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can be found in San Francisco, California (2); Portland, Oregon (3);
Florida (4); Toronto, Ontario, Canada (5); and the Netherlands (6, 7).
The typical outputs of an ABDG are time dependent—for example,
hourly, origin–destination (O-D) matrices.

• These hourly O-D matrices are then fed into a dynamic traffic
assignment (DTA), which assigns routes to time-dependent O-D
flows so that the routes, in conjunction with their resulting traffic
pattern, fulfill some predefined criterion. For example, the routes
may fulfill a Nash equilibrium, meaning that at no time of day can
any O-D flow find a faster path than those that are already used. An
often-used alternative criterion is a time-dependent stochastic user
equilibrium, meaning that each O-D flow is distributed across possi-
ble routes following a prespecified distribution function at each point
in time. The typical way to solve the DTA problem is to use itera-
tions between a router and a traffic simulation (also called network
loading algorithm). Flows on routes that do not fulfill the prespecified
criterion are slowly adjusted into the right direction. The iterations
stop when no more adjustments are necessary—that is, when the
iterations have reached a fixed point (8). Examples of DTA pro-
jects are Dynasmart (9), DynaMIT (10), and a dynamic version of
VISUM (11).

• To close the feedback loop, spatial impedances—often in the
form of interzonal travel times—are fed back from the DTA to the
ABDG, and the feedback is iterated until a self-consistent solution
is found. Although this feedback was postulated some time ago (12),
it is usually implemented manually by the analyst; that is, the ana-
lyst manually goes back and forth between ABDG and DTA until
the solution is satisfying.

Unfortunately, this approach of coupling the ABDG and the DTA
via O-D matrices and link travel times can have several disadvantages:

• If a traveler is delayed in the morning, this may have temporal
repercussions throughout the whole day. Such an effect is not picked
up when travelers are converted into O-D streams. In fact, even
when feeding back 15-min-averaged link travel times, the resulting
travel time map can be highly distorted (13).

• The traffic may have temporal patterns that go beyond hourly
resolution (e.g., in reaction to a time-dependent toll). Hourly O-D
matrices cannot pick up such effects.

• When tolls are charged on certain links, the routing decision may
depend on the travelers’ attributes (e.g., on income or on time pressure
given by activities later during the day). Access to such information
gets lost through the O-D matrix.

• Some higher-level decisions, such as mode choice and secondary
activity location choice, may depend on relatively small details of
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The typical method to couple activity-based demand generation (ABDG)
and dynamic traffic assignment (DTA) is time-dependent origin–
destination (O-D) matrices. With that coupling method, the individ-
ual traveler’s information gets lost. Delays at one trip do not affect later
trips. However, it is possible to retain the full agent information from
the ABDG by writing out all agents’ plans, instead of the O-D matrix.
A plan is a sequence of activities, connected by trips. Because that infor-
mation typically is already available inside the ABDG, this is fairly easy
to achieve. Multiagent simulation (MATSim) takes such plans as input.
It iterates between the traffic flow simulation (sometimes called network
loading) and the behavioral modules. The currently implemented behav-
ioral modules are route finding and time adjustment. Activity resequenc-
ing or activity dropping are conceptually clear but not yet implemented.
Such a system will react to a time-dependent toll by possibly rearrang-
ing the complete day; in consequence, it goes far beyond DTA (which
just does route adaptation). This paper reports on the status of the cur-
rent Berlin implementation. The initial plans are taken from an ABDG,
originally developed by Kutter; to the authors’ knowledge, this is the
first time traveler-based information (and not just O-D matrices) is
taken from an ABDG and used in a MATSim. The simulation results are
compared with real-world traffic counts from about 100 measurement
stations.

Arguably, the most advanced state-of-the-practice method for
transport forecasting consists of the following three pieces:

• The process starts with an activity-based demand generation
(ABDG). Practitioners typically start with a synthetic population (1)
and then add, to every potential traveler in the synthetic population,
status (work, school, other), full activity patterns, activity locations,
activity times, and possibly mode choice. Other sequences to add to
these elements are possible, and some or all of them may be generated
jointly. Examples of practical applications of activity-based models
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the trip, such as walking distance to the public transit stop. Alterna-
tively, mode choice may depend on one element of a complete tour,
such as one location not being reachable by public transit. Such
effects are straightforward to include when the DTA still knows
about individual agents, but are impossible to pick up once travelers
are aggregated into O-D matrices.

In contrast, multiagent simulations (MATSim) of traffic process
information about individual travelers at every level. Every modeled
agent is assigned at least one plan, a series of activities, and connect-
ing trips. The plan is made complete step by step by behavioral mod-
ule, inserting, for example, activity patterns, activity locations, a
mode choice decision, and precise routes and times. Because these
processes occur in the travelers’ heads, this is called the “mental
layer” of the MATSim. Once all plans are complete, they are submit-
ted to the traffic flow simulation, which attempts to execute them as
faithfully as possible, given physical constraints caused by the sys-
tem or by other travelers (e.g., congestion). Because the traffic flow
simulation models physical processes, this is called the “physical
layer” of the MATSim. The distinction between the physical and the
mental layer is taken from multiagent systems (14).

During the traffic flow simulation, the performance of every agent
is recorded, for example, by noting departure and arrival times at
activity locations. From that performance information, the score
(e.g., utility) of every plan is computed. During repeated iterations
between the mental and the physical layer, every agent attempts to
modify its plan so that it obtains a larger score. The choice dimen-
sions along which the agents can learn are configurable. In this way,
the simulation system can emulate DTA (by allowing only the routes
to adapt), or it can, for example, simulate a system in which agents’
residences, status, and primary activity locations are fixed, but every-
thing else (secondary activity types and locations, mode, route, time
scheduling) is adapted. Similarly, the scoring function is config-
urable, its only requirement being that it needs to allow plans to be
ranked. In this way, not only standard utility functions (15) but also,
for example, prospect theory (16) can be included in a conceptually
straightforward way.

An early attempt to use true agents that maintain their identity
throughout the system (i.e., from the synthetic population genera-
tion through the activity-based demand generation and the router to
the traffic flow simulation) was TRANSIMS (17 ). Its main short-
coming for a couple of years was that it was difficult to obtain and
to use; now it is open source.

Another attempt to approach the problem is Metropolis (18), which
uses a single O-D matrix for the morning peak travel and gener-
ates the temporal structure inside the DTA. That is, the time choice
dimension is added to the route choice dimension inside the DTA.

MATSim (19) is based on TRANSIMS. It differs from TRANSIMS
in several aspects, including using just one hierarchical (XML) file
format for the coupling between the behavioral modules (instead of
several plain ASCII files), giving performance scores to full 24-h
plans based on the execution of those plans in the physical layer, and
using those scores for agent learning [instead of assuming that each
new solution generated by a behavioral module is better than the
solution before—an assumption that was found to be destructively
invalid in certain situations (13)]. MATSim also uses a more light-
weight, less data hungry, and faster simulation of the physical layer:
the queue simulation (20).

To start the learning iterations of any MATSim for traffic, initial
conditions are needed. The most reasonable initial condition is a set
of agents (synthetic population), in which every agent has at least
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one plan in which at least those elements that are not supposed to
adapt during the learning iterations are defined.

It makes sense to see if existing methods can provide initial condi-
tions for a MATSim. The first thing to consider here are O-D matrices,
because they are so abundant in the community. It is straightfor-
ward to extract individual trips from O-D matrices and to gener-
ate for each trip a pseudo-agent, whose complete plan consists of
that single trip. This means, however, that trips that in reality belong
together, because they are executed by a single traveler throughout
the course of a day, are now completely decoupled. Therefore, no con-
sistent adaptation between these trips is possible (e.g., time choice,
location choice, tours mode choice); the only things that can be
sensibly modified within the MATSim are the routes.

Generating complete agents’ plans from O-D matrices has also
been tried but is a complex and cumbersome process (21).

Fortunately, many implementations for ABDG (3–7, 22) inter-
nally use concepts that are much closer to agents and aggregate the
results to O-D matrices as their final step. Therefore, it makes sense
to investigate whether it is possible to output some other information
from the ABDG that is easier to use by the MATSim.

This paper describes the steps taken to transform the individuals’
data from an existing ABDG into agents’ plans. The ABDG is based
on the Kutter model (also known as Berliner Personenverkehrs-
Modell) (23, 24) for the region of Berlin, Germany. The plans are then
used as input for the multiagent traffic simulation MATSim (25).
Then the results of the simulation are compared with real-world data.

CREATING PLANS FROM ACTIVITY CHAINS

The Kutter model is a disaggregated, activity- and behavior-oriented
traffic demand generation model. It simulates the traffic demand
of person groups with homogeneous behavior with the help of
expectancy values (23, 24). This model is currently used to calculate
daily O-D matrices for strategic planning and was modified to output
the internally used activity chains (26). The remainder of this paper
describes how the ABDG data are used in the multiagent simulation.

Each activity chain contains information about the start location
(reference to a zone), up to four activities (limitation of the Kutter
model), and the frequency of occurrence of the activity chain (see
Figure 1). Each of the four activities is described by type, location,
and the transportation mode used to reach that location. In addition,
the activity chains are grouped, each group corresponding to one of
72 person groups with similar demographic attributes. The activity
chains always end at the same place where they started (tours),
whereas all activities in between take place somewhere else. The sum
of all frequencies corresponds to the total number of tours accom-
plished by the people in the study area. There is no special provision
for people who perform more than one tour per day; this leads to
problems, as discussed later.

Much information needed for agents’ plans like activities and loca-
tions is available, with only the time information missing. In this sim-
ulation, time information is generated and optimized over several
iterations by a special module (27). Initially, all activities are assigned
a random activity duration within a range, where the range depends
on the type of activity. These random durations are replaced by
more convenient durations during the iterations by the mentioned
module. The scoring algorithm ensures that only activities with a
configurable minimal duration are considered useful.

Based on the given description, it appears possible to use all the
information from the activity chains and transform them into agents’



plans. This would work flawlessly if the frequency of occurrence of
each activity chain were an integer value. However, they are floating-
point numbers. This may work in assignments in which frequencies
are summed up on each link to get the total volume. However, in
agent simulations, the smallest unit is an agent that cannot be split
into two or more parts. Thus, a way had to be found to deal with the
fractional frequencies of activity chains.

The input data from ABDG contain more than 7 million tours per
day in the study area. More than 250 million different activity chains
are used to describe the tours. Thus, there are many times more activ-
ity chains than there are tours, resulting in an average frequency per
tour of much less than 1. This leads to problems when generating
agents’ plans from the activity chains: not every activity chain can
be converted into a plan, but the frequencies of the activity chains
must be considered to decide whether to use the data.

It was decided to use the following method: the tour frequencies are
summed up one after the other. Every time the sum reaches 1.0 or any
higher value, an agent with a plan based on the current activity chain
is generated and the sum is reduced by 1.0. If the activity chains are
in a random sequence (which is assumed), then the method corre-
sponds to a weighted random draw without replacement. Finally,
more than 7 million agents with each assigned one plan were gen-
erated, representing the 7 million tours undertaken by the people
in the study area. As discussed later, it is important to note that the
number of agents created represents not the number of inhabitants
in the area but the number of tours performed in 1 day by the inhab-
itants. This means there are more agents in the simulation than there
are in the real world, but the agents have shorter day plans than their
real-world counterparts.

MATSim is currently able to simulate only individual car traffic.
Therefore, only agents using cars for transportation were considered
for the simulation. Every trip starts and ends at a link in MATSim.
However, many traditional DTA models use demand at the level of
traffic zones, and the corresponding ABDG, including the Kutter
model, generate demand only at the level of traffic zones, too. Thus,
it was necessary to assign links to activity locations to the location
where trips start and end.

The following procedure was used to assign links to activity loca-
tions. In a first step, each activity is assigned a coordinate. In a second
step, the nearest link to this coordinate is searched for and assigned
to the activity. This two-step procedure allows for reusing the plans
with different networks as long as the coordinates are maintained.
The coordinate is drawn randomly around the centroid of the traffic
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cell using polar coordinates. By randomly choosing an angle and
randomly choosing the distance, the density around the center of the
circle is higher than it is on the border of the circle. This corresponds
to the different population densities in the center of a village and rural
areas. The maximal distance a point can be located away from the
centroid is 0.7 times the distance from the centroid to the nearest
neighbor. The factor 0.7 has proved to lead to good coverage of the
circle areas and keeps overlaps low.

SIMULATION AND SCORING

Once the agents’ plans are available, the simulation process can
start. MATSim (19, 25) iterates between the traffic flow simulation
(physical layer; sometimes called network loading) and the behav-
ioral modules (mental layer). The traffic flow simulation moves the
agents through the network according to their plans and generates
events (e.g., vehicle enters or leaves a link, agent departs or arrives
at an activity location) from which travel times, travel speeds, link
densities, and other characteristics can be calculated. At the end of
an iteration, each plan is evaluated for how successful the agent was
in performing the (planned) activities, resulting in a score for the
plan (28). Scoring a plan is a precondition so that agents learn and
react to congestions or tolling. Different plans can be compared
and an agent can pick the one with the highest value. A higher score
implies that the agent makes better use of its day.

As a scoring function, the traditional utility function based on the
Vickrey bottleneck model is used (29) but modified to be consistent
with complete day plans. Scoring is based on event information from
the physical layer. Performing an activity is rewarded; travel times
and late arrival are punished. The overall equation is

The utility of performing an activity is assumed to increase loga-
rithmically

where x is the duration one spends at the activity. Take α = βdur � t*,
where βdur is uniformly the same for all activities (6 6/h) (16 = $1.38
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FIGURE 1 Structure of activity chains generated by Kutter model.



in 2007 U.S. dollars) and only t* varies between activity types. With
this formulation, t* can be interpreted as a typical duration, with βdur

as the marginal utility at that typical duration

t0 can be seen as a minimum duration of an activity but is better
interpreted as a priority: All other things being equal, activities with
large t0 are less likely to be dropped than activities with small t0 (28).

The utilities of traveling and of being late are both seen as 
disutilities, which are linear in time

where x = time spent traveling and

where x = time an agent arrives late at an activity. βtrav is set to −6 6/h,
and βlate is set to −18 6/h.

In principle, arriving early or leaving early could also be punished.
However, there is no immediate need to punish early arrival, because
waiting times are already indirectly punished by foregoing the reward
that could be accumulated by doing an activity instead (opportunity
cost). In consequence, the effective (dis)utility of waiting is already
−6 6/h. Similarly, that opportunity cost has to be added to the time
spent traveling, arriving at an effective (dis)utility of traveling 
of −12 6/h. No opportunity cost needs to be added to late arrivals,
because the late arrival time is already spent somewhere else. In con-
sequence, the effective (dis)utility of arriving late remains at −18 6/h.
These effective values are the standard values of the Vickrey model.

It would make sense to consider an additional punishment (neg-
ative reward) for leaving an activity early. This would describe, for
example, the effect when there are, on a specific day, better things
to do than to continue to work, but some type of contract (e.g., shop
opening hours) forces the agent to remain at work.

A fixed percentage of agents will replan their day plan with one
of the behavioral modules. The currently implemented behavioral
modules are route finding and time adjustment. Using route finding,
agents try to find better routes but do not change their departure times
or the duration of activities. To find better routes, they make use
of the events to calculate actual travel times and thus recognize
jammed links. Using time adjustment, the departure times and activ-
ity durations are modified with the goal of optimizing the individu-
als’ plan score (30). Additional behavioral modules are conceptually
clear but not yet implemented: activity resequencing would change
the order of activities (e.g., shopping after work instead of before
work), and activity dropping would remove certain activities in an
overloaded plan.

When replanning, an agent keeps its original plan and modifies a
copy of it. Thus, agents collect more variants of plans they can per-
form. Each agent can remember a configurable number of plans. If
a behavioral module generates an additional one, the plan with the
worst score will be removed to store the new one.

Such a system with several different behavioral modules and
adjusted scoring algorithms will react to a time-dependent toll by
possibly rearranging the complete day; in consequence, it goes far
beyond DTA, which just does route adaptation.

The simulation is stopped when the agent’s average score no
longer significantly improves.

U x xilate late, ( )( ) = β i 5

U x xitrav trav, ( )( ) = β i 4

∂
∂

= =
=

U

x
t

t
i

x t

act
dur dur

,

*

*
*

( )β βi i
1

3

Rieser, Nagel, Beuck, Balmer, and Rümenapp 13

SCENARIO SETUP

The chosen study area of Berlin and its surroundings covers an area
of 150 × 250 km and has a population of about 6 million inhabitants.
The focus is on the urban area of Berlin; therefore, this part of the
region is represented with a much higher level of detail and accuracy
than Brandenburg, Germany, with regard to network and demand.

The road network was originally developed by the planning depart-
ment of the city of Berlin (Senatsverwaltung für Stadtentwicklung).
It has been used for the city’s forecast model representing the 
year 2015. Manual changes were necessary to exclude modifica-
tions of the road network planned until 2015. The final road net-
work representation consists of more than 10,000 nodes and almost
30,000 links.

Nodes are described by their coordinates. Links are described
by their from-nodes and to-nodes and possess attributes such as
length, free flow speed, number of lanes, and capacity. These net-
work attributes are sufficient for the queue simulation. Unfortu-
nately, the number of lanes is not needed for traditional assignment,
and as a consequence the quality of the data is often poor. In addi-
tion, capacity is just a calibration factor in static assignment and
may be quite unrelated to the “hard” capacity needed by the queue
simulation. Both issues are discussed in more detail later.

The network has been used in Berlin with a scope of 24 h. The
demand is described by daily O-D matrices, which are based on
traffic analysis zones, where the different matrices refer to different
types of traffic (e.g., passenger, freight). Such demand is assigned
to the network using static assignment according to defined capacity
speed functions.

A crucial attribute of a network link is its capacity, which is inter-
preted very differently by the aggregated model used by the plan-
ning department of Berlin and the multiagent simulation. In this
simulation, capacity is understood as maximum outflow of a link in
a given time period, whereas the assignment model of the planning
department does not treat capacity values as hard constraints. As is
common, it uses suitable functions to relate capacity and flow to the
resulting cost in terms of travel times. Thus, it was necessary to
adapt the theoretical capacity values that were the basis for a 24-h
static assignment. A factor was derived according to the fact that
the daily traffic basically occurs in 12 h of a day. In a second step,
the resulting theoretical 1-h values used in static assignment were
converted into maximum values of outflow of a link in 1 h. The max-
imum outflow of a link used in this simulation is double the 1-h
values used in traffic assignment. In addition, the storage of a link
is constrained. The storage of a link can be calculated as length
times the number of lanes divided by the space a vehicle occupies
in a jam (7.5 m). Unfortunately, the number of lanes attribute is set
to be one on all links of the original network, because the number
of lanes is not necessary for static assignment. In this simulation,
the number of lanes is set to two to calculate maximum storage, but
a better solution has to be found in the near future.

To speed up the scenario, the demand and the network capacities
were scaled down to 10% of the actual values.

RESULTS

The average score of all agents’ plans usually gives a good overview
of the iterations’ progress. In the first iterations, the average score is
very low as the system is far from being relaxed. With ongoing iter-
ations, the agents learn how to avoid traffic jams by choosing differ-
ent routes or by starting their trips at different times of day. Figure 2
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FIGURE 3 Number of trip departures over course of day in (a) Iteration 0 and (b) Iteration 80, differentiated by
type of primary activity of the corresponding plan.
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FIGURE 2 Agents’ average score of first 80 iterations.

presents the average score of the first 80 iterations. The improve-
ment of the average score is enormous in the beginning, but slows
down as more agents find better times and routes for their plans.
After Iteration 50, the behavioral module for time adjustment is
deactivated, and the behavioral module for route finding is deacti-
vated after Iteration 60. As indicated in Figure 2, the score improves
slightly both times when a behavioral module is switched off.
This can be explained by the reduction in the number of replan-
ning agents. In the first few iterations, a large number of replanning
agents is desirable to move quickly to a better solution than the
initial one. But after some iterations, a too large number of replan-
ning agents can lead to instabilities. When every replanning agent
searches for the fastest or shortest route from one activity to another,
new traffic jams can be initiated as many of the agents select the same
link for similar route sections. By switching off behavioral modules

and thus reducing the number of replanning agents, the probability
of such traffic jams is reduced, leading to shorter travel times for the
agents, and thus to a higher average score. After Iteration 60, each
agent selects in each iteration one of its remembered plans for sim-
ulation. Assuming that a relaxed state was reached before Iteration
60, this usually leads to a simulation of traffic in a relaxed network
with small fluctuations, as can also be observed in the real world.

Adjusting trip departure times and activity durations are the most
efficient ways to get a relaxed system. Initially, all agents are assigned
a random start time for the first activity and random activity dura-
tions, each within a certain range of time. The range depends on the
type of activity. Each time an agent replans, it tries to optimize its
possible score by reallocating activity durations (27 ). This leads to
a differentiated distribution of trip departure times. Figure 3 presents
the number of trip departures over the course of a day. Figure 3a



indicates the number of trips for the initially assigned times in Iter-
ation 0, and Figure 3b indicates the number of trips for Iteration 80,
where the times were optimized during the iterations nearly to reach
a relaxed system. The numbers of trip departures are furthermore dif-
ferentiated between trips of plans having work or education as a pri-
mary activity and plans having other primary activities like shopping
or leisure. The agents try to avoid traffic jams in the morning by leav-
ing home earlier than initially assigned. In addition, agents that do
not have to work or go to school and thus are more flexible try to
avoid the evening peak period by performing activities before or
after the peak hour.

Data are available from about 100 measurement stations in Berlin
where the traffic passing by was measured. The counts are available
in hourly slices, but not all measurement stations have values for
every hour of a day.

These counts for each measurement station can be compared
with the number of vehicles that travel across the corresponding
links in the simulation during the time period of interest. Alterna-
tively, one can calculate an average volume capacity ratio of all
measurement stations based on the links’ capacities. For this, the
capacities of all links with counts are summed for a specified
hour. Next, the counts for those links are summed. With these two
sums, an average volume-to-capacity ratio can be calculated for
the specified hour. The same can be done for the number of vehi-
cles on those links in the simulation. Figure 4a shows the two vol-
ume capacity ratios compared over the course of a day. The
system can trace the evolution of that number as a function of the
time of day.

Rieser, Nagel, Beuck, Balmer, and Rümenapp 15

The average volume-to-capacity ratio is generally lower in the
simulation than it is in the real world, except during the morning and
evening hours. The missing traffic between morning and evening
can be explained by the lack of commercial traffic in the Kutter model.
The overestimation of traffic during the peak hours may be explained
with the input data containing only tours but not complete day plans.
Therefore, there is no temporal relationship between two tours of one
person on the same day. It is possible and likely that the times the two
activities are performed will overlap. Because of the missing infor-
mation that one activity can take place only after another one, there
is currently no need to perform activities late in the day. Instead, the
agents try to accomplish the activities during regular work hours,
starting in the morning.

For each measurement station, a relative error can be calculated
for every hour for which data are available. The relative error is
defined as the absolute difference between real-world and simulated
counts, divided by the real-world counts. An average of the relative
error over all measurement stations can be plotted. As indicated in
Figure 4b, the average relative error changes over the course of the
day. It is relatively high at night and improves during the day. The
large error at night can be explained by the fact that, during the night,
the divisor (real-world traffic counts) is relatively small.

DISCUSSION AND FUTURE WORK

This work shows that it is possible to couple ABDG with multiagent
traffic simulations, but the results are not yet satisfying. Although it
is possible to reuse internal data from ABDG, the data have, at least
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FIGURE 4 Time-of-day-dependent analysis of simulation outcome: (a) comparison of average volume-to-capacity
ratios over the course of a day and (b) average relative error when comparing real-world counts with 
simulated volumes.



in this case, some severe shortcomings. If data should be used from
ABDG for multiagent simulations, these shortcomings must first be
recognized and overcome. This can be done by modifying the ABDG
or by a more thorough postprocessing of the internal data to make
them suitable for multiagent simulations.

A major shortcoming is that each agent in the simulation corre-
sponds to a route but not to a “real” person. This can be seen in the
number of agents (7 million agents compared with 6 million inhabi-
tants) as well as in the fact that every agent is at home only at the start
and end of a plan, but never in between two activities (e.g., having
lunch at home). This leads to missing temporal relationships between
trips and too little traffic in the evening, as indicated in the preceding
section. Combining two or more activity chains into one agent would
reduce the number of agents and increase the average complexity of
a plan. The combination of several activity chains into one plan must
be done carefully and needs some research, as not every combination
of activity chains has the same probability. However, the fewer but
longer plans might help to relax the pressure in the morning hours
and might lead to increased traffic later in the day.

If ABDG is modified to include complete day plans, a huge step
is made toward agent-based demand generation. In addition, tradi-
tional DTA could make use of the improved ABDG when the traf-
fic assignment is done for a limited time frame only and not for the
whole day.

Some traffic segments, such as long-distance traffic, tourists and
business travelers, and commercial traffic, are missing. In principle,
those segments could be handled by agent-based models similar to
the one described in this paper. Alternatively, and arguably more
pragmatically, one could account for those trips by adding single
trips based on conventional O-D matrices for those travel segments
only. This is what the authors intend to do for Berlin.

The results have to be interpreted with regard to Berlin’s special
history. Its partition into two parts by The Wall in 1961 and the reuni-
fication in 1989 led to a city with more than one city center. In addi-
tion, the behavior of some parts of the population (mainly of older
generations) still differs based on their origin and historical back-
ground. This requires special modifications of the behavioral mod-
ules and the algorithm used for scoring. The number of modifications
remains to be figured out.

Finally, the data for the Berlin scenario must be improved. Some
attributes of the network provided by the planning department of
the city of Berlin cannot be reconstructed or fully understood, whereas
other attributes (like the number of lanes per link) are missing.
Heuristics are currently to overcome these shortcomings, but having
the correct values from the source of the data would clearly help
to improve the results of the simulation.

ACKNOWLEDGMENTS

Imke Steinmeyer organized the exchange of data from the Kutter
model, building the base for this project. The planning department
of Berlin (Senatsverwaltung für Stadtentwicklung) provided the
network used in this study and gave permission to use the data from
the Kutter model. Konrad Meister provided the code for the com-
prehensive activity scheduler, “planomat.” This work was funded
in part by the Volvo Research and Educational Foundations within
the research project Environmentally Oriented Road Pricing for
Livable Cities.

16 Transportation Research Record 2021

REFERENCES

1. Beckman, R. J., K. A. Baggerly, and M. D. McKay. Creating Synthetic
Base-Line Populations. Transportation Research A, Vol. 30, No. 6, 1996,
pp. 415–429.

2. Jonnalagadda, N., J. Freedman, W. A. Davidson, and J. D. Hunt.
Development of Microsimulation Activity-Based Model for San
Francisco: Destination and Mode Choice Models. In Transportation
Research Record: Journal of the Transportation Research Board, 
No. 1777, TRB, National Research Council, Washington, D.C., 2001,
pp. 25–35.

3. Bowman, J. L., M. Bradley, Y. Shiftan, T. K. Lawton, and M. Ben-
Akiva. Demonstration of an Activity-Based Model for Portland. In
World Transport Research: Selected Proc., 8th World Conference on
Transport Research 1998, Vol. 3, Elsevier, Oxford, United Kingdom,
1999, pp. 171–184.

4. Pendyala, R. M., R. Kitamura, A. Kikuchi, T. Yamamoto, and S. Fujii.
Florida Activity Mobility Simulator. In Transportation Research Record:
Journal of the Transportation Research Board, No. 1921, Transportation
Research Board of the National Academies, Washington, D.C., 2005,
pp. 123–130.

5. Miller, E. J., and M. J. Roorda. Prototype Model of Household Activity-
Travel Scheduling. In Transportation Research Record: Journal of the
Transportation Research Board, No. 1831, Transportation Research
Board of the National Academies, Washington, D.C., 2003, pp. 114–121.

6. Arentze, T. A., and H. J. P. Timmermans. Albatross: A Learning-Based
Transportation Oriented Simulation System. European Institute of Retail-
ing and Services Studies, Eindhoven, Netherlands, 2000.

7. Arentze, T. A., and H. J. P. Timmermans. ALBATROSS, Version 2.0.
A Learning Based Transportation Oriented Simulation System. Euro-
pean Institute of Retailing and Services Studies, Eindhoven, Netherlands,
2005.

8. Watling, D. Asymmetric Problems and Stochastic Process Models of
Traffic Assignment. Transportation Research B, Vol. 30, No. 5, 1996,
pp. 339–357.

9. Dynasmart home page. www.dynasmart.com. Accessed July 2006.
10. DynaMIT home page. mit.edu/its. Accessed July 2006.
11. Friedrich, M., I. Hofsäß, K. Nökel, and P. Vortisch. A Dynamic Traffic

Assignment Method for Planning and Telematic Applications. In Proc.,
Seminar K, Vol. P445 of European Transport Conference, PTRC,
Cambridge, United Kingdom, 2000, pp. 29–40.

12. Loudon, W. R., J. Parameswaran, and B. Gardner. Incorporating
Feedback in Travel Forecasting. In Transportation Research Record
1607, TRB, National Research Council, Washington, D.C., 1997, 
pp. 185–195.

13. Raney, B., and K. Nagel. Iterative Route Planning for Large-Scale Mod-
ular Transportation Simulations. Future Generation Computer Systems,
Vol. 20, No. 7, 2004, pp. 1101–1118.

14. Ferber, J. Multi-agent Systems. An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, Boston, Mass., 1999.

15. Jara-Diaz, S. R., and R. Guerra. Modelling Activity Duration and Travel
Choice from a Common Microeconomic Framework. Proc., Meeting of
the International Association for Travel Behavior Research, Lucerne,
Switzerland, 2003. www.ivt.baum.ethz.ch.

16. Avineri, E., and J. N. Prashker. Sensitivity to Uncertainty: Need for
Paradigm Shift. In Transportation Research Record: Journal of the
Transportation Research Board, No. 1854, Transportation Research Board
of the National Academies, Washington, D.C., 2003, pp. 90–98.

17. TRANSIMS home page. www.transims.net. Accessed July 2006.
18. de Palma, A., and F. Marchal. Real Case Applications of the Fully

Dynamic Metropolis Tool-Box: An Advocacy for Large-Scale Meso-
scopic Transportation Systems. Networks and Spatial Economics, Vol. 2,
No. 4, 2002, pp. 347–369.

19. MATSim home page. www.matsim.org. Accessed July 2006.
20. Cetin, N., A. Burri, and K. Nagel. A Large-Scale Agent-Based Traffic

Microsimulation Based on Queue Model. Proc., Swiss Transport Research
Conference, Monte Verita, Switzerland, 2003. www.strc.ch.

21. Balmer, M., M. Rieser, A. Vogel, K. W. Axhausen, and K. Nagel. Gener-
ating Day Plans Using Hourly Origin-Destination Matrices. In Jahrbuch
2004/05 Schweizerische Verkehrswirtschaft (T. Bieger, C. Laesser, and
R. Maggi, eds.), St. Gallen, Switzerland, 2005, pp. 5–36.



22. Bhat, C. R., J. Y. Guo, S. Srinivasan, and A. Sivakumar. Comprehen-
sive Econometric Microsimulator for Daily Activity-Travel Patterns. In
Transportation Research Record: Journal of the Transportation Research
Board, No. 1894, Transportation Research Board of the National Acad-
emies, Washington, D.C., 2004, pp. 57–66.

23. Kutter, E. Integrierte Berechnung städtischen Personenverkehrs–
Dokumentation der Entwicklung eines Verkehrsberechnungsmodells
für die Verkehrsentwicklungsplanung Berlin (West). Berlin, 1984.

24. Kutter, E., H-J. Mikota, J. Rümenapp, and I. Steinmeyer. Untersuchung
auf der Basis der Haushaltsbefragung 1998 (Berlin und Umland) zur
Aktualisierung des Modells “Pers Verk Berlin / RPlan,” sowie speziell
der Entwicklung der Verhaltensparameter ‘86–’98 im Westteil Berlins,
der Validierung bisheriger Hypothesen zum Verhalten im Ostteil, der
Bestimmung von Verhaltensparametern für das Umland. Entwurf des
Schlussberichts im Auftrag der Senatsverwaltung für Stadtentwicklung
Berlin. Berlin, 2002.

25. Raney, B., and K. Nagel. Improved Framework for Large-Scale Multi-
agent Simulations of Travel Behavior. Presented at 84th Annual Meet-
ing of the Transportation Research Board, Washington, D.C., 2005.

26. Rümenapp, J., and I. Steinmeyer: Activity-Based Demand Genera-
tion: Anwendung des Berliner Personenverkehrsmodells zur Erzeu-

Rieser, Nagel, Beuck, Balmer, and Rümenapp 17

gung von Aktivitätenketten als Input für Multi-Agenten-Simulationen.
Arbeitsberichte Verkehrssystemplanung und Verkehrstelematik Nr.
06–09, Berlin, 2006.

27. Meister, K., M. Balmer, K. W. Axhausen, and K. Nagel. Planomat: 
A Comprehensive Scheduler for a Large-Scale Multi-agent Transporta-
tion Simulation. Proc., Swiss Transport Research Conference, Monte
Verita, Switzerland, 2006. www.strc.ch.

28. Charypar, D., and K. Nagel. Generating Complete All-Day Activity
Plans with Genetic Algorithms. Transportation, Vol. 21, No. 4, 2005,
pp. 369–397.

29. Arnott, R., A. de Palma, and R. Lindsey. A Structural Model of Peak-
Period Congestion: A Traffic Bottleneck with Elastic Demand. American
Economic Review, Vol. 83, No. 1, 1993, p. 161.

30. Balmer, M., B. Raney, and K. Nagel. Adjustment of Activity Timing and
Duration in an Agent-Based Traffic Flow Simulation. In Progress in
Activity-Based Analysis (H. J. P. Timmermans, ed.), Elsevier, Oxford,
United Kingdom, 2005, pp. 91–114.

The Traveler Behavior and Values Committee sponsored publication of this
paper.


