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Abstract

We present a learned image compression system based

on GANs, operating at extremely low bitrates. Our proposed

framework combines an encoder, decoder/generator and a

multi-scale discriminator, which we train jointly for a gener-

ative learned compression objective. The model synthesizes

details it cannot afford to store, obtaining visually pleasing

results at bitrates where previous methods fail and show

strong artifacts. Furthermore, if a semantic label map of the

original image is available, our method can fully synthesize

unimportant regions in the decoded image such as streets

and trees from the label map, proportionally reducing the

storage cost. A user study confirms that for low bitrates, our

approach is preferred to state-of-the-art methods, even when

they use more than double the bits.

1. Introduction

Image compression systems based on deep neural net-

works (DNNs), or deep compression systems for short, have

become an active area of research recently. These systems

(e.g. [39, 5, 34, 6, 30]) are often competitive with modern en-

gineered codecs such as WebP [46], JPEG2000 [38] and even

BPG [7] (the state-of-the-art engineered codec). Besides

achieving competitive compression rates on natural images,

they can be easily adapted to specific target domains such as

stereo or medical images, and promise efficient processing

and indexing directly from compressed representations [42].

However, deep compression systems are typically optimized

for traditional distortion metrics such as peak signal-to-noise

ratio (PSNR) or multi-scale structural similarity (MS-SSIM)

[45]. For very low bitrates (below 0.1 bits per pixel (bpp)),

where preserving the full image content becomes impossi-

ble, these distortion metrics lose significance as they favor

pixel-wise preservation of local (high-entropy) structure over

preserving texture and global structure (see [8] and Sec. 4.3).

To further advance deep image compression it is therefore of

*The first three authors contributed equally.

Original Ours 1567 Bytes [B] JP2K 3138B +100% larger

BPG 3573B +120% JPEG 13959B +790% WebP 9437B +502%

Ours 1567 Bytes BPG 3573 Bytes +128%

Figure 1. Visual comparison of our result to that obtained by other

codecs. Note that even when using more than twice the number of

bytes, all other codecs are outperformed by our method visually.

great importance to develop new training objectives beyond

PSNR and MS-SSIM. A promising candidate towards this

goal are adversarial losses [13] which were shown recently

to capture global semantic information and local texture,

yielding powerful generators that produce visually appealing

high-resolution images from semantic label maps [20, 44].

In this paper, we propose a principled GAN framework

for full-resolution image compression and use it to realize
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an extreme image compression system, targeting bitrates

below 0.1bpp. Furthermore, in contrast to prior work, we

provide the first thorough user study of such a framework in

the context of full-resolution image compression.

In our framework, we consider two modes of operation

(corresponding to unconditional and conditional GANs [13,

32]), namely

• generative compression (GC), preserving the overall

image content while generating structure of different

scales such as leaves of trees or windows in the facade

of buildings, and

• selective generative compression (SC), completely gen-

erating parts of the image from a semantic label map

while preserving user-defined regions with a high de-

gree of detail.

We emphasize that GC does not require semantic label

maps (neither for training, nor for deployment). A typical use

case for GC are bandwidth constrained scenarios, where one

wants to preserve the full image as well as possible, while

falling back to synthesized content instead of blocky/blurry

blobs for regions for which not sufficient bits are available

to store the original pixels. SC could be applied in a video

call scenario where one wants to fully preserve people in

the video stream, but a visually pleasing synthesized back-

ground serves the purpose as well as the true background.

In the GC operation mode the image is transformed into a

bitstream and encoded using arithmetic coding. SC requires

a semantic/instance label map of the original image which

can be obtained using off-the-shelf semantic/instance seg-

mentation networks, e.g., PSPNet [49] and Mask R-CNN

[17], and which is stored as a vector graphic. This amounts

to a small, image dimension-independent overhead in terms

of coding cost. However, the size of the compressed image

is reduced proportionally to the area which is generated from

the semantic label map, typically leading to a significant

overall reduction in storage cost.

For GC, a comprehensive user study shows that our com-

pression system yields visually considerably more appeal-

ing results than BPG [7] (the current state-of-the-art engi-

neered compression algorithm) and the recently proposed

autoencoder-based deep compression (AEDC) system [30].

In particular, our GC models trained for compression of

general natural images are preferred to BPG when BPG

uses up to 95% and 124% more bits than those produced

by our models on the Kodak [24] and RAISE1K [11] data

set, respectively. When constraining the target domain to

the street scene images of the Cityscapes data set [9], the

reconstructions of our GC models are preferred to BPG even

when the latter uses up to 181% more bits. To the best of

our knowledge, these are the first results showing that a deep

compression method outperforms BPG on the Kodak data

set in a user study—and by large margins.

In the SC operation mode, our system seamlessly com-

bines preserved image content with synthesized content,

even for regions that cross multiple object boundaries, while

faithfully preserving the image semantics. By partially gen-

erating image content we achieve bitrate reductions of over

50% without notably degrading image quality.

In summary, our main contributions are as follows.

• We provide a principled GAN framework for full-

resolution image compression and use it to build an

extreme image compression system.

• We are the first to thoroughly explore such a framework

in the context of full-resolution image compression.

• We set new state-of-the-art in visual quality based on a

user study, with dramatic bitrate savings.

2. Related work

Deep image compression has recently emerged as an ac-

tive area of research. The most popular DNN architectures

for this task are to date auto-encoders [39, 5, 1, 27, 42, 31, 6]

and recurrent neural networks (RNNs) [40, 41]. These DNNs

transform the input image into a bit-stream, which is in

turn losslessly compressed using entropy coding methods

such as Huffman coding or arithmetic coding. To reduce

coding rates, many deep compression systems rely on con-

text models to capture the distribution of the bit stream

[5, 41, 27, 34, 30]. Common loss functions to measure the

distortion between the original and decompressed images

are the mean-squared error (MSE) [39, 5, 1, 27, 6, 42], or

perceptual metrics such as MS-SSIM [41, 34, 6, 30]. Some

authors rely on advanced techniques including multi-scale

decompositions [34], progressive encoding/decoding strate-

gies [40, 41], and generalized divisive normalization (GDN)

layers [5, 4].

Generative adversarial networks (GANs) [13] have

emerged as a popular technique for learning generative mod-

els for intractable distributions in an unsupervised manner.

Despite stability issues [35, 2, 3, 29], they were shown to be

capable of generating more realistic and sharper images than

prior approaches and to scale to resolutions of 1024×1024px

[47, 22] for some data sets. Another direction that has

shown great progress are conditional GANs [13, 32], ob-

taining impressive results for image-to-image translation

[20, 44, 50, 28] on various data sets (e.g. maps to satellite

images), reaching resolutions as high as 1024×2048px [44].

The work of [34] trains and evaluates a deep compres-

sion system optimized for the classical MS-SSIM [45] met-

ric. Furthermore, they supplement their method with an

adversarial training scheme to reduce compression artifacts.

However, it is impossible to assess the benefit of their ad-

versarial scheme since there is no ablation study showing

its effect. In contrast, we provide a thorough study of the
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benefit of our GAN formulation, compared to optimizing for

classical losses such as MSE and MS-SSIM. Additionally,

their approach is very different: First, their GAN loss is non-

standard, operating on pairs of real/fake images classifying

“which one is the real one”, whereas ours has a principled

interpretation in terms of divergences between probability

distributions (as in [13, 33]). Second, their training uses var-

ious heuristics to balance the training, such as reweighting

losses based on gradient magnitudes and alternating the train-

ing of the generator and discriminator based on manually

defined thresholds on the losses.

Santurkar et al. [36] use a GAN framework to learn a

generative model over thumbnail images, which is then used

as a decoder for thumbnail image compression. Other works

use adversarial training for compression artifact removal (for

engineered codecs) [12] and single image super-resolution

[26]. Finally, related to our SC mode, spatially allocating

bitrate based on saliency of image content has a long history

in the context of engineered compression algorithms, see,

e.g., [37, 15, 16].

3. Background

Generative Adversarial Networks: Given a data set X ,

GANs can learn to approximate its (unknown) distribution

px through a generator G(z) that tries to map samples z

from a fixed prior distribution pz to the data distribution px.

The generator G is trained in parallel with a discriminator D

by searching (using SGD) for a saddle point of a min-max

objective minG LGAN with

LGAN := max
D

E[f(D(x))] + E[g(D(G(z)))], (1)

where G and D are DNNs and f and g are scalar func-

tions. Nowozin et al. [33] show that for suitable choices

of f and g solving minG LGAN allows to minimize gen-

eral f -divergences between the distribution of G(z) and

px. We adapt Least-Squares GAN [29] in this paper, where

f(y) = (y − 1)2 and g(y) = y2 (which corresponds to the

Pearson χ2 divergence).

Conditional Generative Adversarial Networks: For

conditional GANs (cGANs) [13, 32], each data point x is

associated with additional information s, where (x, s) have

an unknown joint distribution px,s. We now assume that

s is given and that we want to use the GAN to model the

conditional distribution p
x|s. In this case, both the generator

G(z, s) and discriminator D(z, s) have access to the side

information s, leading to the divergence

LcGAN := max
D

E[f(D(x, s))] + E[g(D(G(z, s), s))].

Deep Image Compression: To compress an image x ∈
X , we follow the formulation of [1, 30] where one learns

an encoder E, a decoder G, and a finite quantizer q. The

encoder E maps the image to a latent feature map w, whose

values are then quantized to L levels C = {c1, . . . , cL} ⊂ R

to obtain a representation ŵ = q(E(x)) that can be encoded

to a bitstream. The decoder then tries to recover the image

by forming a reconstruction x̂ = G(ŵ). To be able to

backpropagate through the non-differentiable q, one can use

a differentiable relaxation of q, as in [30].

The average number of bits needed to encode ŵ is mea-

sured by the entropy H(ŵ), which can be modeled with

a prior [1] or a conditional probability model [30]. The

so called “rate-distortion” trade-off between reconstruction

quality and bitrate to be optimized is then

E[d(x, x̂)] + βH(ŵ). (2)

where d is a loss that measures how perceptually similar x̂ is

to x. Given a differentiable estimator of the entropy H(ŵ),
the weight β controls the bitrate of the model. However,

since the number of dimensions dim(ŵ) and the number of

levels L are finite, the entropy is bounded by (see, e.g., [10])

H(ŵ) ≤ dim(ŵ) log2(L). (3)

It is therefore also valid to set β = 0 and control the maxi-

mum bitrate through the bound (3) (i.e., adjusting L and/or

dim(ŵ) through the architecture of E). While potentially

leading to suboptimal bitrates, this avoids to model the en-

tropy explicitly as a loss term.

4. GANs for extreme image compression

4.1. Generative Compression

ŵ

x

w

x

x̂

x̂

G DE q

Figure 2. Architecture of our GC network.

The proposed GAN framework for extreme image com-

pression can be viewed as a combination of (conditional)

GANs and learned compression as introduced in the previ-

ous section. See Fig. 2 for an overview of the architecture.

With an encoder E and quantizer q, we encode the image

x to a compressed representation ŵ = q(E(x)). This rep-

resentation is optionally concatenated with noise v drawn

from a fixed prior pv, to form the latent vector z. The de-

coder/generator G then tries to generate an image x̂ = G(z)
that is consistent with the image distribution px while also

recovering the specific encoded image x to a certain degree.

Using z = [ŵ,v], this can be expressed by our saddle-point

objective for (unconditional) generative compression,

min
E,G

max
D

E[f(D(x))] + E[g(D(G(z))]

+ λE[d(x, G(z))] + βH(ŵ), (4)
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where λ > 0 balances the distortion term against the GAN

loss and entropy terms.1

Since the last two terms of (4) do not depend on the

discriminator D, they do not affect its optimization directly.

This means that the discriminator still computes the same

f -divergence LGAN as in (1), so we can write (4) as

min
E,G

LGAN + λE[d(x, G(z))] + βH(ŵ). (5)

We note that equation (5) has completely different dynamics

than a normal GAN, because the latent space z contains ŵ,

which stores information about a real image x.

The bitrate limitation on H(ŵ) is a crucial element. If

we allow ŵ to contain arbitrarily many bits (using β = 0
and L, dim(ŵ) large enough), E and G could learn to near-

losslessly recover x from G(z) = G(q(E(x))), such that

the distortion term would vanish. In this case, the divergence

between px and pG(z) would also vanish and the GAN loss

would have no effect. On the other hand, if H(ŵ) → 0
(using β = ∞ or dim(ŵ) = 0), ŵ becomes deterministic.

In this setting, z is random and independent of x (through the

v component) and the objective reduces to a standard GAN

plus the distortion term, which then acts as a regularizer.

By constraining the entropy of ŵ, E and G will never

be able to make d fully vanish. In this case, E,G need to

balance the GAN objective LGAN and the distortion term

λE[d(x, G(z))], which leads to G(z) on one hand looking

“realistic”, and on the other hand preserving the original im-

age. For example, if there is a tree for which E cannot afford

to store the exact texture (and make d small) G can synthe-

size it to satisfy LGAN, instead of showing a blurry green

blob. Thereby, the distortion term stabilizes GAN training

and tends to prevent mode collapse (as mode collapse would

lead to a very large distortion value). We refer to this setting

as generative compression (GC).

As for the GANs described in Sec. 3, we can easily extend

GC to a conditional case. We consider the setting where

the additional information s for an image x is a semantic

label map of the scene, but with a twist: Instead of feeding

s to E,G and D, we only give it to the discriminator D

during training.We refer to this setting as “GC (D+)”. We

emphasize that no semantics are needed to encode or decode

images with the trained models, in neither GC nor GC (D+)
(since E,G do not depend on s).

Finally, we note that Eq. 5 is similar to classical rate-

distortion theory, where H(ŵ) is the rate/entropy term. Re-

garding the interaction between the GAN loss and the MSE

loss, we observe that the MSE loss stabilizes the training as

it penalizes collapse of the GAN.

1In this formulation, we need to encode a real image to sample from p
ŵ

.

However, this is not a limitation, as our goal is compressing real images,

not generating completely new ones.

4.2. Selective Generative Compression

For GC and GC (D+), E,G automatically navigate the

trade-off between generation and preservation over the entire

image, without any guidance. We also consider a different

setting, selective generative compression (SC). Here, the

network is guided in terms of what should be generated

and what should be preserved. An overview of the network

structure is given in Fig. 9 in Appendix E.

For simplicity, we consider a binary setting, where we

construct a single-channel binary heatmap m of the same

spatial dimensions as ŵ. Regions of zeros correspond to

regions that should be fully synthesized, regions of ones

should be preserved. However, since our task is compres-

sion, we constrain the fully synthesized regions to have the

same semantics s as the original image x. We assume the

semantics s are separately stored, and feed them through

a feature extractor F before feeding them to the generator

G. To guide the network with the semantics, we mask the

(pixel-wise) distortion d, such that it is only computed over

the region to be preserved. Additionally, we zero out the

compressed representation ŵ in the regions that should be

synthesized. Provided that the heatmap m is also stored, we

then only encode the entries of ŵ corresponding to the pre-

served regions, greatly reducing the bitrate needed to store

it. At bitrates where ŵ is much larger on average than the

storage cost for s and m, this approach can result in large

bitrate savings.

We consider two different training modes: Random in-

stance (RI) which randomly selects 25% of the instances in

the semantic label map and preserves these, and random box

(RB) which picks an image location uniformly at random and

preserves a box of random dimensions. While the RI mode

is appropriate for most use cases, RB can create more chal-

lenging situations for the generator as it needs to integrate

the preserved box seamlessly into generated content.

4.3. PSNR and MS­SSIM as quality measures

Our model targets realistic reconstructions where texture

and sometimes even more abstract image content is synthe-

sized. Common distortion measures such as PSNR and MS-

SSIM cannot measure the “realistic-ness”, as they penalize

changes in local structure rather than assessing preservation

of the global image content. This fact was mathematically

proven recently by [8], showing the existence of a funda-

mental perception-distortion tradeoff, i.e., low distortion is

at odds with high perceptual quality in the context of lossy

reconstruction tasks. Intuitively, measuring PSNR between

synthesized and real texture patches essentially quantifies the

variance of the texture rather than the perceptual quality of

the synthesized texture. This becomes apparent by compar-

ing reconstructions produced by our GC model with those

obtained by the MSE baseline and BPG in Fig. 3. While

our reconstructions clearly look realistic, they have 4.2dB
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larger MSE than those of BPG. We therefore rely on human

opinions collected in a thorough user study to evaluate our

GC models.

5. Experiments

5.1. Architecture, Losses, and Hyperparameters

The architecture for our encoder E and generator G is

based on the global generator network proposed in [44],

which in turn is based on the architecture of [21]. We present

details in Appendix E.

For the entropy term βH(ŵ), we adopt the simplified

approach described in Sec. 3, where we set β = 0, use

L = 5 centers C = {−2, 1, 0, 1, 2}, and control the bitrate

through the upper bound H(ŵ) ≤ dim(ŵ) log2(L). For ex-

ample, for GC, with C = 2 bottleneck channels, we obtain

0.0181bpp.2 We note that this is an upper bound; the actual

entropy of H(ŵ) is generally smaller, since the learned dis-

tribution will neither be uniform nor i.i.d, which would be

required for the bound to hold with equality. We use an arith-

metic encoder to encode the channels of ŵ to a bit-stream,

storing frequencies for each channel separately (similar to

[1]). In our experiments, this leads to 8.8% smaller bitrates

compared to the upper bound. We leave the exploration of

context models to potentially further reduce the bitrate for

future work.

For the distortion term d we adopt MSE with λ = 10.

Furthermore, we adopt the feature matching and VGG per-

ceptual losses, LFM and LVGG, as proposed in [44] with

the same weights, which improved the quality for images

synthesized from semantic label maps. These losses can

be viewed as a part of d(x, x̂). However, we do not mask

them in SC, since they also help to stabilize the GAN in this

operation mode (as in [44]). We refer to Appendix B for

training details.

5.2. Evaluation

Data sets: We train GC models (without semantic label

maps) for compression of diverse natural images using 188k

images from the Open Images data set [25] and evaluate

them on the widely used Kodak image compression data

set [24] as well as 20 randomly selected images from the

RAISE1K data set [11]. To investigate the benefits of having

a somewhat constrained application domain and semantic

information at training time, we also train GC models with

semantic label maps on the Cityscapes data set [9], using

20 randomly selected images from the validation set for

evaluation. To evaluate the proposed SC method (which

requires semantic label maps for training and deployment)

we again rely on the Cityscapes data set. Cityscapes was

2 H(ŵ)/WH ≤ WH

16·16
· C · log2(L)/WH = 0.0181bpp, where W,H

are the dimensions of the image and 16 is the downsampling factor to the

feature map, see Appendix E.

Ours

0.035

21.8dB

BPG

0.039

26.0dB

MSE bl

0.035

24.0dB

Figure 3. Visual example of images produced by our GC network

with C = 4 bottleneck channels along with the corresponding

results for BPG, and a baseline model with the same architecture

(C = 4) but trained for MSE only (MSE bl.), on Cityscapes. We

show bitrate in bpp and PSNR in dB. The reconstruction of our

GC network is sharper and has more realistic texture than BPG and

MSE bl., even though the latter two have higher PSNR. In particular,

the MSE bl. produces blurry reconstructions even though it was

trained on the Cityscapes data set, demonstrating that domain-

specific training alone is not enough to obtain sharp reconstructions

at low bitrates.

previously used to generate images form semantic label maps

using GANs [20, 50].

Baselines: We compare our method to the HEVC-based

image compression algorithm BPG [7] (in the 4:2:2 chroma

format) and to the AEDC network from [30]. BPG is the

current state-of-the-art engineered image compression codec

and outperforms other recent codecs such as JPEG2000 and

WebP on different data sets in terms of PSNR (see, e.g.

[6]). We train the AEDC network (with bottleneck depth

C = 4) for MS-SSIM on Cityscapes exactly following the

procedure in [30] except that we use early stopping to prevent

overfitting (note that Cityscapes is much smaller than the

ImageNet data set used in [30]). The so-obtained model has

a bitrate of 0.07 bpp and gets a slightly better MS-SSIM than

BPG at the same bpp on the validation set. To investigate the

effect of the GAN term in our total loss, we train a baseline

model with an MSE loss only (with the same architecture

as GC and the same training parameters, see Sec. B in the

Appendix), referred to as “MSE baseline”.

User study: Given that classical distortion metrics like

PSNR or MS-SSIM are not suited for the task we study here

(Section 4.3), we quantitatively evaluate the perceptual qual-

ity of our GC models in comparison with BPG and AEDC

(for Cityscapes) with a user study on Amazon Mechanical

Turk (AMT).3 We consider two GC models with C = 4, 8
bottleneck channels trained on Open Images, three GC (D+)
models with C = 2, 4, 8 trained on Cityscapes, and BPG

3https://www.mturk.com/
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at rates ranging from 0.045 to 0.12 bpp. Questionnaires

are composed by combining the reconstructions produced

by the selected GC model for all testing images with the

corresponding reconstruction produced by the competing

baseline model side-by-side (presenting the reconstructions

in random order). The original image is shown along with

the reconstructions, and the pairwise comparisons are inter-

leaved with 3 probing comparisons of an additional uncom-

pressed image from the respective testing set with an obvi-

ously JPEG-compressed version of that image. 20 randomly

selected unique users are asked to indicate their preference

for each pair of reconstructions in the questionnaire, result-

ing in a total of 480 ratings per pairing of methods for Kodak,

and 400 ratings for RAISE1K and Cityscapes. For each pair-

ing of methods, we report the mean preference score as well

as the standard error (SE) of the per-user mean preference

percentages. Only users correctly identifying the original

image in all probing comparisons are taken into account for

the mean preference percentage computation. To facilitate

comparisons for future works, we will release all images

used in the user studies.

Semantic quality of SC models: The issues with PSNR

and MS-SSIM described in Sec. 4.3 become even more se-

vere for SC models as a large fraction of the image content

is generated from a semantic label map. Following image

translation works [20, 44], we therefore measure the capac-

ity of our SC models to preserve the image semantics in

the synthesized regions and plausibly blend them with the

preserved regions—the objective SC models are actually

trained for. Specifically, we use PSPNet [48] and compute

the mean intersection-over-union (IoU) between the label

map obtained for the decompressed validation images and

the ground truth label map. For reference we also report this

metric for baselines that do not use semantic label maps for

training and/or deployment.

6. Results

6.1. Generative compression

Fig. 5 shows the mean preference percentage obtained by

our GC models compared to BPG at different rates, on the

Kodak and the RAISE1K data set. In addition, we report

the mean preference percentage for GC models compared to

BPG and AEDC on Cityscapes. Example validation images

for side-by-side comparison of our method with BPG for

images from the Kodak, RAISE1K, and Cityscapes data set

can be found in Figs. 1, 4, and 3, respectively. Furthermore,

we perform extensive visual comparisons of all our methods

and the baselines, presented in Appendix F.

Our GC models with C = 4 are preferred to BPG even

when images produced by BPG use 95% and 124% more bits

than those produced by our models for Kodak and RAISE1K,

Ours 0.0341bpp BPG 0.102bpp

Figure 4. Visual example of an image from RAISE1k produced by

our GC network with C = 4 compared to BPG.

respectively. Notably this is achieved even though there is a

distribution shift between the training and testing set (recall

that these GC models are trained on the Open Images data

set). The gains of domain-specificity and semantic label

maps (for training) becomes apparent from the results on

Cityscapes: Our GC models with C = 2 are preferred to

BPG even when the latter uses 181% more bits. For C = 4
the gains on Cityscapes are comparable to those obtained

for GC on RAISE1K. For all three data sets, BPG requires

between 21% and 49% more bits than our GC models with

C = 8.

Discussion: The GC models produce images with much

finer detail than BPG, which suffers from smoothed patches

and blocking artifacts. In particular, the GC models con-

vincingly reconstruct texture in natural objects such as trees,

water, and sky, and is most challenged with scenes involving

humans. AEDC and the MSE baseline both produce blurry

images.

We see that the gains of our models are maximal at ex-

treme bitrates, with BPG needing 95–181% more bits for

the C = 2, 4 models on the three data sets. For C = 8 gains

are smaller but still very large (BPG needing 21–49% more

bits). This is expected, since as the bitrate increases the

classical compression measures (PSNR/MS-SSIM) become

more meaningful—and our system does not employ the full

complexity of current state-of-the-art systems:

We give an overview of relevant recent learned compres-

sion methods and their differences to our GC method and

BPG in Table 1 in Appendix A, where we see that BPG is
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Figure 5. User study results evaluating our GC models on Kodak,

RAISE1K and Cityscapes. Each plot corresponds to one of our

models. The bitrate of that model is highlighted on the x-axis with

a black diamond. The thick gray line shows the percentage of users

preferring our model to BPG at that bitrate (bpp). The blue arrow

points from our model to the highest-bitrate BPG operating point

where more than 50% of users prefer ours, visualizing how many

more bits BPG uses at that point. For Kodak and RAISE1K, we use

GC models trained on Open Images, without any semantic label

maps. For Cityscapes, we used GC (D+) (using semantic label

maps only for D and only during training), and we additionally

compared to the AEDC baseline (MS-SSIM optimized).

U (Open Images) U (Cityscapes) WGAN-GP (Cityscapes)

Figure 6. Sampling codes ŵ uniformly (U , left), and generating

them with a WGAN-GP (right).

still visually competitive with the current state-of-the-art.

Given the dramatic bitrate savings we achieve according

to the user study (BPG needing 21–181% more bits), and

the competitiveness of BPG to the most recent state-of-the-

art [31], we conclude that our proposed system presents a

0.00 0.04 0.08 0.12 0.16 0.20

10%

20%

30%

40%

50%
mIoU vs. bpp

Ours (GC, D+)

Ours (SC, inst., EDG+)

Ours (SC, box, EDG+)

MSE baseline

BPG

AEDC

pix2pixHD baseline

Figure 7. Mean IoU as a function of bpp on the Cityscapes valida-

tion set for our GC and SC networks, and for the MSE baseline. We

show both SC modes: RI (inst.), RB (box). D+ annotates models

where instance semantic label maps are fed to the discriminator

(only during training); EDG
+ indicates that semantic label maps

are used both for training and deployment. The pix2pixHD base-

line [44] was trained from scratch for 50 epochs, using the same

downsampled 1024× 512px training images as for our method.

significant step forward for visually pleasing compression

at extreme bitrates.

Sampling the compressed representations: In Fig. 6 we

explore the representation learned by our GC models (with

C = 4), by sampling the (discrete) latent space of ŵ. When

we sample uniformly, and decode with our GC model into

images, we obtain a “soup of image patches” which reflects

the domain the models were trained on (e.g. street sign and

building patches on Cityscapes). Note that we should not ex-

pect these outputs to look like normal images, since nothing

forces the encoder output ŵ to be uniformly distributed over

the discrete latent space.

However, given the low dimensionality of ŵ (32×64×4
for 512× 1024px Cityscape images), it would be interesting

to try to learn the true distribution. To this end, we perform a

simple experiment and train an improved Wasserstein GAN

(WGAN-GP) [14] on ŵ extracted from Cityscapes, using

default parameters and a ResNet architecture (only adjust-

ing the architecture to output 32 × 64 × 4 tensors instead

of 64 × 64 × 3 RGB images). By feeding our GC model

with samples from the WGAN-GP generator, we easily ob-

tain a powerful generative model, which generates sharp

1024× 512px images from scratch. We think this could be a

promising direction for building high-resolution generative

models. In Figs. 20–22 in the Appendix, we show more

samples, and samples obtained by feeding the MSE baseline

with uniform and learned code samples. The latter yields

noisier “patch soups” and much blurrier image samples than

our GC network.
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road (0.146bpp, -55%) car (0.227bpp, -15%) all synth. (0.035bpp, -89%)

people (0.219bpp, -33%) building (0.199bpp, -39%) no synth. (0.326bpp, -0%)

Figure 8. Synthesizing different classes using our SC network with C = 8. In each image except for no synthesis, we additionally synthesize

the classes vegetation, sky, sidewalk, ego vehicle, wall. The heatmaps in the lower left corners show the synthesized parts in gray. We show

the bpp of each image as well as the relative savings due to the selective generation.

6.2. Selective generative compression

Fig. 7 shows the mean IoU on the Cityscapes validation

set as a function of bpp for SC networks with C = 2, 4, 8,

along with the values obtained for the baselines. Addition-

ally, we plot mean IoU for GC with semantic label maps fed

to the discriminator (D+), and the MSE baseline.

In Fig. 8 we present example Cityscapes validation im-

ages produced by the SC network trained in the RI mode with

C = 8, where different semantic classes are preserved. More

visual results for the SC networks trained on Cityscapes can

be found in Appendix F.7, including results obtained for

the RB operation mode and by using semantic label maps

estimated from the input image via PSPNet [49].

Discussion: The quantitative evaluation of the semantic

preservation capacity (Fig. 7) reveals that the SC networks

preserve the semantics somewhat better than pix2pixHD,

indicating that the SC networks faithfully generate texture

from the label maps and plausibly combine generated with

preserved image content. The mIoU of BPG, AEDC, and the

MSE baseline is considerably lower than that obtained by

our SC and GC models, which can arguably be attributed to

blurring and blocking artifacts. However, it is not surprising

as these baseline methods do not use label maps during

training and prediction.

In the SC operation mode, our networks manage to seam-

lessly merge preserved and generated image content both

when preserving object instances and boxes crossing object

boundaries (see Appendix F.7). Further, our networks lead

to reductions in bpp of 50% and more compared to the same

networks without synthesis, while leaving the visual quality

essentially unimpaired, when objects with repetitive struc-

ture are synthesized (such as trees, streets, and sky). In some

cases, the visual quality is even better than that of BPG at

the same bitrate. The visual quality of more complex synthe-

sized objects (e.g. buildings, people) is worse. However, this

is a limitation of current GAN technology rather than our

approach. As the visual quality of GANs improves further,

SC networks will as well. Notably, the SC networks can

generate entire images from the semantic label map only.

Finally, the semantic label map, which requires 0.036

bpp on avg. for downscaled 1024×512px Cityscapes im-

ages, represents a relatively large overhead compared to the

storage cost of the preserved image parts. This cost vanishes

as the image size increases, since the semantic mask can be

stored as an image dimension-independent vector graphic.

7. Conclusion

We proposed a GAN-based framework for learned gen-

erative compression, and presented the first thorough study

of such a framework for full-resolution image compression.

Our results show that for low bitrates, such generative com-

pression (GC) can give dramatic bitrate savings compared

to previous state-of-the-art methods optimized for classical

objectives such as MS-SSIM and MSE, when evaluated in

terms of visual quality in a user study. Furthermore, we

demonstrated that constraining the application domain to

street scene images leads to additional storage savings, and

explored (for SC) selectively combining fully synthesized

image contents with preserved ones when semantic label

maps are available.

Interesting directions for future work are to develop a

mechanism for controlling spatial allocation of bits for GC

(e.g., to achieve better preservation of faces; possibly using

semantic label maps), and to combine SC with saliency

information to determine what regions to preserve.
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Wasserstein generative adversarial networks. In Pro-

ceedings of the International Conference on Machine

Learning, pages 214–223, 2017. 2
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