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An Energy-efficient Localization System for
Imprecisely Positioned Sensor Nodes with Flying

UAVs
Vlad Niculescu, Michele Magno, Daniele Palossi, and Luca Benini

Abstract—This work investigates the capability of unmanned
aerial vehicles (UAVs) to find and communicate with wireless
sensor nodes positioned at unknown locations. In this scenario,
the UAV acts as a mobile gateway that estimates the sensor node
position using multiple ultra-wideband (UWB) range measure-
ments, before flying in its vicinity to perform energy-efficient data
acquisition. In addition to UWB, we use wake-up radio (WUR)
to improve the sensor node’s energy efficiency, keeping it in the
always-on “low-activity” state when the drone is not nearby.
The paper proposes a localization algorithm that consists of an
iterative, noise-robust and computationally lightweight approach
based on multi-lateration. Experimental evaluations performed
on synthetic data demonstrate that our approach achieves a sub-
meter localization accuracy using only three range measurements.
We confirm this with an extensive in-field evaluation. The multi-
lateration algorithm runs in 4ms, in low power microcontrollers
such as the ARM Cortex-M4F. The WUR and our energy-efficient
algorithm enable the sensor node to consume only 31mJ during
the whole localization-acquisition process. Our solution can be
introduced in many other industrial applications where a mobile
robot needs to estimate the location of imprecisely positioned
objects.

Index Terms—UWB, UAV, multi-lateration, energy-efficiency

I. INTRODUCTION

In the last few years, unmanned aerial vehicles (UAVs) have
been introduced in a wide range of industrial applications, such
as aerial inspection and ambient awareness [1], [2], [3].

UAVs can facilitate the operations of an industrial wire-
less sensor network (WSN) without any expensive additional
infrastructure which is not feasible in many scenarios [4].
Remote monitoring represents an industrial application where
WSNs play an important role [5], [6], [7]. WSNs consist of
a large number of battery-powered wireless sensor nodes that
are deployed in a specific area [5], [6]. In many WSN deploy-
ments, a local-host is in charge of the data acquisition and it
forwards the information to a central infrastructure that is not
necessarily placed in the vicinity of the deployment area [8],
[9]. UAVs represent an alternative solution to the conventional
gateways, overcoming their limits, such as limited bandwidth
or infrastructure needs [5], [4].
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Fig. 1: Our prototype based on the COTS Parrot Bebop 2
quadrotor extended with our UWB-based localization unit.

Due to the UAVs capability to fly to any point in a
given area, they enable the nodes of a WSN to operate at
a lower transmission power/range [4]. However, in a broad
range of industrial applications, the nodes’ positions are not
a priori known [8], [4], [10], and therefore accurate and fast
localization is necessary [5], [8].

Ultra-wideband (UWB) is a widely used ranging technology
which allows for accurate distance measurements [11], but it
has a high power consumption during the ranging phase (i.e.,
hundreds of mW [11]). We use the UWB in combination with
a wake-up radio (WUR), a µW always-on receiver [12], to
achieve high energy efficiency on the nodes, by keeping the
UWB active only when the drone comes close.

Multi-lateration is a navigation technique, which uses at
least three distance measurements from fixed and known
positions (i.e., anchors) to estimate the location of a moving
object. However, in contrast to this conventional scenario [13],
this work addresses the dual problem, where the UAV behaves
like a moving anchor [14], [15] to estimate the position of the
nodes imprecisely deployed in its surrounding.

The main contribution of this paper is the investigation
and experimental evaluation of an energy-efficient localization
system that enables a UAV to localize unknown sensors within
a WSN. More in detail, our work provides the following
contributions:

• we developed an embedded multi-lateration algorithm
that enables the UAV to precisely estimate the sensor
node position while keeping the sensor node energy
consumption within 31mJ. Thus, we combine for the



first time UWB and WUR for precise and energy-efficient
localization;

• we investigated the influence of the number of range mea-
surements on the localization accuracy. We demonstrate
that with only three UWB measurements, our algorithm
achieves already 1m accuracy with the best trade-off with
energy consumption;

• we propose the electronic design of both a sensor node
that includes a WUR and of an MCU-based “companion
board”, which operates aboard a commercial-of-the-shelf
(COTS) Parrot Bebop 2 quadrotor;

• our in-field evaluation shows that the proposed tri-
lateration algorithm is up to 50% more accurate than
State-of-the-Art (SoA) solutions [16], and it runs in a
low power embedded platform in 4ms.

II. RELATED WORK

Recent literature has shown an increasing interest in the
combination of UAVs with WSNs for industrial applica-
tions [5], [17], [10]. In particular, many approaches have
shown the importance of UAVs to perform localization of
WSN’s nodes to reduce the cost/power of long-range commu-
nications [5], [4]. In the majority of these approaches, UAVs
are using a combination of sensors [9]. However, cameras
can suffer from occlusions and poor lighting conditions that
can prevent precise localization in several scenarios, such as
dark or cluttered environments. Other popular approaches are
range-based algorithms that use measurements of the distance
from the drone to the node to calculate the sensor node
position [16], [4]. There are several technologies to estimate
the range, for instance, received signal strength indicator
(RSSI) [8], [18]. Among others, Wifi and Bluetooth are often
mentioned as trendy choices [19], [20] due to their vast
availability and reduced price. Bluetooth low energy (BLE)
is a widely used technology in the context of low power
WSNs because it presents a power consumption of few tens
of mW [21]. However, its precision when performing distance
measurements is about 1m, which leads to a localization error
of about 2m when more than 100 measurements are used from
7 anchors [22].

In contrast to these approaches, the novel UWB ranging
method that we use is Time of Arrival (ToA), which deter-
mines the range based on the round trip time of the UWB
signal, achieving centimeter accuracy [14] in line-of-sight
conditions. However, the ranging precision does not imply the
same localization precision. The latter strongly depends on
where the range measurements are acquired. Furthermore, the
uncertainty in the drone position introduces additional errors
in estimating the node position. In our work, considering all
these real-world effects we obtain a sub-meter precision for
the node position [13].

Multi-lateration is a method to determine the location of
an object by knowing its distance to other known positions
in space and its application to UWB measurements is widely
investigated in literature [23], [24], [25], [13]. In [23] it is
proposed a range-based multi-lateral measurement localization

method (RB-MML). Their approach shows the benefits of
using a multi-lateration algorithm in the localization with
UWB as we are proposing in our paper. On the other hand,
the RR-MML is designed for ideal, noise-free situations and
therefore it performs poorly in the presence of real-world
noise. [25] proposes an approach similar to ours – using a
sophisticated cost function to penalize the error. However, their
cost function is not guaranteed to converge to the maximum
likelihood solution in the presence of Gaussian noise on the
input data, as well as it requires more operations and has a
heavier memory footprint compared to our solution.

In [16], the authors also investigate the scenario of a UAV
localizing sensor nodes as in our application scenario. They
propose a strategy to bound the localization error that is
comparable with ours, but they did not deployed it on an
embedded demonstrator and their results only rely on post-
processed data in a conventional computer. Furthermore, to
achieve a 1m accuracy, their UAV has to fly a circular arc of
80◦ around the node, while in our approach an arc of 50◦ is
enough to achieve the same precision, therefore in a shorter
flight time.

In contrast with the previous works, we propose a
lightweight algorithm that can run even in very resource-
constrained embedded systems. Our algorithm is designed to
maximize the accuracy with the minimal number of UWB
range measurements, thereby reducing the UAV mission time.
To the best of our knowledge, there is no previous work
that combines UWB and WUR for enabling a drone to
perform ground sensor node localization and optimizing for
both accuracy and node energy consumption.

III. EMBEDDED MULTI-LATERATION ALGORITHM

Our algorithm focuses on a 2-dimensional (2D) use case,
where all the sensor nodes are deployed on the ground at
the same altitude. Even if less general than the 3-dimensional
(3D) one, our use case is still representative for the majority of
practical industrial application scenarios [16], [26]. Moreover,
many key aspects of the 2D use case also apply to the 3D
case.

A. Background: UWB multi-lateration

The purpose of a multi-lateration algorithm is to estimate
the sensor node position with high accuracy, using way-points
as input. A way-point is a structure of type (xd, yd, r), where
the pair (xd, yd) represents the drone position (e.g., GPS
position) [15], and r is the range measurement from the drone
to the node (i.e., ground projection in a 2-D plane). Apart
from the ranging error, the measurements of GPS position and
altitude are also affected by noise which consequently influ-
ences the accuracy of the overall multi-lateration estimation.
More way-points lead to a more accurate estimation but also
increases the number of transmitted packets and therefore the
total energy consumption.

A common algorithm for fast multi-lateration is the RB-
MML [23], widely used in many localization systems [27]
due to its closed-form solution. In a noise-free situation, the



Fig. 2: Geometrical representation of two way-points.

coordinates of the unknown node and the N acquired way-
points (xi, yi, ri), with i = 1, 2, ...N , satisfy Equation 1.

(xi − x)2 + (yi − y)2 = r2i (1)

By subtracting the N-th equation from the first N-1 equa-
tions, it leads to a linear system of N-1 equations, because the
quadratic terms in x and y cancel out, and it can be solved
in the least-squares sense. In the absence of any noise on
the range distance measurements, RB-MML, as well as all
other methods, returns the optimal node localization using only
three way-points. Therefore, it requires a few simple matrix
multiplications, but its accuracy drops quickly in real cases
due to the inevitable noise on the measurements, as shown in
Section V.

Assuming that the range measurements are affected by
zero-mean Gaussian noise, the maximum likelihood estima-
tion (MLE) is obtained by minimizing the cost function in
Equation 2 [25]. In this way, the pair (x̃, ỹ), which mini-
mizes the cost function, is the solution that makes the range
measurements “the most likely”. Our optimization problem
is represented by the non-convex and non-linear function in
Equation 3. Choosing proper initialization values for (x, y)
is crucial to avoid local minima that might lead to high-cost
values.

L(x, y) =

N∑
i=1

(
√
(xi − x)2 + (yi − y)2 − ri)2 (2)

(x̃, ỹ) = argminL(x, y) (3)

B. Embedded multi-lateration algorithm

In our 2D case, the geometrical interpretation of a sin-
gle way-point (x1, y1, r1), suggests that the sensor node is
somewhere on the circumference of the circle with center
in (x1, y1) and radius r1. With a second way-point, the
number of possible locations for the node is reduced to two
possibilities: the two points given by the intersection of the two
circumferences, as shown in Figure 2. These two intersection
points can be easily computed by solving the equation system
described in [28]. In our approach, we first compute the cost
function in Equation 2 for both the two candidate points, and
we define as (x0, y0) the one which leads to the smaller cost.

Algorithm 1 Gradient descent with adaptive learning rate
x = x0;
y = y0;
iterations = 0;
while (iterations <20) do

iterations← iterations+ 1;[
α1

α2

]
← [HL(x,y)]

−1

[ ∂
∂xL(x, y)
∂
∂yL(x, y)

]
x← x− α1

∂
∂xL(x, y);

y ← y − α2
∂
∂yL(x, y);

end

In an ideal situation, where the way-point elements have
zero sensor noise, the solution (x0, y0) matches the global
minimum of the optimization problem from Equation 3 and
leads to a zero cost. However, range measurements are affected
by noise, whose standard deviation has an impact on how
far (x0, y0) is from the global minimum of the optimization
problem. However, range measurements are performed using
UWB, which has a precision of 10 cm1. Since the UWB
distance measurements are in the range of meters, their sub-
10 cm error practically results in having the (x0, y0) solution
located near to the global minimum2, and consequently, we
use (x0, y0) as the initialization value for our optimizer.

The optimizer we propose is a gradient descent algorithm
meant to run in a low-resources embedded platform, and
therefore we aim at minimizing the number of iterations until
convergence. For this reason, we propose to use Newton’s
update rule to online adjust the learning rate of the algorithm
with respect to the inverse of the Hessian matrix, as shown in
Algorithm 1. With this choice, the optimizer converges faster
in the first few iterations, and the learning rate decreases as
they progress (on average from 0.5 to 0.001). Experimentally,
we observed that Algorithm 1 achieves a difference of less
than 1mm between two consecutive iterations after less than
20 iterations. In this way, our algorithm is not data-dependent,
and the iteration number – and also running time – is always
constant and predictable (4ms for an ARM Cortex M4 -
168MHz).

IV. SYSTEM ARCHITECTURE

We designed the localization unit to be placed on the drone,
and the sensor nodes deployed in the testing area (Figure 3).
The localization unit manages the communication with the
nodes, acquires the range measurements, performs the sensor
node localization and sends trajectory commands to the drone.
The overall system is closed-loop and all computation is
carried by the MCU on the localization unit.

1https://www.decawave.com/sites/default/files/resources/
dw1000-datasheet-v2.09.pdf

2In our experiments, we observed that the optimization function, in the
proximity of the global minimum, is always convex. Therefore, if the
initialization value (i.e., x0, y0) lies in this convex region, the optimizer
quickly converges to the global minimum. In our extensive evaluation (more
than 1000 experiments), the optimizer always managed to find the global
minimum, using the proposed initialization value.



Fig. 3: A) Our prototype based on a COTS Parrot Bebop 2
extended with our localization unit. B) Sensor node, both v1
and v2 (optimized form factor).

The core of the sensor node is a STM32L433 MCU, which
manages communications and sensors’ acquisition; it has been
chosen for its low sleep current consumption of just 50 nA.
In particular, the MCU is in charge of controlling the UWB
module in the ranging process as well as its power mode.
The UWB module (Decawave DWM10003) is configured for
the maximum transmit power and the smallest data-rate (i.e.,
110 kbps) to maximize the operating range – over 150m line
of sight (LoS). The sensor node is also capable of energy
harvesting: a power management circuit, built around the
BQ25570 from Texas Instruments4, together with a solar cell
enables the node to charge the battery during the listening state
and therefore, to achieve energy sustainability. The WUR unit
is one of the key elements for energy-efficiency as it comes
with nano-Watt power consumption [12]. The WUR used in
this work has a sensitivity of down to -55dB while listening to
wake-up messages. To increase energy-efficiency, we exploit
the WUR to achieve asynchronous communication with the
UWB module. The total power consumed by our sensor
node during the listening state is 3.9 µW. In our application
scenario, we assume that WUR is the only active element of
the sensor node during listening. Once the data acquisition
is completed, the node goes back in sleep mode. During the
whole process of interaction with the drone, the sensor node
consumes a total energy of 31mJ.

The localization unit operates on board the drone and it
contains modules for position estimation, ranging and wake-
up transmission. The GPS module (uBlox M8T5) is used to
determine the latitude and longitude of the UAV, while the
high precision barometer (TE MS65116) provides altitude in-
formation. Even if the UAV has its own position estimator, the
localization unit relies on its own sensors for more flexibility
and control over the accuracy. The localization unit uses a

3https://www.decawave.com/sites/default/files/resources/dwm1000-
datasheet-v1.3.pdf

4https://www.ti.com/document-viewer/BQ25570/datasheet/features-
slusbh25638#SLUSBH25638

5https://www.u-blox.com/sites/default/files/NEO-LEA-M8T-
FW3 DataSheet %28UBX-15025193%29.pdf

6https://www.te.com/global-en/product-CAT-BLPS0036.html

(a) Alpha angle is varied (b) Way-point density is varied

Fig. 4: The red spots indicate the location where the drone
acquires a new way-point.

radio transceiver (TI CC12007) to emit wake-up beacons for
the WUR, while the UAV is flying to wake up the sensors
which are located in its range. The WUR receives the wake-
up in a range of 35m.

V. EXPERIMENTAL RESULTS

This section presents the experimental results and analy-
sis of the embedded multi-lateration algorithm presented in
Section III. The evaluation is performed with both synthetic
data and experimental UWB measurements collected flying
with our prototype drone. In the ideal case of UWB mea-
surements affected by Gaussian noise with zero-mean, the
proposed algorithm would lead to the maximum likelihood
estimate, due to the minimization of our cost function (see Sec-
tion III). Our synthetic data are generated by altering the range
measurements by zero-mean Gaussian noise (σr = 10 cm,
according to the UWB module datasheet), leaving the way-
points location unaltered. However, real-world measurements
are characterized by non-Gaussian noise, due to factors like
non-line-of-sight conditions or antenna delays, which can have
a significant impact on the overall localization accuracy. In
this case, the drone’s position, acquired every time a new way-
point is visited, is obtained from the onboard localization unit.

In the rest of this section, we refer to the way-point structure
(xd, yd, r), where xd and yd are calculated by converting GPS
latitude and longitude, into Cartesian coordinates (east-north-
up coordinate system). The ground distance – i.e., the 3D
projection on the ground of the UWB range measurement –
is calculated as r =

√
z2 − a2, where z is the UWB range

measurement, and a is the altitude provided by the onboard
barometer.

A. Algorithm evaluation on synthetic data

In the first experiment, Figure 4a, the node position is esti-
mated via multi-lateration performing an acquisition procedure
where the drone visits three different way-points, on a circular
trajectory, and it acquires a new measurement for each of them.
The angle between two consecutive way-points and the node
position is defined as the alpha angle (α), which can always
be represented as a central angle due to the selected trajectory.
In our experiment configuration, we always enforce two equal
alpha angles by selecting the visited way-points.

7https://www.ti.com/document-viewer/CC1200/datasheet



Fig. 5: Localization error as function of alpha angle (α1 = α2),
for the configuration shown in Figure 4a.

In Figure 5, we show the mean localization error – as a
function of the alpha angles – over 300 acquisition procedures,
for every angle in the range 7◦-34◦ with an incremental step of
2◦. This localization error is evaluated for both the proposed
approach and the RB-MML algorithm. Results highlight how
our approach outperforms the RB-MML baseline, with a
reduction of ∼ 6× of the peak error (α = 7◦) and minimum
error for the proposed algorithm as low as 12 cm vs. 58 cm for
RB-MML. Considering a threshold error of 2m, our approach
and RB-MML can met this requirement with an alpha angle
of 7◦ and 19◦, respectively, meaning RB-MML would require
∼ 3× longer flight distance8.

Fig. 6: Localization error as a function of the two alpha angles.

In Figure 6, we present a second experiment based on the
configuration shown in Figure 4a, but this time we explore
the localization trade-off of different alpha angles. Results
demonstrate how the localization error depends on both angles,
and how it can be significantly reduced, increasing them. We

8We assume a ranging radius of 10m.

Fig. 7: Localization error as function of the way-point number,
for the configuration shown in Figure 4b.

can also observe that the error is equally dependent on both
alpha angles, being almost constant along the main diagonal
and its parallels (i.e., from top-left to bottom-right corner).

In Figure 7, we report the mean localization error as a func-
tion of the number of way-points, considering them uniformly
distributed on the semi-circumference of a circular trajectory,
as shown in Figure 4b. Also in this case, our proposed multi-
lateration approach performs on average 2× better than RB-
MML. Considering the highest number of way-points analyzed
in this evaluation – i.e., 13 way-points –, Figure 7 shows a
reduction of 40% on the mean error compared to the minimum
of 3 way-points. Such an improvement comes at the price of
increased UWB activity and flight time due to the additional
way-points. For this reason, we choose to use three way-points
as a good trade-off between accuracy and consumed energy.

B. Algorithm evaluation with a flying drone

In this section, we aim to confirm, with in-field experiments,
the insights and system’s properties highlighted with the
synthetic data analysis (Section V-A). For this aim, we use our
drone prototype – i.e., a Parrot Bebop 2 quadrotor extended
with our onboard custom localization unit – on a grass-field
mission area of 40× 40m. The origin of the Cartesian system
of the multi-lateration algorithm corresponds to the take-off
point, from which the drone flies at a constant 15m altitude.
The sensor nodes are randomly distributed in the mission
area at unknown locations – by the drone. Their Cartesian
coordinates are recorded to be used as ground-truth for the
localization error calculation. The drone position is provided
by the aboard GPS module, representing an additional source
of error – root-mean-squared-error of 0.6m – compared to the
ideal synthetic data scenario.

The drone flight policy was set to use three way-points and
enforcing two equal alpha angles (α1 ≈ α2). As expected, the
localization error is higher for small alpha angles, up to 3.7m
for angles below 15◦, but decreases to a mean error lower
than 1m for angles higher than 20◦. Pushing our system to its



limit, we achieved an in-field mean localization error of only
0.6m (peaking at 1.1m) with 40◦ alpha angles. However, the
localization error does not further improve for higher angles
because the GPS uncertainty lower bounds it.

VI. CONCLUSIONS

This paper proposes the combination of emerging commu-
nication technologies, such as UWB and WUR, to develop
a novel localization system that enables mobile robots, such
as drones, to precisely localize wireless sensor nodes whose
positions are not known a priori. In our scenario, a drone
acts as a mobile gateway of the WSN, and it uses a multi-
lateration algorithm to localize the sensor nodes. We demon-
strate our system’s capability with a closed-loop, fully-working
prototype, where our custom electronics – both onboard a
COTS drone and deployed on the mission area as sensor
nodes – works in combination with the proposed localization
algorithm. The approach we propose is suitable for many
industrial application scenarios where a mobile robot has
to localize in its surrounding imprecisely positioned objects,
followed by an energy-efficient data acquisition phase.

Our in-field evaluation shows how the proposed multi-
lateration algorithm can overtake SoA accuracy with a sub-
meter localization error, being computationally inexpensive
– i.e., the entire localization procedure runs in 4ms on the
Cortex-M4 MCU aboard the drone. At the same time, by using
the minimum number of three range measurements, we keep
the UWB energy consumption in the sensor node as small
as only 31mJ – during the whole localization-acquisition
process.
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