these local networks (i. e. so-called distribu-

tion networks) target only individual municipialities or districts, whereas we are concerned with

large-scale (and often nationwide) transmission networks that connect individual distribution grids.

Research in the context of distribution grids must address the specific physical constraints that

arise in distribution grids (i. e. flow-based capacitated aborescence or other constraints due to low

voltage settings) and thus experiment with other networks (e. g. bus systems). This thus differs

considerably from our research setting (as transmission grids operate with high voltage and thus

have a different set of physical constraints). Hence, we refer to outlets in the domain of electrical

engineering such as IEEE for an detailed coverage of distribution grid planning (e. g. Baringo &

Conejo, 2012); however, their solution approaches are rarely applicable due to the different problem

structure.
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2.3. Integrated optimization of generation and transmission infrastructure

Only few works actually focus on the combined problem of both generation and transmission

(Conejo et al., 2016). For instance, Seddighi & Ahmadi-Javid (2015) utilize a multistage stochastic

programming model that facilitates the integrated planning of electricity generation and, simulta-

neously, optimizes the transmission network. However, this work solves only small instances with

up to 17 locations and it deals merely with fixed costs without a variable component as it appears in

the EGTP. Similarly, Pozo et al. (2013) present a mixed-integer linear programming problem that

optimizes both generation and transmission planning in Chile. This again is applied to only rela-

tively small-scale scenarios with fewer than 50 locations. Hence, the authors can solve the problem

with CPLEX and are not concerned with the development of efficient optimization methods. The

objective function of this problem also differs from the EGTP, as it includes an additional market

clearing mechanism and sums over annual costs without disentangling investments into a fixed and

variable component.

The above works are limited to small electricity systems, whereas we specifically indulge in the

optimization of large-scale infrastructure for electricity generation and transmission with thousands

of locations. This is especially challenging, as computation times increase dramatically. Since we

are not aware of any research that holistically optimizes both power plants and the transmission

network, we later need to develop different heuristics for solving our EGTP.

Relationship to plant location problems: Our EGTP is based on the physical properties of elec-

tricity, as well as energy systems, and thus differs in multiple respects from capacitated location

problems such as SPLP and its variations. The SPLP determines the locations of industrial facilities

by minimizing the sum of fixed costs, variable costs and transportation costs (Krarup & Pruzan,

1983). The SPLP in its näıve form is based on a single plant type, while the EGTP specifically

distinguishes a set K of different types. Both allow only a single plant per location – an assumption

that is relaxed in plant location problems with multiple facilities (Ghiani et al., 2002). Furthermore,

the SPLP incorporates a linear cost function, while we explicitly enable non-linear cost behavior.

In addition, SPLP builds upon a per-unit cost for transportation, whereas the transmission in the

EGTP consists of two components, namely, fixed and variable costs. The EGTP additionally allows

for the sharing of transmission lines; that is, electricity from different sources can use the same line

for delivery.
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3. The electricity generation and transmission problem (EGTP)

This section introduces the assumptions underlying the EGTP and formalizes it mathematically.

3.1. Problem description

The EGTP problem draws upon a given number of locations. These can represent individual

neighborhoods, districts, or whole cities. It is then based on the following assumptions:

• Cost minimization. The problem minimizes the combined costs for the infrastructure of power

plants and the transmission network across all locations. This presents the objective function

of the model. Depending on the choice of costs, these can represent purely the investments, or

even include operational costs (i. e. when utilizing levelized costs of electricity). Furthermore,

the individual costs of infrastructures depend on the specific location. In a practical setting,

this allows us to reflect, for instance, additional earthworks, or that off-shore wind parks entail

different investment costs than on-shore parks while generating the same volume of energy.

• Electricity demand. Each location entails a certain electricity demand that must be fulfilled.

This can be achieved either by local electricity generation or by transmitting electricity from

remote power plants.

• Transmission network. The costs of transmission lines scale linearly with their capacity,

subject to a line-specific factor. The latter allows one to incorporate parameters that introduce

costs which depend on the length of the transmission lines, as well as regional differences and

power losses.

• Electricity generation. The problem incorporates different types of power plants. Illustrative

examples are nuclear, coal, or wind power installations. The cost of each power plant depends

on its energy source and the chosen generation capacity. In this regard, the unit cost of

electricity is assumed to be non-linear with respect to the plant capacity, as suggested by

research in the field of energy economics. A maximum of one plant can be placed at each

location, consistent with the SPLP (Krarup & Pruzan, 1983; Nara et al., 2001). This constraint

is driven by practical considerations, which obviate the possibility of more than one generation

unit per neighborhood or district. Conversely, the size of the plant is not limited, since, in

practice, a plant often consists of several generation units.
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We have not defined what type of electricity demand and generation is considered, since our problem

description is open to different objectives. Depending on the actual parameterization, one could

use data concerning (a) the average demand/supply setting (i. e. as load in GW or, alternatively,

as energy per time interval) in order to study a setting with baseline load or (b) a peak load setting

(i. e. a high demand and low generation from variable renewable energy sources). The actual choice

is left to potential users.

3.2. Mathematical model

This section formalizes the corresponding optimization problem. For this purpose, we provide

an overview of the notation in Table 1. In the following, the optimization problem (and particularly

the load therein) is specified in a general format for a predefined point in time, t, and, hence,

without loss of generality, we omit the subscript for better readability. This is important to note

as electricity production is often volatile due to variable renewable energy sources and, therefore,

practitioners will address this by, for instance, performing the analysis with parameters that specify

generation and transmission capacities in peak load scenarios.

Let N denote the number of nodes of a (directed and weighted) graph. We refer to the corre-

sponding nodes via indices i, j = 1, . . . , N . In practice, each node corresponds to, e. g., a city, and

thus entails geographic coordinates such that we can compute the distance between two locations

i and j. Furthermore, each node comes with a given electricity demand Di. This variable can

refer to either the average demand per time slot or the peak demand, depending on whether the

transmission network should be optimized against baseline or peak load.

The problem fulfills the electricity demand at each location by constructing power plants

and transmission lines, for which we introduce decision variables in the following.1 We specifi-

cally assume different energy sources such that we build different infrastructure for power gen-

eration. For instance, we later report computational experiments utilizing generation types

K = {solar, wind, biogas, brown coal, hard coal, gas}. Furthermore, let the binary variable eki in-

dicate whether a power plant of type k (denoted as superscripts) is constructed at location i. Its

capacity is given by gki . Analogously, the binary variable hij represents a binary flag if a transmis-

sion line with capacity xij connects i and j. We later utilize the binary variables to model the fixed

costs, while the capacity relates to the variable costs.

1Note that we do not optimize power flows (i. e. energy in GWh) as is the usual case in distribution grids, since

we focus on transmission grids and thus consider electricity load (measured in GW).
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Symbol Description Unit/range

General problem parameters

N Number of nodes Positive integer

i, j Indices of nodes (used as subscripts) i, j = 1, . . . , N

K Set of all generation types Set

k Index for a specific generation type (used as superscripts) k ∈ K

Di Demand (e. g. average demand per time period or peak demand) at location i GW

Decision variables: electricity generation

eki Binary variable; equals 1 if generation of type k exists at location i eki ∈ {0, 1}

gki Capacity of power plant at location i of generation type k GW

Decision variables: electricity transmission

hij Binary variable; equals 1 if transmission between nodes i and j exists hij ∈ {0, 1}

xij Capacity of transmission line from node i to j GW

Parameters: electricity generation

λki Fixed cost of electricity generation per unit at node i of type k Monetary unit

γki Variable cost of electricity generation at node i of type k Monetary unit / GW

κki Discount factor for non-linear generation cost at location i of type k Dimensionless, κki > 0

Mg Big M variable for generation capacity GW

Parameters: electricity transmission

αij Fixed cost of transmission line between i and j Monetary unit

βij Variable cost of transmission line between i and j Monetary unit / GW

Mx Big M variable for transmission capacity GW

Table 1: Notation in the EGTP formulation.

The optimization problem then determines both power plants located at the nodes and trans-

mission lines between them in the form of weighted edges. It thereby minimizes the total costs that

can cover investments either with or without operational costs depending on the choice of param-

eters. We further split the costs of both electricity generation and transmission into a component

with fixed and variable costs, respectively. This yields the objective

min
eki , g

k
i , hij , xij

N∑
i=1

∑
k∈K

[
λki e

k
i + γki

(
gki

)κki ]
+

N∑
i=1

i∑
j=1

[
αij hij + βij︸︷︷︸

=β′ij dist(i,j)

|xij − xji|
]
, (1)

which we detail in the following. The first parenthesis refers to the total costs for the generation

infrastructure and thus sums over all combinations of the N nodes and the generation types in K.

It thus comprises fixed costs λki if the plant is present (i. e. eki equals one) and variable costs in the

form of an exponentiation, where the corresponding exponent κki governs the degree of non-linearity.

Both costs are scaled with corresponding scalars λki and γki , respectively. The second sum determines
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the costs of the transmission network. For this reason, it iterates exactly once over all transmission

lines, which are given by pairs of i and j while skipping the symmetric counterpart. As before, the

first part provides the fixed costs αij if the line is present (i. e. hij equals one) and it is included only

once for each line, regardless of the direction in which power is transmitted. The latter part refers

to costs consisting of a line-specific parameter βij (e. g. a multiple of the distance dist(i, j) between

i and j) and the net-energy transferred between the two locations. Note that the absolute value is

not necessary in the case of non-linearity as this already makes simultaneous non-zero transmissions

suboptimal; however, it turned out beneficial during our later implementation.

In addition, the above objective is subject to the following constraints:

Di =
∑
k∈K

gki +

N∑
j=1

xji −
N∑
j=1

xij i = 1, . . . , N (2)

gki ≥ 0 i = 1, . . . , N,∀k ∈ K (3)

xij ≥ 0 i, j = 1, . . . , N (4)

xii = 0 i = 1, . . . , N (5)

0 ≤Mg e
k
i − gki i = 1, . . . , N,∀k ∈ K (6)

0 ≤Mx hij − xij i = 1, . . . , N and j = 1, . . . , i (7)

0 ≤Mx hji − xij i = 1, . . . , N and j = i+ 1, . . . , N (8)∑
k∈K

eki ≤ 1 i = 1, . . . , N (9)

hij ∈ {0, 1} i, j = 1, . . . , N (10)

eki ∈ {0, 1} i = 1, . . . , N,∀k ∈ K (11)

Here, Equation (2) ensures that the demand at every node is satisfied by the power generation

in that location together with the incoming volume of electricity, while subtracting the outgoing

amount. Equations (3) and (4) require both the generation and transmission capacities to be non-

negative, while Equation (5) eliminates self-loops, i. e. that a transmission link starts and ends in

the same node i. Equations (6) to (8) follow common techniques in location problems (Seddighi

& Ahmadi-Javid, 2015; Vasin & Dolmatova, 2016) and utilize the Big M method. This introduces

a capacity of zero (and thus zero variable cost) if the corresponding generation or transmission

infrastructure is not constructed. Moreover, Equation (9) limits the number of power plants at each

location to one. Lastly, Equations (10) and (11) ensure that the decision variables eki and hij are

binary, meaning that they define whether or not a power plant or transmission line is built.
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Note that no further physical constraints are necessary (different from meshed networks that

are used in low-voltage distribution grids), since our objective is to model transmission networks

where high-voltage current is transported.

Remark 1. For κki ≥ 1 for all i and k, the EGTP is a convex MINLP problem.

Remark 2. The EGTP is NP-hard.

The above formulation of the EGTP presents a MINLP problem, since it incorporates binary

decision variables and a non-linear expression in the objective. This problem is NP-hard, since it

can be shown that NP-hard SPLP presents a sub-problem as follows. Without loss of generality,

we assume the same number of locations for generation and demand. We further allow only one

generation type, given by |K| = 1, remove the non-linearity via κki = 1, and omit investment costs

for transmission by setting αij = 0. This yields a sub-problem of EGTP that is equivalent to the

definition of the SPLP (Krarup & Pruzan, 1983).

3.3. Example

This section presents an illustrative example concerning our EGTP and compares different,

feasible solutions. Our example consists of N = 3 locations given by points P1 = (0, 1), P2 = (4, 0)

and P3 = (0, 4) on a grid, as visualized in Figure 1. Their electricity demand amounts to D1 = 0.5,

D2 = 1.0 and D3 = 1.5, respectively. For simplicity, we further assume a single generation type

with the same generation cost in each node. All remaining costs of generation and transmission

are specified in Table 2. Here, the scalars βij for the variable transmission costs are set to the

L2-distance between i and j.

Generation costs λ = 3, γ = 4, κ = 0.8

Transmission costs α = 0.5, β12 = 2.24, β13 = 3, β23 = 4

Table 2: Illustrative parameters concerning the generation and transmission infrastructure in our example.

We proceed by illustrating three feasible solutions (cf. Figure 1) as follows:

1. A distributed solution positions the electricity generation in each node such that it equals the

local demand. As a result, each node entails its own power plant, resulting in generation costs

of
(
3 + 4 · 0.50.8

)
+
(
3 + 4 · 1.00.8

)
+
(
3 + 4 · 1.50.8

)
= 20.83 and zero transmission costs.

2. A centralized solution fulfills the electricity demand by transmitting electricity from a single

power plant. This increases transmission costs but can potentially exploit lower generation

costs in other locations. In our example, we decided to assign the central power plant to the
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Figure 1: Illustration of a generic location optimization task and various solutions.

node with the highest demand in order to reduce the variable factor of transmission costs.

Here, the corresponding node is given by P3 with a demand of D3 = 3. This necessitates

two transmission lines P3 → P1 and P3 → P2 with capacities of x31 = 0.5 and x32 = 1.0,

respectively. This results in generation costs of 12.63, transmission costs of 8.16, and 20.79 in

total.

3. The optimal solution, which minimizes the total costs, is visualized in Figure 1. Its costs

amount to only 18.96, which it achieves by removing the expensive transmission line P3 → P2

from the centralized solution and, instead, creates a separate power plant in P2.

4. Optimization methods

The EGTP can be approached by MINLP solvers such as the branch-and-reduce. These, for

instance, exploit the convex shape of the objective function or circumvent non-linearities through

linearization. However, our experiments later in Section 5 demonstrate that even moderate instances

exceed practical runtime limits (N ≥ 25). This necessitates the development of alternative opti-

mization methods and thus, in this section, we develop different heuristics, which generate feasible

solutions by exploiting the geometric structure of the problem:

Construction heuristics. Our centralized heuristic bundles all electricity generation into a single

power plant which supplies all other nodes by transmitting electricity. The distributed heuris-

tic, in contrast, creates power plants in each location such that the local demand is fulfilled
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without power transmission. A greedy construction heuristic combines both approaches by

establishing smaller regions with centralized generation in each in order to achieve a trade-off

between centralized and distributed generation.

Improvement heuristics. Our improvement heuristics build upon the feasible solutions from the

construction heuristics and then perform a reduced variable neighborhood search.

GRASP metaheuristic. The previous construction and improvement heuristics can be combined

in a GRASP metaheuristic.

We also experimented with other (heuristic) solution techniques; however, these are often not

directly applicable due to the inherent structure of our optimization problem. Linearization is later

implemented as part of our exact solvers, though without obtaining performance improvements. A

possible explanation is that the complexity of our problem is largely owed to the binary decision

variables (and not the non-linear objective function). Further, linearization with subsequent appli-

cation of Benders decomposition (cf. e. g. Baringo & Conejo, 2012) would be an interesting option,

yet such a decomposition is impeded by the term xij in the objective function. Finally, we experi-

mented with a warm-start procedure where an exact solver was initialized based on the heuristics

but the nature of the employed exact solvers could not benefit from this; hence, we omitted the

results.

4.1. Construction heuristics

4.1.1. Centralized generation

The centralized construction heuristic chooses a single generation plant that supplies all remain-

ing locations. The location of this single plant can be picked arbitrarily; however, our experiments

identified the node with the highest demand as a particularly beneficial choice, since it diminishes

the need for transmission capabilities and thus reduces transmission costs. As a result, the cen-

tralized heuristic achieves fairly low generation costs due to economies of scale, but entails high

transmission costs. It often exhibits a sound performance in cases where transmission costs are low

relative to the generation costs (e. g. due to short distances between nodes). Algorithm 1 provides

the pseudocode. The loop has a runtime of Θ (N |K|) and, additionally, the matrix initializations

in Step 2 are in Θ
(
N2 +N |K|

)
.
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Algorithm 1 Centralized construction heuristic
1: function Centralized
2: Initialize all variables gki , eki , xij and hij to zero for all i, j, k
3: Choose location i← arg max

i
Di with highest demand

4: Find cheapest generation type k ← arg min
k∈K

λki e
k
i + γki

(∑N
ι=1 Dι

)κk
i

at i

5: Set generation capacity gki ←
∑N
ι=1 Dι such that it equals the total demand

6: Update decision variable for a plant k at location i via eki ← 1
7: for every location j = 1 to N do
8: Create transmission line connecting i and j via hij ← 1
9: Set corresponding transmission capacity to xij ← Dj

10: end for

4.1.2. Distributed generation

This distributed heuristic picks the cheapest electricity generation type for each location and

sets its production to the demand of the node. Hence, it benefits from zero transmission costs. Algo-

rithm 2 presents the pseudocode, which has a runtime of Θ(N |K|) due to Step 4 and, additionally,

Θ
(
N2 +N |K|

)
for the matrix initializations in Step 2.

Algorithm 2 Distributed construction heuristic
1: function Distributed
2: Initialize all variables gki , eki , xij and hij to zero for all i, j, k

3: Determine cheapest generation type mi ← arg min
k∈K

λki e
k
i +γki (Di)

κk
i for all locations i = 1, . . . , N

with Di 6= 0
4: Construct plants in each location emi

i ← 1 with Di 6= 0 for all i = 1, . . . , N and k ∈ K
5: Set generation capacities to gmi

i ← Di for all i = 1, . . . , N with Di 6= 0

4.1.3. Greedy heuristic

The greedy heuristic constructs local areas, each with its own centralized generation source,

while the areas are not necessarily connected via transmission lines. For this purpose, all nodes are

sorted in decreasing order of generation costs necessary to meet their own demand Di. Afterwards,

we iterate over all nodes in that order and build transmission lines to all neighboring nodes for which

transmission is cheaper than local generation with respect to fulfilling their electricity demand. We

report the corresponding pseudocode in Algorithm 3, which also entails a randomization procedure

that is later used in the GRASP metaheuristic, which relies in turn on the greedy construction

heuristic. The runtime is in O
(
N2 |K|

)
, plus Θ

(
N2 +N |K|

)
for the matrix initializations in

Step 2.
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Algorithm 3 Greedy construction heuristic
1: function Greedy(GRASP = false)
2: Initialize all variables gki , eki , xij and hij to zero for all i, j, k
3: while not all locations supplied (i. e. any Dι 6= 0) do
4: if GRASP = true then
5: Choose random node i from locations {i |Di 6= 0} with non-zero demand
6: else
7: Choose location i← arg max

i
Di with highest demand

8: end if
9: Find cheapest generation type k ← arg min

k∈K
λki e

k
i + γki (Di)

κk
i at i

10: Create generation capacity via with gk̃i = Di and eki = 1 at i
11: Remove demand via Di ← 0
12: for all nodes j ∈ {j |Dj 6= 0} with non-zero demand do

13: pj ← min
k∈K

[
λki +γki (Di +Dj)

κk
i

]
+αij+βij Dj which computes the total cost at i including

the additional capacity Dj and transmitting it to j

14: qj ← min
k∈K

[
λki +γki (Di)

κk
i

]
+min
k∈K

[
λkj + γkj (Dj)

κk
j

]
which combines the costs for generating

Di in i and Dj in j
15: if pj < qj then
16: Increase generation capacity gki ← gki +Dj in i and update k if necessary
17: Add transmission line via hij ← 1 and xij ← Dj
18: Remove demand via Dj ← 0
19: end if
20: end for
21: end while

4.2. Improvement heuristic

Our improvement heuristic utilizes a reduced variable neighborhood search (Hansen et al., 2010)

in order to test whether local modifications improve the current solution. For this purpose, the

heuristic alters the current solution to include a greater degree of either centralized or distributed

electricity generation and then compares the outcomes to the initial solution. If this results in a

decrease of the objective function, it continues its search on the basis of the modified solution.

Algorithm 4 formalizes the above search process given an initial solution S and a parameter η

controlling the number of iterations of the local search. The search then repeatedly draws randomly

selected locations i and determines the nearest neighbor j. It then applies the following modifications

to the pair i and j:

• If i or j produce electricity, we validate whether we improve the solution by relocating power

generation to either i or j. This modification seeks improvements from further centralization.

The relocation is performed by Algorithm 5 (AddTransmission), which relocates power

generation from i to j and adds the necessary transmission infrastructure. Here, we test two

possibilities as we can move power generation either from i to j, or from j to i. The newly

created transmission lines make the solution more centralized.
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• In contrast, Algorithm 6 presents the function RemoveTransmission, which removes any

transmission capacity between the two locations i and j. It thus updates the generation

infrastructure at that location and then removes the transmission line, thereby resulting in a

more distributed solution. This leads to an increase or decrease in power generation at both

ends of the transmission line.

The algorithm repeats these neighborhood modifications, such that the degree of centralization

varies continuously.

Algorithm 4 Reduced variable neighborhood search
1: function ReducedVNS
2: for n← 1 to η N do
3: Let S denote the current solution as given by any of the construction heuristics
4: Select a random location i ∈ {1, . . . , N}
5: Select nearest neighbor j ← arg min

j
dist(i, j) by distance

6: Perform modifications as follows:

• If gki > 0 for any k, relocate power generation from i to j via

• S1 ← AddTransmission(S, i, j)
• If gkj > 0 for any k, relocate power generation from j to i via

• S2 ← AddTransmission(S, j, i)
• If xij 6= 0 or xji 6= 0, remove transmission between i and j via

• S3 ← RemoveTransmission(S, i, j)

7: Keep best solution S ← arg min
S
{Cost(S), Cost(S1), Cost(S2), Cost(S3)}

8: end for

Algorithm 5 Relocation of power generation from location i to j
1: function AddTransmission(S, i, j)
2: Let ki and kj denote the current type of power generation in locations i and j, respectively
3: Transmit additional power from j to i with xji ← xji + gkii , hji ← 1 and hij ← 1

4: Find new optimal generation type k̃ ← arg min
k
λki e

k
i + γki

([
gkii + g

kj
j

])κk
i

at j

5: Increase generation gk̃j ← gkii + g
kj
j

6: If kj 6= k̃, update power generation at j via g
kj
j ← 0, e

kj
j ← 0 and ek̃j ← 1

7: Remove power generation at i via gkii ← 0 and ekii ← 0
8: return modified solution S ′
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Algorithm 6 Removal of transmission between locations i and j
1: function RemoveTransmission(S, i, j)
2: Let ki and kj denote the current type of power generation in locations i and j, respectively
3: Find new optimal generation types at i and j via

k̃i ← arg min
k
λki e

k
i + γki

([
gkii + xji − xij

])κk
i

k̃j ← arg min
k
λkj e

k
j + γkj

([
g
kj
j + xij − xji

])κk
j

4: Update generation capacities via gk̃ii ← gkii + xji − xij and g
k̃j
j ← g

kj
j + xij − xji

5: Update decision variables for former power generation by ekii ← 0 and e
k̃j
j ← 0

6: Set new power generation via e
kj
j ← 1 if gk̃ii 6= 0 and e

k̃j
j ← 1 if g

k̃j
j 6= 0

7: Remove power transmission between i to j via xij ← 0, xji ← 0, hij ← 0 and hji ← 0
8: return modified solution S ′

4.3. GRASP metaheuristic

The performance of improvement heuristics largely depends on the starting point of their search.

A potentially better alternative is represented by the greedy randomized adaptive search procedure,

which provides a multi-start metaheuristics as follows (Feo & Resende, 1995; Resende & Ribeiro,

2010). It utilizes a construction heuristic with randomization in order to generate a collection of

initial, feasible solutions. Based on these, GRASP then applies improvement heuristics to perform

a local search.

In our case, the GRASP implementation draws upon the greedy construction heuristic from

Section 4.1, which is modified to include an additional randomization. This then serves as an input

to the neighborhood search, which is similarly extended by a randomization component. For this

reason, the GRASP procedure (see Algorithm 7) utilizes a restricted candidate list from which it

picks neighbors. The variable Φ denotes the number of GRASP iterations and ρ, as well as Ψ, are

additional parameters.

The GRASP routine utilizes a modified improvement heuristic ReducedVNSGRASP that in-

corporates additional randomization. Instead of selecting the nearest neighbor j, as the original

ReducedVNS heuristic does, it randomly chooses a location within a certain proximity, to which

it then applies the improvements. This is given by

j ∈
{
j
∣∣∣ dist(i, j) ≤ min

τ
dist(i, τ) + ρ

[
max
τ

dist(i, τ)−min
τ

dist(i, τ)
]}

, (12)
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where the proximity is controlled by the parameter ρ.

Algorithm 7 Greedy randomized adaptive search procedure (GRASP)
1: function GRASP

2: Initialize candidate set C ←

Greedy(GRASP = true), . . . ,Greedy(GRASP = true)︸ ︷︷ ︸
Ψ


3: Initialize S ← ∅
4: for n = 1 to Φ do
5: Compute cmin ← min {cost(c) | c ∈ C} and cmax ← max {cost(c) | c ∈ C}
6: Compute restricted candidate list RCL← {c ∈ C | cost(c) ≤ cmin + ρ (cmax − cmin)}
7: Select random candidate c ∈ RCL
8: Invoke C ← ReducedVNSGRASP(c) with initial solution c
9: if cost(C) < cost(S) then

10: Update current best solution S ← C
11: end if
12: end for
13: return best solution S

4.4. Baseline: branch-and-reduce

We choose the branch-and-reduce method as the baseline in evaluating our heuristics as it can

find the global optimum of a MINLP. This algorithm defines a deterministic branch-and-bound

search that exploits convexity and generates corresponding polyhedral cutting planes (Tawarmalani

& Sahinidis, 2005). For reasons of comparability, we utilize the implementation inside the Gen-

eral Algebraic Modeling System (GAMS) given by the BARON solver. As part of our sensitivity

analysis, we also experiment with all other solvers for MINLP shipped as part of GAMS, namely,

ANTIGONE, AlphaECP, SBB, BARON and DICOPT. The corresponding results are detailed in

the online appendix, suggesting that BARON performs best overall. For performance reasons, we

incorporate additional constraints in the GAMS solvers that leave the practical solution unchanged

but reduce the search space. These are also documented in the online appendix.

We point further towards the following important characteristics:

1. Given κ ≥ 1, our problem is convex and, hence, this fact can be leveraged by MINLP solvers.

To this end, the convexity of our problem is actually leveraged by AlphaECP, DICOPT and

SBB, which we considered for this purpose. However, contrary from our expectations, we

observed performance improvements when choosing a different solver that is not capable of

targeting a convex MINLP; namely, the BARON solver.

2. It could be an efficient strategy to apply linearization to our objective function. Such lin-

earizations are implemented in ANTIGONE and BARON by default. Nevertheless, we see

that linearization is not capable of reducing computation times down a tolerable limit, since the
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large number of binary variables remains. Therefore, the problem complexity stems more from

the binary decision variables as from the non-linear objective function. This also explains why

our proposed heuristics are numerically beneficial: they exploit the problem structure based

on which they reduce the complexity of the grid layout.

5. Computational experiments

This section compares the performance of the baseline solver with our heuristics for instances

in the range of 5 to 200 nodes. This helps us to understand the characteristics of the optimization

methods, while actual problems are likely to span N ≥ 1, 000 nodes in practice, such as our real-

world case study introduced in Section 6. Our computational experiments demonstrate that the

branch-and-reduce solver exceeds our runtime limit of two hours, even for small cases of N ≥ 25.

This threshold was necessary due to the overall number of instances that we computed and the

resulting total demand of computation demand which was in the order of 10,000 computing hours.

In contrast, our proposed heuristics enable us to find efficient solutions within seconds. The runtime

limits were omitted later in the case study that is considerably larger in size and, hence, individual

solvers run up 460 hours.

All results originate from experiments with an Intel Xeon E5-2680 CPU at 2.7 GHz and 16 GB

of RAM. The heuristics are implemented in Python 2.7. For each setup, we average the results from

10 random instances of the same scenario.

5.1. Data generation

We design experiments that compare two common scenarios – a dense and a sparse setting –

in order to reflect the differences in energy systems between regions and countries. We further

incorporate actual costs for electricity generation and transmission infrastructure. We make no

differences between whether we optimize against baseline or peak load (hence, we refer to simply as

demand and, without loss of generality, assume that the analysis is for an average of the day), since

the purpose of the following experiments is to evaluate the ability of the optimization methods in

solving the overall problem definition.

5.1.1. Scenarios

Our scenarios reflect the common differences between countries, which vary in their population

density, their demand structure and, especially, in the average distances between adjacent cities.

We thus consider a dense scenario that assumes a region with a largely urban environment, high
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population density, and short distances between cities. Such properties correspond with countries

such as Great Britain, Germany, or Japan. As a comparison, we also study a sparse setting, which

features a rural landscape with relatively long distances between cities. Illustrative examples include

the United States, Canada, or Australia. Both scenarios favor solutions with different geometric

characteristics. In the case of a dense scenario, a centralized solution might be financially preferable,

while a distributed solution is likely to be more efficient in the sparse setting, where transmission

costs are higher. Our model definition makes no specific assumptions whether the demand Di,

i = 1, . . . , N is parameterized based on the average load or the peak load, since the analysis can

be easily repeated with different values. Hence, we follow earlier literature (Billionnet et al., 2016;

Zhan et al., 2017) and demonstrate our EGTP based on the (averaged) historic grid load.

For each scenario, we construct problem instances in which we place N ∈ {5, 10, 25, 100, 200}

nodes randomly on a grid. The x and y coordinates of the nodes are sampled from a uniform

distribution U(0, cscale
√
N), where the parameter cscale controls how closely individual nodes are

placed. In the following, we utilize cscale = 25 for the dense and cscale = 125 for the sparse scenario.

The demand at each location is sampled from a mixture of two normal distributions: 80 % of the

values stem from N (0.02, 0.008) and 20 % from N (0.02, 0.8) in order to reflect both provincial towns

and metropolises. We subsequently compute the absolute value of the demand in order to eliminate

negative numbers. This results in a demand distribution that is evident in many countries where

populations are split between a few large cities and many small municipalities.

5.1.2. Generation cost

Our experiments comprise of the following types of power generation: solar, wind, biogas, brown

coal, hard coal, and gas. These represent the main types of power generation that are currently in

use, especially in developed countries such as Germany. We then set the parameters for the costs of

electricity generation to the actual levelized cost of electricity (Bemis & DoAngelis, 1990). These

values are common in related research in the field of energy systems, since they incorporate not only

upfront investments, but also generation-specific discount rates, facility lifespan, and operational

costs (transport, maintenance, labor, fuel costs, carbon price, plant efficiency). In this paper,

we sample all cost-related parameters from normal distributions, as specified in Table 3, in order

to account for local variation, such as land cost, transportation needs of fossil fuels, or different

efficiencies of renewable energy sources. We use levelized costs of electricity that are comparable

to expert estimates for Germany and similar to figures found in related works (e. g. Stolzenberger,

2015). We observe that the variable costs are below the initial investments, which introduces
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economies of scale. In addition, we assume a non-linear cost function, which is consistent with

empirical findings as motivated earlier. As a result, the exponent κ > 1 penalizes power plants of

growing size and thereby adheres to physical limitations. Our experiments later confirm that this

parameter choice yields realistic conditions.

Generation type Fixed generation cost λ Variable generation cost (per capacity) γ Exponent κ

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Solar 1.0 0.4 0.097 0.039 1.027 0.054

Wind 310.8 174.5 0.054 0.069 1.138 0.158

Biogas 21.9 10.0 0.141 0.080 1.059 0.078

Brown coal 11,375.0 3750.0 0.036 0.015 1.022 0.026

Hard coal 14,300.0 3400.0 0.056 0.017 1.019 0.019

Gas 10,812.5 2875.0 0.068 0.023 1.021 0.022

Table 3: The parameters in this table specify the normal distributions from which we sample the costs for power

generation. Here, we specifically utilize the levelized costs of electricity (in AC/kWh), as they incorporate both

investment and operational costs. Note that both coal and gas obtain attain fairly high fixed generation costs.

However, when taking the size of the different plants and the variable generation cost into account, the resulting costs

resemble the overall levelized costs of electricity as in (e. g. Stolzenberger, 2015).

5.1.3. Transmission costs

Similar to the generation costs, we introduce line-specific transmission costs and, for this pur-

pose, sample transmission costs in AC per kWh and km from a normal distribution, as specified in

Table 4. Notably, a variable transmission costs β′ is sampled (in monetary units per capacity and

distance) and afterwards multiplied by the distance between two locations in order to give β (in

monetary units per capacity). In a subsequent step, these values are multiplied by the length of

the transmission line. This approach and the corresponding values reflect suggestions from previous

research (e. g. Delucchi & Jacobson, 2011).

Fixed transmission costs α Variable transmission costs (per capacity and distance) β′

Mean Std. dev. Mean Std. dev.

0.088 0.059 0.000699 0.000879

Table 4: The parameters specify the normal distributions from which we sample the costs of power transmission (in

AC per kWh and km). After sampling, the values of β′ are multiplied with the distance between two locations i and j

in order to give the actual β.

5.2. Solver parameters

In the improvement heuristic, the maximum search iteration parameter η controls the extent of

tested improvements; a higher value increases execution time but is more likely to identify solutions
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with lower costs. We experimented with a variety of values as detailed in the online appendix

and, accordingly, decided upon a maximum search iteration parameter η = 2, which is additionally

multiplied by the grid size N . Then the total number of tested improvements is ηN . In the case of

GRASP, we follow Resende & Ribeiro (2010) and set the proximity ρ of restricted candidates to 0.2.

This provides a reasonable trade-off between runtime and the extent of exploration. In addition, the

GRASP iteration number Φ specifies how often GRASP invokes the greedy construction heuristic.

Since we observe only small variations in the greedy solutions, we utilize Φ = 5 and Ψ = 5 GRASP

iterations in the following.

5.3. Results from the dense scenario

Table 5 compares the optimization methods in the dense scenario. Our baseline, branch-and-

reduce, solves small instances (N = 5 and 10) optimally, while its execution time quickly explodes

and exceeds our runtime limit already for N ≥ 25. For some instances, we can still report the

last iteration of branch-and-reduce, yet it presents merely an approximation of the global optimum.

This necessitates alternative optimization methods for approaching the EGTP.

Both neighborhood heuristics lower costs further as compared to the construction heuristics, but

slightly increase the computational time. Here we observe the following patterns: the neighborhood

search reduces the expenditures for electricity generation beyond the solutions found by the con-

struction heuristics. Overall, both variants find solutions where the number of power plants is close

to N/2 (similar to the greedy heuristic). For large problems with N = 100 and 200, the combination

of distributed construction heuristic and neighborhood search obtains the best solutions across all

optimization methods.

The GRASP algorithm usually yields solutions with costs below the other heuristics in the

small instances. Its computation time exceeds the runtime of the other heuristics, but we can still

compute instances with N = 200 nodes in reasonable time, i. e. 13.2 min. On average, the runtimes

are roughly five times longer than those of the neighborhood search, which matches our choice of

Φ = 5.

In summary, even though branch-and-reduce might be able to identify the global optimum in

small instances, its usage is infeasible in practical applications due to the excessive runtime. Here

the experiments identify our heuristics as viable alternatives, since several of them find solutions

whose objective function is close to the branch-and-reduce method, but require only a fraction of

the computational resources.
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N Solver
Total

time (s)

Total cost

(mn EUR/h)

Variance of total

cost across runs

Generation

cost (mn EUR/h)

Transmission

cost (mn EUR/h)

Relative cost

(= total cost /

overall demand
∑
Di)

Avg. plant

count

5

Centralized heuristic 0 0.054 0.003 0.052 0.002 0.058 1.0

Distributed heuristic 0 0.057 0.003 0.057 0.000 0.065 5.0

Greedy heuristic 0 0.054 0.003 0.053 0.001 0.058 3.0

Neighborhood search (with centralized heuristic) 1 0.038 0.001 0.030 0.007 0.046 2.2

Neighborhood search (with distributed heuristic) 1 0.038 0.001 0.031 0.006 0.045 2.8

GRASP 5 0.031 0.000 0.021 0.010 0.038 2.0

Branch-and-reduce (GAMS/BARON) 26 0.028 0.000 0.012 0.016 0.034 2.3

10

Centralized heuristic 1 0.088 0.004 0.069 0.019 0.062 1.0

Distributed heuristic 0 0.080 0.001 0.080 0.000 0.061 10.0

Greedy heuristic 1 0.072 0.002 0.066 0.005 0.053 5.0

Neighborhood search (with centralized heuristic) 2 0.054 0.001 0.040 0.014 0.043 3.0

Neighborhood search (with distributed heuristic) 2 0.051 0.001 0.044 0.007 0.043 5.7

GRASP 11 0.035 0.000 0.023 0.012 0.029 3.6

Branch-and-reduce (GAMS/BARON) 83 0.029 0.000 0.016 0.013 0.024 3.9

25

Centralized heuristic 1 0.333 0.016 0.202 0.131 0.091 1.0

Distributed heuristic 1 0.218 0.004 0.218 0.000 0.059 25.0

Greedy heuristic 2 0.191 0.004 0.169 0.023 0.052 13.0

Neighborhood search (with centralized heuristic) 5 0.149 0.006 0.079 0.070 0.038 8.2

Neighborhood search (with distributed heuristic) 5 0.129 0.001 0.100 0.029 0.035 13.9

GRASP 32 0.125 0.002 0.080 0.045 0.033 9.8

Branch-and-reduce (GAMS/BARON) 7239 0.078† 0.001† 0.037† 0.041† 0.020† 11.4†

100

Centralized heuristic 16 1.944 0.438 0.549 1.395 0.127 1.0

Distributed heuristic 14 0.783 0.006 0.783 0.000 0.051 100.0

Greedy heuristic 14 0.716 0.009 0.556 0.160 0.047 50.0

Neighborhood search (with centralized heuristic) 28 0.783 0.029 0.521 0.262 0.051 44.0

Neighborhood search (with distributed heuristic) 44 0.575 0.006 0.513 0.062 0.038 56.6

GRASP 236 0.621 0.004 0.362 0.259 0.041 40.4

Branch-and-reduce (GAMS/BARON) 7351 0.967† 0.244† 0.854† 0.113† 0.063† 72.4†

200

Centralized heuristic 58 6.408 1.974 1.178 5.230 0.220 1.0

Distributed heuristic 55 1.537 0.028 1.537 0.000 0.053 200.0

Greedy heuristic 55 1.486 0.046 1.001 0.485 0.051 100.0

Neighborhood search (with centralized heuristic) 96 1.951 0.423 0.899 1.052 0.067 90.5

Neighborhood search (with distributed heuristic) 195 1.093 0.019 0.949 0.143 0.037 110.5

GRASP 791 1.393 0.017 0.758 0.635 0.048 86.7

Branch-and-reduce (GAMS/BARON) — — — — — — —

—: Solver terminates early without completing a single iteration; hence, no approximate solution can be reported.

†: Solver exceeds runtime limit before finding the global optimum; yet, we report the current best solution from the last iteration.

Table 5: These experiments compare the runtime and the characteristics of the solutions from the different optimization

methods in the dense scenario with cscale = 25. Results are averaged across 10 random instances. The variance of

the retrieved objective (i. e. the total costs) across 10 runs is reported in order demonstrate the stability with which

the different approaches generate solutions. The column with relative costs denotes the ratio of total cost to overall

demand. It is thus independent of N in order to compare the solutions across different instances of N . The legend

additionally indicates experiments where solvers exceed our runtime limit of 2 h (i. e. 7,200 s). The best solution

approach for each N is highlighted in bold.
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5.4. Results from the sparse scenario

Table 6 compares the optimization methods and the solutions in the sparse scenario. Again,

the baseline solver, branch-and-reduce, finds optimal solutions for small scenarios with N = 5 and

N = 10. Similarly to the dense scenario, its execution time exceeds our runtime limit already for

N = 25.

Analogously to the dense scenario, the centralized and distributed construction heuristics find

solutions with 1 and N plants, respectively. The distributed construction heuristic does not require

any transmission and, thus, distances between locations may be ignored. Consequently, it achieves

the same cost in the dense and sparse scenarios. In contrast, the centralized construction heuristic

results in more expensive solutions in the sparse scenario due to longer transmission lines.

The increased distances between locations also result in a diminished performance of the neigh-

borhood search with centralized heuristic. This heuristic yields in solutions which are even more

expensive than those in the dense scenario. Again, the neighborhood search with distributed heuris-

tic achieves the lowest cost of all optimization methods for N ≥ 25.

Our GRASP implementation yields the lowest-cost solutions in the N = 5 and 10 scenarios. In

the other scenarios, with higher N , it does not outperform the neighborhood heuristic and also takes

significantly longer. However, in contrast to branch-and-reduce, execution times are still feasible

for N = 200.

Branch-and-reduce identifies optimal solutions in the small scenarios with N = 5 and N = 10.

However, compared to the dense scenario, these solutions are more expensive (costs almost doubles)

and make use of many more plants. Thus, in the sparse scenario, branch-and-reduce finds solutions

which are closer to a distributed solution, whereas the optimal solutions to the dense scenario

resemble relatively centralized arrangements.

5.5. Comparison of dense and sparse scenario

Tables 5 and 6 also reveal interesting characteristics in which the solutions differ across both

scenarios. The average total costs in the sparse scenario generally exceed those of the dense scenario,

since they require higher investments in transmission infrastructure or, alternatively, additional

plants with accumulated fixed costs. This difference becomes especially apparent when focusing on

the relative costs. These span the interval from e0.02 million to e0.22 million per GWh in the dense

scenario, while they range from e0.04 million to e0.942 million per GWh in the sparse scenario.

This surplus stems especially from an increase in power plants, as a close inspection reveals that the
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N Solver
Total

time (s)

Total cost

(mn EUR/h)

Variance of total

cost across runs

Generation

cost (mn EUR/h)

Transmission

cost (mn EUR/h)

Relative cost

(= total cost /

overall demand
∑
Di)

Avg. plant

count

5

Centralized heuristic 0 0.064 0.003 0.052 0.012 0.077 1.0

Distributed heuristic 0 0.057 0.003 0.057 0.000 0.065 5.0

Greedy heuristic 0 0.057 0.003 0.054 0.003 0.064 3.0

Neighborhood search (with centralized heuristic) 1 0.055 0.003 0.051 0.004 0.063 2.7

Neighborhood search (with distributed heuristic) 1 0.053 0.003 0.052 0.002 0.058 3.3

GRASP 5 0.053 0.003 0.051 0.003 0.058 2.9

Branch-and-reduce (GAMS/BARON) 36 0.053 0.003 0.051 0.002 0.058 3.9

10

Centralized heuristic 0 0.165 0.012 0.069 0.096 0.118 1.0

Distributed heuristic 1 0.080 0.001 0.080 0.000 0.061 10.0

Greedy heuristic 1 0.081 0.002 0.071 0.009 0.061 5.0

Neighborhood search (with centralized heuristic) 2 0.076 0.002 0.053 0.023 0.061 5.8

Neighborhood search (with distributed heuristic) 2 0.063 0.001 0.056 0.007 0.051 7.0

GRASP 8 0.061 0.001 0.041 0.020 0.049 5.8

Branch-and-reduce (GAMS/BARON) 48 0.057 0.001 0.040 0.017 0.045 7.3

25

Centralized heuristic 2 0.857 0.063 0.202 0.655 0.244 1.0

Distributed heuristic 1 0.218 0.004 0.218 0.000 0.059 25.0

Greedy heuristic 1 0.230 0.005 0.187 0.043 0.063 13.0

Neighborhood search (with centralized heuristic) 4 0.289 0.026 0.137 0.152 0.073 14.0

Neighborhood search (with distributed heuristic) 5 0.181 0.004 0.155 0.026 0.048 17.6

GRASP 27 0.189 0.006 0.147 0.042 0.049 15.4

Branch-and-reduce (GAMS/BARON) 7260 0.157† 0.004† 0.124† 0.033† 0.041† 16.6†

100

Centralized heuristic 16 7.526 4.475 0.549 6.977 0.491 1.0

Distributed heuristic 16 0.783 0.006 0.783 0.000 0.051 100.0

Greedy heuristic 19 1.065 0.023 0.616 0.449 0.070 50.0

Neighborhood search (with centralized heuristic) 22 1.807 0.682 0.626 1.181 0.118 60.8

Neighborhood search (with distributed heuristic) 55 0.684 0.006 0.604 0.079 0.045 70.6

GRASP 222 1.008 0.082 0.638 0.370 0.066 68.1

Branch-and-reduce (GAMS/BARON) 13,440 2.616† 3.297† 2.389† 0.226† 0.172† 93.1†

200

Centralized heuristic 63 27.326 31.711 1.178 26.148 0.942 1.0

Distributed heuristic 61 1.537 0.028 1.537 0.000 0.053 200.0

Greedy heuristic 58 2.568 0.527 1.147 1.420 0.088 100.0

Neighborhood search (with centralized heuristic) 80 6.180 10.918 1.166 5.014 0.209 117.6

Neighborhood search (with distributed heuristic) 208 1.317 0.018 1.156 0.161 0.045 134.4

GRASP 847 2.356 0.066 1.211 1.145 0.081 140.4

Branch-and-reduce (GAMS/BARON) — — — — — — —

—: Solver terminates early without completing a single iteration; hence, no approximate solution can be reported.

†: Solver exceeds runtime limit before finding the global optimum; yet, we report the current best solution from the last iteration.

Table 6: These experiments compare the runtime and the characteristics of the solutions from the different optimization

methods in the sparse scenario with cscale = 125. Results are averaged across 10 random instances. The variance of

the retrieved objective (i. e. the total costs) across 10 runs is reported in order demonstrate the stability with which

the different approaches generate solutions. The column with relative costs denotes the ratio of total cost to overall

demand. It is thus independent of N in order to compare the solutions across different instances of N . The legend

additionally indicates experiments where solvers exceed our runtime limit of 2 h (i. e. 7,200 s). The best solution

approach for each N is highlighted in bold.
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average number of plants rises. For instance, the branch-and-reduce baseline suggests an average of

2.3 plants in the dense scenario, while this number increases to 3.9 plants in the sparse scenario. At

the same time, transmission costs decline from approx. e16 k to e2 k per hour. In summary, the

sparse scenario demands solutions with a higher degree of distributed power generation.

6. Case study: Optimization of the electricity infrastructure in Germany

This section presents a real-world case study in which we apply our algorithms to the EGTP

of Germany, with a peak demand of approximately 83.1 GW. For this purpose, we collected the

locations of all N = 4,537 municipalities. The corresponding demand is estimated by multiplying

the relative population of each municipality by the previous peak demand per hour (see Figure 2).

We again utilize the previous costs for power generation and transmission, as well as the same solver

parameters.

Figure 2: Points show locations of all 4,537 mu-

nicipalities in Germany, with the point size in-

dicating the electricity demand.

Figure 3: Solution computed by the reduced

variable neighborhood search (with distributed

heuristic) for the real-world case study.

Table 7 lists the results of our optimization methods. Detailed comparisons are provided in

the online appendix. The reduced variable neighborhood search, together with the distributed

construction heuristic, obtains the lowest total costs, amounting to e5.1 million per hour. The

reduced variable neighborhood search solution is visualized in Figure 3 and it serves as the basis in
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all subsequent evaluations. The corresponding solution entails 2,385 power plants, which collectively

yield an overall generation capacity of 83.1 GW. We notice several large-scale plants for brown coal

and hard coal with capacities above 1 GW, as well as a large number of small and distributed power

plants. These findings are comparable with the electricity infrastructure in Germany, where 1,618

power plants are currently in use.

Solver
Total

time (h)

Total cost

(mn EUR/h)

Generation

cost (mn EUR/h)

Transmission

cost (mn EUR/h)

Number of

plants

Avg. plant

capacity (GW)

Power

transmitted (GW)

Centralized heuristic 13 33.667 6.452 27.215 1 83.100 79.540

Distributed heuristic 15 8.062 8.062 0.000 4537 0.018 0.000

Greedy heuristic 19 10.109 2.525 7.584 195 0.426 65.032

Neighborhood search (with centralized heuristic) 110 13.006 3.237 9.769 1829 0.046 82.443

Neighborhood search (with distributed heuristic) 114 5.096 4.886 0.210 2385 0.035 36.824

GRASP 460 8.942 3.339 5.604 1857 0.044 79.733

Table 7: Comparison of optimization methods for the real-world case study. The best solution approach is highlighted

in bold.

We report further descriptive statistics pertaining to the abovementioned solution as follows

(see Table 8). Evidently, at the nationwide level, electricity generation is dominated by solar power,

followed by fossil sources. As expected, solar generation is driven by a large number of small-

sized plants (i. e. 147 with an average capacity of 28.3 MW), whereas large-scale power plants (e. g.

brown coal plants) are primarily placed in metropolitan areas with a high population density (e. g.

North Rhine-Westphalia and cities that are distant from others such as Munich). Overall, the

EGTP suggests a rather decentralized solution, especially when compared to the current electricity

infrastructure in Germany. Notwithstanding, this suggestion is in line with current policy efforts

that favor a decentralized distribution mix.

Generation type Number of plants Total capacity (GW) Average capacity (MW) SD

Fossil, thereof: 647 34.41 53.18 0.19

Biogas 573 14.93 26.05 0.04

Brown coal 50 9.56 191.16 0.27

Hard coal 10 3.06 305.99 0.43

Gas 14 6.86 490.08 0.88

Solar 1497 42.38 28.31 0.06

Wind 241 6.58 27.31 0.03

Total 2385 83.37 34.96 0.11

Table 8: Comparison of the distribution mix as computed in the EGTP, where SD refers to the standard deviation

of the average capacity.
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We finally compare the solution from the EGTP against the spatial distribution of actual power

plants in the wider area of Berlin (see Table 9). Specifically, we choose a rectangular area 50 km

in length, which covers a population of approximately 4 million people with the largest cities being

Berlin, Potsdam and Falkensee. Our optimization method has placed a total generation capacity of

4.1 GW in this area, which largely consists of fossil power (3.9 GW) and, to a smaller extent, solar

power (0.2 GW). In comparison, the actual distribution of all power plants together in that area

exhibits a smaller total generation capacity, which amounts only to 1.65 GW. It is stems largely

from fossil sources (i. e. 1.55 GW), followed by solar (i. e. 0.05 GW) and wind (i. e. 0.06 GW).

Hence, the solution proposed by EGTP can be considered rather self-sufficient as most generation

facilities are located in close to the demand locations, while the actual solution is considerably more

dependent on transmission. According to our optimization against the peak demand, the demand

can reach up to 4.2 GW, in which case energy would need to be imported into that geographic

region in the current grid layout, whereas our suggested layout could largely cover this demand

without imports. We observe approximately the same distribution between fossil (approx. 94 %)

and non-fossil generation capacities (approx. 6 % for wind and solar). Furthermore, we point out

that several of the locations in the actual grid layout (e. g. Berlin, Potsdam) overlap, while others

are in close proximity (e. g. Kleinmachnow vs. Schönefeld). Similarly, we also see that the EGTP

results in a large number of plants overall (11 vs. 7). Finally, we point out that some differences

might be due to the fact that actual costs could potentially differ from those that we assumed in

our model parameterization.

Generation Our EGTP solution Actual distribution

type Capacity (GW) Share (%) Locations Capacity (GW) Share (%) Locations

Fossil 3.87 0.94 Berlin, Kleinmachnow,

Potsdam, Seddiner See,

Wustermark

1.55 0.94 Berlin, Potsdam,

Schönefeld, Wilmersdorf

Solar 0.23 0.06 Dallgow-Döberitz,

Hoppegarten, Ludwigs-

felde, Mittenwalde,

Rangsdorf, Zeuthen

0.05 0.03 Berlin

Wind 0.00 0.00 — 0.06 0.04 Berlin, Kleinmachnow

Total 4.10 1.65

Table 9: Comparison of the distribution mix as computed in the EGTP (left) and in the actual region of Berlin,

Germany.
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7. Conclusion

This paper proposes a novel electricity generation and transmission problem that aids prac-

titioners and policy-makers in designing large-scale electricity systems. We consider the specific

problem characteristics that arise in high-voltage transmission grids and that differ considerably

from the extensive research on low-voltage distribution grids within municipalities, whereas high-

voltage transmission grids have received only little attention. Our proposed problem models the

combined costs for power generation and transmission infrastructure and specifically incorporates

fixed upfront investments, as well as a variable, non-linear component. We show how to optimally

solve this model using branch-and-reduce. However, the runtime of this approach ballons quickly for

medium-sized instances with N ≥ 25 locations. This renders it necessary that we develop heuristics

in order to address problem instances that arise in practice with N > 1, 000. For this reason, we

exploit the geometric structure and suggest different construction heuristics based on centralized

and distributed power generation, as well as a locally-centralized variant with greedy properties.

In addition, we devise an improvement heuristic that implements a reduced variable neighborhood

search. Lastly, both are combined in a GRASP metaheuristic. All heuristics succeed in our goal of

solving problem instances in a reasonable amount of time. This is finally demonstrated by our case

study based on the nationwide electricity infrastructure in Germany.

The EGTP enables practitioners and policy-makers to infer decision support for designing elec-

tricity systems. It specifically helps in considering the intricate trade-off between extensive trans-

mission infrastructure and highly distributed power generations (e. g. by renewable energy sources).

The EGTP not only facilitates the design of brownfield settings as utilized in our computational

experiments, but also allows for the study of greenfield setups by specifying the cost parameters

accordingly, i. e. setting generation and transmission costs for existing facilities to zero or to the

investments necessary for enlarging it.

The EGTP has manifold applications in practice, as it can also be utilized in use-cases where

electricity infrastructure undergoes extensive modifications, e. g. due to policy goals or interna-

tional treaties stipulating climate objectives. For instance, it can help in optimizing the electricity

infrastructure in Germany after the nuclear power phase-out or the infrastructure in Japan in the

wake of the Fukushima disaster. Altogether, this work provides valuable and powerful insights for

decision-makers in the field of electricity systems.

Infrastructure planning in the electricity sector is subject to the inherent uncertainty of future

developments, forecasted demands, and expected material cost. In practice, this is commonly
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addressed by scenario planning and, as shown earlier by comparing the variance across different

numerical experiments for the same grid size, our EGTP model can be naturally leveraged in

such cases. Its formalization, as well as the corresponding optimization routines, are intentionally

designed so that they foster extensibility and, analogous to Snyder (2006), could be used when

extending this work into a stochastic variant of the EGTP.

In future work, the EGTP might be extended by additional constraints, such as a certain energy

mix or production quota for renewable energy sources in order to satisfy regulatory obligations. It

is noteworthy that the EGTP can easily adapt to regional differences in costs; for instance, it can

take into account the fact that certain regions are more suited to solar or wind power than others.

Finally, it is straightforward to adapt the problem to variable renewable energy sources (VRES) or

peak load curves by making the supply and demand variables time-dependent, simply by adding

an additional index. Moreover, practitioners might desire to repeat the analysis for different hours

of the day (or a year) in order to identify a solution that can live up to the requirements of a peak

load scenario.
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