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Rolling in the Deep – Hybrid Locomotion for
Wheeled-Legged Robots using Online Trajectory

Optimization
Marko Bjelonic1, Prajish K. Sankar2, C. Dario Bellicoso3, Heike Vallery4 and Marco Hutter1

Abstract—Wheeled-legged robots have the potential for highly
agile and versatile locomotion. The combination of legs and
wheels might be a solution for any real-world application requir-
ing rapid, and long-distance mobility skills on challenging terrain.
In this paper, we present an online trajectory optimization
framework for wheeled quadrupedal robots capable of executing
hybrid walking-driving locomotion strategies. By breaking down
the optimization problem into a wheel and base trajectory
planning, locomotion planning for high dimensional wheeled-
legged robots becomes more tractable, can be solved in real-time
on-board in a model predictive control fashion, and becomes
robust against unpredicted disturbances. The reference motions
are tracked by a hierarchical whole-body controller that sends
torque commands to the robot. Our approach is verified on
a quadrupedal robot with non-steerable wheels attached to its
legs. The robot performs hybrid locomotion with a great variety
of gait sequences on rough terrain. Besides, we validated the
robotic platform at the Defense Advanced Research Projects
Agency (DARPA) Subterranean Challenge, where the robot
rapidly mapped, navigated and explored dynamic underground
environments.

Index Terms—Legged Robots, Wheeled Robots, Motion and
Path Planning, Optimization and Optimal Control

I. INTRODUCTION

LEGGED robots offer the possibility of negotiating chal-
lenging environments and, thus, are versatile platforms

for various types of terrains [1]. In research and industry, there
is an emphasis on replicating nature to improve the hardware
design and algorithmic approach of robotic systems [2], [3].
Even with extensive research, matching the locomotion skills
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Fig. 1. The fully torque-controlled quadrupedal robot ANYmal [4] equipped
with four non-steerable, torque-controlled wheels. The robot is traversing
over a wooden plank (top images), on rough terrain (left middle image). In
addition, the robot rapidly maps, navigates and searches dynamic underground
environments at the DARPA Subterranean Challenge (lower images), and the
robot’s wheels are equipped with chains to traverse the muddy terrain (right
middle image). A video can be found at https://youtu.be/ukY0vyM-yfY.

of conventional legged robots to their natural counterparts
remains elusive. In contrast, wheels offer a chance to ex-
tend some capabilities, particularly speed, of these legged
robotic systems beyond those of their natural counterparts,
which can be crucial for any task requiring rapid and long-
distance mobility skills in challenging environments. With
this motivation, the central contribution of this work involves
locomotion planning on a wheeled-legged robot to perform
dynamic hybrid1 walking-driving motions on various terrains,
as shown in Fig. 1.

1In our work, hybrid locomotion denotes simultaneous walking and driving.

https://youtu.be/ukY0vyM-yfY
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A. Related Work

The online generation of optimal solutions for dynamic mo-
tions has been an active research area for conventional legged
robots. Methods like trajectory optimization (TO) and model
predictive control (MPC) are prevalent and recommended in
the literature for aiding robots to be reactive against external
disturbances and modeling errors. Finding control policies for
performing walking motions in an articulated mobile robot
is an involved task because of the system’s many degrees
of freedom (DOF) and its nonlinear dynamics. This demands
substantial computational power and introduces the challenge
of overcoming local minima, making on-the-fly computations
hard.

In the literature concerning wheeled-legged robots, hybrid
walking-driving motions are scarce. The focus is mostly on
statically-stable driving motions where the legs are used for
active suspension alone [5]–[10]. These applications do not
show any instance of wheel lift-offs. Hence, sophisticated
motion planning for the wheels is unnecessary and, therefore,
usually skipped.

Agile motions over steps and stairs are demonstrated for
the first time in our previous work [11], where a hierarchical
whole-body controller (WBC) tracks the motion trajectories
that include the rolling conditions associated with the wheels.
The robot can execute walking and driving motions, but
not simultaneously due to missing wheel trajectories over a
receding horizon. As such, the robot needs to stop and switch
to a pure walking mode to overcome obstacles. The work
in [12] extends the approach by computing base and wheel
trajectories in a single optimization framework. This approach,
however, decreases the update rate to 50 Hz, and no hybrid
walking-driving motions are shown on the real robot.

CENTAURO, a wheeled-legged quadruped with a humanoid
upper-body, performs a walking gait with automatic footstep
placement using a linear MPC framework [13]. The authors,
however, only perform walking maneuvers without making
use of the wheels. In contrast, the path planner in [14] shows
driving and walking motions in simulation without considering
the robot’s dynamics. Among the robots that employ hybrid
walking-driving motions, Jet Propulsion Laboratory’s (JPL)
Robosimian uses a TO framework [15], but for passive wheels
and results are only shown in a simulation. Skaterbots [16]
provide a generalized approach to motion planning by solving
a nonlinear programming (NLP) problem. This approach,
however, is impractical to update online in a receding horizon
fashion, i.e., in a MPC fashion, due to excessive computational
demand.

Given state of the art, we notice a research gap in trajec-
tory generation methods for hybrid walking-driving motions
on legged robots with actuated wheels, which can be both
robust on various terrains and be used on-the-fly. Fortunately,
research in traditional legged locomotion offers solutions to
bridge this gap. The quadrupedal robot ANYmal (without
wheels) performs highly dynamic motions using MPC [17],
[18] and TO [19], [20] approaches. Impressive results are
shown by MIT Cheetah, which performs blind locomotion
over stairs [21] and jumps onto a desk with the height

of 0.76 m [22]. The quadrupedal robot HyQ shows an on-
line, dynamic foothold adaptation strategy based on visual
feedback [23]. Therefore, we conjecture that extending these
approaches to wheeled-legged systems can aid in producing
robust motions.

B. Contribution
In our work, we present an online TO framework for

wheeled-legged robots capable of running in a MPC fashion
by breaking the problem down into separate wheel and base
TOs. The former takes the rolling constraints of the wheels
into account, while the latter accounts for the robot’s balance
during locomotion using the idea of the zero-moment point
(ZMP) [24]. A hierarchical WBC [11] tracks these motions
by computing torque commands for all joints. Our hybrid
locomotion framework extends the capabilities of wheeled-
legged robots in the following ways:

1) Our framework is versatile over a wide variety of gaits,
such as pure driving, statically stable gaits, dynamically stable
gaits, and gaits with full-flight phases.

2) We generate wheel and base trajectories for hybrid
walking-driving motions in the order of milliseconds. Thanks
to these fast update rates, the resulting motions are robust
against unpredicted disturbances, making real-world deploy-
ment of the robot feasible. Likewise, we demonstrate the
performance of our system at the DARPA Subterranean Chal-
lenge, where the robot autonomously maps, navigates and
searches dynamic underground environments.

II. MOTION PLANNING
The whole-body motion planner is based on a task synergy

approach [25], which decomposes the optimization problem
into wheel and base TOs. By breaking down the problem into
these two tasks, we hypothesize that the issue of locomo-
tion planning for high-dimensional (wheeled-)legged robots
becomes more tractable. The optimization can be solved in
real-time in a MPC fashion, and with high update rates, the
locomotion can cope with unforeseen disturbances.

The main idea behind our approach is visualized in Fig. 2.
Given a fixed gait pattern and the reference velocities2 with
respect to (w.r.t.) the robot’s base frame B as shown in Fig. 3,
i.e., the linear velocity vector of its center of mass (COM)
vref and the angular velocity vector ωref =

[
0 0 ωref

]T
,

desired motion plans are generated in two steps, where the
wheel TO is followed by a base TO which satisfies the
ZMP [24] stability criterion. The latter simplifies the system
dynamics for motion planning of the COM to enable real-
time computations onboard. Finally, a controller tracks these
motion plans by generating torque commands which are sent
to the robot’s motor drives. Due to this decomposition of the
locomotion problem, the wheel TO, the base TO, and the
tracking controller can run in parallel.

The following two sections discuss the main contribution
of our work and show how the locomotion of the independent
wheel and base TOs are synchronized to generate feasible
motion plans.

2The reference velocities are generated from an external source, e.g., an
operator device, or a navigation planner.
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Torque Commands
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Fig. 2. Overview of the motion planning and control structure. The motion
planner is based on a ZMP approach, which takes into account the optimized
wheel trajectories and the state of the robot. The hierarchical WBC, which
optimizes the whole-body accelerations u̇∗ and contact forces λ̇∗, tracks the
operational space references. Finally, torque references τ are sent to the robot.
The wheel TO, base TO, and WBC can be parallelized due to the hierarchical
structure.

Fig. 3. Timings and coordinate frames. The figure shows a sketch of the
wheel and base trajectory. The wheel trajectories are optimized for each of
the wheels separately and w.r.t. the coordinate frame W whose z-axis is
aligned with the estimated terrain normal, and whose x-axis is perpendicular
to the estimated terrain normal and aligned with the rolling direction of the
wheel. The origin of W is at the projection of the wheel’s axis center on
the terrain. We show exemplarily the wheel trajectory of the right front leg
over a time horizon of one stride duration, which is composed of four splines.
The lift-off time tlo, the time at maximum swing height tsh, the touch-down
time ttd, and the time horizon tf are specified by a fixed gait pattern. The
base trajectories are optimized w.r.t. the coordinate frame B whose origin is
located at the robot’s COM, and whose orientation is equal to that of the
frame W .

III. WHEEL TRAJECTORY OPTIMIZATION

We formulate the task of finding the wheel trajectories, i.e.,
the x, y and z trajectories w.r.t. a wheel coordinate frame W
as illustrated in Fig. 3, as a separate quadratic programming
(QP) problem for each of the wheels given by

minimize
ξ

1

2
ξTQξ + cT ξ,

subject to Aξ = b, Dξ ≤ f ,
(1)

where ξ is the vector of optimization variables. The quadratic
objective 1

2ξ
TQξ + cT ξ is minimized while respecting the

linear equality Aξ = b and inequality Dξ ≤ f constraints.
In the following, the parameterization of the optimization
variable is presented, and we introduce each of the objectives,
equality constraints and inequality constraints which form the
optimization problem.

A. Parameterization of Optimization Variables

We describe the wheel trajectories as a sequence of con-
nected splines. In our implementation, one spline is allocated
for each of the two segments where the wheel is in contact
with the ground, and two splines are used for describing the
trajectory of the wheels in the air. Therefore, the total number
of splines for one gait sequence is ns = 4 (see Fig. 3). These
two types of trajectory segments, i.e., corresponding to leg in
the air and contact, are defined by different parameterizations
as described next.

1) Wheel segments in air: We parameterize each coordinate
of the wheel trajectory in air as quintic splines. Thus, the
position vector at spline segment i is described by

r(t) =

ηT (t) 01×6 01×6

01×6 ηT (t) 01×6

01×6 01×6 ηT (t)

αi,x

αi,y

αi,z

 = T (t)ξi, (2)

where ηT (t) =
[
t5 t4 t3 t2 t 1

]
and αi,∗ ∈ R6

contains the polynomial coefficients. Here, t ∈ [t̄i, t̄i + ∆ti]
describes the time interval of spline i with a duration of ∆ti,
where t̄i is the sum of all the previous (i−1) splines’ durations
(see the example of the fourth spline in Fig. 3). We seek
to optimize the polynomial coefficients for all coordinates
of spline segment i and hence contain them in the vector
ξi =

[
αT

i,x αT
i,y αT

i,z

]T ∈ R18.
2) Wheel segments in contact: As shown in our previous

work [12], we employ a different parameterization for wheel
segments in contact, such that they inherently capture the
velocity constraints corresponding to the no-lateral-slip of the
wheel. For this purpose, we represent the wheel’s velocity in
the x coordinate of W , i.e., the rolling direction, as a quadratic
polynomial. In contrast, the velocities of the remaining direc-
tions are set to zero. Thus, the velocity vector of the i-th spline
is

ṙ(t) =

1 t t2

0 0 0
0 0 0

αi,0

αi,1

αi,2

 , (3)

and the position vector is obtained by integrating w.r.t. t and
adding the initial position xi(t̄i) and yi(t̄i) of the trajectory
as

r(t) =

xi(t̄i)yi(t̄i)
0

+

t̄i+∆ti∫
t̄i

R(tωref)ṙ(t)dt = T (ωref , t)ξi,

(4)
where the rotation matrix R(tωref) describes the change in
the wheel’s orientation caused by the reference yaw rate,
i.e., the vector ωref =

[
0 0 ωref

]T
. By assuming a con-

stant reference yaw rate ωref over the optimization hori-
zon, the integration is solved analytically, giving a linear
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expression r(t) = T (ωref , t)ξi w.r.t. the coefficients ξi =[
αi,0 αi,1 αi,2 xi(t̄i) yi(t̄i)

]T
. Thus, the velocity and

acceleration trajectories of spline i are described by ṙ(t) =
Ṫ (ωref , t)ξi and r̈(t) = T̈ (ωref , t)ξi, respectively.

B. Formulation of Trajectory Optimization

To achieve robust locomotion, we deploy an online TO
which is executed in a MPC fashion, i.e., the optimization
is continuously re-evaluated providing a motion over a time
horizon of tf seconds, where tf can be chosen as the stride
duration of the locomotion gait.

The complete TO of the wheel trajectories is formulated as
a QP problem as follows,

min.
ξ

1

2
ξTQaccξ

acc-
eleration

+
N∑

k=1

‖r(tk)− rpre(tk + tpre)‖2Wpre
∆t

∀t ∈ [0, tf ]

previous
solution

if leg in contact:

+ ‖ṙ(0)− vref‖2Wref

reference
velocity

+
N∑

k=1

‖rx(tk)− rx,def‖2wdef
∆t

∀t ∈ [t̄i, t̄i + ∆ti]

default
position

if leg in air:

+ ‖rxy(ttd)− rxy,ref − rxy,inv‖2Wfh

foothold
projection

+ ‖rz(tsh)− zsh‖2wsh
,

swing
height

s.t. r(0) = rinit, ṙ(0) = ṙinit, r̈(0) = r̈init,
initial
stateri(t̄i + ∆ti)

ṙi(t̄i + ∆ti)
r̈i(t̄i + ∆ti)

 =

ri+1(t̄i+1)
ṙi+1(t̄i+1)
r̈i+1(t̄i+1)

 ,
∀i ∈ [0, ns − 1],

spline
continuity

|rx(t)− rx,def |
|ry(t)− ry,def |
|rz(t)− rz,def |

 <
xkin

ykin

zkin

 ,
∀t ∈ [0, tf ],

kinematic
limits

(5)
where each element is described in more detail in the following
sections.

C. Objectives

1) Acceleration minimization: The acceleration r̈ of the en-
tire wheel trajectory is minimized to generate smooth motions
and to regularize the optimization problem. The cost term for
a wheel in air over the time duration ∆ti of spline i is given
by

1

2
ξTi

(
2

∫ t̄i+∆ti

t̄i

T̈ T (t)Wi,accT̈ (t)dt︸ ︷︷ ︸
Qi,acc

)
ξi, (6)

where Qi,acc ∈ R18×18 is the hessian matrix, and Wi,acc ∈
R3×3 is the corresponding weight matrix. Here, the linear
term of (1) is null, i.e., ci,acc = 018×1. Similar, for a spline
segment i in contact, the hessian matrix, Qi,acc ∈ R5×5, is
obtained by squaring and integrating the acceleration of the
wheel trajectory over the time duration ∆ti. The time matrix
T (ωref , t), and hence, Qi,acc is dependent on the reference
yaw rate as discussed in (4).

2) Minimize deviations from previous solution: For a TO
with high update rates, large deviations between successive
solutions can produce quivering motions. To avoid this, we
add a cost term that penalizes deviations of kinematic states
between consecutive solutions. We penalize the position de-
viations between the optimization variables from the current
solution ξ and the previous solution ξpre as

N∑
k=1

‖r(tk)− rpre(tk + tpre)‖2Wpre
∆t, ∀t ∈ [0, tf ], (7)

where rpre(tk + tpre) is the position vector of the wheel
from the previous solution shifted by the elapsed time tpre

since computing the last solution, and Wpre ∈ R3×3 is the
corresponding weight matrix. This cost is penalized over the
time horizon tf with N sampling points, where tk is the time
at time step k and ∆t = tk− tk−1. Objectives for minimizing
velocity and acceleration deviations are added in a similar
formulation.

3) Track reference velocity of wheels in contact: As shown
in (3), the velocity along the rolling direction of the wheel
trajectory is described by a quadratic polynomial which inher-
ently satisfies the no-slip constraint. To track the reference
velocity vref , we minimize the norm ‖ṙx(0)− vx,ref‖2wref

which gives

1

2
ξTi (2wrefΓ

TΓ)︸ ︷︷ ︸
Qi,ref

ξi + (−2wrefvx,refΓ)︸ ︷︷ ︸
cTi,ref

ξi, (8)

where Γ =
[
1 0 0

]
Ṫ (ωref , 0).

4) Minimize deviations from default wheel positions: When
a wheel is in contact, differences in heading velocities of the
wheels and the base can lead to configurations where the
corresponding leg can get extended in the forward or backward
direction. To guide the optimizer towards solutions within a
desired leg configuration, we minimize the distance of the
wheel from a default position rx,def along the rolling direction
x as

N∑
k=1

‖rx(tk)− rx,def‖2wdef
∆t, ∀t ∈ [t̄i, t̄i + ∆ti], (9)

where wdef is the corresponding weight, and the sampling over
the i-th contact segment’s time duration ∆ti is the same as
shown in the paragraph below (7).

5) Foothold projection: The placement of the wheel after a
swing phase is crucial for hybrid locomotion (and for legged
locomotion in general) because it contributes to maintaining
balance and reacting to external disturbances. As shown in
(5), the cost term to guide the foothold placement is given
by ‖rxy(ttd)− rxy,ref − rxy,inv‖2Wfh

, where Wfh ∈ R2×2 is



BJELONIC et al.: ROLLING IN THE DEEP – HYBRID LOCOMOTION FOR WHEELED-LEGGED ROBOTS USING ONLINE TRAJECTORY OPTIMIZATION 5

the weight matrix, and ttd = t̄i + ∆ti is the touchdown time
of spline segment i in air, i.e., at the end of the spline in air
representing the second half of the swing phase (see Fig. 3).
The subscript xy indicates that only footholds on the terrain
plane are considered, i.e., the z component is given by the
height of the terrain estimation.

The position vector rxy,ref guides the locomotion depending
on the reference velocity, which is composed of the linear
velocity vector vref and the angular velocity vector ωref , as[

rxy,ref

0

]
=

[
rxy,def

0

]
+ (vref + ωref × rBWxy

)∆ti, (10)

where rxy,def ∈ R2 is a specified default wheel position
similar to (9), and rBWxy ∈ R3 is the position vector from the
robot’s COM to the projection of the measured wheel position
W onto the terrain plane.

Decoupling the locomotion problem into wheel and base
TOs requires an additional heuristic to maintain balance.
Balancing is achieved by adding a feedback term to the
foothold obtained from reference velocities, through an in-
verted pendulum model [26], [27] given by

rinv = kinv(vBH,ref − vBH)

√
h

g
, (11)

where vBH,ref ∈ R3 and vBH ∈ R3 are the reference and the
measured velocity between the associated hip and base frame,
respectively. Here, h is the height of the hip above the ground,
g represents the gravitational acceleration, and kinv is the gain
for balancing.

6) Swing height: Similar to the objective in Section III-C3,
we guide the wheel TO to match a predefined height. The
objective ‖rz(tsh)− zsh‖2wsh

given in (5) can be expanded,
with a weight of wsh, to

1

2
ξTi (2wshΓTΓ)︸ ︷︷ ︸

Qi,sh

ξi + (−2wshzshΓ)︸ ︷︷ ︸
cTi,sh

ξi, (12)

with Γ =
[
0 0 1

]
T (tsh), and tsh = t̄i + ∆ti is the time at

maximum swing height of spline segment i in air, i.e., at the
end of the spline in air representing the first half of the swing
phase (see Fig. 3).

Similarly, we set the x and y coordinates of the swing
trajectory at maximum swing height to match the midpoint
of lift-off and touch-down position.

D. Equality Constraints
1) Initial states: To achieve a reactive behaviour, every

optimization is initialized with the current state of the robot.
As discussed in (4), the initial position of the wheel segments
in contact are set as equality constraints given by

T (0)ξi =
[
xinit yinit 0

]T
, (13)

where the initial values xinit and yinit are the measured
positions of the wheel.

If the optimization problem begins with a wheel trajectory in
air, we set the initial position, velocity, and acceleration to the
measured state of the wheels, i.e., r(0) = rinit, ṙ(0) = ṙinit,
and r̈(0) = r̈init.

2) Spline continuity: We constrain the position, velocity
and acceleration at the junction of two consecutive wheel
trajectory segments i and i+ 1 in air as−Ti(t̄i + ∆ti) Ti+1(t̄i+1)

−Ṫi(t̄i + ∆ti) Ṫi+1(t̄i+1)

−T̈i(t̄i + ∆ti) T̈i+1(t̄i+1)

[ ξi
ξi+1

]
=

03×1

03×1

03×1

 . (14)

Junction constraints between air and contact phases are
only formulated on position and velocity level. Here, the
acceleration is not constrained so that the optimizer accepts
abrupt changes in accelerations, allowing lift-off and touch-
down events.

E. Inequality Constraints

1) Avoid kinematic limits: To avoid over-extensions of the
legs, we keep the wheel trajectories in a kinematic feasible
space which is approximated by a rectangular cuboid centered
around the default positions defined in (9). As introduced in
(5), the kinematic limits xkin, ykin, and zkin are enforced over
the full time horizon tf as |rx(tk)− rx,def | < xkin, |ry(tk)−
ry,def | < ykin, |rz(tk) − rz,def | < zkin , ∀k ∈ [1, .., tf/∆t],
with a fixed sampling time ∆t = tk − tk−1 similar to (7).

IV. BASE TRAJECTORY OPTIMIZATION

The online TO of the base motion relies on a ZMP [24]-
based optimization, which continuously updates reference
trajectories for the free-floating base. Here, we extend the
approach shown in our previous work [11], which origi-
nates from the motion planning problem of traditional legged
robots [17] and does not provide any optimized trajectories for
the wheels/feet over a receding horizon. Moreover, the work
in [17] only considers the optimization of the footholds. Given
the wheel TO in (5), we can generalize the idea of the ZMP
to wheeled-legged systems taking into account the trajectories
of the wheels over the time horizon tf .

As shown in Figure 2, the motion planner of the free-
floating base is described by a nonlinear optimization problem,
which minimizes a nonlinear cost function f(ξ) subjected
to nonlinear equality c(ξ) = 0 and inequality constraints
h(ξ) > 0. Here, the vector of optimization variables is
composed of the position of the COM rCOM ∈ R3 and the
yaw-pitch-roll Euler angles of the base θ ∈ R3.

A. Parameterization of Optimization Variables and Formula-
tion of Trajectory Optimization

The trajectories for each DOF of the free-floating base is
represented as a sequence of quintic splines, which allows
setting position, velocity and acceleration constraints. Thus,
the parameterization is formulated similarly to the definition
of the wheel trajectories in air given in Section III-A1.

The online TO of the base has a similar structure as the
TO described in (5). Cost terms are added to maintain smooth
motions and to track the reference velocity. The equality con-
straints initialize the variables with the current measured state
of the base and add junction constraints between consecutive
splines. For balancing, we add a ZMP inequality constraint,
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which is described in more detail in the next section, since
this is the only part of the base optimization problem which is
affected by the computed wheel trajectories in Section III. A
complete list of each objective and constraint can be obtained
in [11].

B. Generalization of ZMP Inequality Constraint

To ensure dynamic stability of the robot, the acceleration of
the COM must be chosen so that the ZMP position rZMP ∈
R3 lies inside the support polygon3. This nonlinear inequality
constraint is given by[
p(tk) q(tk) 0

]
rZMP(tk)+r(tk) ≥ 0, ∀tk ∈ [0, tf ] (15)

where rZMP = n ×mgi/(n
Tfgi) [28] and n ∈ R3 is the

the terrain normal. The gravito-inertial wrench [29] is given
by fgi = m · (g − r̈COM) ∈ R3 and mgi = m · rCOM ×
(g− r̈COM)− l̇COM ∈ R3, where m is the mass of the robot,
lCOM ∈ R3 is the angular momentum of the COM, and g ∈
R3 is the gravity vector. In contrast to [11], [17], the line
coefficients d(t) = [p(t) q(t) r(t)]T that describe an edge
of a support polygon depend on the time t, since the contact
points of wheeled-legged robots continue to move even when a
leg is in contact, unlike conventional legged robots. The ZMP
inequality constraint is sampled over the time horizon tf with
a fixed sampling time ∆t = tk − tk−1.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the performance of our hybrid locomotion
framework, this section reports on experiments and real-world
applications conducted with ANYmal equipped with non-
steerable, torque-controlled wheels (see Fig. 1). A video4

showing the results accompanies this paper.

A. Implementation

The wheel TO, base TO, tracking controller, and state
estimator are running on a single PC (Intel i7-7500U, 2.7 GHz,
dual-core 64-bit). All computation regarding the autonomy,
i.e., perception, mapping, localization, path planning, path
following, and object detection, is carried out by three different
PCs. The robot is entirely self-contained in terms of computa-
tion and perception. As can be obtained in Fig. 2, we run each
wheel TO, the base TO, and the WBC in concurrent threads
where each optimization reads the last available solutions from
its predecessor. Moreover, all optimization problems are run
online due to fast solver times.

A hierarchical WBC tracks the computed trajectories in
Section III and Section IV by generating torque commands for
each actuator and accounting for the full rigid body dynamics
including its physical constraints, e.g., the non-holonomic
rolling constraint, friction cone, and torque limits [11]. The
WBC runs together with state estimation [30] in a 400 Hz loop.
Similar to [31], we fuse the inertial measurement unit (IMU)
reading and the kinematic measurements from each actuator

3A support polygon is defined by the convex hull of the expected wheels’
contact trajectories.

4Available at https://youtu.be/ukY0vyM-yfY

to acquire the robot’s state. Moreover, the frame W in Fig. 3
requires an estimate of the terrain normal. In this work, the
robot is locally modeling the terrain as a three-dimensional
plane, which is estimated by fitting a plane through the most
recent contact locations [11]. The contact state of each leg is
determined through an estimation of the contact force, which
takes into account the measurements of the motor drives and
the full-rigid body dynamics.

We model and compute the kinematics and dynamics of the
robot based on the open-source Rigid Body Dynamics Library
(RBDL) [32], which uses the algorithms described in [33]. The
nonlinear optimization problem in Section IV is solved with
a custom sequential quadratic programming (SQP) algorithm,
which solves the problem by iterating through a sequence of
QP problems. Each QP problem including the optimization
problem in Section III is solved using QuadProg++ [34],
which internally implements the Goldfarb-Idnani active-set
method [35]. To maintain a positive definite Hessian Q in
(1) and to ensure the convexity of the resulting QP problem, a
regularizer ρ is added to its diagonal elements, e.g., ρ = 10−8

as in [17]. The tuning of the cost function in (5) remains
a manual task where a single value describes the diagonal
elements of the weighting matrices, and one parameter set is
provided for all motions shown next.

B. Solver Time of Different Contact Scheduler and Gait
Switching

As shown in Table I, the wheel and base optimizations are
solved in the order of milliseconds, and a great variety of gaits
from driving, i.e., all legs in contact, up to gaits with full-flight
phases are possible. Besides, the accompanying video shows
manual gait switches between driving and hybrid walking-
driving gaits, which can be useful for future works regarding
automatic gait switches to reduce the cost of transport (COT)
further.

C. Rough Terrain Negotiation

The robot is capable of blind locomotion in a great variety
of unstructured terrains, e.g., inclines, steps, gravel, mud,
and puddles. Fig. 1 and the accompanying video shows the
performance of the robot in these kinds of environments. As
depicted in Fig. 4, the robot can overcome blindly steps up to
20 % of its leg length. The obstacle verifies the advantage of
our hybrid locomotion framework. In contrast to the related
work and our previous work [11], the robot traverses obstacles

TABLE I
TIME HORIZON tf AND OPTIMIZATION TIMES INCLUDING MODEL SETUP
FOR DIFFERENT GAITS. THE REPORTED SOLVER TIMES FOR WHEEL TO

ARE FOR ONE WHEEL, AND THE HYBRID RUNNING TROT IS A GAIT WITH
FULL-FLIGHT PHASES.

Gait tf / (s) Wheel TO / (ms) Base TO / (ms)

Driving 1.7 0.14 6.93
Hybrid walk 2.0 0.81 14.83
Hybrid pace 0.95 0.42 1.88
Hybrid trot 0.85 0.47 2.4

Hybrid running trot 0.64 0.58 5.77

https://youtu.be/ukY0vyM-yfY
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without stopping and switching to a pure walking motion.
To our best knowledge, this is the first time a robot has
demonstrated this level of obstacle negotiation at high speeds,
with multiple gaits. Moreover, the locomotion becomes more
robust since the framework accounts for possible motions on
the ground. The accompanying video shows an instance where
the wheel collides with the edge of a step. Our framework is
capable of adapting to these scenarios by merely driving over
the obstacle.

D. High Speed and Cost of Transport

On flat terrain, the robot achieves a mechanical COT [36]
of 0.2 while hybrid trotting at the speed of 2 m/s and the
mechanical power consumption is 156 W. The COT is by a
factor of two higher than a pure driving gait at the same speed.
A comparison to traditional walking and skating with passive
wheels [36] shows that the COT is lower by 42 % w.r.t. the
traditional trotting gait and by 9 % w.r.t. skating motions.

E. DARPA Subterranean Challenge: Tunnel Circuit

The first DARPA Subterranean Challenge, the Tunnel Cir-
cuit, was held close to Pittsburgh in the NIOSH mine.
The main objective was to search, detect, and provide au-
tonomously spatially referenced locations of artifacts inside
the underground mine. The wheeled version of ANYmal
participated in two runs as part of the CERBERUS team [37]
alongside flying and other mobile platforms. Moreover, the
wheeled quadrupedal robot was deployed next to the tradi-
tional version of ANYmal without wheels.

As depicted in the lower images of Fig. 1, the terrain
consisted of hilly, bumpy, and muddy terrain and in some parts
of the mine, the robot needed to cross puddles. Throughout
both runs, the robot locomoted the terrain with a hybrid trot. In
the first run, the wheeled version of ANYmal traversed 70 m
without significant issues, and the robot successfully reported
the correct location of one artifact. In the end, however, one of
the wheels started slipping on the muddy terrain before the fall.
As can be seen in the accompanying video, the robot managed
to balance after the first slip because of the foothold adaptation
of the inverted pendulum model in (11). The mechanical
design was improved after the first run by adding a chain
around the wheels to increase the friction coefficient while
traversing the mud (see the right middle image of Fig. 1).
Fig. 5 shows the desired trajectories of the COM and wheels
for a few meters of the second run. Here, it can be seen
that the robot executes a hybrid trotting gait since, during
ground contact, the wheel moves along its rolling direction.
Despite the challenging environment, the hybrid locomotion
framework enabled the robot to travel for more than 100 m.

Due to the time limitation of the challenge, the speed of
mobile platforms becomes an essential factor. Most of the
wheeled platforms shown from the other competing teams
were faster than our traditional legged robot by a factor of
two or more. The upcoming Urban Circuit of the Subterranean
Challenge includes stairs and other challenging obstacles.
Therefore, we believe, only a wheeled-legged robot is capable
of combining speed and versatility. At the Tunnel Circuit, the
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Fig. 4. Measured COM and wheel trajectories of ANYmal over a step
while hybrid trotting, as depicted in the upper images of Fig. 1. The three-
dimensional plot shows the wheel trajectories of the front legs (red line), the
wheel trajectories of the hind legs (blue line), and the COM trajectory (green
line) w.r.t. the inertial frame, which is initialized at the beginning of the run.
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Fig. 5. Desired COM and wheel trajectories of ANYmal at the DARPA
Subterranean Challenge. The robot, ANYmal, is autonomously locomoting
with a hybrid driving-trotting gait during the second scoring run. The
environment is a wet, inclined, muddy, and rough underground mine, as
depicted in the lower images of Fig. 1. Despite the challenging terrain, the
robot manages to explore fully autonomously the mine for more than 100 m.
The plots show the desired motions for approximately two stride durations.
Due to the fast update rates of the TO problems and reinitialization of the
optimization problem with the measured state, the executed trajectories are
almost identical to the desired motion shown here.

wheeled version of ANYmal traversed with an average speed
of 0.5 m/s, which was more than double the average speed of
the traditional legged system. Our chosen speed was limited
by the update frequency of our mapping approach or otherwise
could have traversed the entire terrain with much higher speeds
without any loss in agility. On the whole, the performance
validation for real-world applications is satisfying, and a
direct comparison with the traditional ANYmal reveals the
advantages of wheeled-legged robots.
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VI. CONCLUSIONS
This work presents an online TO generating hybrid walking-

driving motions on a wheeled quadrupedal robot. The opti-
mization problem is broken down into wheel and base trajec-
tory generation. The two independent TOs are synchronized to
generate feasible motions by time sampling the prior generated
wheel trajectories, which form the support polygons of the
ZMP inequality constraint of the base TO. The presented
algorithm makes the locomotion planning for high dimensional
wheeled-legged robots more tractable, enables us to solve the
problem in real-time on-board in a MPC fashion, and increases
the robustness in the robot’s locomotion against unforeseen
disturbances.

To the best of our knowledge, this is the first time that a hy-
brid walking-driving robot is deployed for real-world missions
at one of the biggest robotics competition. In future work,
we plan to incorporate the optimization of the gait timings to
enable automatic switching between pure driving and hybrid
walking-driving. As shown in our work, an automated way
of choosing when to lift a leg can increase the speed and
robustness of the locomotion.
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