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Deterministic Initialization of Metric State Estimation Filters for
Loosely-Coupled Monocular Vision-Inertial Systems

Laurent Kneip, Stephan Weiss, and Roland Siegwart
Autonomous Systems Lab, ETH Zurich

Abstract— In this work, we present a novel, deterministic
closed-form solution for computing the scale factor and the
gravity direction of a moving, loosely-coupled, and monocular
vision-inertial system. The methodology is based on analysing
delta-velocities. On one hand, they are obtained from a dif-
ferentiation of the up-to-scale camera pose computation by a
visual odometry or visual SLAM algorithm. On the other hand,
they can also be retrieved from the gravity-affected short-term
integration of acceleration signals. We derive a method for
separating the gravity contribution and recovering the metric
scale factor of the vision algorithm. The method thus also
recovers the offset in roll and pitch angles of the vision reference
frame with respect to the direction of the gravity vector. It
uses only a single inertial integration period, and no absolute
orientation information is required. For optimal sensor-fusion
and metric scale-estimation filters in the loosely-coupled case,
it has been shown that the convergence of the fusion of an up-
to-scale pose information with inertial measurements largely
depends on the availability of a good initial value for the scale
factor. We show how this problem can be tackled by applying
the method presented in this paper. Finally, we present results
in simulation and on real data, demonstrating the suitability of
the method in real scenarios.

I. INTRODUCTION

Over the last few years, the set of robotic applications us-
ing visual sensors for simultaneous localization and mapping
(SLAM) has been growing steadily, due to the generality and
descriptability of cameras. Alternatives such as ultrasonic
sensors, laser rangefinders, or time-of-flight cameras are too
sparse in information content or bulky. The ratio between
the information content given by ordinary cameras and the
corresponding sensor size or weight is unmatched by any
other sensor type. Especially, compact solutions such as
small inspection robots or micro aerial vehicles tend towards
using vision more and more. However, using only a single
camera for localization of the robot poses great research
challenges.

The problem with monocular vision is that cameras only
provide bearing information about features, and no depth
information. The latter may be recovered by triangulating
matched features from multiple views [1]—called structure
from motion—, more generally resulting in visual odometry
[2] or visual SLAM [3], [4] approaches. However, both
the camera velocity and the 3D map are only computed
up to an unknown scale factor, and the orientation with
respect to the vertical direction remains unknown. While this
does not pose a serious problem for most computer vision
applications, it certainly does in robotics, where the control
stability of the vehicle depends on measurements in absolute
scale. This problem can be, however, handled in different

manners. In this paper, we focus on the combination of
monocular vision and inertial measurements for computing
the ego-motion of the sensor-carrying platform in absolute
scale, and determining the orientation with respect to the
gravity direction.

A good introduction on inertial and visual sensing can
be found in [5]. One of the first advantages of inertial
sensors compared to cameras is that, in static systems, they
can provide directly the vertical direction (i.e. the vector of
the gravity force). Several works have used the direction of
the gravity vector for boosting ground-plane estimation and
structure-from-motion [6], [7]. The difficulty when working
with the vertical direction is that the gravity force cannot
be read directly from the inertial sensors if the system is
not static. On the other hand, the additional measurements
of body-accelerations provide a useful cue for retrieving the
absolute scale in the monocular case.

As analyzed in [5], there are two different ways to combine
inertial and vision measurements for absolute scale structure
and motion estimation, which are called loosely-coupled
and tightly-coupled. The loosely-coupled approach treats the
inertial and vision units as two separate filters running at
different rates and exchanging information, while the tightly-
coupled approach combines them into a single, statistical
filter. Among the loosely-coupled approaches are the works
of [8], [9], [10], [11], [12], [13], [14], [15], [16], while among
the tightly-coupled ones are those of [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27].

Of special interest to us are the works of [17], [23],
[24], [25], [26], [27], [15], [16], since they use only a
monocular vision-inertial system without known 3D points or
any additional sensors. Strelow and Singh [17] implemented
a tightly-coupled approach by combining the inertial readings
into an EKF-based monocular SLAM. Their implementation
is similar to the popular monocular SLAM of Davison et al.
[4], but they replaced the constant velocity motion model
by a centripetal acceleration motion model including the
inertial readings as updating measurements. In [23], [24],
Lupton and Sukkarieh implemented a filter to estimate both
the absolute scale of monocular SLAM and the biases of
the IMU. Similarly, Kelly and Sukatme [25], [26] demon-
strated that a monocular EKF-SLAM approach may also be
used for simultaneous camera-to-IMU calibration. They also
presented an observability analysis of the problem. More
recently, Jones and Soatto [27] proposed a similar approach
to solve camera self-calibration and monocular motion esti-
mation using inertial measurements. They also characterized



the conditions under which the system is observable and
described the efficient implementation of an EKF. Finally,
Nützi et al. [15] and Weiss and Siegwart [16] also used a
monocular SLAM, but they implemented the data fusion in
a loosely-coupled approach. For the visual SLAM, they used
the keyframe-based monocular SLAM of Klein and Murray
[3], which outputs camera poses and 3D points up-to-scale.
The absolute scale of the motion was finally estimated by
fusing the monocular and inertial measurements through an
EKF by adding the scale factor of the monocular SLAM as
an additional variable to the state.

The drawback with all the monocular visual-SLAM-based
solutions mentioned so far is that they use a filter-based ap-
proach to data fusion (such as EKF or UKF), which typically
requires good initialization values for a quick convergence of
the filter. They combine the IMU data by means of Kalman-
filter-based approaches in order to keep track of the absolute
scale and thus of the absolute velocity of the system, but as
stressed in the work of Weiss and Siegwart [16] where the
scale factor is held as an additional variable in the state, the
convergence behavior of the latter is strongly dependent on
proper initialization of the filter.

A generic way for initializing the scale without having to
rely on any further knowledge is given by recent advances
in deterministic scale computation approaches. Kneip et al.
[28] and Martinelli [29] have developed deterministic ways
for computing the scale and the gravity direction through
short term integration of inertial measurements and tracking
of single features. The drawback of these methods, however,
is that they require double integration of the acceleration
data over three or more camera observation points, thus
leading to high errors. Furthermore, the work of [28] depends
on preprocessing the acceleration data in order to remove
the gravity component, and [29] has only shown results in
simulation.

In this paper, we propose a new deterministic, closed-form
solution for computing the absolute scale and the gravity
direction from visual pose computation and inertial data. In
contrast to [28] and [29], the approach presented is able
to work with only a single IMU integration period, and
does no longer depend on absolute orientation information.
Furthermore, the acceleration data is only subjected to single
integration instead of double integration. The approach uses
only information captured inside the IMU/vision compound,
and is able to deliver a reasonable value for the scale factor
and the gravity vector, as well as their standard deviations
within approximatively one second of operation time. We
show the benefit of using the result for initializing a metric
state estimation filter, and present successful results on a
real dataset. Section II starts with presenting the theoretical
derivations leading to a unique closed form solution. Section
III presents a thorough validation of the method on synthetic
data, which helps identifying critical motion sequences. We
furthermore show the impact on the convergence behavior
of a metric state estimation filter. Section IV then presents
the results on real data, finally showing that the method is
applicable to real-world scenarios.

II. THEORY

A. Assumptions
We assume to have a calibrated camera and a computer

vision algorithm delivering orientation and up-to-scale po-
sition information with respect to an initial frame. The
initial camera frame has an orientation offset with respect
to the inertial frame. The scale factor and the orientation
offset are drifting over time. The algorithm is assumed to
perform relative scale propagation, and hence the drifts of
the unknown scale factor and orientation offset are bounded
and can be regarded as constant over short observation
periods. Furthermore, we assume for the moment to have
a calibrated IMU (Inertial Measurement Unit) delivering
a bias-free but gravity-affected measurement of the body
acceleration, as well as the angular velocity. The extrinsic
calibration between the camera and the IMU is assumed to be
known. In the real-world case, a good intrinsic and extrinsic
calibration can be obtained using off-the-shelf toolboxes like
[30], [31].

B. Approach

Fig. 1. Velocity v, acceleration a, and rotational velocity ω of the IMU.
g denotes the gravity vector, rcam and Rimu,cam the extrinsic parameters
between the IMU and the camera, and vcam and w the scaled and unscaled
camera velocity in the IMU and camera frame, respectively.

As indicated in Figure 1, we define the IMU velocity v and
acceleration a in the IMU frame. a represents the measured
IMU acceleration and is a combination of the true body
acceleration a′ and the gravity vector g—still expressed in
the IMU frame—, namely a = a′− g. The relative rotation
from IMU frame k to k+x is indicated with Rk+x,k, and the
sampling rate of the IMU is denoted with T . Given these
definitions, a time discrete formulation—following a semi-
implicit Euler scheme—of the change of the IMU velocity
between frames k and k +1 is given by

v[k +1] = Rk+1,kv[k]+T
a′[k +1]+Rk+1,ka′[k]

2

= Rk+1,kv[k]+T
g[k +1]+Rk+1,kg[k]

2

+T
a[k +1]+Rk+1,ka[k]

2
= Rk+1,kv[k]+T g[k +1]

+T
a[k +1]+Rk+1,ka[k]

2
. (1)



By writing out the expression for v[k + 2] (substituting k
by k +1), and again replacing v[k +1] by (1), we obtain

v[k +2] = Rk+2,kv[k]+2T g[k +2]

+T
(

a[k +2]+Rk+2,k+1a[k +1]
2

)
+T
(

Rk+2,k+1a[k +1]+Rk+2,ka[k]
2

)
. (2)

It can be easily verified that (1) and (2) follow the simple
rule

v[k] = Rk,k−lv[k− l]+ l ·T g[k]

+
T
2

l−1

∑
n=0

(
Rk,k−l+n+1a[k− l +n+1]+Rk,k−l+na[k− l +n]

)
. (3)

In the real-world case, the relative rotations of the ac-
celeration between successive IMU frames can be gener-
ated from short-term integrations of the gyroscopic mea-
surements. IMUs commonly effectuate this integration in a
complementary filter, such that the orientation change can be
safely recovered directly from the IMU angles.

The velocity of the camera in the IMU frame is given by

vcam[k] = v[k]+ω[k]× rcam, (4)

where ω and rcam represent the rotational velocity and the
camera position in the IMU frame, respectively. The velocity
of the camera can also be expressed using the unscaled
velocity wcam retrieved from a differentiation of the pose
computation of the vision algorithm in the camera frame. It
is given by

vcam[k] = q ·Rimu,cam ·wcam[k], (5)

where q represents the scale factor and Rimu,cam the
rotation from the camera to the IMU frame. Replacing (5)
and (4) in (3), we finally obtain

q
(
Rimu,camwcam[k]−Rk,k−lRimu,camwcam[k− l]

)
− lT g[k]

=
T
2

l−1

∑
n=0

(
Rk,k−l+n+1a[k− l +n+1]+Rk,k−l+na[k− l +n]

)
+ω[k]× rcam−Rk,k−l (ω[k− l]× rcam) . (6)

By defining

∆wk,k−l = Rimu,camwcam[k]−Rk,k−lRimu,camwcam[k− l] (7)

∆ak,k−l =
T
2

l−1

∑
n=0

(
Rk,k−l+n+1a[k− l +n+1]+Rk,k−l+na[k− l +n]

)
+ω[k]× rcam−Rk,k−l (ω[k− l]× rcam) , (8)

we obtain,

q∆wk,k−l − lT g[k] = ∆ak,k−l . (9)

This equation can be reformulated into∆wk,k−l

∣∣∣∣∣∣
−lT g 0 0

0 −lT g 0
0 0 −lT g

 ·( q
ng[k]

)

= Ak,k−l ·
(

q
ng[k]

)
= ∆ak,k−l , (10)

where matrix Ak,k−l intuitively contains the delta-velocity
observation ∆wk,k−l retrieved from the vision algorithm, and
vector ∆ak,k−l the gravity-affected one from the IMU. g
represents the norm of the gravity vector and ng[k] the
direction of the gravity vector in the IMU frame at t[k].
The system of equations represents three constraints for
four unkowns, and with the additional non-linear constraint
||ng[k]|| = 1, a complete solution for computing the scale
factor and the gravity direction is finally obtained. If pose
estimates and the corresponding differentials are available at
time instants t[k] and t[k− l] (note that the camera might run
at a different rate), a single period of single IMU integration
is thus sufficient for determination of these drifting terms.
Moreover, no absolute orientation information is required.

C. Duality of Solution

The set of solutions to the underdetermined system of
equations (10) is given by(

q
ng[k]

)
= A+ ·∆ak,k−l +λ ·N (A) , (11)

where A+ represents the pseudoinverse and N (A) the
nullspace vector of the 3×4 matrix A. Using the norm
constraint ||ng[k]||= 1, we obtain the constraint

||[03×1 I3]
(
A+ ·∆ak,k−l +λ ·N (A)

)
||= 1, (12)

which finally leads to a second order polynomial in λ , and
thus with (11) two possible solutions for the scale factor and
the gravity direction.

This result raises the question whether two physically
correct solutions can coexist, or whether we are missing
additional constraints in order to always obtain a unique
solution. The answer is given in Figure 2, which shows a
simplified planar scenario. Intuitively, the algorithm is trying
to determine the direction of the integrated gravity vector
lT g[k] such that ∆a′k,k−l = ∆ak,k−l + lT g[k] becomes parallel
to the delta-velocity vector ∆wk,k−l . The condition for a
physically meaningful solution is given by

Fig. 2. Ambiguous construction of the true delta-velocity ∆a′k,k−l from the
observed delta-velocity ∆ak,k−l and the gravity contribution lT g[k].



∆a′k,k−l ·∆wk,k−l

||∆a′k,k−l || · ||∆wk,k−l ||
= 1, (13)

meaning that the delta-velocities ∆a′k,k−l and ∆wk,k−l are
not only parallel, but also pointing to the same direction.
As we can see in Figure 2, there exist situations with
two physically correct solutions fulfilling this condition.
Moreover, it can be observed that the two solutions come
closer to each other the more orthogonal the velocity change
is with respect to the gravity direction, which then in practice
makes the disambiguation a challenging problem.

D. Unique solution and robustness against noise

In the real world case, the noise in the acceleration signal
and the numerically differentiated visual position estimation
leads to the fact that the determination of the scale and the
gravity direction through a single IMU integration period
is prone to errors. Our solution to tackle this problem con-
sists in considering multiple delta-velocity samples over an
extended observation window of duration lmaxT . Moreover,
in order to ensure higher signal-to-noise ratios and noise
cancelling effects in the acceleration integration, we also
define a minimal integration time lminT . As illustrated in
Figure 3, this leads to a finite number of delta-velocity
samples that can be taken over the entire observation window
with different IMU integration times reaching from lminT
to lmaxT . If an unscaled camera velocity w is delivered in
regular intervals of nT , and lmax and lmin are multiples of n,
this leads to 1

2 ( lmax−lmin
n +2)( lmax−lmin

n +1) possible samples.

Fig. 3. Different possibilities of creating delta-velocity samples in an
observation window of duration lmaxT . The IMU integration times for the
different samples reach from lminT to lmaxT .

Let’s assume that the two camera velocities for a given
sample are w[k− i] and w[k− i− l]. In order to have all
samples returning a measurement value for the gravity di-
rection in the most recent frame of the complete observation
window—namely ng[k]—, we need to introduce the rotation
between older IMU frames at t[k− i] and the most recent
one at t[k] into (10), which results in

∆wk−i,k−i−l

∣∣∣∣∣∣
−lT g 0 0

0 −lT g 0
0 0 −lT g

Rk−i,k

 ·( q
ng[k]

)
= ∆ak−i,k−i−l . (14)

As indicated under II-C, each delta-velocity sample will
then return two solutions using the norm constraint on ng[k].

Our approach to find the best solution over the entire
observation window then consists in checking the level of
agreement of every solution with all other delta-velocity con-
straints, and then selecting the best one. The error function
for a certain solution is simply given by

lmax

∑
l=lmin

lmax−l

∑
i=0
||Ak−i,k−i−l ·

(
q

ng[k]

)
−∆ak−i,k−i−l ||, (15)

where l and i are incremented in steps of n. In the
general case, this approach allows to solve the solution
ambiguity, since—in contradiction to the “true” solution of
each sample—the “wrong” solution typically fulfills other
delta-velocity constraints from the observation window to
a significantly smaller degree. However, in critical motion
situations, the ambiguity can still persist over the entire
observation period. This happens for instance when the
motion is rectilinear with more or less constant acceleration
over the entire window, and can be identified by analysing the
results of the error function. In this case, only a consideration
of previous scale measurements can help to identify the best
“true” solution. This is allowed based on the assumption that
the scale factor is drifting only slowly.

Note that it is possible to stack multiple constraints in
order to find a least-squares solution. While this theoretically
even allows the determination of ||g||, for the sake of robust-
ness, in practice it is better to keep the dimensionality of the
solution vector as small as possible, therefore fix ||g|| to the
known value via the non-linear norm constraint. Moreover,
the least-squares solution would require an additional outlier
rejection step.

III. SIMULATION RESULTS

A. Noise-free case

For a proper test of our algorithm, we selected helicoidal
signals in all three directions with phase-shifts of 120◦ in
between. This is done in order to emulate a camera trajectory
with variable dynamics and variable dominant direction of
acceleration with respect to the gravity vector. The signal
amplitude is ±1m, and the frequency corresponds to π

6
rad

s .
After deriving the body accelerations, the scale factor of
the position is modified with a bias drifting quickly from
2 to 3 over the entire duration of the experiment (30s). The
rotational offset of the vision reference frame with respect to
the gravity direction is then varied between 0.1 and 0.3 rad in
roll, and -0.3 and -0.1 rad in pitch. Respecting the changing
offset of the initial vision frame, the vertical gravity vector
is finally transformed from the inertial frame to the body
frame, and added to the acceleration signals. The sampling
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Fig. 4. Results of the scale and gravity computation on a simulated and
noise-free dataset. Both the scale factor and the roll and pitch offsets of the
vision frame are continuously varied over time.

rates of IMU and camera are simulated with 100 and 10 Hz,
respectively.

As shown in Figure 4, the algorithm is able to continuously
recover both the metric scale factor as well as the offset of the
vision reference frame with respect to the direction of gravity.
For this experiment, we set lmax = 120 and lmin = 80, meaning
an observation window of 1.2s, and integration times varying
between 0.8 and 1.2s. The blue dots represent the result of
an additional windowed median filter over 2s.

It can be observed that the error of the scale factor
computation is increased in regular intervals of 6s, thus
clearly related to the instantaneous motion characteristics.
This also leads to temporary biases in the windowed median
and the estimated covariance of the signal. We found that
errors occur when the delta-velocities are almost orthogonal
to the gravity vector. It can also be proven mathematically
that the accuracy of the algorithm is depending on the
orthogonality between ∆ak,k−l or ∆wk,k−l and ng[k]. We have

q =
||∆a′k,k−l ||
||∆wk,k−l ||

=
||∆ak,k−l + lT gng[k]||

||∆wk,k−l ||
.

When chosing ∆ak,k−l =
(
∆ak,k−l 0 0

)t , ∆wk,k−l =(
∆wk,k−l 0 0

)t , and ng[k] =
(
cosθ 0 sinθ

)t—
meaning delta-velocities along the x-direction and variable
orthogonality of the gravity direction—, we obtain

q =
||
(
(∆ak,k−l + lT gcosθ) 0 lT gsinθ

)t ||
|∆wk,k−l |

=

√
∆a2

k,k−l +2∆ak,k−l lT gcosθ +(lT g)2

|∆wk,k−l |
.

Partial differentiation with respect to θ leads to
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Fig. 5. Results of the scale and gravity computation on a simulated and
noisy dataset.

∂q
∂θ

=
−∆ak,k−l lT gsinθ

|∆wk,k−l |
√

∆a2
k,k−l +2∆ak,k−l lT gcosθ +(lT g)2

.

This result basically proves that an error in the computed
gravity direction has biggest impact on the accuracy of the
scale when the gravity direction is orthogonal to the delta-
velocity (θ =±90◦).

The mentioned errors also underline the statements from
Section II-C: The algorithm is performing better when the
delta-velocity components are aligned with the gravity vec-
tor, thus easing the disambiguation of the two solutions.
Moreover, since we are having observation windows of
1.2s, the effect gets amplified significantly depending on
the amount of drift in the scale factor. Especially in critical
cases, we are depending on former values for doing the
disambiguation. These operations are actually based on the
assumption that the drift is not too intense.

B. Noise-affected case

In order to analyse the effect of noise on the quality of
the results, we repeated the same experiment with white
Gaussian noise added to the measured camera position (stan-
dard deviation: 0.01 m

s ) and acceleration signals (standard
deviation: 0.1 m

s
√

h
1). Due to noise-cancelling effects, the

impact on the integration of the acceleration signals remains
minor. The impact on the differentiated camera position,
however, is significant. In order to obtain stable results, one
has to differentiate the inexact position in a numerically
stable way, which means based on a regression or spectral
decomposition method. We opted for the first one due to its
simplicity, and selected a window over 10 past samples (1s)

1 m
s
√

h
is the standard unit to express the error of an IMU (m is meters, s

is seconds, and h is hours)



Fig. 6. Effects on the scale estimation filter convergence with initial scale
factors reaching from 110% to 190% of the groundtruth value. The final
scale factor of the filter represents the value after 30 seconds of operation
time. The plot also shows that the filter convergence is guaranteed, if using
the scale factor determined by our new approach.

for performing third-order polynomial regression. The scale
and gravity computation using this numerical differentiation
can finally be observed in Figure 5. It clearly shows that the
quality of the results remains comparable to the noise-free
case.

C. Improvement of scale estimation filter convergence

As mentioned in the introduction, the obvious benefit
of the proposed method is its ability to deliver a good
initial filter-value for the scale factor in the loosely-coupled
monocular case, where the scale factor is maintained as an
additional variable in the state vector. The sensor-fusion filter
used is the one presented in the work of Weiss and Siegwart
[16]. In their work, they demonstrated the impact of a bad
initial value on the convergence behavior of the filter, so here
we reproduce a similar experiment in order to show how
an initial value proposed by our algorithm is able to boost
the filter convergence. The results are presented in Figure 6,
where initial scale factor values ranging from 110% to 190%
of the ground truth scale factor are tested. It can be observed
that the filter is converging worse for higher scale factors than
for lower ones, which suggests that the important criterion
for good convergence is the absolute deviation from the true
scale factor, and not the relative one. In case of too large
errors, the filter is not able to converge at all anymore. The
good thing, however, is that the absolute error of the scale
factor returned by our deterministic solution behaves in a
similar way, meaning that it stays more or less independent
of the absolute value of the groundtruth scale factor. It is able
to return satisfying results and enable the filter convergence
for all tested groundtruth scale factors (up to values of 100),
and it has been verified that the absolute errors are constantly
remaining in the same order of magnitude.

IV. RESULTS ON REAL DATA

In order to have a common basis of comparison with
state-of-the-art methods, we tested the new approach on the
same dataset as the one used in [28] and [16]. The dataset
consists of inertial and monocular vision data, and ground

Fig. 7. Results of the scale factor and roll/pitch-offset computation on
a real dataset. The algorithm is performing well apart from cases where
visual SLAM estimated are erroneous (purple blocks) and critical motion
sequences (green blocks).

truth data has been gathered using the Vicon motion capture
system. The monocular camera-IMU setup consists of a uEye
UI-122xLE—a small monochrome USB-camera gathering
752×480 images with global shutter at a rate of 15 Hz—
and a Crossbow VG400CC-200 IMU providing measurement
updates at a rate of 75 Hz. The noise contained in the
acceleration measurements amounts to 0.5 m

s
√

h
. The field of

view of the camera is 150◦. The extrinsic calibration of the
IMU is realized using the camera-inertial calibration toolkit
by Lobo [31]. The intrinsic camera calibration and visual
pose estimates have been generated by applying the PTAM-
framework (Parallel Tracking and Mapping), a visual SLAM
implementation by Klein and Murray [3]. The settings for
lmax and lmin (maximum and minimum number of IMU
samples for integration windows) have been left unchanged
in comparison to Section III.

As illustrated in Figure 7, the algorithm is well able to
continuously determine an approximative value for the scale
factor and the rotational offset with respect to the gravity
vector. Occasional absences of good estimates are due to
tracking failures in the vision algorithm. Even though the
determined scale contains a significant amount of noise,
the absolute error of the median-filtered value is steadily
remaining below 0.5. There are two additional sequences
during which the absolute error is slightly elevated, however
corresponding to motion periods that consist mainly of pure
rotations. The method depends on the a priori knowledge
of the bias that is typically contained in real acceleration
measurements, which can be obtained by averaging the
acceleration values in a static pre-initialization phase. Note
that, in analogy to the work of [16], a failure of the visual
tracking algorithm can be easily detected by analysing the



continuity of the estimated roll and pitch offsets between the
vision and the inertial frame.

Even though the method is obviously not able to compete
with the statistical estimation of the scale factor (denoted as
the ground truth value in Figure 7), one has to bare in mind
that the initial value of the scale factor for the statistical
solution has been set by hand, and that our approach thus
provides very important complementary information for good
initialization of the filter state and covariance. In comparison
to [28], the approach is more robust since using the support
of an entire vision algorithm instead of only single feature
observations.

V. CONCLUSION

In this paper, we present a novel approach for loosely-
coupled monocular vision-inertial systems to deterministi-
cally compute the scale factor and the gravity vector. The
method is based on analysing delta-velocity observations
obtained both from a stable numerical differentiation of up-
to-scale visual pose estimates, and short-term integrations
of the gravity-affected acceleration signal. An ambiguity in
the solution has been identified along with ways to resolve
it via a noise-resistant approach. The resulting approach
for scale computation can prove very useful in generating
good initial values for a motion- and scale-estimation filter,
which is crucial for successful convergence in the estimation
process. Reasonable performance could be demonstrated on
real data. Limitations are given by rectilinear trajectories or
zero-acceleration motion sequences.
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