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Abstract
Egomotion and scene estimation is a key component in

automating robot navigation, as well as in virtual reality
applications for mobile phones or head-mounted displays.
It is well known, however, that with long exploratory trajec-
tories and multi-session mapping for long-term autonomy
or collaborative applications, the maintenance of the ever-
increasing size of these maps quickly becomes a bottleneck.
With the explosion of data resulting in increasing runtime
of the optimization algorithms ensuring the accuracy of the
Simultaneous Localization And Mapping (SLAM) estimates,
the large quantity of collected experiences is imposing hard
limits on the scalability of such techniques. Considering
the keyframe-based paradigm of SLAM techniques, this pa-
per investigates the redundancy inherent in SLAM maps, by
quantifying the information of different experiences of the
scene as encoded in keyframes. Here we propose and eval-
uate different information-theoretic and heuristic metrics to
remove dispensable scene measurements with minimal im-
pact on the accuracy of the SLAM estimates. Evaluating the
proposed metrics in two state-of-the-art centralized collab-
orative SLAM systems, we provide our key insights into how
to identify redundancy in keyframe-based SLAM.

1. Introduction
Building on top of state-of-the-art Simultaneous Lo-

calization And Mapping (SLAM) systems with consider-
able robustness and accuracy in the centimeter range [23]
for single-robot scenarios, multi-agent system have been
gaining growing popularity in various applications, ranging
from inspection tasks to search-and-rescue missions. By
sharing information amongst the participants or dividing up
a task between multiple robots, robotic teams can increase
the robustness, efficiency and accuracy of a robotic mission
[16], and enable tasks impossible for a single robot. State-
of-the-art single-agent [22, 23] and centralized multi-agent
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[16, 25, 28] systems generate a global graph (the SLAM
graph or map), estimating the trajectory of the participating
robots as well as the 3D structure of the environment. With
these SLAM systems being able to cover large areas during
robotic missions, and the SLAM graph growing constantly
during the mission, the graph quickly reaches a size, where
operations on it, such as graph optimization, become com-
putationally expensive, therefore affecting the performance
of the SLAM system.
The front-end of keyframe-based SLAM runs Visual Odom-
etry (VO) [22, 27, 28], using only camera feeds, or Visual-
Inertial Odometry (VIO) [23, 16, 25], using camera im-
ages and measurements from an Inertial Measurement Unit
(IMU), with the goal of estimating the local trajectory and
3D environment (the local map) of the robot. Keyframe-
based systems choose a subset of the most representative
frames from all incoming frames to be stored in the local
map, the keyframes (KFs), and are now well-established in
the SLAM literature [19, 22, 25], gaining substantial ground
over filtering-based techniques [31]. For robust and accu-
rate estimation of this local map, especially for fast motions
and poorly textured areas, the SLAM front-end typically
employs a generous KF creation policy, with the drawback
of having potentially high redundancy encoded in consecu-
tive KFs.
While the front-end considers only a local window incor-
porating the most recent KFs, the SLAM back-end stores
and maintains all KFs created during the mission in a global
SLAM graph (or global map). It introduces new links in the
SLAM graph when returning to previously visited places
of the environment (loop closure) and applies global op-
timization techniques, namely Global Bundle Adjustment
(GBA), to the graph to increase the accuracy of the estimate.
With cubic complexity of GBA in the size of the graph, this
optimization quickly gets computationally expensive with
growing graph size. Therefore, it is desirable to reduce the
graph to a minimum size of most informative nodes that ac-
curately represents the robots’ trajectories and the structure
of the surroundings.
While manifesting itself also in single-agent SLAM, this
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problem of exploding SLAM maps is especially evident
in collaborative systems, where multiple agents contribute
data simultaneously to the SLAM estimate. As shown in
[16] and [28], this issue is currently the main bottleneck
for the scalability of centralized collaborative SLAM sys-
tems. Likewise, long-term autonomy [6] depends on effi-
cient data management to ensure applicability when contin-
uously feeding experiences of the environment to the sys-
tem. To relieve the problem of exploding data and com-
putation time, it is necessary to sparsify the SLAM graph
by detecting redundancy in the graph and determining the
informative value of every node with respect to all others
in the graph, and subsequently remove the most redundant
nodes.
In this spirit, this article investigates the question of how
the redundancy of KFs in a SLAM graph can be assessed,
to sparsify the graph with minimum decrease in accuracy
of the estimate, with the goal of boosting the efficiency
and scalability of SLAM maps. To this end, we investi-
gate information-theoretic approaches to classify the redun-
dancy of KFs in the SLAM graph, and evaluate their perfor-
mance under different scenarios. While mutual information
is shown to suggest effective graph compression with min-
imal loss in accuracy, it is computationally too expensive
in realistic applications. Therefore, we propose an efficient
heuristic that exploits the structure of the SLAM graph to
find redundant KFs, being able to run online in parallel to
the SLAM estimation process. We evaluate the approaches
in two collaborative SLAM systems of different modalities,
namely the visual-inertial CVI-SLAM [16] and the monoc-
ular CCM-SLAM [28], attesting to its practical applicability
while compressing the SLAM graph up to more than 50%
with only small reductions in accuracy.

2. Related Work
Information-based measures have been widely used for

various tasks throughout the computer vision and robotics
communities, all the way from showing how mutual infor-
mation can guide the feature matching process in visual
SLAM in [4], to using positional covariance to construct
skeletal graphs for large Structure-from-Motion problems,
in order to speed up the expensive computation process, in
[30]. Schneider et al. [29] evaluate trajectory segments re-
garding their entropy with respect to the calibration param-
eters of the sensor suite in order to estimate this calibration,
while Mu et al. [21] use entropy to select the most impor-
tant landmarks for collision avoidance. In [11], information
is quantified in order to to calculate the optimal path of a
UAV for 3D reconstruction of a scene of interest.
While all aforementioned systems employ vision-based
sensors, information-based measures are also used for LI-
DAR1-based systems in the literature. Kretzschmar and
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Stachniss [18] formulate measures for information gain and
mutual information in a LIDAR SLAM system in connec-
tion with occupancy grid cells. Using these measures, the
authors identify measurements providing a small amount
of information and discard them. In [5], the authors aim
at finding a set of reduced landmarks and poses by mini-
mizing an objective function that takes into account mem-
ory requirements and estimation accuracy. Carlone et al.
[3] reduce the pose graph by looking for the maximal sub-
set of measurements that are internally “coherent” and ob-
servable. While these approaches show promising results
in terms of sparsification of pose graphs, the approaches
cannot directly be applied to visual SLAM, since LIDAR
and visual SLAM are conceptually different, most notably
regarding the fact that scene depth cannot be measured di-
rectly in visual SLAM, but has to be recovered and esti-
mated during the SLAM process.
Many recent works proposed efficient strategies to deal with
the densification of the Hessian matrix of the pose graph,
resulting for example from node marginalization. Huang et
al. [13] aim to consistently approximate the original dense
graph by a sparse one using l1-regularization. In [2], the
authors introduce generic linear constraint factors, which
replace the dense information matrix of the markov blan-
ket of the marginalized node by a sparse approximation,
using Chow-Liu trees. Mazuran et al. [20] go one step
further, proposing nonlinear factor recovery that allows to
replace dense factors by arbitrarily defined “virtual” non-
linear measurements. Vallvé et al. [33] propose a factor de-
scent algorithm for belief sparsification. The recent work
of [12] does not aim for a sparsification of the global pose
graph, but for an efficient sparse approximation of the dense
prior resulting from marginalization of the past measure-
ment in sliding-window SLAM approaches. While all these
works provide efficient strategies for sparsification of pose
graphs under specific condition, they focus on how to re-
move nodes from the graph, while this work aims to an-
swer the question of which data in the SLAM graph is most
redundant and therefore most dispensable for the sake of
bounded computation.
When it comes to redundancy detection for SLAM, a
straight-forward heuristic to limit redundancy is to enforce
a spatial distribution of the graph nodes, as done in [17]
and [15]. This decouples the growth of the SLAM graph
and exploration time, however, Euclidean distance heuris-
tics do not account for the fact that the structure of the ex-
plored environment might not be homogeneous and there-
fore, some parts of it may need more measurements for a
robust estimate than others. In [9], the authors propose
a heuristic that removes nodes, for which the number of
edges exceeds a pre-defined threshold. While this ensures
sparsity of the pose graph, it does also not account for the
structure of the environment. Ila et al. [14] move the dis-



tance criterion to the information space and apply it to filter-
based SLAM, adding only measurements to the estimate
that are distant to already existing ones in terms of mu-
tual information. Also aiming for filter-based systems in-
stead of graph-based SLAM, Vial et al. [34] formulate the
sparsification as an optimization problem, minimizing the
Kullback-Leibler-Divergence between the sparse and true
estimate. Paull et al. [24] treat node removal and sparsi-
fiyng the marginalized graph as an entirety in considera-
tion of resource constraints, such as memory requirement
and communication bandwidth. While these constraints are
more limiting in a distributed multi-robot setup, in a cen-
tralized system that accumulates all experiences of all par-
ticipating agents at one central instance, memory usage is
not a limiting factor, and communication bandwidth can be
held constant for each agent, independent of the number of
participant [28]. As discussed in [28], a major bottleneck
of non-distributed (collaborative) SLAM systems based on
GBA is its increasing computational time in the number of
nodes in the graph. However, most recent systems in the
literature, such as [10, 26, 8] and also [25] which allows
estimating joint trajectories using a multi-session function-
ality, do not include redundancy detection. ORB-SLAM
[22] proposes a simple algorithm for redundancy detection,
based on common landmark observations. This scheme is
adopted by recent visual [28] and visual-inertial [16] col-
laborate SLAM systems. As shown in [22], this heuristic
bounds the growth of the SLAM with respect to the size of
exploration space. However, as this is a heuristic, as demon-
strated in our analysis, it does not reach the accuracy of an
information-theoretic approach.
This work proposes a new information-theoretic measure
for redundancy based on mutual information, formalizing
the amount of information that a node in the graph adds to
the SLAM graph. The benefit of this new evaluation met-
ric compared to “direct” mutual information is quantified in
the experimental evaluation. Furthermore, a real-time capa-
ble, efficient, landmark-based heuristic for redundancy de-
tection is proposed and experimentally evaluated. The met-
rics for redundancy detection are implemented and tested
in a state of the art visual-inertial [28] as well as a monocu-
lar [16] centralized collaborative SLAM system, confirming
their applicability to state-of-the-art SLAM.

3. Methodology
3.1. Keyframe-based SLAM

The algorithms presented in this article are designed for
application in keyframe-based SLAM systems. From all
frames captured by the camera, these systems only keep
a subset of the most representative frames, the keyframes
(KFs). Other frames are only used to estimate the current
pose of the camera, but are dropped subsequently. From the
camera images, 2D feature keypoints, encoding salient parts

Figure 1: Example SLAM graph derived with keyframes (KFs),
Map Points (MPs) and edges induced by observations.

of the image, are extracted and used to triangulate scene
landmarks. These scene landmarks are stored as 3D map
points (MPs) in a map, together with the KFs. If a feature
keypoint of KFi is associated to MPj , KFi observes MPj .
The set of all KFs V and MPs L form together the SLAM
graphG, where V and L are the set of nodes, and any edges
are induced by the observations, as illustrated in Fig. 1. In
a visual-inertial system, such as [16] and [25], the inertial
measurements induce additional edges between the KFs.
Shared observations of MPs (i.e. MPa is observed by KFi

and KFj) induce so-called covisibility-edges between the
KFs. If KFi and KFj have at least one shared observa-
tion, they are connected by a covisibility edge cij . The
weight ω(cij) of the edge is the number of shared obser-
vations between KFi and KFj . This notion of covisibility
induces a covisibility graph C = {V, C}, where C is the set
of weighted covisibility edges, as illustrated in Fig. 2. We
refer to the KFs connected to KFi via a direct edge in the
covisibility graph as the neighbors of KFi. In practice, we
include only edges with ω > 10 in the graph, to limit the
density of the graph and ensure a minimum overlap of the
scene observed by two KFs. The Markov Blanket of KFi,
denoted as MB(KFi), is the set of all nodes that are con-
nected to KFi by a covisibility edge (i.e. all neighbors of
KFi).

Figure 2: Example covisibility graph with some edge weights dis-
played, derived from the SLAM graph in Fig. 1. The Markov Blan-
ket of KF1 (MB(KF1)) is indicated in red.

To increase the accuracy of the map, estimated by the
SLAM graph, GBA is performed on it, minimizing the
global reprojection error of the MP observations (and the
IMU factors, in a visual-inertial system). In addition to
minimizing the error residuals of the SLAM graph, GBA
estimates the covariance matrix of the SLAM graph as the
inverse of the Hessian matrix of the non-linear least-squares
optimization problem.
We evaluate our metrics described in Sec. 3.2 and Sec. 3.3
in a centralized collaborative SLAM system, where the



problem of decreasing performance with increasing data in
the system is most evident, because the number of KFs
grows faster in those systems with multiple agents con-
tributing KFs simultaneously. However, the metrics pre-
sented in this article are not limited to these systems, but
are generally applicable to any keyframe-based SLAM sys-
tem. For more details on the SLAM- and covisibility-graph,
we kindly refer the reader to [22]. The collaborative visual-
inertial SLAM system used for our tests, including the GBA
scheme, is described in detail in [16].

3.2. Redundancy Detection using Mutual Informa-
tion

From GBA, we retrieve the covariance matrix Σ for all
KFs i ∈ V , consisting the marginal covariance matrices Σii

for each KFi as well as the correlation matrices for Σij for
KFs i, j ∈ V , as shown in Eq. (1).

Σ =


Σ00 Σ01 . . . Σ0n

Σ10 Σ11 . . . Σ1n

...
. . . . . .

...
Σn0 Σn1 . . . Σnn

 (1)

For 6 Degree-of-Freedom (DoF) poses, the dimension of
the covariance matrix for a KF is 6×6. Using Σ, we can
calculate the Mutual Information (MI) between two KFs [7]
as:

MI(KFi,KFj) =
1

2
log2

( det(Σii)

det(Σii −ΣijΣ
−1
jj Σji)

)
, (2)

where det(·) denotes the matrix determinant. Intuitively,
the MI between two KFs is a measure of how much infor-
mation we get about the pose of one KF by knowing the
pose of the other KF. With Eq. (2) encoding how much in-
formation one KF encodes about another, we derive a mea-
sure ψ(·) of how much information KFi adds to the esti-
mated SLAM map by summing up the MI between i and its
neighbors in the covisibility graph (i.e. the Markov Blanket
MB(KFi)):

ψ(KFi) =
1

|MB(KFi)|
∑

j∈MB(KFi)

MI(KFi,KFj) (3)

where |MB(KFi)| is the cardinality of the Markov Blanket.
Applying ψ(·) to all KFs i ∈ V assigns a value to each KF,
quantifying its “informativeness”. A high value for ψ(KFi)
means that KFi adds distinctive information to its neigh-
bors, and therefore, measures the redundancy of KFi.
However, directly measuring pairwise MI between individ-
ual KFs does not take into account that information might
be also be encoded by other KFs as illustrated in Fig. 3;
although the shared information between KFi and its neigh-
bors (KFn1

and KFn2
) is high, the information is also con-

tained in the other KFs (KFk1
and KFk2

) in the graph.

Figure 3: Example covisibility graph, where KFi shares informa-
tion with its neighbors KFn1 and KFn2 , however, the same in-
formation is also provided by other KFs in the graph (KFk1 and
KFk2 ).

Figure 4: Example covisibility graph to illustrate the proposed
method to calculate the unique amount of information that KFi

adds to KFj .

Therefore, in the presence of KFk1
and KFk2

, KFi does not
add much additional information to the estimated SLAM
map and should be considered redundant. To this end, we
modify ψ(·) to an extended measure ψ̂(·), taking into ac-
count the information of neighbors using conditional co-
variance matrices Σ̂ for the KFs to calculate MI, as detailed
below. We illustrate the approach using the graph given in
Fig. 4, where we want to quantify the information that KFi

adds to KFj . To obtain conditional covariances, we first
construct a local covariance matrix ΣMB(j) from the full co-
variance matrix Σ from Eq. (1) for the Markov Blanket of
KFj :

ΣMB(j)

=


Σii Σij Σin1 Σin2 Σik1 Σik2

Σji Σjj Σjn1
Σjn2

Σjk1
Σjk2

Σn1i Σn1j Σn1n1
Σn1n2

Σn1k1
Σn1k2

Σn2i Σn2j Σn2n1
Σn2n2

Σn2k1
Σn2k2

Σk1i Σk1j Σk1n1 Σk1n2 Σk1k1 Σk1k2

Σk2i Σk2j Σk2n1 Σk2n2 Σk2k1 Σk2k2


(4)

and split ΣMB(j) as follows:

Σ(i,j) =

[
Σii Σij

Σji Σjj

]
(5)

Σ(MB) =


Σn1n1 Σn1n2 Σn1k1 Σn1k2

Σn2n1 Σn2n2 Σn2k1 Σn2k2

Σk1n1
Σk1n2

Σk1k1
Σk1k2

Σk2n1
Σk2n2

Σk2k1
Σk2k2

 (6)

Σ(i,MB) =

[
Σin1 Σin2 Σik1 Σik2

Σjn1
Σjn2

Σjk1
Σjk2

]
(7)

Using Schur’s complement and Eq. (5) - Eq. (7), we can cal-
culate the conditional covariance matrix Σ̂i,j|MB(j)\i, con-
taining the covariance matrices of KFi and KFj conditioned



on the Markov Blanket of KFj (i.e. MB(j)\i).

Σ̂i,j|MB(j)\i =

[
Σ̂ii Σ̂ij

Σ̂ji Σ̂jj

]
=

[
Σii|MB(j)\i Σij|MB(j)\i
Σji|MB(j)\i Σjj|MB(j)\i

]
= Σ(i,j) −Σ(i,MB)Σ

−1
(MB)Σ

T
(i,MB) (8)

Since the covariance matrices of KFi and KFj are now con-
ditioned on MB(j)\i, using these to calculate the MI quan-
tifies solely the amount of information uniquely shared be-
tween KFi and KFj :

M̂I(KFi,KFj) =
1

2
log2

( det(Σ̂ii)

det(Σ̂ii − Σ̂ijΣ̂
−1
jj Σ̂ji)

)
(9)

Calculating the M̂I score for all neighbors j of a KF i, we
can quantify how much information KFi adds to the esti-
mate of the SLAM map, as:

ψ̂(KFi) =
1

|MB(KFi)|
∑

j∈MB(KFi)

M̂I(KFi,KFj) (10)

A high value for ψ̂(KFi) means that KFi adds significant
information to its environment, while a small value can be
interpreted in a way that all information that KFi contributes
is also contributed by other KFs in the graph, hence, can be
considered redundant. Since the calculation of the Schur
complement in Eq. (8) requires a costly matrix inversion,
we limit this operation to the 20 neighbors with the highest
edge weights in the covisibility graph.

3.3. Structure-based heuristics

The measures proposed in Eq. (3) and Eq. (10) quantify
redundancy from an information-theoretic viewpoint, and
are, therefore, expected to perform better in terms of accu-
racy, compared to hand-crafted heuristics. However, GBA
and retrieval of the covariance matrix of KFs in the SLAM
graph are time-consuming steps, especially on large graphs.
Therefore, the information-theoretic graph compression is
well suited to sparsify the SLAM graph between robotic
missions when the robots are not exploring their environ-
ment, but not online during the mission. For this reason,
we propose an efficient, structure-based heuristic for redun-
dancy detection, that is capable to run online, in parallel to
the SLAM estimation process.
A simple redundancy detection scheme using MPs is used
in ORB-SLAM [22]. For each KFi, the number η of as-
sociated MPs with more than 3 observations is calculated.
If η exceeds a pre-defined threshold (90% of all the MPs
observed by KFi in [22]), it is considered redundant and re-
moved from the map. While this is an efficient strategy, it

only classifies KFs as redundant or not, and does not assign
a value for redundancy to each KF.
Here, we modify this approach to quantify how redundant
the observations of a MP are, with the goal of assigning a
value φ ∈ [0, 1] to each MP classifying the redundancy of
the observations, with higher value indicating higher redun-
dancy. If a MP is observed by many KFs, its 3D position can
still be precisely estimated when dropping one observation,
while this would affect the accuracy more if there exist only
few observations. Let obs(MPi) denote the number of ob-
servations of MPi. Then, with a minimum of two observa-
tions necessary to triangulate the 3D position of one MP, we
define the redundancy τ(obs(MPi)) = 0 for obs(MPi) ≤ 2.
As five observations can be considered sufficient to robustly
estimate the 3D position of an MP, we set τ(obs(MPi)) = 1
for obs(MPi) > 5. Finally, accounting for the fact that with
increasing number of observations the redundancy of one
observation increases, we choose τ(x) as follows:

τ(x) =



0, if x ≤ 2

0.4, if x = 3

0.7, if x = 4

0.9, if x = 5

1, if x > 5

(11)

In continuous space, τ(x) would be chosen as a sigmoid,
exhibiting the desired behavior described above. However,
since obs(MPi) can only take positive integer values, we as-
sign a discrete function for efficiency, since a SLAM graph
quickly includes> 1000 MPs for which τ(x) has to be com-
puted. With Li ⊆ L denoting the set of MPs observed by
KFi, we can again calculate a redundancy value φ(·) for
each KF using τ(·):

φ(KFi) =
1

|Li|
∑
j∈Li

τ(obs(MPj)) (12)

3.4. Data Removal

The underlying idea of KF-based SLAM is that a sub-
set of carefully selected frames is sufficient to for a robust
estimate of the camera trajectory and 3D structure of the
environment. However, to ensure robust pose estimation
in the SLAM front-end, state-of-the-art systems, such as
[22, 16, 25, 28], employ generous strategies for KF cre-
ation, generating many more KFs than actually necessary
for a robust estimation of the SLAM graph. Therefore, we
completely remove redundant KFs from the graph, without
performing any marginalization. The results presented in
Sec. 4 support this assumption. Furthermore, directly drop-
ping KFs automatically keeps the Hessian matrix of the un-
derlying optimization problem sparse, and does not require
potentially time-consuming sparsification procedures such
as [2] or [20] to remove the dense connections introduced by



marginalization. MPs are removed from the SLAM graph
in case they are observed by less than two KFs and their
3D position is therefore not fully constraint anymore, or in
case they are classified as outliers by GBA due to a high
reprojection error.

4. Experimental Results

4.1. Setup

We firstly implement all presented metrics to remove re-
dundant KFs into CVI-SLAM [16], a centralized visual-
inertial collaborative SLAM system. CVI-SLAM takes in-
puts from multiple robotic agents, equipped with a visual-
inertial sensor suite, and estimates a SLAM graph (a com-
mon global map) from all input data on a central instance,
the “Server”. GBA is applied to this global SLAM graph
using the Ceres2 solver, which allows to estimate the co-
variance matrix of the system from the optimization prob-
lem. In order to eliminate the time-constraint induced be-
tween KFs in visual-inertial SLAM, results are also shown
using CCM-SLAM, a collaborative SLAM system with a
similar architecture to [16], however operating on monocu-
lar sensors feeds. While there are no additional constraints
for KF removal in CCM-SLAM, CVI-SLAM imposes the
constraint of a maximum time of 2s between two KFs, to
bound inaccuracies from IMU integration, as described in
[16]. For the evaluation, we use an Intel NUC 7i7BNH (3.5
GHz 4, 16 GB RAM) to run our algorithms.

4.2. Datasets

We use the publicly available EuRoC benchmark dataset
[1] for our evaluation, which provides accurate ground-truth
position data from a Leica Total Station. From this dataset,
we choose three pairs of sequences that cover different sce-
narios to build SLAM graphs of appropriate size to evaluate
the redundancy detection strategies:

• MH1+2: Sequences “MH 01 easy” and
“MH 02 easy”. 5:32min total flight time, 150m
total trajectory length. Industrial environment, good
texture, bright scene. Multiple visits at the same
location, no fast movements or viewpoint changes.

• MH4+5: Sequences ‘MH 04 difficult” and
“MH 05 difficult”. 3:40min total flight time,
190m total trajectory length. Industrial environment,
dark scene, fast motion. Exploratory trajectories.

• V11+12: Sequences “V1 01 easy” and
“V1 02 medium”. 3:48min total flight time, 135m
total trajectory length. Fast motion and camera
rotation, bright scene. Small office environment (8m
×8m), repeated observations of the same scene.

2http://ceres-solver.org

We evaluate the Root-Mean-Square trajectory Error
(RMSE) for the following algorithms for redundancy de-
tection on the SLAM graph:

• MI-cond: Classification of redundant KFs based on
the measure from Eq. (10), conditioning the covari-
ance matrices on the Markov Blanket before calcula-
tion Mutual Information (MI).

• MI-orig: Classification of redundant KFs based on
“standard” mutual information (Eq. (3)), without con-
ditioning the covariance matrices on the Markov Blan-
ket.

• Struct: Classification of redundant KFs using our
structure-based heuristic introduced in Sec. 3.3.

• ORB: Original classification of redundant KFs based
on the algorithm proposed in [22].

• No-red: No redundancy detection and KF removal.

For our evaluation, “no-red” gives the baseline to quantify
the decrease in accuracy by the removed data. For each ex-
periment, we specify a maximum number of KFs Θ that
are allowed in the SLAM graph, and enforce this limit us-
ing the different redundancy detection algorithms. As ex-
plained in Sec. 3, the methods “Struct” and “ORB” are able
to run in real-time and therefore become active online dur-
ing the SLAM estimate, as soon as the number of KFs in the
SLAM graph exceeds Θ. “MI-cond” and “MI-orig” rely on
costly optimization algorithms, and therefore compress the
final pose graph produced by the SLAM estimate, after the
SLAM estimation process itself is finished.

4.2.1 Evaluation on MH1+2

Figure 5: Collaborative trajectory estimate from CVI-SLAM on
MH1+2 (top view, color encodes different agents).

Using the sequence pair “MH1+2”, CVI-SLAM gener-
ates a SLAM graph with 585 KFs. The trajectory estimated
by CVI-SLAM is depicted in Fig. 5. In a first experiment,
we compress this graph by approximately 50% to Θ = 300
KFs. In addition to the redundancy classification methods
described above, we compare in this experiments also to
random removal of KFs until the desired number of KFs in
the graph is reached. The results in terms of RMSE reported
in Fig. 6 show that the RMSE of the estimate increases only
marginally in terms of absolute values, and all algorithms
for redundancy detection perform more or less similar. This
supports our assumption that for robust camera pose track-
ing, the SLAM front-end generates much more KFs than are



actually needed for accurate estimation of the SLAM graph
in the back-end. To increase the effect of the redundancy de-
tection algorithms and better determine the quality of their
classification of redundant KFs, we compress the graph fur-
ther to only 200 KFs. The results are again reported in
Fig. 6. While the increase in RMSE is now more signif-
icant for all algorithms, we observe the expected behav-
ior of the methods: The information-theoretic approaches
lead to a lower decrease of accuracy, with “MI-cond” per-
forming better than the “original” MI-approach. However,
both outperform the structure-based heuristics, for which
the one proposed in this paper outperforms the approach
from ORB-SLAM. Furthermore, the results show that all al-
gorithms perform better than naive random removal of KFs
from the graph.
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Figure 6: Final trajectory RMSE for a SLAM estimate on MH1+2 with
585 KFs, compressed to 300 resp. 200 KFs. Results averaged over 5 runs.

4.2.2 Evaluation on MH4+5

Figure 7: Collaborative trajectory estimate from CVI-SLAM on
MH4+5 (top view, color encodes different agents).

We perform the same graph compression as for
“MH1+2” on the more difficult dataset pair “MH4+5”, gen-
erating a SLAM graph with 426 KFs (Fig. 7). Since the pre-
vious experiment confirms our assumption that “MI-cond”
shows better performance in terms of accuracy compared to
“MI-orig”, we focus on “MI-cond” in the following experi-
ments. The results are reported in Fig. 8. The RMSE of the
estimate is generally higher, because of the more difficult
trajectory with less texture, faster motion and less possibili-
ties for loop closures due to te exploratory nature of the tra-

jectories. The information-theoretic metric again performs
good, with almost no decrease in accuracy. Both heuris-
tics perform significantly worse in this experiment, with our
proposed heuristic and the one from ORB-SLAM showing
similar error for a compression to 300 KFs, while for Θ =
200, “Struct” performs again better.
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Figure 8: Final trajectory RMSE for a SLAM estimate on MH4+5 with
426 KFs, compressed to 300 resp. 200 KFs. Results averaged over 5 runs.

4.2.3 Evaluation on V11+12

Figure 9: Collaborative trajectory estimate from CVI-SLAM on
V11+12 (top view, color encodes different agents).

For the dataset pair on “V11+12”, CVI-SLAM generates
an estimate with 776 KFs (Fig. 9). We again compress this
graph by approximately 50% to Θ = 400 KFs. As for the
previous experiments, the results in Fig. 10 show that the
information-theoretic metric is able to perform a compres-
sion of roughly 50% with almost no loss in accuracy. Also,
both heuristic exhibit again a more significant drop in ac-
curacy, with the structure-based heuristic proposed by this
paper performing better than the one from [22].

4.2.4 Results for monocular SLAM

In addition to the evaluation on a visual-inertial collabora-
tive SLAM system [16], we applied the methods for redun-
dancy detection to a monocular SLAM system [28] to test
the approaches under a different sensor modality, and with-
out the time constraint for IMU integration in the visual-
inertial system. We repeated selected experiments already
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Figure 10: Final trajectory RMSE for a SLAM estimate on V11+12 with
776 KFs, compressed to 400 KFs. Results averaged over 5 runs.

performed with CVI-SLAM: In a first experiment, we com-
press a graph of 542 KFs generated from “MH1+2” to Θ
= 200 KFs, and in a second experiments, a graph with 550
KFs generated from “MH4+5” also to Θ = 200 KFs. The re-
sults reported in Fig. 11 show similar results to those from
the visual-inertial system: “MI-cond” is able to compress
the graph with minimal loss in accuracy. On the easier
“MH1+2” dataset, our structure-based heuristic gets close
to the results of the information-theoretic approach, while
for the more difficult dataset “MH4+5”, the information-
theoretic method clearly outperform it. Both proposed ap-
proaches outperform the original method from ORB-SLAM
in both experiments.
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Figure 11: Final trajectory RMSE for a SLAM estimate using monocular
SLAM [28] on MH1+2 with 542 KFs and MH4+5 with 550 KFs, both
compressed to 200 KFs. Results averaged over 3 runs.

4.3. Discussion

The experimental results show that the proposed ap-
proach based in “conditional” MI for redundancy detection
is able to compress SLAM graphs from visual-inertial as
well as monocular SLAM by> 50% with minimal decrease
in accuracy. In our experiments, the “original” MI-measure
(without conditioning the covariance on the Markov blanket
of the KF) exhibits a higher increase in RMSE compared to
the “conditional” MI, attesting to the effectiveness of the
proposed approach. For easier datasets, the difference be-

tween structure-based heuristics and information-theoretic
approaches becomes only apparent for higher compression
rates. On more difficult datasets, the choice which data
should be removed affects the accuracy of the estimate con-
siderably more. However, the structure-based heuristic pro-
posed in this article exhibits a good trade-off between the
loss of accuracy from the approximation (i.e. following the
removal) of KFs deemed to be redundant and computation
time, enabling online functionality in parallel to the SLAM
estimation process. The minimal increase of the RMSE af-
ter the reduction of the graph supports the assumption that
while for robust and accurate tracking by the SLAM front-
end, a generous KF-creations strategy is beneficial, many of
these KFs are dispensable later on, during global map op-
timization in the back-end without any negative impact on
the accuracy.

5. Conclusion

In this article, we present a study on redundancy de-
tection in keyframe-based SLAM. We evaluate different
information-theoretic and heuristic measures, with Mutual
Information using covariance matrices that are conditioned
on the Markov blanket of a node in the SLAM graph per-
forming best. Our experiments show that this approach
is able to compress graphs estimated by state-of-the-art
collaborative SLAM systems by more than 50% with no
or minimal loss in accuracy. However, the information-
theoretic measures rely on computationally expensive op-
timization methods, that might not be feasible for systems
with limited processing power. Therefore, we propose as
an alternative a new structure-based heuristic for classify-
ing and removing redundant nodes from the graph, that is
able to run online in parallel to the SLAM estimation pro-
cess. This heuristic performs almost equally accurate to
the information-theoretic approach for easier trajectories or
smaller compression rates, while exhibiting a higher but still
acceptable loss in accuracy even for large compression rates
or more difficult environments, yet being computationally
much more lightweight. We put the approaches to the test
in two state-of-the-art centralized collaborative SLAM sys-
tems, attesting to their practicality. With global bundle ad-
justment being the most time-consuming part of the SLAM
back-end, with cubic complexity in the number of nodes
in the graph, these sparsification methods have great po-
tential to significantly boost the scalability of SLAM sys-
tems and considerable increase in the workspace of the
robotic team when applied to individual and collaborative
SLAM. Future directions will focus on improving the ef-
ficiency of the MI-based approach, in order to use it on-
line during missions. Furthermore, it would be desirable
to drop the time-constraint in the visual-inertial SLAM sys-
tem. Non-linear factor recovery for visual-inertial systems
[32] might be an interesting direction to explore for this pur-
pose.
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