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Data-Enabled Predictive Control for Grid-Connected Power Converters

Linbin Huang, Jeremy Coulson, John Lygeros and Florian Dörfler

Abstract— We apply a novel data-enabled predictive con-
trol (DeePC) algorithm in grid-connected power converters
to perform safe and optimal control. Rather than a model,
the DeePC algorithm solely needs input/output data measured
from the unknown system to predict future trajectories. We
show that the DeePC can eliminate undesired oscillations in
a grid-connected power converter and stabilize an unstable
system. However, the DeePC algorithm may suffer from poor
scalability when applied in high-order systems. To this end,
we present a finite-horizon output-based model predictive
control (MPC) for grid-connected power converters, which uses
an N-step auto-regressive-moving-average (ARMA) model for
system representation. The ARMA model is identified via an
N-step prediction error method (PEM) in a recursive way.
We investigate the connection between the DeePC and the
concatenated PEM-MPC method, and then analytically and
numerically compare their closed-loop performance. Moreover,
the PEM-MPC is applied in a voltage source converter based
HVDC station which is connected to a two-area power system so
as to eliminate low-frequency oscillations. All of our results are
illustrated with high-fidelity, nonlinear, and noisy simulations.

I. INTRODUCTION

The penetration of power-electronic devices in modern
power systems is ever-increasing due to the development
of renewable energy, microgrids, high-voltage direct-current
(HVDC) transmission systems, etc. [1], [2]. Conventionally,
the control structure of power converters is designed accord-
ing to engineering experience and the corresponding control
gain tuning is based on iterative trial-and-error methods.
Also, lots of effort has been put into the modeling of power
converters, which provides insights into the system dynamics
and criteria for control gain tuning [3]–[5].

However, these approaches heavily rely on rich engineer-
ing experience and lack systematicness. In addition, the
control structure generally assumes a stiff power grid and
may present poor robustness against variable grid conditions.
For example, the most widely-used control structure, which
consists of a phase-locked loop (PLL) and a current control
loop, can become unstable when the power converter is
connected to a weak grid with high grid impedance (or
equivalently, low short-circuit ratio) [6]–[8].

Even though offline design and analysis (based on a nomi-
nal model) can be conducted to determine an optimal control
parameter set, optimal performance can rarely be achieved
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during online operation because (i) the real parameters of the
power converter are hard to obtain due to different operation
conditions and manufacturing inaccuracy; (ii) sometimes the
underlying algorithms for the converter are designed by
another manufacturer and are not obtainable, i.e., some part
of the converter system is unknown; (iii) the power grid
is generally an unknown system from power converter side
which significantly affects the dynamic performance; and (iv)
the offline design generally employs a constant power grid
model (which in most cases is assumed to be an infinite bus)
for the power converter, yet the real power grid is variable.

Normally, these problems are handled using robust or
adaptive methods [8], [9]. However, these methods are still
model-based, result in complex controllers, and suffer from
scalability problems for large and uncertain (or even partially
unknown) models. Inspired by recent advances in machine
learning and artificial intelligence, recent control approaches
entirely circumvent such model-based solutions in favor of
data-driven approaches [10]–[12].

In this paper, we use a novel Data-enabled Predictive
Control (DeePC) algorithm to compute optimal and safe
control policies for grid-connected power converters, which
uses real-time feedback to drive the unknown system along
a desired (i.e., optimal and constrained) trajectory [13]. The
DeePC algorithm presented in [13] relies on behavioural
system approach [14]–[17]. Instead of using a parametric
model for system representation, the approach in [14]–[17]
describes the input/output behaviour of the system through
the subspace of the signal space in which trajectories live.

However, when applied in large-scale systems, e.g., in the
case of power transmision oscillation damping [18], [19], the
optimal regulation problem in DeePC may suffer from poor
scalability due to its high dimension. To this end, we use a
finite-horizon output-based model predictive control (MPC)
for grid-connected power converters, wherein the unknown
system is represented by an N -step auto-regressive-moving-
average (ARMA) model and identified via least-square N -
step prediction error method (PEM). The PEM can be solved
in a recursive way which enables an iterative calculation and
possible online implementation. We will show that this PEM-
MPC method is scalable for large-scale unknown systems,
and analytically discuss how it is related to DeePC.

The remainder of this paper is organized as follows: in
Section II we provide an overview for the DeePC approach.
Section III discusses how the concatenated PEM-MPC is
related to DeePC and then presents their applications in a
grid-connected power converter. In Section IV we apply the
PEM-MPC in a two-area power system which contains one
HVDC station. We conclude the paper in Section V.



II. DATA-ENABLED PREDICTIVE CONTROL

A. Preliminaries and Notation

For an unknown discrete-time LTI system that has m
inputs and p outputs, we denote by ut ∈ Rm the input vector
of the system at time t ∈ Z≥0 and yt ∈ Rp the output vector
at time t ∈ Z≥0, where Z≥0 is the discrete-time axis. Let u =
col(u1, u2, ...) and y = col(y1, y2, ...) be respectively the in-
put and output trajectories whose dimensions can be inferred
from the context, where col(a1, ..., ai) := [a>1 · · · a>i ]>.

Let L, T ∈ Z≥0 and T ≥ L. The trajectory u ∈ RmT is
persistently exciting of order L if the Hankel matrix

HL(u) :=


u1 u2 · · · uT−L+1

u2 u3 · · · uT−L+2

...
...

. . .
...

uL uL+1 · · · uT

 (1)

is of full row rank, i.e., the signal u is sufficiently long and
sufficiently rich.

Consider the following n-order discrete-time LTI system
(minimal representation):{

xt+1 = Axt +But
yt = Cxt +Dut

, (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and
xt is the state of the system at time t ∈ Z≥0.

The lag of the system in (2) is defined by the smallest
integer ` ∈ Z≥0 so that the observability matrix

O`(A,C) := col(C,CA, ..., CA`−1)

has rank n.
Let Tini, N ∈ Z≥0 such that T ≥ (m+1)(Tini+N+n)−1.

Consider an input trajectory ud and an output trajectory yd

(both are of length T ∈ Z≥0, i.e., ud ∈ RmT and yd ∈ RpT )
measured from the n-order unknown system (2) such that ud

is persistently exciting of order Tini +N + n. Here we use
the superscript d to indicate that these two trajectories are
data sets measured from the unknown system. We use ud

and yd to construct the Hankel matrices HTini+N (ud) and
HTini+N (yd), which are further partitioned into two parts as[

UP

Uf

]
:= HTini+N (ud) ,

[
YP
Yf

]
:= HTini+N (yd) ,

(3)
where UP ∈ RmTini×(T−Tini−N+1), Uf ∈
RmN×(T−Tini−N+1), YP ∈ RpTini×(T−Tini−N+1) and
Yf ∈ RpN×(T−Tini−N+1).

According to the behavioral system theory [15],
col(uini, yini, u, y) is a trajectory of (2) if and only if there
exist g ∈ RT−Tini−N+1 such that

UP

YP
Uf

Yf

 g =


uini
yini
u
y

 . (4)

The trajectory col(uini, yini) can be thought of as an initial
condition for the trajectory col(uini, yini, u, y) and col(u, y)

as a future trajectory departing from this initial condition. If
Tini ≥ `, the future output trajectory y is uniquely determined
through (4) for every given input trajectory u.

B. Review of DeePC

Instead of learning a parametric system representation
through system identification, the DeePC attempts to learn
the system’s behaviour and computes optimal control inputs
using past data measured from the unknown system. More-
over, input/output constraints can be conveniently incorpo-
rated to ensure safety, described as follows.

After using the input/output trajectory col(ud, yd) (ud ∈
RmT and yd ∈ RpT ) to construct the Hankel matrices in (3),
DeePC solves the following optimization problem at every
sampling time to get the optimal future control inputs

min
g,u∈U,y∈Y

‖u‖2R + ‖y − r‖2Q + λg‖g‖22

s.t.


UP

YP
Uf

Yf

 g =


uini
yini
u
y

 , (DeePC)

where U ⊆ RmN and Y ⊆ RpN are the input and output
constraint sets, R ∈ RmN×mN is the control cost matrix
(positive definite), Q ∈ RpN×pN is the output cost matrix
(positive semidefinite), λg ∈ R≥0 is the regularization
parameter, r ∈ RpN is the reference vector for the output sig-
nals, N is the prediction horizon, and col(uini, yini) consists
of the most recent input/output trajectory of (2). The norm
‖a‖2X of the vector a denotes the quadratic form a>Xa.

We note that a two-norm penalty on g is included in the
cost function as a regularization term to avoid overfitting.
More precisely, when the data samples of the Hankel matrix
and the online measurements yini are corrupted by stochas-
tic disturbances, a two-norm regularization on g coincides
with an analogous two-norm distributional robustness of the
DeePC optimization problem [20]. The DeePC involves solv-
ing the optimization problem (DeePC) in a receding horizon
manner [13], that is, after calculating the optimal control
input sequence u?, we apply (ut, ..., ut+s) = (u?0, ..., u

?
s)

to the system for some s ≤ N − 1 time steps, update
col(uini, yini) to the most recent input/output measurements
and then set t to t+ s+ 1 for the DeePC algorithm.

III. FROM DEEPC TO PEM-MPC

A. Scalability of DeePC

The DeePC approach provides a safe and optimal solution
to the regulation problem by solely using the measured data
from the unknown system. However, when applied in high-
order systems, the DeePC may suffer from poor scalability
because the dimension of the decision variable g (which
is T − Tini − N + 1) depends on the length of data T to
construct the Hankel matrix. In other words, the optimization
problem in (DeePC) is of high dimension when choosing a
long sequence of data to possibly eliminate the impacts of
measurement noise.



To remove g from the constraint and ensure the scalability
of the optimization problem in (DeePC), we consider a sub-
sequent system identification and model predictive control
whose decision variables are u and y.

B. Model Predictive Control

In what follows, we consider the following finite-horizon
output-based MPC problem

min
u∈U,y∈Y

‖u‖2R + ‖y − r‖2Q

s.t. y = K

 uini
yini
u

 , (MPC)

where the decision variables u and y are the control inputs
and measurement outputs over the prediction horizon, and
K ∈ RpN×(mTini+pTini+mN) is the N -step transition matrix
predicting how future outputs of the system are determined
by the initial input/output data and the future inputs. Note
that the optimization problem (MPC) is solved in a receding
horizon manner resulting in an online feedback control.

Since the decision variable g in (DeePC) does not appear
in (MPC), solving (MPC) has much less computational
burden than solving (DeePC), especially when the Hankel
matrix has high column number. On the other hand, (MPC)
depends on an explicit predictive model given by the transi-
tion matrix K in the equality constraint.

C. Prediction Error System Identification

Observe that the predictive model in (MPC) is an N -step
ARMA model for the discrete-time LTI system mapping past
inputs and outputs col(uini, yini) as well as future inputs u
to future outputs y. In particular, for the output vector at
discrete time i (i ∈ {1, ..., N}), i.e., yi, we have

yi = Kiϕ , (5)

where Ki ∈ Rp×(mTini+pTini+mN) is the ith block row of
K and ϕ = col(uini, yini, u).

Given past measurements of yi and ϕ, the transition matrix
Ki can be computed offline through system identification.
In the absence of measurement noise, Ki can be computed
exactly with mTini+ pTini+mN linearly independent mea-
surements of ϕ and associated yi. However, measurement
noise will significantly affect the accuracy of this approach.
A standard solution to remedy this problem and to eliminate
the effects of the noise is to use a larger data set and apply
a least-square N -step PEM minimizing

min
Ki

Ntrj∑
j=1

‖yi(j) −Kiϕ(j)‖22 , (PEM)

where Ntrj > mTini+pTini+mN is the number of measured
trajectories, and yi(j) and ϕ(j) belong to the jth trajectory.
Indeed, the subsequent combination of PEM and MPC is
a standard approach to model-based control that has proved
itself in many applications throughout academia and industry
[21], [22].

As an alternative to the batch optimization approach
(PEM) combining all the measured trajectories to solve for
K in one step, K can be obtained by adopting the recursive
least-square algorithm [23]. The recursive algorithm is not
only more scalable for large data sets, but it could possibly
also be applied online to adapt the model K used in (MPC)
to a variable environment. Moreover, the size of K is solely
related to Tini and N and independent of the size of the data
set, which leads to a smaller optimization problem size than
(DeePC) when applied to high-order systems.

D. Relation of DeePC, MPC, and PEM

In the following, we will relate the subsequent sys-
tem identification through (PEM) and model-based control
through (MPC) to the data-driven (DeePC) strategy. In a first
step, observe that the least-square solution for (PEM) can be
expressed in closed form as

Ki = [yi(1) · · · yi(Ntrj)][ϕ(1) · · · ϕ(Ntrj)]
+ , (6)

where the Moore-Penrose pseudoinverse of a matrix X is
denoted by X+.

The transition matrix K can then be obtained as

K = [y(1) · · · y(Ntrj)][ϕ(1) · · · ϕ(Ntrj)]
+ . (7)

Since every column in the constructed Hankel matrix (3)
is one trajectory measured from the unknown system, K can
also be calculated by using the Hankel matrix (3) by

K = Yf

 UP

YP
Uf

+

. (8)

By combining (8) with y = Kϕ and y = Yfg one obtains

g =

 UP

YP
Uf

+  uini
yini
u

 , (9)

which equals the solution of the optimization problem

min
g
‖g‖22

s.t.

 UP

YP
Uf

 g =

 uini
yini
u

 . (LN)

Observe that the optimization problem (LN) seeks the least-
norm solution to the equality constraint. Thus, we refer to it
as the least-norm (LN) problem. For Hankel matrix data, the
solution g′? of (LN) is related to the solution of the least-
squares (PEM) problem K? by y = Yfg

′? = K?ϕ. It can
also be derived using subspace identification methods [17].
We summarize this observation below.

Lemma 3.1 (PEM and LN): Consider the least-norm
problem (LN) with Hankel matrix col(UP , YP , Uf ). Consider
the least-square N -step prediction error method optimization
problem (PEM), and assume that its data yi(j) and ϕ(j) is
arranged into the Hankel matrix col(UP , YP , Uf , Yf ). Then
the solution K? of (PEM) and the solution g′? of (LN) are
related by the equation K?ϕ = Yfg

′?.



Observe that if the (LN) solution g′? is used as predic-
tive model (equality constraint) of the (MPC) problem by
setting y = Yfg

′? (where g′? is a function of u), then the
subsequent concatenation of the (MPC) and the (LN) (or
equivalently (PEM) by Lemma 3.1) optimization problems
reads as follows:

min
u′∈U,y′∈Y

‖u′‖2R + ‖y′ − r‖2Q
s.t. u′ = Ufg

′?, y′ = Yfg
′?,

where g′? = argmin
g′

‖g′‖22

s.t.

 UP

YP
Uf

 g′ =
 uini
yini
u′

 .
(PEM-MPC)

Note that g′? depends on the decision variable u′ in
(PEM-MPC). The inner problem of (PEM-MPC) is the sys-
tem identification step through (LN) (or equivalently (PEM)
by Lemma 3.1). The outer problem on the other hand is
identical to the (MPC) problem. Let

C(u, y, g) = ‖u‖2R + ‖y − r‖2Q + λg‖g‖22 (10)

be the combined cost taking into account both system perfor-
mance (i.e., ‖u‖2R+‖y − r‖2Q) and the complexity of g (i.e.,
λg‖g‖22). This is the true cost we wish to minimize when
noise is present in the system as large entries of g result in
overfitting of the noisy trajectories in the Hankel matrix in
(4) [13]. Since this cost appears in (DeePC), we can compare
directly the performance of (PEM-MPC) and (DeePC) with
respect to this cost. We present the comparison below.

Lemma 3.2 (PEM-MPC and DeePC): Consider the opti-
mal solution (u′?, y′?, g′?) of the concatenated (PEM-MPC)
problem and the optimal solution (u?, y?, g?) of the (DeePC)
problem. It holds that

C(u?, y?, g?) ≤ C(u′?, y′?, g′?) .

That is, (DeePC) achieves a cost less or equal to the cost of
the concatenated (PEM-MPC) with respect to (10).

Proof: Observe that any feasible point (u′, y′, g′?)
of (PEM-MPC) is also a feasible point of (DeePC). Since
g′? is a particular g that satisfies the constraints of (DeePC)
then the feasible set of (PEM-MPC) is a subset of (DeePC).
Hence, it holds that C(u?, y?, g?) ≤ C(u′?, y′?, g′?).

In other words, the DeePC presents better performance
than the MPC formulated in (MPC) if K is obtained by
(PEM). On the other hand, the MPC problem in (MPC) has
the advantage that it doesn’t contain the decision variable
g and therefore has lower computational burden, which
make it scalable to high-order systems. In the next section
we numerically observe that the gap between (DeePC) and
(PEM-MPC) presented in Lemma 3.2 can actually be made
smaller by an appropriate choice of regularization λg .

E. Applications to a Grid-Connected Power Converter
In this section, we use the DeePC and the PEM-MPC to

perform optimal control for a grid-connected power converter
as shown in Fig.1. The power converter together with the
power grid is a black-box system from the view of the
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Fig. 1. One-line diagram of a grid-connected power converter.

DeePC/PEM-MPC. The control part of the converter consists
of a PLL, a current control loop and coordinate transforma-
tion blocks [4], [24]. The sampling frequency of the DeePC
and PEM-MPC is 1kHz. The other system parameters can
be found in the extended version of this paper [25].

When the converter is connected to a strong grid that
features low grid-side impedance, it will present anticipated
dynamic performance. However, if the converter is connected
to a weak grid that has high grid-side impedance, e.g.,
Lg = 0.35p.u., the PLL will have significant interaction
with the current control loop as well as the grid impedance,
which may result in instabilities [6], [8].

We choose Irefd and Irefq to be the control inputs, and the
measured outputs (with noise) from the black-box system are
Vd, Vq and Id. Since the DeePC has no information about
the black-box system, Tini is chosen to be sufficiently large
(Tini = 40) to meet Tini ≥ `. Before t = 0s, white noise
signals are injected into the system via Irefd and Irefq so as
to obtain the Hankel matrix.

Fig.2 plots the time-domain responses of the power con-
verter when the DeePC is applied. By choosing T = 500,
the DeePC effectively eliminates the voltage and current os-
cillations when activated at t = 0.2s, and presents robustness
when Lg is changed from 0.34p.u. to 0.35p.u. at t = 0.7s,
and to 0.5p.u. at 1.0s. Note the Hankel matrix is not updated
during the disturbances.

When choosing T = 330 in the DeePC, the oscillations
are obviously eliminated as well after the DeePC is activated.
However, the voltage and current signals are slightly oscillat-
ing after Lg is changed from 0.35p.u. to 0.5p.u. at 1.0s. This
is because the trajectory col(ud, yd) in this case contains less
information of the system than that with T = 500, and thus
the prediction is more strongly affected by the measurement
noise when solving the DeePC. Choosing a larger T is a
convenient way to resolve this problem, yet it results in a
higher dimension of g and thus higher computational burden
in solving (DeePC), which may not be scalable to high-`
systems as discussed before.

Fig.2 also displays the relationship between T and the
time-domain cost (from t = 0.2s to t = 1.4s) to illustrate
how different values of T affect the performance, where the
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Fig. 2. Time-domain responses and time-domain cost. The DeePC/PEM-
MPC is activated at t = 0.2s. —– PEM-MPC; —– DeePC (T = 500); —–
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Fig. 3. Variations of the optimization cost and the time-domain cost with
different values of λg . —– DeePC; —– PEM-MPC;

time-domain cost is ‖utime‖2R + ‖ytime − r‖2Q (utime and
ytime are the input and output trajectories measured from the
closed-loop system, and r is the reference for the outputs).
It is shown that the time-domain cost sharply decreases with
the increase of T from 320 to 400, and remain nearly the
same (or slightly increases) if further increasing T .

For comparison, Fig.2 plots the responses of the power
converter when the PEM-MPC is used. Before t = 0s,
the N -step transition matrix K has been obtained during
the converter’s operation by recursively solving the PEM
problem in (PEM) with 1500 trajectories.

At t = 0.2s, the PEM-MPC is activated, which effectively
attenuates the voltage and current oscillations and stabilizes
the system. Then, we test the robustness of the PEM-MPC
by changing the grid-side inductance Lg from 0.34p.u. to
0.35p.u. at t = 0.7s, and to 0.5p.u. at 1.0s. It can be seen
that the system is stable under these two disturbances, and
the current and voltage signals track the references with fast
dynamics, that is, the PEM-MPC shows robustness in terms
of parameter changes in the black-box system. Here K is not
updated during the two disturbances to test how an inaccurate
model in K affects the performance of the PEM-MPC.

The converter’s responses without the DeePC or the PEM-
MPC are plotted by the green lines in Fig.2. The system
is unstable with the voltage and current signals keeping
oscillating, which endangers the power system operation.

Fig.3 displays how λg affects the optimization cost of
the system (setting T = 500). The optimization costs of
DeePC and PEM-MPC are respectively obtained by solving
(DeePC) and (PEM-MPC) at t = 0.2s, and Fig.3 shows
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Fig. 4. One-line diagram of a three-phase two-area test system with
integration of a VSC-HVDC station.

that DeePC outperforms PEM-MPC under any λg , which
is consistent with Lemma 3.2. In addition, Fig.3 also plots
how λg affects the time-domain cost (from t = 0.2s to
t = 1.4s) of the DeePC closed-loop system, and shows
that this cost dramatically decreases when increasing λg
from 0.01 to 20 before increasing again consistent with the
theoretic predictions from distributional robustness [20].

IV. APPLICATION OF PEM-MPC IN LARGE-SCALE
SYSTEMS

To illustrate the effectiveness of the PEM-MPC in large-
scale power systems, we now provide a detailed simulation
study based on a nonlinear model of the three-phase two-area
test system (the order of the system is n = 90) in Fig.4. This
test system consists of four synchronous generators (SGs)
and one voltage source converter (VSC) HVDC station. The
VSC-HVDC station is a large-capacity power converter with
an LCL filter, which in our case, employs the control scheme
given in Fig.1. The system parameters can be found in the
extended version of this paper [25].

This test system has one pair of weakly-damped inter-area
modes and presents low-frequency oscillations, as caused by
the fast exciters in the SGs as well as long transmission
lines [26]. The system inputs/outputs for the PEM-MPC are
depicted in Fig.4. Fig.5 plots the time-domain responses of
the inter tie-line active power when different Tini and N
are adopted. The sampling time for PEM-MPC is 1ms. Note
that the N -step transition matrix K was calculated iteratively
with 3000 trajectories before t = 0s.

Firstly, since the test system is of high order (with 90 state
variables) and is a black-box system to the PEM-MPC, we
choose a sufficiently large Tini (Tini = 200) to meet Tini ≥ `,
and the prediction horizon is chosen as N = 80. It can be
seen that the inter-area oscillation is well eliminated after the
PEM-MPC is activated at t = 10s. Then, considering that
the low-frequency oscillations are caused by the interactions
among the SGs’ rotors and thus can possibly be represented
by an equivalent low-order system, Tini and N are chosen
smaller to test the performance of the PEM-MPC. Fig.5
shows that when (Tini, N) are chosen to be (10, 10) and
even (5, 10), the PEM-MPC can still effectively attenuate the
inter tie-line power oscillations. Also observe that with the
decrease of Tini and N , some slight oscillations still exist
after the PEM-MPC is activated, which is caused by the
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Fig. 5. Time-domain responses and time-domain cost. —– Time-domain
responses of the inter tie-line active power (with PEM-MPC activated at
t = 10s); —– time-domain cost with different Tini.

model mismatch, i.e., a smaller size of K may not be able
to accurately represent the full-order model.

To further illustrate how the choice of Tini affects the
overall performance, Fig.5 also plots the variations of the
time-domain cost with different values of Tini (from t =
10s to t = 14s). It shows that the time-domain cost is
significantly reduced with the increase of Tini from 5 to 50,
but remains nearly the same if further increasing Tini.

V. CONCLUSION

We applied DeePC in grid-connected power converters
to eliminate undesired oscillations caused by weak grid
conditions. The DeePC has no information about the power
converter or the power grid, and solely uses input/output
data measured from the unknown system. We showed that
the DeePC can stabilize an unstable system by performing
optimal and constrained receding-horizon control. We illus-
trated that DeePC shows increased level of robustness and
performance when considering a longer input/output data
sequence to construct the Hankel matrix, which at the same
time results in higher computational burden and thus possibly
poor scalability especially in high-order systems. For this rea-
son, we presented a concatenated PEM-MPC method as an
alternative model-based, optimal, and constrained receding-
horizon control, wherein the PEM can be implemented in
a recursive manner. We discussed the connection between
DeePC and PEM-MPC, and formally showed that the DeePC
outperforms PEM-MPC with regards to the cost in the
optimization problem. We applied the PEM-MPC in a VSC-
HVDC station which is connected to a high-order power
grid that contains four SGs, and showed that the PEM-MPC
effectively eliminates the low-frequency oscillations caused
by the interactions among multiple SGs.
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