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Dynamic demand estimation for an AMoD system in Paris

Sebastian Hörl, Milos Balac, and Kay W. Axhausen

Abstract— A simulation framework is presented that equili-
brates a given automated taxi fleet with (a) consistent prices to
provide the service and (b) customer behaviour that reacts to
costs and level of service alike. In a first attempt, a hypothetical
AMoD service within the highway ring of Paris is considered.
The “dynamic demand” case yields a demand of around 1.2M
trips per day for such a service at the optimal fleet size of
25k vehicles. This number is considerably lower than 2.3M
trips that potentially could be served in a “static maximum
demand” case which has often been used as a basis for
previous fleet sizing studies. While the authors acknowledge
a multitude of assumptions that constitute the present model,
clear pathways to its improvement, methodologically and data-
wise, are provided.

I. INTRODUCTION

Automated vehicles have become an active field of re-
search in transport planning over the recent years. While
technology is developing with quick pace, more and more
insightful studies considering the impact of automated ve-
hicles on the transport system are conducted. Especially
the case of Autonomous Mobility on Demand (AMoD), i.e.
automated taxis, is discussed vividly: While a shift towards
the sharing economy with less private vehicle ownership
and more service-oriented mobility promises to reduce the
number of vehicles on the roads and offer mobility to
previously excluded user groups, negative impacts are to
be expected as well. A usual assumption is that, although
less vehicles would be on the roads, they would drive more
than before. The vehicle kilometers travelled (VKT) would
increase because of empty rides to the customers, redistri-
bution of vehicles in the network or even induced demand
if travelling gets so convenient. This would come with the
negative effects that go along with increasing VKT such as
faster deterioration of infrastructure and higher emissions.

The contribution of this paper to the ongoing discussion
around automated mobility is twofold: To the best knowledge
of the authors, the study provides a first estimate of an AMoD
fleet size for the city of Paris. By that means a novel agent-
based transport model for the Île-de-France region is intro-
duced. Furthermore, the work exceeds previous attempts of
fleet size estimates by providing a methodology that does not
only consider a static trip demand. In this study a dynamic
demand that is sensitive to the cost of transportation and
level of service must be served by a properly sized AMoD
fleet. The presented methodology is based on an extended
study that has been conducted for Zurich, Switzerland [1].

II. BACKGROUND

Control and management of automated vehicle fleets has
become an active field of research over the past five years.

The following paragraphs shall give a brief overview of past
simulation studies that have been performed for various use
cases around the world.

One of the first large-scale simulations was performed in
[2] for Singapore. The study finds that the whole transport
demand of the city could be covered by one third of today’s
vehicle fleet if it entirely would consist of automated single-
occupancy vehicles.

Subsequently, a series of studies have been performed for
the case of Austin, Texas. In [3] a grid-based simulation
for the city is introduced. For an artificial demand based
on real-world trip generation rates and randomly assigned
destinations it is found that Austin’s demand in private car
trips could be served by an automated vehicle fleet that is
reduced by 90% compared to today. The use case is further
extended in [4], where an electric charging infrastructure is
assumed. Further studies introduce a more detailed demand
for the scenario, based on static trips from the regional
household travel survey (HTS). [5] introduces congestion to
the simulation and finds that this has a strong impact on
fleet size. In [6] a choice model is applied, though in a post-
processing step. After a detailed daily travel demand from
HTS is simulated using an approach that had been applied
to the canton of Zurich before [7], a discrete choice model
is fed with information about travel and waiting times to
analyze potential mode shares in Austin. The utility function
is entirely based on literature, no model is estimated from
stated preference (SP) data. Finally, [8] extends the Austin
case with a ride-sharing component and finds that it could
reduce wait times for the customers and mitigate the increase
of VKT (vehicle kilometers travelled) due to empty rides.
However, customer preferences for the service are not taken
into account.

For the case of Berlin, [9] use a static travel demand
from the regional HTS to create a MATSim [10] (see below)
simulation with automated taxis. All car trips within the city
boundaries are replaced by the service, leading to a scenario
where one tenth of all vehicles could be replaced if every
agent in the simulation was to use the service with acceptable
wait times. In the same scenario [11] find that also allowing
public transport users leads to a linear increase in needed
fleet size. Finally, [12] introduce congestion to the simulation
showing that without significant gains in road capacity due to
automation a fleet of automated taxis serving all of the city’s
demand would worsen congestion dramatically. On the other
hand, automated vehicles are found to be likely to mitigate
parking search problems in the city [13].

For Zurich, [14] shows that under ideal flow conditions a
fleet size of around 7000 to 14 000 automated taxis would



be able to serve the mobility demand of the city. Using a
detailed agent-based daily travel demand from HTS data, it is
shown that the dispatching strategy has a large impact on the
performance of the fleet. Extended work [1] combines this
simulation with a detailed model of costs for automated mo-
bility [15]. A choice model for conventional and automated
modes of transport alike is estimated from a large-scale
stated preference survey in the canton of Zurich and added
dynamically to the simulation. The study constitutes the first
simulation in which a closed cycle between simulation of
demand and supply is able to not only estimate what fleet
size would be able to serve a certain demand, but also for
which fleet size and service characteristics customers would
be willing to pay.

A similar approach is shown in [16] for a not further
specified European city. Not using an agent-based transport
model, the simulation is based on trip generation rates, which
are in turn dependent on a discrete choice model that is fed
with travel and waiting times from a previous simulation of
the generated trips. Hence, equilibrium of supply and demand
can be achieved.

Further simulations based on Aimsum have been per-
formed for Munich [17], [18] where HTS data and real-
world car-sharing data is used to establish a demand that
is to be covered by automated taxis. [19] introduce another
simulation platform for Lisbon, where HTS data is used in
a static way, but where the choice for various automated
mobility services is determined by a heuristic model based
on expert opinion.

For France, a number of studies can be mentioned. [20]
propose a simulation framework of automated busses in
Palaiseau close to Paris. Demand is static and based on trip-
generation rates at well-defined spots in the system. The
simulation is extended in [21], where a choice model is
introduced to establish a dynamic demand. Utilities for the
choice model are based on literature values.

A first simulation with automated vehicles in Paris is
presented in [22]. Based on census and HTS data, similar to
the paper at hand, the characteristics of a static fleet of 17 000
vehicles are examined serving a detailed dynamic demand
based on a classic MATSim simulation. No SP data is used,
but a heuristic that, based on literature, models the attractivity
of an automated taxi service for different sociodemographic
and income-based groups. As a first study in the field the
impact of such a fleet on sociodemographic groups is studied
in detail. The framework is further applied to the city of
Rouen [23], where a fleet sizing given diverse user group
preferences is performed. It is found that user preferences
may have a strong impact on the utilization of such a service.

III. SIMULATION FRAMEWORK

As can be seen from the previous section, agent-based
models are commonly applied to the simulation of AMoD
systems because of their ability to model individual trips
and interaction of entities such as travellers and taxis. For the
study at hand the agent-based transport simulation framework
MATSim has been chosen. In the next section a short

introduction to MATSim will be given, followed by a more
detailed discussion of a number of extensions that have been
made to the system.

A. MATSim

A typical MATSim simulation needs a population of
travellers as an input. It contains a large number of traveller
agents with sociodemographics and detailed daily plans. An
agent may have multiple activities throughout one day that
should be conducted at a certain time for a certain duration.
Those activities are connected by trips, which are assigned
a certain mode of transport.

For the simulation of road-based traffic MATSim provides
a network simulation component which works in a timestep-
and queue-based manner. Depending on when agents enter
certain road segments they may be delayed due to emergent
traffic jams or get slowed down because of busses or other
vehicles blocking the road.

For the present work, mainly the convenient data structures
of MATSim, as well as the network simulation are used. On
top of that, standard MATSim also provides an “evolutionary
learning loop” in which agents adapt their daily plans to the
given transport system and other agents’ decisions. In this
work, a different approach is used which applies a discrete
mode choice model directly to modify agents’ plans.

B. Discrete mode choice model

In standard MATSim, agents learn by applying random
modifications to their current plan, assigning a score as soon
as it has been simulated in the next iteration of the simulated
day and comparing this score to previously tested plans. By
always keeping (and selecting between) a number of plans
as the basis for the next iteration and by always removing
the worst ones, each agent optimizes its own plan until a
stochastic user equilibrium is reached. Unfortunately, this
process can be rather slow since improvements happen purely
by chance and the probability that highly unlikely plans are
generated for testing (such as walking to work for 50km) is
high.

For these and other reasons, work has recently been
put into using existing discrete choice models within the
MATSim loop to make decisions [24], [25]. The way the
system works (Figure 1) is that choice dimensions such as
travel times, waiting times and others are estimated from
the latest network simulation and/or previous iterations. At
the end of each cycle a configurable share of agents applies
a given mode choice model to their plans. Subsequently,
the state of the transport system will change and different
decisions may be taken in the next iterations. Ultimately,
mode shares stabilize and go into equilibrium with the traffic
conditions in the network.

The framework makes it easy to switch between different
model formulations. Currently, utility functions can be used
in a best-response context or as part of a multinomial
logit model[26]. Also, a purely random selection of choice
alternatives can be configured. In any case, the choice set
available to an agent is restricted by a number of constraints,
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Fig. 1. Iterative structure of the simulation: First, the synthetic population
is simulated (in combination with automated taxis). Second, predictions for
the updated choices of the travellers are made. Third, based on the prediction
a mode choice model is used to arrive at new daily travel plans.

the most important being the “vehicle continuity constraint”.
It defines that an agent is only allowed to choose a certain
mode of transport if the respective vehicle has been moved
to the origin of the trip in question. For purely trip-based
models, the considered choice sets consist of single mode
options for a specific trip, but tour-based or whole day-
based choice sets can be generated to allow for richer, but
computationally more expensive decisions.

C. Simulation of automated vehicles

For the simulation of automated vehicles an extension to
MATSim [27], [28] is used. Each vehicle is simulated inde-
pendently in the network. A global dispatching component
controls the movement of fleet vehicles and manages the
assignment of requests. Those requests are created online,
i.e. as soon as a traveller wants to depart at a certain location.
The dispatcher then uses a heuristic algorithm developed in
[9]: In case there are more unoccupied vehicles than pending
requests in the system the closest vehicle to any incoming
request is assigned to it. If the amount of requests exceeds
the amount of available vehicles a vehicle is assigned to its
closest request as soon as it becomes available. The vehicle
then drives through the network to pick up the customer and
subsequently moves the passenger to its destination. No re-
assignments of requests and vehicles while approaching the
customer are taking place in this approach.

It must be noted that the heuristic approach is optimized
for simulation speed, while other algorithms may produce
better results. In fact, previous studies [14] have shown that
more computationally expensive algorithms may outperform
the heuristic, especially with regards to specific objectives
such as minimizing overall customer waiting time or mini-
mizing fleet empty mileage. Many of such algorithms have
been developed in the AMoDeus framework [29], which adds
an open easy-to-use fleet management benchmarking layer
on top of the code used here.

IV. SYNTHETIC POPULATION OF PARIS

To perform the proposed fleet sizing experiments, the
simulation framework needs to operate on a population of
synthetic agents. The following section details how such

a population is set up for the Île-de-France region, which
surrounds the city of Paris. Afterwards, further modifications
for future scenarios of automated mobility are described.

A. Baseline Scenario

The novel synthetic agent population of Paris consists of
individual persons, aggregated to households, which have a
rich set of individual daily activity schedules. It is known
where people live, where they work, where they perform
leisure or shopping activities, and when and in which order
they want to perform them.

The population is created in a multi-step process:
• For France, a large sample of census data1 is available

for 2015. In the first synthesis step, the households
contained in this data set are filtered such that only
residents of the Île-de-France region remain. Using the
provided weights, a full population for the region is
sampled, which includes all relevant socio-demographic
attributes such as age, gender, employment and more.

• In order to synthesize daily activity chains for those
agents, the regional Household Travel Survey is used
(Enquête globale de transport2). It contains the activity
chains of 35,175 respondents including information
about their sociodemographics. Using these attributes,
activity chains are attached to all synthetic agents by
statistical matching.

• Home locations of all households are known from the
census data, but only on the basis of IRIS zones (see
Figure 2). Therefore, a discrete location within the
respective zone is sampled for each household. For
primary activities (like work and education) commuter
matrices3 are used to sample destination zones pro-
portionately given the homes of the agents. For all
other activities (shopping, leisure, errand) locations are
sampled at random from the French Enterprise Census
2016 (Base permanente des équipements4) such that
they are consistent with modes and travel times in each
agent’s daily plan.

• Finally, the synthetic population is converted to the
MATSim data format to be used by the simulation.

To model the supply side two major data sources are
used. First, OpenStreetMap data5 is used to create a road
network of Île-de-France. Second, public transit schedules,
which are published on a regular basis for the whole region6,
are integrated. These steps are performed using existing tools
[30] in the MATSim ecosystem. It is worth noting that all
used data sets, except the HTS, are publicly available.

Subsequently, the population is simulated in MATSim in
combination with the discrete choice extension. The choice

1https://www.insee.fr/fr/statistiques/3625223?sommaire=3558417
2http://www.driea.ile-de-france.developpement-durable.gouv.fr/enquete-

globale-de-transport-r18.html
3https://www.insee.fr/fr/statistiques/3566008?sommaire=3558417
4https://www.data.gouv.fr/fr/datasets/base-permanente-des-equipements-

1/
5https://download.geofabrik.de/europe/france/ile-de-france.html
6https://opendata.stif.info/explore/dataset/offre-horaires-tc-gtfs-

idf/information/
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Fig. 2. Map of Paris with the IRIS zoning system. The colored area is used
as the operating area in this study. (Map: OpenStreetMap / Wikimedia)

TABLE I
PARAMETERS OF THE DISCRETE MODE CHOICE MODEL

Car αcar 1.35
βtravelTime,car −0.0667 [min−1]

Public Transport αpt 0.0
βnumberOfTransfers −0.17
βinVehicleTime −0.017 [min−1]
βtransferTime −0.0484 [min−1]
βaccessEgressTime −0.0804 [min−1]

Bike αbike 0.1
βtravelTime,bike −0.15 [min−1]
βage,bike −0.0496 [a−1]

Walk αwalk 1.43
βtravelTime,walk −0.09 [min−1]

Others βcost −0.206 [EUR−1]
λ −0.4
θaverageCrowflyDistance 40 [km]

Calibration θparkingSearchPenalty 4 [min]
θaccessEgressWalkTime 4 [min]

model formulation is documented in Equations 1 to 4 with
the parameter values given in Table I. Expressions denoted as
x describe choice variables while θ and a denote calibration
parameters and agent-specific constants, respectively.

ucar(x) = αcar

+ βtravelTime,car · xtravelTime,car

+ βtravelTime,car · θparkingSeachPenalty

+ βtravelTime,walk · θaccessEgressWalkTime

+ βcost ·
(
xcrowflyDistance

θaverageDistance

)λ
· xcost,car

(1)

upt(x) = αpt

+ βnumberOfTransfers · xnumberOfTransfers

+ βinVehicleTime · xinVehicleTime

+ βtransferTime · xtransferTime

+ βaccessEgressTime · xaccessEgressTime

+ βcost ·
(
xcrowflyDistance

θaverageDistance

)λ
· xcost,pt

(2)

ubike(x) = αbike

+ βtravelTime,bike · xtravelTime,bike

+ βage,bike · max (0 , aage − 18)

(3)

uwalk(x) = αwalk

+ βtravelTime,walk · xtravelTime,walk
(4)

Unfortunately, at the time of writing, the authors do not
have access to an extended version of the household travel
survey which includes geo-coded start and end locations of
observed trips. Since without that information no unchosen
alternatives can be examined, no specific model parameters
for the Île-de-France region could be estimated. Instead,
previously presented parameters and models for the city of
Zurich [25], [1] have been used as starting values. The model
parameters (with only slight modifications necessary) have
then been calibrated such that a number of distributions in
the simulation match well the observed reference data: travel
times and distances for each mode, mode shares in total,
by distance classes and by time of day. Therefore, all α
and β parameters in the model are initially estimated model
parameters that have been adapted to the agent population of
Paris. The strongest modifications have been applied to βcost,
which determines the cost sensitivity of the population. As
a first sanity check it can be stated that the value of time
in the calibrated model (calculated as βtravelTime,car/βcost) of
around 19.40 EUR/h falls well into the range that has been
reported previously for Île-de-France [31].

While a thorough presentation of the validation results
for the synthetic population and the choice model exceeds
the scope of this paper, we would like to refer the reader
to upcoming work [32], which will detail the steps briefly
mentioned above and provide more in-depth comparison with
reference data.

B. Future Scenarios

The aim of the future scenarios is to obtain an idea about
the demand for AMoD travel in Paris. For that purpose,
first an operating area needs to be chosen. For the sake
of simplicity, in this research, only the city area of Paris
within the highway ring is served by a fleet of automated
single-occupancy taxis (see Figure 2). Future studies may be
based on a more sensible choice of operating area as will be
explained below. Furthermore, our simulations assume that
the vehicles are electric, which has an impact on the cost of
the service.

Three experiments are set up. In the first experiment, a
best-response model is configured in such a way that all
trips that can be served by the automated taxi service must
be served by it. That means regardless of waiting times or
travel costs, any trips in the daily plans of all travellers that
are not otherwise constrained are converted to the AMoD
transport mode. Obviously, the experiment assumes that the
service is so attractive that it is used in any possible case. The
simulation yields therefore an estimate of the fleet size that
is needed to serve the “maximum static demand scenario”.



Second, the simulation is run with a multinomial logit
model with the additional AMoD transport mode. The pa-
rameters of the utility function are derived from existing pa-
rameters for public transport since at the time of conducting
the experiments no stated choice data or similar is available
to to the authors. The utility function is defined as follows:

uAMoD = αpt + βtravelTime,pt · xtravelTime,av

+ βtransferTime,pt · xwaitingTime,av

+ βcost · pav · xnetworkDistance,av

(5)

The waiting times are based on moving average estimates
over 10 iterations. Spatially, they are estimated on the basis
of IRIS zones. Here, pav denotes the price per kilometre,
which is fixed to various values in a number of experiments.
The experiment therefore has the purpose to explore the
resulting demand in the system given a dependency of the
choice behaviour on the level of service, a fixed fleet size
and a fixed price level.

The third experiment makes use of a detailed cost model
of automated mobility [15]. It has been successfully applied
to the case of Zurich, Switzerland and has recently been
applied to a range of cities worldwide [33]. Depending on
the fleet utilization, empty distance, fleet sizes, among other
components, the cost model calculates a passenger price per
kilometre that covers the expenses of maintaining the service.
In the present simulation setup those prices are calculated
in each iteration, while a moving average of the previous
10 iterations is fed into the choice model as described in
Equation 5. The cost model itself is specified by maintenance
costs, interest costs and a multitude of additional factors.
Unfortunately, to date, no specific assumptions for Paris are
available. Therefore, to present the methodology for a fully
dynamic demand estimate, the model specification for Berlin
is used, which should be closest to the case of Paris among
the available city-specific parameter sets. In the present case,
the cost model is configured such that the service should
always have zero net costs, i.e. no profit margin is included.

It is important to mention that in all experiments trips that
are performed using the “walk” or “bike” transport mode
in the baseline scenario are never converted to AMoD trips.
Furthermore, constant travel times within 5 minute bins on
all network links are enforced as measured from the baseline
scenario. Therefore, effects in travel time changes due to
fewer or more vehicles on the road are deliberately ignored
here. This way, we avoid to motivate additional assumptions
on flow efficiency effects of automated vehicles in the current
stage of this research.

All simulations are run using a 10% sample of the full
agent population. This way, feasible simulation times of
around 5h per simulation on a modern cluster are achieved.

V. RESULTS

The “maximum demand scenario” yields a number of
2.3M trips that must be served by the AMoD fleet. This
number can be compared to the waiting time-dependent cases
as depicted in Figure 3. The demand, that is attracted once
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Fig. 3. Dependency of the number of trips done using the AMoD service
on fleet size. In the fixed price cases (blue) low fleet sizes lead to high
waiting times and low demand, in the dynamic price case (red), high prices
for large fleet sizes lead to a demand maximum at around 25k vehicles.

the choice model is in place and waiting time is considered,
never reaches this maximum value. In fact, with a maximum
of around 1.4M trips it is only slightly more that half the
number of possible trips that could be converted to the
AMoD transport mode.

The dependency of demand on fleet size is as expected:
With increasing fleet sizes more demand is attracted until
it goes into saturation. The low number of trips for small
fleet sizes are a direct consequence of the poor waiting
times that are produced by smaller AMoD fleets. Also, the
travellers’ reaction to different prices that are imposed on
AMoD travels makes sense: The lower the price, the more
demand is attracted in these simulations.

Finally, in the last set of simulations the price is not
predefined but calculated from the cost model. The “dynamic
pricing” graph in Figure 3 shows that there is a demand
maximum if level of service and prices are considered:
Larger fleet sizes lead to higher costs and, therefore, to less
demand. In these simulations we arrive at an optimal fleet
size of around 25k vehicles which would be able to attract
around 1.2M trips during one day. This is one half of all
trips that would structurally be possible.

Since the prices, as the waiting times, are endogenous in
these simulations, it is interesting to have a look at them,
too. Figure 4 shows that there is a price minimum at around
10k vehicles. Still, at this fleet size already a fair share of
demand is lost due to high waiting times. Decreasing the
fleet size further even leads to higher prices because of low
demand.

The price at the demand optimal fleet size of around 25k
vehicles is around 0.27 EUR per passenger kilometer. In
comparison7 a price of 0.3 EUR/km is listed as the cheapest
full cost per vehicle kilometer for car ownership in France.
Therefore, such a service could be highly attractive for

7https://www.largus.fr/actualite-automobile/prk-2018-ce-que-vous-coute-
reellement-votre-voiture-en-2018-8987391.html
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Fig. 4. Dependency of price on AMoD fleet size for the dynamic price
case. High fleet sizes lead to high investment costs and therefore high prices
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today’s car users if their travels are mainly confined to the
proposed operating area. Unsurprisingly, today’s minimum
taxi fare of 1.07 EUR/km8 in the city exceeds the AMoD
tarif by far.

VI. DISCUSSION

While the results presented above are able to provide a
first idea of how a fleet of automated taxis in Paris could
look like, they are by no means definitive. Three important
components of the simulation can be improved easily, given
the necessary data becomes available:

• First, the cost model of automated mobility for the case
of Berlin is used in this research as it seems to be closest
to Paris among those cities that have been assessed to
far. Applying the methodology of [15] explicitly for the
case of Paris will yield a more consistent picture of
customer prices.

• Second, the choice model and its parameters are derived
from a model for Zurich due to the lack of a discrete
choice model that is compatible with the choice di-
mensions provided by MATSim and Île-de-France data.
A specifically estimated choice model for the region
or a spatially detailed version of the Enquête globale
de transport to conduct such an estimation would help
improve the consistency of the behavioural component
of our model.

• Third, the ideal case would be a discrete choice model
including AMoD services and the attitudes of the Île-
de-France population towards such an offer.

For the sake of brevity, the analysis in this paper is
restricted to the interplay of (revenue neutral) prices and
the AMoD demand. Of course, our simulation framework
allows the analysis of a multitude of additional dimensions
such as vehicle replacement rates, empty distances, overall

8https://www.service-public.fr/professionnels-
entreprises/vosdroits/F22127

driven distance, emissions, gains and losses in travel time,
even gains and losses in (utility-based) welfare on a per-
agent basis. This also makes it possible to analyse the impact
of an AMoD service for specific sociodemographic groups.
Especially the analysis of mode shifts will become important,
since a large share of demand in the presented simulations
is generated through former public transport users.

The framework allows to introduce a manifold of addi-
tional scenarios and to answer respective questions:

• The financial aspects of an AMoD service can be
examined. How do specific profit rates or subsidies
influence the system?

• Instead of door-to-door travels the AMoD fleet can be
simulated as feeder service for the commuter rail and
metro network [34]. How would this influence the use
of bus services in the city? Would this have impact on
the elderly or physically disabled who use such services
to avoid inaccessible metro stations?

• Currently the framework is being extended to allow for
limited pick-up and drop-off spaces in the network as
well as at public transit stations. Will spatial constraints
become an issue for the feasibility of a large-scale
AMoD service?

• More intelligent dispatching (and redistribution) algo-
rithms can be tested. Looking at previous studies the
authors expect a strong effect on the dynamic demand
depending on whether an empty-distance-minimizing
dispatcher is used or one that tries to distribute waiting
times equally in the operating area. While comparative
studies in static demand cases have been conducted [14],
there is no study to the knowledge of the authors that
has assessed different fleet operational strategies under
the presence of customer behaviour.

• Different scenario diameters can be defined: Currently,
the highway ring of Paris serves as an (computation-
ally feasible) example, which lacks political as well
as land-use considerations. For instance, neither the
main business district La Défense is included in the
scenario, nor are the two main airports Charles-de-
Gaulle and Orly. Many outer neighborhoods of the city
are neglected, where, for instance, feeder services to
the RER commuter rail could be of benefit to the local
population. A further interesting future path to explore
lies therefore in questions of land use policy and urban
development. For both fields the model at hand could
yield valuable inputs.

VII. CONCLUSION

To conclude, we want to focus on two main insights. First,
we show that taking into account traveller behaviour in de-
mand estimation for an AMoD service makes a big difference
in the results. The dynamic behaviourally consistent demand
is only half the maximal possible number of trips.

Second, we conclude that given our assumptions an AMoD
fleet could operate within the highway ring of Paris with
around 25k vehicles at a price of 0.27 EUR/km, which is low
compared to the full cost of using one’s own private vehicle



in Paris. This result confirms the findings of previous studies
that an AMoD fleet is indeed an economical alternative to
today’s private car ownership.

Our discussion provides an incomplete list of potential
future studies that could be conducted using the framework
at hand. While many of the assumptions in the model to
date are best guess, there lies great potential in improving it
through the various ways described above.
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model for Île-de-France and Paris,” Arbeitsberichte Verkehrs-und
Raumplanung, 2019.

[33] H. Becker, F. Becker, R. Abe, S. Bekhor, P. F. Belgiawan, J. Com-
postella, E. Frazzoli, L. M. Fulton, N. Garrick, D. Guggisberg Bicudo
et al., “Impact of vehicle automation and electric propulsion on
production costs for mobility services worldwide,” Arbeitsberichte
Verkehrs-und Raumplanung, vol. 1371, 2018.

[34] R. Haslebacher, “Intermodal Routing in MATSim Applied to SBB
Green Class,” Master’s thesis, ETH Zurich, 2018.


