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 (Received 2 December 2019; revised manuscript received 10 February 2020; accepted 18 February 2020;
published 10 March 2020)

We use Bayesian optimization algorithms in combination with a nonequilibrium Green’s function trans-
port model to increase the maximum operating temperature of terahertz quantum cascade lasers. This
procedure lead to the recent temperature record of 210 K in terahertz quantum cascade lasers, and here we
provide even-further-improved structures. The Bayesian optimization algorithm, which takes into account
all the available history of the optimization, converges much faster and more securely than the commonly
used genetic algorithm. Designs based on two and three wells per period are considered, and using the large
amount of data generated, we systematically evaluate the studied schemes in terms of optimal extraction
energy and relevance of electron-electron correlations. This analysis shows that the two-well scheme is
superior for reaching high operating temperatures, while the three-well scheme is more robust to varia-
tions in layer thicknesses. Furthermore, we study the sensitivity to flux-rate fluctuations during growth
and simulation-model inaccuracies, showing the period thickness needs to be controlled to within a few
percent, which is challenging but achievable with present-day molecular-beam epitaxy. These limits to the
growth accuracy can be a guiding principle for experimentalists, along with the suggestion to fabricate
devices across the wafer radius so as to find the optimal period thickness.

DOI: 10.1103/PhysRevApplied.13.034025

I. INTRODUCTION

Many quantum phenomena occur at the energy scale of
the terahertz photon. Examples include elementary chemi-
cal processes [1], photosynthesis [2], superconducing gaps
in type-II superconductors [3], (intra)molecular vibrations
and phonons in solids, thermal energies, and plasma fre-
quencies in doped semiconductors and metals. In addition,
there are several advantages for imaging and spectro-
scopic applications in the terahertz region [4]. Unlike the
nearby mid-infrared spectral region, where quantum cas-
cade lasers (QCLs) [5] have been demonstrated to be
compact, powerful, efficient, and relatively cheap sources
operating at room temperature, the terahertz region still
suffers from a lack of such a source. The two-most-
successful terahertz-QCL [6] schemes to date, whose band
structures are shown in Fig. 1, are based on two [7] and
three [8] quantum wells per period and recently reached
an operation temperature of 210 K [7] with thermoelectric
cooling [7,9]. While this is a promising step forward, the
performance at high temperature still needs to be improved
so that high output powers, eventually in continuous-wave
mode, can be reached with thermoelectric cooling.

To push terahertz QCLs to their maximum capabili-
ties, automated optimization is needed in combination with
accurate simulations.

*martin.franckie@phys.ethz.ch

A wide variety of numerical models for simulating
electron transport and light-matter interaction in such het-
erostructures exist [10]. Models based on rate equations
or simplified density-matrix schemes [11,12] can simu-
late mid-infrared QCLs [13], where the transport is mostly
incoherent, with high accuracy and efficiency. This has
allowed optimization schemes based on genetic algorithms
(GAs) to be applied [14–17] also in the terahertz range
[18,19], albeit with less accuracy. Such models are less
reliable for simulating terahertz QCLs since coherences
play a much bigger role for the transport [20]. Here more
advanced models based on nonequilibrium Green’s func-
tions (NEGFs) [21–23], ensemble Monte Carlo methods
[24,25], or full density matrices [26,27], which treat all ele-
ments of the density matrix on the same footing, should be
used. Naturally, these more-general models are more com-
putationally demanding, taking up to several hours to eval-
uate the performance of a single structure, which explains
why they have not been used for optimization of QCL
structures. For such expensive merit functions, genetic
optimization schemes may require too many iterations to
converge to the global optimum in a reasonable time. Prob-
abilistic optimization schemes based on Bayesian infer-
ence [28] can overcome this limitation by making effi-
cient use of all the available information, and has already
proven useful for similar design problems, e.g. con-
cerning thermoelectrics [29,30] and optical metamaterials
[31,32].
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FIG. 1. Band structure (straight black lines), square of the
Wannier-Stark functions (wavy lines), and energy-resolved elec-
tron densities (gray scale) for (a) the two-well scheme (405 in
Table I) with layer sequence 7.507/2.206/6.986/3/4.565/3.425
and (b) the three-well scheme (referred to as 477 in Sec. III) with
layer sequence 8.59/3.35/4.81/5/5.40/3.78/8.48/2.22 at TL =
300 K and maximum current density. Labeling of the layers
within one period is provided, which together with the barrier
composition makes up six (eight) varying parameters for the two-
well (three-well) scheme. The extraction energy Eex ≈ 50 meV
is greatly above the optical phonon energy ELO ≈ 37 meV. The
upper (red) and lower (green) laser states as well as the injector
state (blue) are highlighted, and the yellow-shaded regions indi-
cate doping layers, whose widths are kept fixed throughout the
optimization.

In this work, we use a Gaussian-process (GP) optimiza-
tion algorithm [33] to optimize terahertz QCLs based on
design schemes with two and three quantum wells per
period using a nonequilibrium Green’s function model
[21]. In addition to being a powerful optimization tool, the
Bayesian regression technique allows in-depth analysis of
the high-dimensional parameter space. By training a GP
regression model on all the evaluated QCL structures and
creating a “map” of the parameter landscape, we can con-
duct a general analysis of, and comparison between, the
two schemes.

II. OPTIMIZATION SCHEMES

The problem at hand is demanding: minimizing an
expensive merit function in high-dimensional parameter
space. Therefore, we use techniques that reduce the num-
ber of iterations at the cost of some additional compu-
tational burden in between iterations. One can broadly
divide these into two categories by the way they handle the
high dimensionality of the parameter space, namely, one-
dimensional and multidimensional schemes. The former
category uses linearization of the space onto a space-filling
curve (e.g., a Hilbert curve). For the optimization problem
reduced to one dimension, there are a multitude of opti-
mization schemes, which we narrow down to methods that
benefit from being parallelized and that reduce the number
of iterations by taking into account (possibly) the full his-
tory of the minimization. For clarity, we consider only one,
the “information algorithm with parallel trials” (IAPT)
[34], which is explained in Appendix B. This algorithm
is based on Bayesian regression, and estimates the proba-
bility of the minimum lying within each subinterval. The
intervals are ranked according to this probability, and the
Ngen highest-ranked points in each generation are chosen
to be concurrently evaluated in the following iteration.
There is a single model parameter r that controls the trade-
off between the convergence rate and the global-minimum
success rate. The main benefit of this scheme is that the
evaluation of the next optimal parameters is fast, and scales
only with approximately O(Nt), where Nt is the number
of (historical) training data points, independently of the
dimensionality of the problem.

We also consider a multidimensional GP optimization
scheme [33,35,36], which is detailed in Appendix C. In this
scheme, the merit-function values y∗(x∗) are considered as
drawn from a normal distribution:

p(y∗|x∗, xt, yt, θ) ∼ N (x∗|μ, K), (1)

with mean μ and covariance matrix K , where θ is a set
of hyperparameters (analogous to r in the IAPT). Here the
parameters x and merit-function values y from all previous
iterations can be considered a labeled training data set. The
model is trained on the training data by our optimizing the
hyperparameters with respect to the marginal likelihood of
the merit-value data given the training parameters using
Bayes theorem:

p(θ |y, x) ∝ p(y|x, θ) × p(θ). (2)

With use of the mean μ and the variance (the diagonal ele-
ments of K), the best points to be evaluated in the next
iteration are chosen by a utility function, such as estimated
improvement (EI), which we use in this work. This method
scales at least as approximately O(N 3

t ) (since it involves
inverting the Nt × Nt covariance matrix K). In our case,
training the model on approximately 1700 data points with
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eight dimensions takes approximately 120 s. This puts a
practical limit of about 5000–20 000 training points, since
the training time becomes much longer than the evaluation
time per generation and other methods with slower conver-
gence become more beneficial. Thus, there is still potential
for this method to be applied to higher-dimensional and
rougher parameter landscapes.

These optimization schemes are compared in Fig. 2,
with Ngen = 10. Here we also compare them to the com-
monly used GA, with a crossover rate of 0.5, a mutation
rate of 0.5, and a mutation size of 50% for each param-
eter. The algorithm sorts pairs of parents according to
their merit values and provides each pair with three off-
spring each until Ngen new structures have been generated.
Details are given in Appendix A. GAs are efficient when
the merit-function landscape is complicated and a large
number of function evaluations are permissible. They can
also converge quickly to an arbitrary local minimum by
appropriate settings of the mutation and crossover rates.
Ideally, these should be compared for a large number of
starting conditions on an actual QCL structure. However,

0 10 20 30 40 50 60 70
Generation

−22
−20
−17
−15
−12
−10

−7
−5
−2

0 5 10 15 20 25 30 35 40
Generation

−25.0

−22.5

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5
GA
IAPT
GP
Random

N
eg

at
iv

e 
m

ax
im

um
 g

ai
n 

(c
m

–1
)

N
eg

at
iv

e 
m

ax
im

um
 g

ai
n 

(c
m

–1
)

(a)

(b)

FIG. 2. Comparison of the GA, IAPT, and mutlivariate GP
optimization schemes applied to Gaussian processes trained on
(a) two-well-QCL and (b) three-well-QCL simulation data from
Sec. III. Each line shows the average of 100 optimization runs,
and the shaded regions indicate 1 standard deviation from the
mean.

since the evaluation of the actual QCL merit function takes
too long for such a comparison, we chose as a test func-
tion a Gaussian-process model that has been trained on
the two-quantum-well-QCL and three-quantum-well-QCL
data presented in Sec. III.

The Gaussian-process optimization scheme converges
much faster than the other ones, and the IAPT scheme is
even slower than the GA for the two-well QCL. This can be
explained by the linearization, which introduces spurious
complexity and noise where the actual multidimensional
merit function is smooth. In addition, the Hilbert curve
used for the linearization does not cover the entire multi-
dimensional parameter space and a single optimum can be
seen as two distinct, but similar, optima along the Hilbert
curve. However, the variance of the IAPT scheme is lower
than that of the GA scheme, which is also seen in Fig. 2(b),
meaning it more reliably converges to the global optimum.

A similar behavior for the convergence rates of the GP
and IAPT schemes can be observed in Fig. 5(a), where
single instances of an actual QCL optimization using the
IAPT and GP schemes are shown; after an initial explo-
ration period of approximately 30 generations, the GP
scheme quickly converges, while the IAPT scheme con-
verges much more slowly. In Supplemental Material [37]
we find the same trend for a completely different (analyti-
cal) function, showing that this is not specific to the QCL
merit functions tested.

In the optimizations presented below, our NEGF model
is coupled to the Gaussian-process scheme, as explained
in Appendix D. The code which used for generating struc-
tures, starting the merit-function evaluations and obtaining
the results, and performing the optimization has been pub-
lished online as part of the open-source code AFTERSHOQ
[38]. Further details are given in Appendix E.

III. RESULTS

A. Optimization of the two-well terahertz QCL

Recently, our group increased the operating temperature
of terahertz QCLs using a design optimized using the IAPT
described above and varying the four layer widths to max-
imize the gain at 300 K. The details of this optimization
are given in Supplemental Material [37]. The optimized
design had a simulated gain of 25 cm−1, which predicts a
much-higher operating temperature than observed exper-
imentally [7], considering total optical losses of about
20 cm−1 at 300 K for Cu-Cu double-metal waveguides
[39]. However, these simulations did not consider the effect
of electron-electron (e-e) correlations, which act to redis-
tribute the carriers (thermalization) and greatly reduce the
peak gain due to level broadening [40]. When this effect
is included [41], the gain is almost halved at a given
temperature, reaching only 14 cm−1 at room tempera-
ture (see Supplemental Material [37]). It is thus clear that
e-e correlations are crucial for the device performance
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at these doping levels and including them during opti-
mization will allow possible strategies to mitigate their
detrimental effects—which are quite different from those
of LO phonons—to be explored. (Later we show that this
is not the case.) Therefore, we perform optimization for the
same two-well structure including e-e correlations and, in
addition to all layer widths, the doping position within the
wide well and the AlAs concentration in the barriers are
varied. Figure 1 presents one of the best two-well struc-
tures found, and indicates the parameters that are varied
during the optimization. As a merit function, the overall
maximum gain of the structure is chosen, and is evaluated
by our first finding the maximum point on the I -V curve
[shown in Fig. 3(b) for the best-five structures] and then
the maximum gain as a function of frequency [Fig. 3(a)] at
the corresponding bias (unlike the previous optimization,
where the gain was evaluated at a predefined bias point).

The maximum gain for the best-five structures obtained
with the IAPT optimization scheme are shown in Fig. 3(a).

10 11 12 13 14 15 16 17 18
Energy (meV)

−5

0

5

10

15

20

G
ai

n 
(c

m
−1

)

366
405
22
396
438

50 52.5 55 57.5 60 62.5 65 67.5 70
Bias (mV/period)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

C
ur

re
nt

 d
en

si
ty

 (k
A

/c
m

2 )

366
405
22
396
438

(a)

(b)

FIG. 3. (a) Gain and (b) current density versus bias for the best-
five structures. Markers indicate evaluated points and the solid
lines are cubic interpolations used to find the maximum of the
I -V and gain curves.

TABLE I. The label, layer sequence with barriers in boldface
and doped layers underlined, barrier AlAs fraction x, oscillator
strength fosc., and maximum current density Jmax for the best-five
two-well structures.

ID Layer sequence x fosc. Jmax
(nm) (A/cm2)

22 7.286/1.897/7.424/3/4.565/3.335 0.268 0.11 4.0
366 7.728/1.786/8.352/3/4.565/3.245 0.279 0.17 3.4
396 7.728/2.049/7.424/3/4.698/3.065 0.268 0.23 4.2
405 7.507/2.206/6.986/3/4.565/3.425 0.276 0.21 3.4
438 7.507/2.154/6.960/3/5.222/3.335 0.262 0.19 3.6

Two classes of structures are found, corresponding to dif-
ferent local minima; number 22 and number 366 with gain
peaking around 4.5 THz, and number 405 and number 396
with gain peaking around 3 THz. Remarkably, the small
change in layer widths between these two classes, given
in Table I, results in a drastic change in Jmax, as seen in
Fig. 3(b).

The optimization described increases the gain from 14
to 20 cm−1 at 300 K. The reasons for this increase can be
revealed by looking at Fig. 4, where the dependence of the
gain on pairs of parameters is shown. The parameter val-
ues for the original design are marked by a green asterisk.
The main difference from the original design is a much-
narrower phonon well (w2R and w2L) as seen in Fig. 4(a),
giving a higher extraction energy as high as �Eex = 51
meV. This affects the gain in four ways:

(a) It limits the phonon emission from the upper laser
state.

(b) It reduces the influence of the reabsorption dip in the
gain spectrum at Eex (as defined in Fig. 1), whose width
�/τ ≈ 8 meV becomes considerable compared with the
lasing energy at 300 K. Conventional terahertz QCLs with
Eex ≈ ELO have Eex − �ω ≈ 20 meV—less than kBT =
25 meV at 300 K. In contrast, for the optimized struc-
ture Eex − �ω ≈ 35 meV, which is much higher than the
thermal energy and any level broadening.

(c) It reduces the thermal backfilling from the injector
state into the lower laser state.

(d) It increases the lifetime of both the upper later state
and the lower laser state, reducing the broadening and
thereby increasing the peak gain.

We also note the best perforation is obtained with the
doping position to the right of the well center, where the
lower laser state has its node, minimizing the scattering
rate into the lower laser state.

For the optimal value for the phonon-well width, the
laser-well width (wl) controls the alignment between the
injector state and the upper laser state and thereby the
energy drop per period, which is distributed between the
photon energy and the extraction energy. This can be seen
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by the structure with the narrowest laser well (number 22)
having the highest operating bias, while the one with the
widest laser well (number 396) has a much-lower oper-
ating bias, as seen in Fig. 3(b). As seen in Fig. 4(b), our
optimization favors a smaller wl compared with the nom-
inal design, which is needed to compensate the higher
extraction energy.

As seen in Fig. 4(c) the barriers are slightly thinner
for the best design, although the laser barrier width b1
has a small influence on the gain as can be seen also in
Figs. 4(d) and 4(e). As shown in Supplemental Material
[37], the trained Gaussian-process model predicts that sim-
ilar or even slightly higher maximum gain is achievable for
a range of barrier combinations both thinner and thicker
than the nominal design. By changing the parameter values
along the ridges of highest gain, we can obtain similar gain
values in the whole range from 2.7 to 4.4 THz, as evident in
Fig. 3(a). This also allows the oscillator strengths to vary
widely from 0.11 and 0.23, as seen by the corresponding
values in Table I, which are evaluated at Jmax, for the best-
five structures. These designs are thus more diagonal than
the previous record three-well terahertz QCL [42]. Because
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FIG. 4. Gain dependence of the two-well-QCL scheme on pairs
of parameters deviating from their optimimal values. The green
asterisks indicate the nominal-design [7] parameters. The labels
are defined in Fig. 1(a).

of the effect of phonon emission from the upper laser state
as discussed above, a higher diagonality will likely lead to
better performance at very high temperature (300 K) at the
cost of worse performance at lower temperatures.

Finally, higher barriers (larger x) improve the perfor-
mance [see Fig. 4(d)] by reducing carrier leakage into
higher-energy states, although the trend is much weaker
than for the layer widths. However, the added degree of
freedom of one additional variable parameter certainly
helps to fine-tune the alignment of the energy levels.

From comparison of the radically different optimal
extraction energy at low temperature (approximately ELO)
and that at 300 K (approximately 50 meV), it becomes
clear that the intended operation temperature is crucial
when one is designing structures. This message is impor-
tant also in other cases, such as low-dissipation or high-
power devices operating at lower temperatures. In contrast,
we find that e-e scattering, while crucial for the actual per-
formance, is of less importance for designing structures,
since the best structures show the relative best performance
also without e-e scattering; in contrast to phonon scat-
tering, e-e scattering is not temperature dependent. This
indicates that the largest part of the improvement comes
from a reduction of the phonon scattering rate out of
the upper laser state. Apparently, no strategy for reduc-
ing the effect of e-e scattering is found, which means
this effect is of lower importance for the relative perfor-
mance of terahertz QCLs. This is good news since ignoring
it allows faster computations with more-easily-interpreted
results.

We observe a strong correlation between the widths of
the phonon well (w2L and w2R) and well 1, as well as
the two barrier widths b1 and b2, as diagonal features in
Figs. 4(b) and 4(c). These correlated parameters need to be
varied synchronously when one is optimizing the structure.
In contrast, the well and barrier widths are much less cor-
related [see Figs. 4(e) and 4(f)], meaning they control sep-
arate features (i.e., energy separation and bias per period
for the wells, oscillator strength and tunneling efficiency
for the barriers) of the QCL, and can be tuned indepen-
dently. The high degree of correlation observed in Fig. 4
is a characteristic feature of the two-well scheme, where
the layers across the period are connected via the wave
functions, which extend over the whole period. This poses
a challenge when one is optimizing such short structures
since all layers have to be simultaneously and precisely
tuned.

B. Optimization of the three-well terahertz QCL

To make a fair comparison between the two-well
scheme and the three-well scheme, we optimize the latter
with respect to the maximum gain using similar simula-
tion conditions,; that is, varying all eight layer widths and
the composition at TL = 300 K. To increase the speed and
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improve the convergence of the optimization, we ignore
e-e scattering in accordance with the discussion above. The
effect of e-e scattering can be checked for the optimized
designs afterward (and is found not to change the overall
conclusions). Because of the large number of parameters,
we use both the IAPT and the multivariate Gaussian-
process optimization algorithm to ensure convergence. In
addition, a second GP optimization with extended parame-
ter ranges is needed to find the optimal structure. As can be
seen in Fig. 5(a), the latter converges much more quickly,
confirming the results in Fig. 2(b). In total, approximately
1700 structures are evaluated during these three optimiza-
tion runs.

In Fig. 5 the gain and current densities of the best-five
evaluated designs are shown. A maximum gain of 21 cm−1

is achieved for structure 477. Including e-e scattering, we
observe a large increase in the current density [circles in
Fig. 5(b)] and a large reduction in gain [dashed lines in
Fig. 5(c)] to a maximum of 9 cm−1.

In Fig. 6 the maximum gain predicted by the Gaussian-
process regression model trained on simulated structures
is shown for variation of pairs of parameters away from
the optimal values. Compared with the nominal-structure
parameters (indicated by a green asterisk in each subplot),
we find that the main differences leading to the optimal
design are a narrower phonon well (w3L and w3R, as for the
two-well scheme) and narrower barriers b1 and b3. Simi-
larly to the two-well scheme, the narrower left portion of
the phonon well pushes the extraction energy close to 50
meV. In contrast, the behavior of the doping position is
quite the opposite, as the doping is shifted toward the left
side of the well, away from the nodes of the lower laser and
extractor states. Indeed, since the overlap with the upper
laser state of the same period is negligible, a higher impu-
rity scattering rate is beneficial in this case since it reduces
the dwell time for electrons in the lower laser state. The
narrower barriers provide faster injection and extraction
rates out of and into the respective laser levels, and are
thus beneficial for inversion, at the cost of a slight gain
broadening, which is, however, small in comparison with
the lifetime broadening at this high temperature.

As also seen for the two-well scheme, the laser barrier
(b2), which controls mainly the oscillator strength, has only
a weak influence on the gain as seen in Figs. 6(c) and 6(d).
This suggests that the oscillator strength is not important in
this case; the benefit of a higher oscillator strength for the
gain apparently cancels to a high degree with the reduced
inversion it also brings [43].

IV. DISCUSSION

The Gaussian-process regression model, which is
trained on the aggregated QCL data, can be used to draw
conclusions about the sensitivity of each design scheme
to parameter variations. For clarity, we assume that the
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from the structure in Ref. [8]. (b) Current density versus bias
and (c) gain for the best-five three-well structures optimized at a
lattice temperature of 300 K. In (b),(c), circles and dashed lines,
respectively, give the corresponding values with e-e scattering
taken into account.

regression represents the true gain as a function of all
parameters. The standard deviation in maximum gain
ranges from 0 to 3 cm−1 for the range of parameters in
Figs. 4 and 6.
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FIG. 6. Gain dependence of the three-well-QCL scheme on
pairs of parameters deviating from their optimal values. The
green asterisks indicate the nominal-design [8] parameters. The
labels are defined in Fig. 1(b).

A first insight can be obtained by comparing Figs. 4
and 6. It is clear that the three-well scheme has many
fewer correlations among the layer thicknesses. This indi-
cates that this scheme can be optimized by improving
each parameter separately, and that it is less sensitive to
variations in individual parameters. Conversely, the two-
well design can be improved only by taking into account
all wells or barriers simultaneously. This makes it inher-
ently harder to design for a desired feature (such as
high-temperature operation).

In comparison with the two-well scheme, the gain
including e-e correlations is much lower for the best three-
well structure. This strongly supports the argument that the
two-well scheme, using only three active levels per period,
is superior for high-temperature operation [7]. However,
some of the designs have very low current density com-
pared with the two-well designs, as seen in Fig. 5(c).
These simulations are performed for a constant sheet dop-
ing density, and the gain-current ratio can be tuned to
some degree by increasing or decreasing doping. The
three-well scheme might therefore be advantageous for

continuous-wave operation, although future optimizations
in this regard for the two-well scheme might also yield
great improvements, since the ones presented in this work
completely ignore the current density.

When one is designing QCLs there are two main con-
cerns: the accuracy of the simulation model and the accu-
racy of the material fluxes during growth. To address the
first one, we may consider inaccuracies in the simulation
model as each parameter wi, x of the predicted optimal
design having a random deviation from the actual optimal
design parameters. Sampling a large number of structures
from the GP and plotting their gain versus the distance
from the actual optimal design

D2 =
∑

i

(wi − w0)
2 (3)

(excluding the composition x) is equivalent to sampling
along the radius of the N -dimensional hypersphere cen-
tered at the respective optimal designs. The sensitivities of
each design are shown in Fig. 7(a). In both data sets, the
layer widths are varied by 20%, and this definition of the
distance excludes any effect from different absolute param-
eter ranges for the two design schemes. This comparison
shows that the two-well scheme has a potentially larger
gain (only the two-well simulations include e-e scattering),
while the three-well design is more robust to variations in
layer widths.

With regard to growth-rate inaccuracies, a fractional
change of α in the Ga flux induces width changes in wells
(�ww) and barriers (�wb) of

�ww = αww, (4)

�wb = α(1 − x)wb. (5)

(The change in composition is negligible. A similar change
in the Al flux changes the barrier width by only αx and
would also be negligible.) The predicted gain as a func-
tion of Ga flux is shown in Fig. 7(b) and again shows more
robustness for the three-well scheme, and an asymmetry
for the two-well scheme as wider layers are more detri-
mental than thinner ones (as seen in Fig. 4). This shows
that the growth rate must be controlled to within a few per-
cent and only half the gain remains for a change of 5.5%
(3%) for the three-well (two-well) design. As molecular-
beam-epitaxy growth rates typically change by a similar
amount across a wafer [7], the performance of three-well-
QCL devices is more reliable. These considerations can
explain why three-well QCLs rather than two-well QCLs
historically have been better performing in experiments.
The difference between the two schemes is less pronounced
in Fig. 7(b) than in Fig. 7(a), which is expected because of
the higher degree of correlation between layer widths for
the two-well design (cf. Figs. 4 and 6).
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FIG. 7. (a) Posterior mean of the gain averaged over 100 000
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six (eight) dimensions centered at the optimal design for the two-
well (three-well) design scheme (lines). The regions between the
first percentile and the 99th percentile are shaded. (b) Gain as
a function of changes in the Ga flux during molecular-beam-
epitaxy growth.

The precision required to reach the highest gain is
remarkable. Figure 7(b) indicates the period length needs
to be controlled to within 1%. Luckily, this is possible
with current molecular-beam-epitaxy technology, where
terahertz-QCL structures are now commonly grown with
this precision. For instance, Beere et al. [44] reproduced
the active-region thickness to within 2%, with less than
2% difference in period length along the whole 2-in.
wafer. The thickness deviation along the growth direc-
tion is much smaller, as any drift in the growth rate is
compensated during growth, indicating a sample with the
correct thickness can be found on the wafer, even if the
thickness at a particular point on the wafer is wrong. This
is precisely what we found in Ref. [7]; spatially resolved
high-resolution x-ray-diffraction measurements showed a

thickness deviation of 4% across the 3-in. wafer, which
allowed the optimal sample to be found close to the wafer
edge.

Finally, we mention that e-e scattering is excluded
for optimization of the three-well design, which means
that the optimal design found might not precisely cor-
respond to the best three-well design if e-e scattering
were included. However, the overall best design is the
two-well design (since e-e scattering degrades the gain
of even the best three-well design to below that of the
best two-well design), which is optimized by including
our e-e scattering. We therefore present an optimal design
for high-temperature terahertz-QCL operation within the
parameter ranges studied.

V. CONCLUSIONS

In conclusion, we investigate in detail the gain land-
scape of two-well and three-well QCLs using Gaussian-
process regression, which allows a general assessment of
respective benefits and deficits of these design schemes.
Specifically, we find that the two-well scheme is supe-
rior in terms of high-temperature gain, while the three-well
scheme shows more robustness toward growth and model
inaccuracies. Both design schemes are optimized with use
of Bayesian methods, and we find a gain of more than 20
cm−1 at 300 K, even when e-e correlations are included.
This indicates pulsed terahertz-QCL operation close to
room temperature in a wide range of terahertz frequen-
cies might be possible soon. The gain is increased mainly
by a large increase in the extraction energy, far above
the LO phonon energy, suggesting a new design feature
that can be applied to terahertz QCLs in general to reach
higher operating temperatures. Finally, the gain could be
further increased by varying also the doping density and
the composition of each layer separately, although the for-
mer would probably require more experimental feedback
as e-e scattering becomes more efficient at higher doping
levels.
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APPENDIX A: GENETIC ALGORITHM

The genetic algorithm shown in Fig. 2 is implemented
as follows. At the beginning a number of random points
in the multidimensional parameter space are selected and
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the model is evaluated. The Npop structures with the best
merit function are selected for mutation and crossover. In
the crossover phase, two parents are chosen at random with
probability

Pi = yi∑
j yj

, (A1)

where i and j are indices going over the Nparent best struc-
tures. For each pair of parents, Noff offspring are created,
where each gene (i.e., each parameter) in the offspring is
given by poff = p1w + p2(1 − w), where pi is the parameter
value of parent i and w ∈ (0, 1) is a random weight.

In the mutation phase, every gene of each offspring has
a probability rmut changed by a random amount �pmut =
κ(pmax − pmin), where κ ∈ (−m, m) is a random number in
the range of the mutation size parameter m ∈ (0, 1). The
remaining Npop − NoffNparent structures are brought over to
the next generation unchanged.

APPENDIX B: INFORMATION ALGORITHM
WITH PARALLEL TRIALS

This algorithm [34] finds the global minimum of a
one-dimensional function, accelerated by using parallel
function evaluations. The intervals between each pair of
evaluated points are ranked according to a characteristic
function

Ri = xi − xi−1 + (yi − yi−1)

μ2(xi − xi−1)
− 2

(yi + yi−1)

rμ
,

R1 = 2(x1 − x0) − 4
y1

rμ
, RN = 2(xN − xN−1) − 4

yN−1

rμ
,

μ = max
|yi − yi−1|
(xi − xi−1)

(1 < i ≤ N − 1), (B1)

used to determine the interval that most likely contains the
minimum of the merit function. For each of the N highest-
ranked intervals, the new x value is given by

x′
i = (xi + xi−1)/2 − (yi − yi−1)/2rμ, 1 < i < N ,

x′
i = (xi + xi−1)/2, i = 1 or i = N , (B2)

and these values are taken as the next N points to be eval-
uated. The parameter r determines the amount of explo-
ration and exploitation. The characteristic functions Ri are
the maximum-likelihood estimates of each interval con-
taining the global minimum, and their derivation is based
on Bayesian reasoning [45].

Since the algorithm is applicable only for one-
dimensional functions, the multidimensional parameter
space has to be transformed into a one-dimensional one.
This is done by the use of a Hilbert curve, a one-to-one
mapping from M to one dimension, which preserves rela-
tive distances, (i.e., two points that are close on the Hilbert

curve are also close in real space, but not necessarily vice
versa). Thus, not all points in real space are represented on
the Hilbert curve. By the choice of the only Hilbert-curve
parameter p , determining the minimum distance between
two parallel sections of the curve, every point in real space
can be made sufficiently close to a point on the Hilbert
curve.

APPENDIX C: GAUSSIAN-PROCESS
REGRESSION

Gaussian-process regression is a powerful tool for ana-
lyzing large sets of data, and can be used for optimization.
In essence, the process attempts to fit a statistical distri-
bution with a set of hyperparameters to the input data,
providing both the most-likely (mean) value and also infor-
mation on the statistics via the full covariance matrix.
This is done by defining a Gaussian-type kernel k of the
covariance matrix:

k(x, x′) = σ 2
f exp(−1

2
σ 2

l |x − x′|2). (C1)

The parameters σf and σl are the hyperparameters, which
can be fitted by maximizing the posterior probability of σf
and σl given the input data, as shown below. Consider two
sets of data points: the already evaluated Np prior points x
(the training data) and the Nt test points x∗ (where Nt >>

Np ). The covariance matrix thus becomes

	 =
(

K k∗
k∗T k∗∗

)
, (C2)

where K has the kernel between points in the training data,
k∗ has the kernel between the training and the test data,
and k∗∗ has the kernel between points in the test data. It is
well known (see, e.g., Ref. [46]) that if the prior likelihood
distribution of the data given the parameters

p(y|x, σf , σl) = N (x|E(x), 	) (C3)

is a Gaussian distribution, then the posterior distribution of
the new data conditional on the training data

p(y∗|x∗, x, y, σf , σl) = p(y∗, x∗, x, y, σf , σl)

p(y|x, σf , σl)

= N (x∗|μ′, 	′) (C4)

is also a Gaussian distribution with mean μ′ = k∗TK−1y
and covariance 	′ = k∗∗ − k∗TK−1k∗. The mean will thus
be a smooth function passing through all training data
points, and can be seen as a fit with uncertainty given by
the variance 	′(x∗, x∗). This fit strongly depends on the
choices of σf and σl, which are optimized with respect to
the training data by maximizing the posterior probability

034025-9



MARTIN FRANCKIÉ and JÉRÔME FAIST PHYS. REV. APPLIED 13, 034025 (2020)

of σf and σl given the training data, which by the Bayes
theorem is

p(σf , σl|y, x) = p(y|x, σf , σl) × p(σl, σf ). (C5)

It is enough to maximize p(y|x, σf , σl), and using Eq. (C4),
we find

log p(y|x, σf , σl) = −1
2

yTK−1y − 1
2

log |K| − n
2

log 2π .

(C6)

Together with its derivative

∂

∂θ
log p(y|x, θ) = 1

2
yTK−1 ∂K

∂θ
K−1y

− 1
2

Tr
(

K−1 ∂K
∂θ

)
(C7)

[where θ = (σf , σl)] we can use a built-in serial solver to
maximize the probability function, since this is a much-
easier problem than evaluating the merit function.

In the above derivation, we assume that the evalu-
ated data have no uncertainty (since the NEGF program
will always yield exactly the same result this is a logi-
cal choice). If the model result is associated with some
uncertainty (such as Monte Carlo models, or considering
some uncertainty in the model parameters, such as inter-
face roughness), noise (with variance σ 2

N ) can be included
in the evaluated data by addition of a term Îσ 2

N , where Î is
the Np × Np identity matrix, to the kernel K of the train-
ing data. This can also increase the convergence rate, since
fast oscillations (as those observed on the Hilbert curve)
are averaged out as the Gaussian-process mean no longer
has to go through each training point.

The first step in the optimization is to choose initial
points and evaluate the model at those points (typically
ten to 20 points, either randomly chosen to be on the
Hilbert curve or directly in multidimensional parameter
space). Initial values of σf , σl, and σN are provided and
the Gaussian process is trained on the data. A utility func-
tion determines the next M points to be evaluated, using
the information on both the mean and the variance at each
parameter-space point. Here a wide variety of choices are
available and can greatly affect the convergence rate and
robustness of the optimization. For example, the utility
function

uML(x∗) = −μ′(x∗) + σ(x∗), (C8)

where σ(x∗) = √
diag	′, is the maximum likelihood with

an additional reward for points with high uncertainty,
preventing the convergence to local minima. To select
multiple points at different regions of parameter space, a
minimum distance between chosen points is also specified

in this case. Another choice is the estimated-improvement
utility function:

uEI(x∗) = E[y∗(x∗) − ymax]

= [μ′(x∗) − ymax − ξ ]F(Z) + σ(x∗)P(Z), (C9)

where F is the cumulative distribution function, P is the
probability density function, ymax = max y and

Z = μ′(x∗) − ymax − ξ

σ (x∗)
. (C10)

The parameter ξ = 0.01 determines the amount of explo-
ration versus exploitation. For more details on the pre-
cise implementation in the multidimensional case, see the
open-source code in Ref. [33].

Once the next parameter points have been selected, the
model is evaluated for them and the Gaussian process
is retrained on the updated data set. This procedure is
repeated until convergence, or until the maximum num-
ber of generations has been reached. We use this algorithm
in both the multidimensional case and the one-dimensional
case (i.e., using a Hilbert curve to reduce dimensionality),
and a comparison is provided in Supplemental Material
[37].

APPENDIX D: NONEQUILIBRIUM GREEN’S
FUNCTION MODEL

As supported by the results in Sec. IV, the accuracy
of the model is crucial given the small tolerance of layer
thicknesses. We use the nonequilibrium Green’s function
presented in Ref. [21], extended with a two-band model
according to Ref. [47], which has proven accurate with
respect to experiments for both mid-infared QCLs [13] and
terahertz QCLs [40,48]. As input to the model, the pre-
cise layer sequence and barrier composition are provided.
The composition x gives the conduction-band offset �Ec
between wells and barriers according to the equation

�Ec = 0.831x eV (D1)

as suggested in Ref. [49]. The width parameters give the
average interface positions zi. The precise values zi(r) vary
with the in-plane coordinate r, which is included in the
model via interface roughness scattering. In the simula-
tions presented, this is implemented with an exponential
autocorrelation function of the deviation η(r) from zi:

〈η(r)η(0)〉 = �2e−|r|/λ, (D2)

where � = 0.1 nm is the rms roughness height and λ = 10
nm is the correlation length. For each set of parameters,
the Wannier functions of the periodic heterostructure are
calculated, and the current density at a few bias points is
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calculated to find the peak of the current-bias curve, where
then the gain is evaluated. To reduce the total computation
time, a few points are evaluated with the NEGF model and
are then interpolated with a spline function. The highest
point of the interpolated gain curve is then chosen as the
merit function and is fed into the optimization algorithm.

Since the two-well structure is short, we find that two
neighboring periods (on each side of the central period)
are needed to achieve an accurate gain calculation, whereas
for the three-well structure, one neighboring period is suf-
ficient. In both cases, seven states per period are included
in the calculations.

APPENDIX E: SAMPLE CODES

Sample codes (PYTHON JUPYTER notebooks) are avail-
able from Ref. [38] under examples/publi/2020/, includ-
ing one script for loading the trained Gaussian-process
models used in Secs. II and III (opt_schemes_trained
GP.ipynb) and one script used to run the actual opti-
mizations of the two-well QCL using the Gaussian-process
regression (opt_2-well_sequential_MDGP_e-e.ipynb).
As of now, the NEGF model has not been made available
to the public. However, the open-source code AFTERSHOQ
can be extended by the interested reader to include inter-
faces with other transport simulation codes as well by
writing an appropriate interface code accepting the spec-
ified inputs and outputting the simulation results in the
correct format.
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