
ETH Library

Autonomous Free-Form Trenching
using a Walking Excavator

Conference Paper

Author(s):
Jud, Dominic; Leemann, Philipp; Kerscher, Simon; Hutter, Marco 

Publication date:
2019-10

Permanent link:
https://doi.org/10.3929/ethz-b-000348588

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Robotics and Automation Letters 4(4), https://doi.org/10.1109/LRA.2019.2925758

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-b-000348588
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/LRA.2019.2925758
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

Autonomous Free-Form Trenching using a Walking
Excavator

Dominic Jud1, Philipp Leemann2, Simon Kerscher1 and Marco Hutter1

Abstract—This article shows accurate and autonomous cre-
ation of free-form trenches using a walking excavator. We present
hardware extensions and modifications for full automation, a
mapping approach specifically tailored to excavation, environ-
ment collision-free trajectory planning on these maps, an arm
controller aware of various limits and an improved state machine
that enables the execution on real hardware. Furthermore,
previous work about excavation planning and the design of a
single soil-independent dig cycle is extended and transferred from
simulation to hardware. The entire system is tested on a four-
segment, piecewise-planar trench and a free-form curved trench.
Both shapes were successfully excavated with unprecedented
accuracy.

Index Terms—Robotics in Construction, Mining Robotics

I. INTRODUCTION

THE development of robotic systems in architecture had
a drastic influence on the design methods architects have

at hand [1]. Landscape architecture however, has mostly been
unaffected by on-site robots due to the inherent difficulty
of automating earthwork. Hurkxkens et al. [2] show a high
architectural potential in creating robotic landscapes that are
tailored to local conditions, e.g. by using only on-site material,
balancing cut and fill or online adaption of the design to the
found material.

Many different autonomous excavators have been built over
the last two decades. Although none were able to create free-
form shapes. Haga et al. [3] created level trenches using an
external datum level. Also the Autonomous Loading System
(ALS) by Cannon et al. [4] had the objective to leave a
level floor after excavation. These two projects further have in
common, that they both used pilot stage valves to control the
existing main valves. Quang et al. [5] showed that upgrading
an excavator with high-performance electrohydraulic servo
valves in the main stage will drastically improve control per-
formance and thus achieved accurate bucket edge control while
digging. Other hydraulic robotic systems, e.g. the quadrupedal
robot HyQ [6], highly rely on the superior performance of
servo valves. Also our previous advances on active control of
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Fig. 1. HEAP is an autonomous walking excavator based on a highly
customized Menzi Muck M545.

the excavators chassis [7] leveraged servo valves, motivating
the use of these also on the arm automation shown in this
work. The creation of more complicated shapes than flat
bottom trenches also requires geometric feedback from the
manipulated terrain, as inferring the terrain only from the
bucket edge motion is not sufficient. ALS [4], as one of the few
autonomous excavators with perception, uses lidars to create a
map during swing motion. The major challenge for mapping in
autonomous excavation is that the machine constantly changes
the environment and some important areas might be occluded.
General mapping algorithms such as LOAM [8] or ICP [9]
will not update at all or fast enough to these self made
changes and occlusions are also not handled. Homberger
et al. [10] show fusion of exteroceptive and proprioceptive
sensing to successfully estimate the support surface in highly
compliant terrain for legged robots. A similar approach of
fusing information from the bucket motion (proprioceptive)
with lidar scans (exteroceptive) to circumvent the problems of
occlusion and dynamic environments is pursued in this work.
Regarding control, Maeda et al. [11] used iterative learning
control to predict the disturbance in the next dig cycle. No
dynamic model in the conventional sense is used by Park
et al. [12]. Instead, the dynamics are learned online with an
echo state network and used to track a position trajectory. The
network can also compensate for changes during execution,
e.g. change in fluid temperature. A different approach was
taken by Groll et al. [13], where hierarchically organized
primitives are used to adapt to a changing environment.

This letter shows highly accurate autonomous landscaping
using HEAP, the world’s first autonomous walking excavator
based on a Menzi Muck M545 shown in Fig. 1. It builds
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upon our previous work in simulation showing a planning and
control approach [14] consisting of force trajectory based dig
cycles which reliably fill the bucket without any knowledge
about the soil properties. We present the hardware extensions
and modifications that are necessary to facilitate these force
controlled dig cycles on a real machine, a robust excava-
tion mapping approach based on fusing proprioceptive and
exteroceptive mapping, trajectory planning that leverages the
excavation map, control for safe and accurate operation of the
arm and an improved state machine to adapt to the differences
between simulation and real hardware.

II. SYSTEM DESCRIPTION

HEAP was built up from the very beginning for the ap-
plication of autonomous landscaping. It is based on a 12ton
M545 walking excavator commercially available from Menzi
Muck, but highly customized with numerous adaptations and
additions. Fig. 1 provides an overview of the major changes.
To achieve active balancing and adaptation to uneven ground
[7], all 14 hydraulic cylinders in the chassis were exchanged
with cylinders that include integrated control modules that al-
low for precise control of leg positions and ground interaction
forces.

A. Sensing

A Leica iCON iXE3 with two GNSS antennas and a receiver
is used for localization. RTK corrections for the GNSS signals
are received over the internet from permanently installed base
stations. SBG Ellipse2-A inertial measurement units (IMU) are
installed both in the cabin and on the chassis. Sick BCG05-
C1QM0199 wire draw encoders measure the piston position
and velocity of the arm cylinders at 100Hz. The cylinder
force is estimated using pressure sensors integrated in the
servo valve control modules. Finally, two Velodyne Puck
VLP-16 lidar’s are used for terrain mapping. Lidar’s were
chosen, because they outperform camera based sensors in
heavy dust environments and they provide more accurate and
dense measurements compared to radar based sensors [15].

B. Arm Actuation

The two most commonly found valve setups for automating
an excavator’s arm are realized on HEAP. Firstly, electric
pilot stage valves are installed in parallel to the hydraulic
joysticks, which reflects the most commonly used approach.
Secondly, high-performance servo valve prototypes with inte-
grated electronics (microprocessor, current driver and pressure
sensors) are installed in the high-pressure stage in parallel
to the pilot stage driven main valves. Fig. 2 shows the level
of intrusion of these two different principles. The pilot stage
valves (blue) require the hydraulic low-pressure circuit and
the servo valves (red) the high-pressure circuit to be opened.
With this innovative parallel solution, we expect to be able
to control large flow rates through the pilot stage setup while
achieving very high control bandwidth with the servo valve
setup. See Table I for a closer comparison.

1) Pilot stage: Hawe PMZ proportional pressure reducing
valves are installed in parallel to the joysticks in the pilot
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Micro
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Fig. 2. The two different actuation types are pilot stage valve (blue) and
Moog servo valve (red). The black lines and boxes represent the standard
components installed by the machine manufacturer.

TABLE I
FREQUENCY SWEEPS FOR VELOCITY AND FORCE CONTROL WERE

CONDUCTED ON BOTH PILOT STAGE AND SERVO VALVES IN ORDER TO
DETERMINE THE CONTROL BANDWIDTH (BW).

Max. Flow
(dipper)

Velocity
Control BW

Force
Control BW

Pilot Stage ∼ 200l/min 0.5Hz 0.85Hz
Servo Valves ∼ 40l/min > 2Hz > 20Hz

stage to control the standard main valves installed by the
machine manufacturer. The input current of the valve is set by
a TTControl HY-TTC 30 control unit connected to the CAN
bus. The piston velocity is controlled using a PI-controller and
a feed forward lock-up table from desired piston velocities
to valve currents running at 100Hz to generate the reference
current for the pilot valve. The lookup table is identified over
the entire range of applicable piston velocities with 15 value
pairs. The piston velocity control bandwidth is 0.5Hz, whereas
the piston force can be controlled to up to 0.85Hz.

2) Servo valve: An integrated control module (ICM) proto-
type, developed by Moog Inc., is installed in parallel to the
main valves in the high pressure circuit. It consists of a high
performance servo valve with a current driver and a check
valve for safety. The integrated ARM micro processor can
control piston position and velocity at 100Hz and force at
1kHz. The device communicates over CAN at 100Hz to the
host computer. The pressure sensors are directly connected to
the micro controller. The piston velocity control bandwidth is
larger than 2Hz, whereas the piston force can be controlled at
more than 20Hz. Due to safety considerations, the bandwidth
identification test could not be continued for velocity signals
beyond 2Hz, as the excavator starts to shake violently when
the signal approaches the eigenfrequency of the entire system.
Servo valves will certainly deliver a better performance than
the pilot stage valves in all aspects. However, servo valves
can cause higher pressure drops that can stall the diesel
engine. A hydraulic accumulator (Hydac SBO) is installed
on the supply line of the servo valves to support the pump
in case of short high flow demands. As these valves were
initially designed for smaller leg cylinders, they only allow for
slower motion compared to the pilot stage, see first column
of Table I. The servo valves provide a clear abstraction of the
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Fig. 3. The three major challenges in mapping for excavation are (1)
unperceived changes marked with the striped area, (2) falling soil below the
bucket and (3) self perception marked with dotted red lines on the legs and
arm.

hydraulic systems dynamics due to no valve overlap. They are
fast enough to locally compensate for various disturbances,
achieving the required high precision end-effector control for
accurate autonomous excavation.

III. ELEVATION MAPPING FOR EXCAVATION

The mapping framework for autonomous excavation is
based on robot-centric elevation mapping for mobile robots by
Fankhauser et al. [16]. The algorithm creates a 2.5 dimensional
elevation map from any distance sensor and a corresponding
pose estimate. A full 3 dimensional mapping approach is not
needed for excavation, as overhanging terrain is not likely.
The input to the mapping algorithm is the point cloud of two
Velodyne Puck and the transformation of both sensors w.r.t.
the world frame extracted from state estimation. The lidars
are placed at the front edge of the roof as shown in Fig.
1 for a good vantage point. As these sensors were initially
developed for autonomous driving, the vertical field of view
is not sufficient for an undulating landscape. In this project,
two lidars were placed orthogonally to each other. The vertical
lidar is especially valuable as swinging the cabin is an essential
part of excavation and the cabin swing will move the vertical
sensor in a scanning motion.

The elevation mapping approach is mostly meant for static
environments, e.g. a legged robot walking up stairs. However,
an autonomous excavator is meant to shape and change its
environment. The major issues introduced by this circumstance
are illustrated in Fig. 3 and they can be resolved by informing
the mapping about the excavation task.

1) Unperceived changes/occlusions: The striped area in Fig.
3 is removed through one dig, but the change is occluded from
the sensors by the remaining pile. Proprioceptive mapping is
added to the otherwise purely exteroceptive mapping. Propri-
oception is achieved by tracking the bucket edge line as it
moves through the soil. Once the bucket is full and the digging
process terminates, the erroneous area in the exteroceptive map
is replaced with the proprioceptive map. The state of the map
after a proprioceptive update can be seen in Fig. 4. The color of
the map represents the uncertainty. The proprioceptive update
is clearly visible through the high uncertainty (green/blue).

Fig. 4. After a dig cycle, the bucket is lifted from the ground and the
proprioceptive map is inserted into the elevation map with a high uncertainty.
Regions with high uncertainties are green, whereas low uncertainties are red.
Note that the steep side walls always keep a high uncertainty, because near
vertical surfaces are inherently hard to represent with a 2.5D map.

Fig. 5. While the arm swings to the side to dump the soil, the map of
the trench is updated with input from the lidars. The uncertainty decreases
for those parts represented by the purple color. The occluded areas keep the
height values with large uncertainty (green) from the proprioceptive mapping,
yielding a complete map.

The proprioceptive map is inserted with a high uncertainty
such that these areas are quickly update by the lidars once
they are seen. As soon as the arm swings to the side to dump
the soil, the trench is updated with lidar information. In Fig.
5, compared to Fig. 4, some areas have a lowered uncertainty
(red/purple) due to the lidar updates. Areas in the map that are
still occluded, e.g. the front edge of the trench, will keep height
values from exteroceptive mapping with a high uncertainty.

2) Falling soil: When the bucket is full with soil and it
moves through the air, there might be particles falling down
from the bucket. These particles will be captured mid-air by
the lidars and will falsely create a wall/pile in the map. This
issue is negotiated by introducing a falling soil filter whenever
the bucket is full. The falling soil filter is a box below the
bucket. The box moves along with the bucket. All the points
captured inside this box will be removed. The box filter is
implemented efficiently using PCL [17].

3) Self perception: The arm and the legs move mostly inside
the field of view of the sensors. A self filter implemented for
PR-2 [18] is used to eliminate points that lie on the robot itself.
It was extended in the scope of this work to support multiple
meshes per body as demanded by the spatial complexity of
the excavator bodies.

The result is a map that is not corrupted by the ongoing ex-
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Fig. 6. The SQP optimizer adapts the support points si (orange dots) to
compute a feasible 3D path from start to end position (red dots) using
concatenated cubic Hermite splines. The optimizer is initialized with collision-
free support points (grey dots) from a straight line solution (black dots). The
SDF is not illustrated for the sake of simplicity, but an example distance
d(xk) from sampled position xk to the closest point on the surface is given.

cavation process, but still adapts quickly to self-made changes.
The map is created with a resolution of 0.1m, which is detailed
enough as the bucket width is still 15 times wider. Moreover,
the map is georeferenced through GNSS and can thus be easily
positioned in a construction site environment.

IV. SQP-BASED SPLINE TRAJECTORY OPTIMIZATION

An elementary operation in excavation is moving the bucket
through the air from the current position after digging to the
desired dump position. During this operation, collisions with
the environment should be avoided by planning a collision-free
3D trajectory for the bucket. Note that only collisions with
the environment are handled in the planner. Self-collisions are
avoided locally in the controller, see Section V-A.

The path is parametrized by cubic Hermite splines [19],
which have the advantage that they are continuous and easily
differentiable. They are defined by start and end positions as
well as the derivatives at these positions. Multiple splines are
concatenated by support points to form the final trajectory.

A 3D signed distance field (SDF) can be computed from the
2.5D elevation map provided by the mapping framework. An
SDF stores the distance and gradient to the closest point on the
surface from any point in the robot workspace. The sign of the
distance indicates if the point is above or below the surface.
This property is especially important in excavation, where the
start of the trajectory might lie below the surface after digging.
A Sequential Quadratic Program (SQP) is used to optimize the
position of the support points. The optimization objective/costs
c consists of a length, collision and regularization cost. It
is computed by sampling the spline with discrete time steps
yielding the sampled positions xk. The length cost cl for N
samples is

cl =

N−1∑
k=1

||xk − xk+1||. (1)

The collision cost cc, inspired by CHOMP [20], is

cc =

N∑
k=1

cc,k (2)

with cc,k =


−d(xk) + ε

2 , if d(xk) < 0
1
2ε (d(xk)− ε)

2, if 0 < d(xk) ≤ ε
0, otherwise.

(3)

The shortest distance d(xk) from position xk to the map
surface is extracted from the SDF. The collision cost is zero
if the point is further away than the distance threshold ε. The
regularization cost cr keeps the support points equally spread
along the spline by penalizing a high standard deviation σ of
the distances between the support points si and is defined as

cr = σ(||si − si+1||). (4)

The final cost c is defined as the weighted sum of the
individual costs:

c = wlcl + wccc + wrcr (5)

The weights wl, wc and wr control the behaviour of the
optimization. Fig. 6 shows the initialization and the final
trajectory for a simple 2D example. The trajectory is initialized
by a straight line between start and end position (red dots)
with intermediate support points (black dots). If any of the
support points are in collision, they are moved up until they
are out of collision using the SDF, yielding the grey dots in
Fig. 6. Connecting the grey dots with splines will not yet
yield an entire collision-free trajectory. The optimizer will
move the support points such that the entire trajectory is
collision-free and optimize the length simultaneously, resulting
in the final trajectory through the orange support points. Note
that the ratio between the weight for length and collision
controls the approach angle of the trajectory to the surface. If
avoiding collisions has a much higher weight than minimizing
path length, the final trajectory leaves/approaches the start/end
point almost orthogonal to the surface. This minimizes the
risk of the bucket colliding with the environment while leav-
ing/approaching start/end position. On the other hand, if the
collision avoidance weight is too low, the trajectory will pass
by objects too closely.

V. ARM CONTROL

The definition of generalized joint positions q (a subset
of the generalized coordinates of the excavator) and the
generalized joint velocities u are

q =
[
ψ θ1 θ2 xtele θ3

]T ∈ Rn (6)

u = q̇ ∈ Rn, n = 5. (7)

These coordinates include the rotation of the cabin ψ, the angle
θ1 between boom and cabin, the angle θ2 between boom and
dipper, the extension of the telescope xtele and the angle θ3
between telescope and shovel.
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The generalized forces τ ∈ Rn are related to the actuator
forces τ p through the diagonal force mapping matrix E(q) ∈
Rn×n as

τ = E(q)τ p (8)

with τ =
[
τturn τboom τdipper Ftele τshovel

]T
(9)

and τ p =
[
τturn Fboom Fdipper Ftele Fshovel

]T
. (10)

The exertable task-space force f t ∈ Rm with m = 4
consists of forces in x,y and z and the shovel torque. Other
task-space forces and moments can not be actuated and are
dropped for the sake of simplicity. The 5 degree of freedom
excavator arm has one redundant degree as n−m = 1.

A. Hierarchical Optimization Inverse Kinematic Arm Con-
troller

The arm controller is based on the hierarchical optimization
by Bellicoso et al. [21], which solves the control problem as a
constrained quadratic optimization. The desired joint motion
ud is found through a number of least square optimization
problems that include equalities as well as inequalities in the
form of Ax = b and Ax ≤ b, respectively. Due to the
redundancy of the arm, we can not only optimize for the
task space motion, but additionally include other objectives.
Moreover, this formulation allows us to handle collisions and
hardware limits. The set of prioritized tasks are in decreasing
priority:

1) Pump Flow Limit: The hydraulic pump of the excavator
has a maximum oil flow Qmax that it can deliver. The flow per
cylinder is calculated from the cylinder areas AA and AB with
AA > AB . The vector of relevant cylinder areas A ∈ R1×n

produces the summed up flow of all cylinders when multiplied
with piston velocities and is derived per joint i as

A(i) =

{
AA, if q̇(i) > 0

−AB , otherwise.
(11)

The inequality constraint to avoid exceeding the maximum
flow is

AE(q)ud ≤ Qmax (12)

with E(q) being the joint position dependent transformation
from joint velocities to piston velocities.

2) Cylinder Velocity Limits: The maximum flow of oil
through a valve limits the maximum velocity a hydraulic
cylinder can achieve. The corresponding piston velocity limits
[vmin,vmax] are transformed to joint velocity limits using
the inverse of E(q) and recomputed every time step. The
inequality constraint is[

In×n
−In×n

]
ud ≤

[
E(q)−1vmax
−(E(q)−1vmin)

]
(13)

3) Cylinder Position Limits: The hydraulic cylinders also
have a limited stroke and therefore the joint positions are
limited by incorporating[

δtIn×n
−δtIn×n

]
ud ≤

[
qmax − q − uδt
−(qmin − q − uδt)

]
(14)

where qmin and qmax are the joint position limits computed
from the actuator position limits.

4) Self-Collision Avoidance: Local self collision avoidance
for convex objects is implemented as proposed by Faverjon
and Tournassoud [22]. The approach limits the velocity of the
bodies in direction of the collision. The links are represented
with collision primitives, i.e. boxes, and checked for collision
using the Bullet physics engine by Coumans et al. [23]. Bullet
will provide the two closest points p1 and p2 between two
bodies. The normalized direction of collision is

n = (p2 − p1)/d with d = ||p2 − p1||. (15)

The distance where the constraint will have an influence is di
and the minimum safety distance is ds. The constraint, that
limits the end effector velocity in direction of the collision, is
then

nTJp1
ud ≤ ξ

d− ds
di − ds

. (16)

5) End-Effector Orientation: A desired end-effector rota-
tional motion ṙR,des can be incorporated with the equality

JRud = ṙR,des (17)

using the rotational Jacobian JR.
6) End-Effector Position: A desired end-effector transla-

tional motion ṙT,des can be incorporated with the equality

JTud = ṙT,des (18)

using the translational Jacobian JT .
7) Minimize Cylinder Velocities: If there is still a nullspace

left, the controller minimizes the joint velocities

min ‖ud‖2. (19)

The desired end-effector velocity ṙdes is computed from the
desired end effector trajectory defined by a velocity ṙtraj and
a position rtraj, as

ṙdes = ṙtraj + PID(r, rtraj) (20)

with position feedback through a PID controller. Both ṙtraj
and rtraj are extracted from the cubic Hermite splines. Note
that the end-effector motion task is split into two tasks, i.e
orientation and position task of the end-effector. This allows
for the orientation task to be of higher priority than the position
task. This setup guarantees that if the collision avoidance
already restricts the end-effector motion, the bucket orientation
is treated with higher priority than the translation. Thus,
avoiding a collision cannot change the orientation but only
the translation of the shovel and there will be no soil spillage.

B. Digging Force Controller

Soil independent excavation is achieved through force con-
trolled digging. The desired joint torques τ d are computed
using the equation of motion and a viscous and static friction
compensation as

τ d = JTf des
t + b+ g + Fvu+ Fssign(u) (21)

with τ d ≤ E(q)τmax
p , τ d ≥ E(q)τmin

p (22)

where b(q,u) ∈ Rn is the vector of centrifugal and Coriolis
terms, g(q) ∈ Rn is the vector of gravity terms, Fv ∈ Rn×n
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Fig. 7. The building blocks for autonomous execution of one excavation
cycle are excavation planning (black), trajectory planning (gray), mapping and
control (white). IK (inverse kinematics) and ID (inverse dynamics) describe
which arm control strategy is used. Three different dig cycles are shown with
blue, red and green lines. The respective plots are in Fig. 9a, 9b and 9c.

is the diagonal viscous friction matrix, Fs ∈ Rn×n is the
diagonal static friction matrix and [τmin

p , τmax
p ] the maximum

cylinder forces/torques. The desired end-effector force in task
space f des

t is mapped to generalized forces in joint space by the
spatial shovel origin Jacobian J ∈ Rm×n. RBDL, the Rigid
Body Dynamics Library [24], was used for implementation.

VI. AUTONOMOUS EXCAVATION

Autonomous excavation is achieved with the state machine
shown in Fig. 7. First, a suitable point of attack for digging,
using the excavation planner proposed in previous work [14],
is found. The trajectory planner, as shown in Section IV,
subsequently plans an environment collision-free trajectory
from the current location of the bucket to the excavation point.

The inverse kinematic controller, see Section V-A, is used to
track the trajectory reference in the air. The controller avoids
running into any limits and locally avoids self-collisions. The
pilot stage driven main valves are used for motions in the
air, because they allow for more flow compared to the servo
valves. Additionally, the superior control performance of the
servo valves is not needed. The excavator controls the distance
to the excavation point by driving forward and backwards.
The active chassis [7] adapts to the ground while driving and
guarantees a stable stance for excavation.

The digging process changes depending on the contact
state of the bucket and/or the distance of the start position
to the desired surface. This change is necessary to avoid
executing purely force controlled digging without the bucket
being in contact. The contact force of the bucket with the soil
is estimated with a second order residual wrench approach
similar to Magrini et al. [25], but extended to include friction
terms. Whenever the start position of the digging cycle is
already close to the desired surface, the controller tries to track
the desired surface instead of executing a force controlled dig
cycle (red path in Fig. 7). Closeness is defined as the vertical
distance to the desired surface. However, following the desired
surface might drive the bucket deep into the ground or stones
and roots might be in its way. The inverse kinematic controller
will not be able to cope with these large interaction forces. If
this estimated interaction force is too high, the controller stops
trying to track the desired surface with the inverse kinematic
controller and switches to force controlled digging (green
path in Fig. 7). In case the starting point of a dig cycle is
not close to the desired shape, a purely force controlled dig
cycle is executed (blue path). To guarantee contact with the
ground before switching to force control, an ”obtain contact”
procedure is executed where the bucket moves down vertically
until contact is detected. The digging process is stopped either
when the shovel is full or the bucket is getting too close to
the legs or chassis. The soil volume in the bucket is estimated
using the map prior to the dig cycle and the trajectory of the
bucket during the dig cycle. Once the digging is terminated,
the elevation map is updated with the measured bucket edge
trajectory as shown in Section III.

Dumping follows a similar strategy. The dump point is
found by excavation planning and a trajectory to this dump
point is planned. The trajectory, as well as the actual dumping
of the soil, is done with the inverse kinematic controller. An
update of the map at the dump location is then forced to
quickly adapt to the height changes.

In our previous work in simulation [14], the first step was to
roughly excavate the entire trench and, in a last step, to refine
it to achieve a precise shape. Due to splitting these actions
into two separate parts, the excavator had to go to the start of
the trench after finishing rough excavation. This is clearly sub
optimal and might lead to damage of the excavated contour
in case the excavator has to drive over it. In this work, the
planner can switch according to the needs between refinement
(”follow desired” state) and rough excavation (”digging” state)
as often as necessary.
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Final Shape Desired Shape

Fig. 8. The desired shape is a four-segment piecewise-planar surface depicted
in the top right corner. The area in the final shape corresponding to the desired
plan is marked with magenta grid lines. The coloring represents the elevation
of the cells.

VII. RESULTS

The desired trench geometry is created in a CAD program
and converted into a 2.5D elevation map by ray-tracing the
surface from above. Two different trench shapes were used
for evaluation of the system in real world scenarios. First,
a desired shape consisting of four piecewise-planar surfaces
is excavated.1 It is shown in the top right corner of Fig. 8.
Secondly, a free-form curved shape was also used for testing.
The autonomous walking excavator HEAP with an attached
grading bucket (clean edge, no teeth, 1.5m width) recreated
the desired shapes in one go without any user intervention.
Fig. 8 shows the elevation map created with the onboard lidars
after successful completion of the linear segments shape. The
area in the final shape that corresponds to the desired plan is
marked with magenta grid lines.

Fig. 9 explains in detail the process of autonomous exca-
vation on the example of the 9th, 12th and 13th dig cycle.
Note that there are two dig cycles between Fig. 9a and 9b that
are not shown in this sequence. The corresponding decisions
taken in the state machine for these three individual dig cycles
is illustrated in Fig. 7 with colored lines. The excavator is
positioned to the left of the plots and works from right to left.
First, in Fig. 9a, the planned point of attack is already close to
the desired surface. Thus, the bucket tries to track the desired
surface as close as possible with the servo valves and the
inverse kinematic controller until the estimated contact force
exceeds a threshold. The state machine then switches to force
controlled digging to fill the bucket despite large interaction
forces. The excavation planner chooses the point of attack for
the excavation such that it does not excavate at the very bottom
of a steep wall. The arm could collide with the top edge of
the trench and the forces at the bottom of such a steep wall
would prevent successful excavation. Fig. 9b shows such a dig
cycle were the planner chooses a point not at the bottom of
the trench to first remove the soil on top. The point of attack

1Video Reference: https://youtu.be/3ZV78hA-HNA
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(a) The 9th dig cycle starts with the point of attack close to the desired
surface. Thus, the bucket follows the desired shape until, in this case, the
contact force exceeds the limit and the excavator continues the dig cycle with
force controlled digging to fill the bucket.
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(b) The 12th dig cycle is purely force controlled, because the start is not close
to the desired surface. The excavation planner chooses this start location to
avoid creating steep walls that are difficult to excavate.
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(c) The 13th dig cycle in this excavation only uses the ”follow desired”
strategy to fill the bucket, because only little soil is left in that region.

Fig. 9. The three different dig cycles correspond to the three colored paths
through the state machine in Fig. 7, i.e. a) is the blue, b) is the red and c)
is the green path. The current elevation shown as a red line is the elevation
along the center line of the trench.

is not close to the desired shape, thus the digging cycle is
fully force controlled without forcing the bucket to stay on a
certain trajectory. The bucket trajectory results from applying
the force trajectory and how the soil reacts to this applied
force. Thus, it is only a coincidence that the bucket trajectory
in Fig. 9b is a straight and horizontal line. With the pile of
soil removed from the previous dig cycle, the bucket is filled
in the cycle in Fig. 9c only by tracking the desired shape as
there is only very little soil left in that part of the trench.

The shape error of the finished trench is shown in Fig.
10 before and after autonomous excavation. It shows a cut
through the trench in longitudinal (x-)direction. The error
bars represent the average error in lateral (y-)direction. The
four-segment piecewise-planar shape was excavated with a
mean error of 0.027m and a standard deviation of 0.035m.
Fig. 10 shows additionally the σ-error bound. Note that this
approach shows the same accuracy for horizontal planes as
well as angled slopes. Additionally, the approach was also
tested on a free-form curved shape shown in Fig. 11. The
shape was successfully excavated with a mean error of 0.024m
and a standard deviation of 0.032m. Fig. 10 and 11 in
combination show that free-form shapes can be excavated with
this approach with unprecedented high accuracy.

The results shown in this article are compared to our
previous work in simulation [14], Shao et al. [26] and Maeda
et al. [11]. In our simulation work, a mean error of 0.035m
and 0.044m for two different shapes was achieved. With the
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Fig. 10. The terrain, before the autonomous excavation starts and traced by the
black line, shows an error of up to 0.7m at certain locations and a total error
volume of ∼2.1m3 of soil that has to be removed. The desired shape is shown
with the blue line and the error with red bars. The error bars show the error
averaged in y-direction. The final state after the autonomous excavation shows
a mean error of 0.027m with a standard deviation of 0.034m. Additionally,
the red dotted line represents the σ-bound of the error.
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Fig. 11. The initial terrain (black line) was excavated to achieve the desired
shape (blue line). The remaining average error is 0.024m shown with red
bar plots and a standard deviation of 0.032m illustrated by the red dotted
σ-bound lines.

advances shown in this article, the same or even better results
could be achieved in real world experiments. As there is no
other existing work on accurately excavating free-form shapes,
we compare our approach to work on simple flat bottom
trenches. Shao et al. [26] achieved an error of ”less than 0.1m”
whereas Maeda et al. [11] achieved a trench with 0.025m
accuracy. However, the latter approach does not accurately
capture the actual terrain shape with exteroceptive sensors.
Instead, they only use the bucket edge motion to infer the
actual elevation.

VIII. CONCLUSION
We have presented the necessary building blocks to au-

tonomously and accurately excavate free-form shapes using
a walking excavator. It is built on top of our previous work on
soil independent excavation planning carried out in simulation.
The necessary changes to a standard walking excavator to fully
automate the machine for autonomous landscaping tasks are
shown. Furthermore, robust elevation mapping fusing proprio-
ceptive and exteroceptive sensing tailored to the challenges in
excavation is introduced. A terrain collision free trajectory is
planned on this map. The arm controller is aware of various
machine limits and includes self collision avoidance for safe
operation. The improved state machine enables the execution
of autonomous excavation on real hardware.

Further development of the current framework will enable
the creation of extended robotically fabricated landscapes.
However, improving the excavation accuracy will most likely
not be part of future work.
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