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ARTICLE

Deep learning-based segmentation of lithium-ion
battery microstructures enhanced by artificially
generated electrodes
Simon Müller1,3, Christina Sauter 1,3, Ramesh Shunmugasundaram1, Nils Wenzler 1, Vincent De Andrade2,

Francesco De Carlo2, Ender Konukoglu1 & Vanessa Wood 1✉

Accurate 3D representations of lithium-ion battery electrodes, in which the active particles,

binder and pore phases are distinguished and labeled, can assist in understanding and ulti-

mately improving battery performance. Here, we demonstrate a methodology for using deep-

learning tools to achieve reliable segmentations of volumetric images of electrodes on which

standard segmentation approaches fail due to insufficient contrast. We implement the 3D

U-Net architecture for segmentation, and, to overcome the limitations of training data

obtained experimentally through imaging, we show how synthetic learning data, consisting of

realistic artificial electrode structures and their tomographic reconstructions, can be gener-

ated and used to enhance network performance. We apply our method to segment x-ray

tomographic microscopy images of graphite-silicon composite electrodes and show it is

accurate across standard metrics. We then apply it to obtain a statistically meaningful

analysis of the microstructural evolution of the carbon-black and binder domain during

battery operation.
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The performance of lithium-ion batteries (LIBs) is intimately
linked not only to the electrochemical properties of the
constituent materials but also to the morphology of these

materials1. The pore structure of LIB electrodes and separators
determines the effective transport coefficient for lithium-ions in
the electrolyte2–4. Low effective transport increases the ionic
resistance, leading to voltage losses (overpotentials), a smaller
usable capacity5, and a reduced rate capability, particularly during
fast charge required for automotive applications6. In addition, the
distribution of the carbon black-binder domain (CBD) around
the active particles is crucial to ensure low electronic resistance
and mechanical stability throughout battery cycle life7,8. The
ability to tune structure is of particular importance in emerging
applications for LIBs such as electric mobility and grid energy
storage that benefit from the uniform operation of hundreds and
thousands of cells across their cycle life9,10.

Accurate 3D representations of the structure in a cell, in which
the different material phases are distinguished and labeled (i.e.
segmented), aid in the rational selection of materials, manu-
facturing processes, and operational parameters11. While elec-
tron- and neutron-based imaging techniques offer specific
advantages and can be used together with x-ray-based imaging to
provide enhanced and correlated datasets12–14, x-ray-based
tomographic analysis has emerged as a technique of choice,
offering a range of resolutions with voxel sizes from millimeters
to tens of nanometers and the possibility for non-destructive
in situ or operando investigation to monitor the evolution of the
internal electrode structure over time15,16.

However, obtaining 3D reconstructions that can be accurately
segmented and quantitatively analyzed is still a challenge, pri-
marily due to (i) the diverging length scales present in LIB
electrodes, (ii) the low contrast between key components, and (iii)
the low attenuation of carbon-based materials16. Active materials
such as Li(Ni,Mn,Co)O2 have particle dimensions in the range of
1–10 µm17 and contain transition metal elements that provide
good contrast during absorption-based imaging and hence a
reliable identification of the particles. Graphitic active particles,
which make up a large fraction of commercial negative electrodes,
do not offer such contrast potentially leading to large errors in
segmentation18. Furthermore, identification of the polymeric
binder domain, which, in case of low-conductivity active particles
also contains conductive additives such as nanoscale carbon
black, requires not only high contrast (due to the low atomic
number of carbon) but also high spatial resolution imaging (due
to the nanometer-sized pores and structural features ranging
from 5 to 150 nm19–21). Techniques with high resolution
(~10–50 nm voxel edge lengths) have limited fields of view
(~(10–50 μm)3) and consequently, only a small sample volume
with a limited number of active particles can be imaged quanti-
tatively, which is problematic since analyzing the active material
distribution requires a field of view in the range of 5x the largest
particle size or ~100 μm to centimeters5 in order to be repre-
sentative. Furthermore, high-resolution imaging typically requires
long imaging times, often making it prohibitive to obtain statis-
tically relevant data on the electrode scale by imaging many small
samples serially22,23.

In this work, we show how supervised, deep learning can help
address the challenges associated with semantic segmentation of
high-resolution, volumetric image data of LIB electrodes. While
deep learning algorithms have been applied to assess the state of
health of a battery24, to improve the microstructural design25,26,
or to detect defects during manufacturing27, microstructure seg-
mentation continues to rely heavily on adapted filtering followed
by simple thresholding operations28. Even though algorithms
originating in the field of machine learning are beginning to be
used for segmentation29,30, crack detection31 and particle

detachment32 to date, deep learning-based approaches are mainly
used on high-contrast systems (i.e., cathodes), and algorithms for
complete 3D segmentation such as those which are used in
medicine to analyze tomographic full-body scans and identify
organs33, have not been applied to semantic segmentation of LIB
electrode datasets. Here, we work with the 3D U-Net architecture
for semantic segmentation of volumetric image data34, and show
how it can be trained and implemented to segment 3D recon-
struction of electrodes into all their different material components
(i.e., active particle, binder, pore). For this purpose, we choose
volumetric images of graphite-silicon composite negative elec-
trodes obtained with x-ray tomographic microscopy (XTM)
(Fig. 1). Even though even higher resolution techniques than
XTM exist35–38, XTM is a popular method to acquire data on LIB
components since it simultaneously offers a reasonable field of
view, resolution, and collection times. These data encompass
many of the key challenges one faces in volumetric image seg-
mentation of batteries, namely multiple heterogeneous material
phases with feature sizes ranging from nano- to micrometers and
low contrast between different phases, and we show that they
cannot be segmented using standard approaches.

A key challenge in employing a convolutional neural network
like 3D U-Net for segmentation of volumetric image data is
having sufficient and high-quality learning data so that the
algorithm can operate fully automated on the dataset of interest.
Learning data consist of image pairs: the “input” image and the
“output” image, which is the successfully segmented and labeled
version of the “input” image. Typically, learning data is real,
experimental data that has been segmented and labeled. However,
as explained above, no single x-ray imaging technique provides
the contrast, resolution, and field-of-view in 3D needed to
accurately segment all material phases in an electrode. Multi-
modal imaging approaches (e.g., combining x-ray absorption
contrast tomography with ptychographic x-ray computed
tomography39) make it possible to achieve segmented and labeled
datasets; however, such experiments are difficult and time-
consuming. Indeed, we show that the amount of high-quality
multimodal image data obtainable during typical experimental
beamtimes at a shared synchrotron facility is insufficient for the
training of the neural network and leads to only partial seg-
mentation accuracy, as quantified by the Dice score40.

To overcome this challenge, we propose and demonstrate the
benefits of using hybrid learning datasets (Fig. 1), where com-
putationally generated synthetic datasets augment a limited
number of real datasets, acquired using multimodal imaging
techniques. This approach of enhancing real learning data with
computationally generated data has been used for example with
face recognition and scene understanding for autonomous driv-
ing applications41,42. As shown in Fig. 1, we computationally
generate a basic electrode structure based on knowledge of the
volume percents of different phases and the size and shape dis-
tributions of the different particles. We then use some of the
high quality, segmented, and labeled data from multimodal
imaging as templates for an automatic style transfer algorithm,
CycleGAN43–45, which we use to convert the basic structures into
realistically looking microstructures. We then create the corre-
sponding tomographic reconstructions of these artificially gen-
erated electrodes, incorporating the effects of the beamline and
measurement (e.g., energy, resolution, artefacts, noise). These
tomographic simulations and the corresponding synthetic data-
sets form the input-output data pairs that can be used to train the
network together with the real datasets. With this approach of
combining real and synthetic training data, we significantly
improve the accuracy of the segmentation and labeling of the
XTM data into pore space, graphite and silicon particles, and the
carbon black-binder domain.
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Having an automated and reliable segmentation tool trained in
large part on computer-generated data enables us to address the
trade-off between the obtainable resolution and the volume
imaged. Specifically, we can work with small sample sizes needed
for quantitative imaging at small length scales, but image and
segment multiple electrode samples in order to obtain in total a
larger volume and therefore statistical insights into the structure
of the different material phases at their different length scales.
Here, we show that these segmentations can be used to gain
insight into the microstructural evolution of these composite
anodes as a function of electrochemical cycling. For example, we
are able to show that in a graphite-silicon composite electrode
most of the morphological changes to the structure of the carbon-
black binder domain occur locally around the silicon particles and
not in the vicinity of graphite particles.

Results
Need for deep-learning based approach. We image samples of
graphite-silicon composite negative electrodes with XTM and aim
for an accurate segmentation of the four phases: pore space,
graphite, silicon, and carbon black-binder domain.

The samples are taken from a pristine electrode and electrodes
cycled twice, five times and eight times. We use ultrashort pulsed

laser milling39 to achieve cylindrical sample diameters below
70 μm. Larger sizes would result in local tomography with a
decrease in image quality and an increase in the number and
strength of artefacts. We image in total twelve samples, three
from each of the cycling conditions, because a sample size of
70 μm is close to the limit of representativeness of electrode
structure, with even commercial electrodes exhibiting hetero-
geneity at this length scale5. The projections are reconstructed
into image stacks using the ASTRA toolbox46.

The voxel edge length is 27.5 nm and the spatial resolution is
119 nm according to the Fourier shell correlation (Supplementary
Note 2)47. Details of the electrode preparation, cycling, sample
preparation, imaging, and reconstruction is found in the
Methods.

The need for advanced segmentation is clear. A cross-section of
an example tomogram is shown in Fig. 2a. Despite the low
contrast, leading to an unfavorable gray value histogram (Fig. 2d),
manual segmentation is possible (Supplementary Note 5), but is
not feasible for rapid analysis of the twelve imaged volumes. As
depicted in Fig. 2b, conventional methods like simple threshold-
ing (here done with a k-means implementation) do not lead to
satisfactory results. This is mainly due to the fact that graphite
particles do not exhibit any gray value contrast with respect to the

Fig. 1 Deep learning segmentation of battery electrodes. The goal of this work is to demonstrate unsupervised, learning-based segmentation of complex
volumetric datasets that cannot be easily segmented using standard techniques (e.g., thresholding). We work with pristine and cycled graphite-silicon
composite electrodes obtained using x-ray tomographic microscopy (XTM) and aim to segment them into four phases: pore space, graphite particles,
silicon particles, and carbon black-binder domain (CBD) for statistical analysis of structural changes as a function of electrochemical cycling. For
segmentation, we apply the 3D U-Net neural network architecture, that must be trained using learning data (dark blue box), which consists of volumetric
image pairs (i.e., an “input” image like the one to be segmented and a corresponding “output” image, which is a segmented version of the input image).
Experimental (i.e., “real”) learning data is difficult to obtain and requires multimodal imaging to obtain a segmented output image (see light blue box).
Computationally generated (i.e., “artificial”) learning data can be added to the real learning data to improve the training of the network and its performance.
We generate synthetic structures (blue box) by creating a basic structure based on knowledge of the volume percents and size and shape distributions of
the constituent materials and then using real segmented data (light blue box) as templates for an image-to-image translation algorithm (here, CycleGAN)
to create a realistic-looking, segmented structure (i.e., “output” image). “Input” images are then generated by simulating how these synthetic structures
would look in our XTM measurement based on knowledge of the experimental conditions (energy, resolution, noise).
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pore space and their contour can only be guessed based on the
bright edge-enhancement effect. Graph-based processing (using a
3D implementation of the random walker algorithm48) (Fig.
2c) is better able to identify particle boundaries but fails in low
contrast regions, such as inside graphite particles where particle
boundaries are erroneously found (see Fig. 2, insets i and ii). In
addition, such a random walker algorithm requires the input of
seed points (i.e., the particle center locations), which is a
challenge and often requires human verification. While classical
segmentation procedures are not sufficient for an accurate

segmentation of the four phases, the fact that the human eye
can pick out different phases suggests that a learning-based
approach to semantic segmentation would be applicable to the
datasets.

Deep learning-based segmentation. We, therefore, turn to deep
learning algorithms, which have entered the field of volumetric
image segmentation through the implementation of 3D con-
volutional networks49. Prominent architectures that apply these
principles for volumetric segmentation are the V-Net50 and, more
widely used, the 3D U-Net34. We borrow a specific imple-
mentation of the 3D U-Net architecture from Baumgartner et al.
that was demonstrated to work well on volumetric medical
images captured with magnetic resonance imaging (MRI) [51].
Like these images, our electrode image datasets are three-
dimensional and comparable regarding gray value contrast and
the number of distinguishable material phases.

This network must be trained. The approach to obtain real
learning data is shown in Fig. 3. In a previous study39, we showed
how the same electrode sample can be imaged with ptychographic
x-ray computed tomography (PXCT) (Fig. 3a) and XTM (Fig. 3b),
and how this data can be combined (Fig. 3c) and used to achieve
precise segmentation based on gray value thresholding (Fig. 3d).
We have two cylindrical volumes, each 40 µm in diameter and
20 μm in height, one from a pristine and one from a cycled
graphite-silicon composite electrode, that have undergone this
multimodal imaging and segmentation procedure. The XTM
reconstructions are the “input images” and their segmentations
are the “output image” label maps that make up the learning data.

Due to memory limitations, 1000 subvolume pairs (the 3D
image data and label map) of dimensions 15.6 × 15.6 × 3 µm
(256 × 256 × 48 voxel) are randomly sampled (and thus possibly
overlapping) from the learning data such that the smallest
dimension is equally likely to be along the x, y, or z axis. 50% of
the training data is subjected to data augmentation based on basic
image manipulations in order to render the neural network more
robust and increase its ability to generalize while decreasing the

Fig. 2 Challenging segmentation. (a) A subsection of a tomogram of a graphite-silicon composite electrode imaged with XTM. Scale bar is 5 μm. Neither
(b) threshold- nor (c) random walker-based segmentation yield satisfying results. Low contrast regions are not split up accurately into particle regions
(insets i and ii). (d) Gray value histogram of the tomogram and the proposed k-means clusters for the pore space (white), graphite particles (gray), silicon
particles (blue), and carbon black-binder domain (CBD) (orange).
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Fig. 3 Real learning data. (a) Ptychographic x-ray computed tomography
(PXCT) and (b) x-ray tomographic microscopy (XTM) is performed on the
graphite-silicon composite electrodes. Data from these two imaging
approaches are (c) combined and (d) segmented. As indicated by the red
box, real training data are made up of input images (the XTM images in
(b)) and output images (the segmented, multimodal images in (d)). Scale
bar is 10 µm.
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potential danger of overfitting51. Specifically, we apply Gaussian
noise and blurring, vary contrast and brightness, and use affine
transformations. The model is trained for 100 epochs, which
amounts to a total training time of 72 h on a Nvidia TITAN
Xp GPU.

The results of the segmentation of XTM images are shown in
Fig. 4. Comparing cross-sections (Fig. 4a, b) of the raw image data
and the segmentation achieved for these cuts (Fig. 4c, d), we see
that the neural network trained on real learning data fails to
reliably distinguish pore space from graphite particles, fails to
properly segment the fine features of the carbon black-binder
domain, and confuses clusters of the carbon black-binder domain
for silicon, particularly at particle boundaries.

To quantify the segmentation quality, 400 sequential slices of the
XTM dataset of one of the three pristine samples are manually
segmented with the help of the Dragonfly software. This manually
segmented volume serves as the “ground truth” and is otherwise not
used for training. We evaluate segmentation quality according to
nineteen standard metrics based on similarity and distance criteria40,
where the learning-based segmentation of one pristine sample are
compared to the corresponding “ground truth” (Table S2).

We focus on the Dice coefficient40 (Table 1), which is the
normalized volumetric overlap of voxels in the segmentation and the
“ground truth” of a given phase. A Dice score of zero means no
overlap between segmentation and the “ground truth”; a Dice value
of one corresponds to complete overlap between segmentation and
the “ground truth” segmentation. For the network trained on the
real learning data, Dice coefficients between 0.6 and 0.7 are found
for the active particles and pore space, while the Dice coefficient for
the carbon-black binder domain is only 0.38. This is consistent with
our findings from visual inspection (Fig. 4).

While the learning-based segmentation is a clear improvement
over simple thresholding or random-walk-based segmentation
approaches (Fig. 2), we attribute the less than satisfactory
segmentation to the limitations of the real learning datasets.

For example, in the real dataset, large graphite particles may be
cut in the sample preparation prior to the XTM and PXCT
imaging, which means that the neural network will tend to
underestimate particle sizes and thereby misattribute the portions
of graphite particles to pore space.

Simply adding to real learning data by taking more high-
resolution images is impractical from a time and resource
perspective. Each high-resolution PXCT scan takes 50 h.
Furthermore, we have recognized that the limited sample volume
leads to challenges in terms of the representative nature of the
real learning dataset.

For this reason, we turn to computationally generated (i.e.,
“synthetic” or “artificial”) learning data, which offers control over
the data content (i.e., particle sizes and volume fractions) such
that the most common segmentation failures (e.g., misinterpret-
ing pore space for graphite) are extensively trained and the neural
network is more robust.

Generation of synthetic learning data. To create realistic artifi-
cial data that have the characteristics of the experimental image

Fig. 4 Benefits of artificial learning data for segmentation. A through-plane cross-section (a) and in-plane cross-section (b) of the raw data are shown in
order to demonstrate the segmentation achieved using different training datasets. When trained only on the limited real learning data (c, d), the neural
network correctly identifies the silicon particles but fails to reliably distinguish pore space from graphite particles. When trained with the hybrid learning
data (e, f), the neural network is better at identifying graphite from pore space. Taking the graphite and silicon phase predicted by the neural network and
adding the carbon black-binder domain (CBD) resulting from thresholding (g, h) improves the fine details of the CBD. The insets in (b, d, f, h) highlight the
improvement of the segmentation, especially for the graphite and CBD domain. The overlay in (b) shows the final segmentation result from (h) over the
original tomographic image. Scale bars are 10 µm.

Table 1 Segmentation quality.

Dice values Pore space Graphite Silicon CBD

Real learning data 0.63 0.65 0.69 0.38
Hybrid
learning data

0.69 0.77 0.82 0.58

Hybrid +
thresholding

0.72 0.77 0.82 0.72

Dice values quantifying the quality of the segmentation for the pore space, the graphite
particles, the silicon particles, and the carbon black-binder domain (CBD). The Dice values
compare the neural network segmentation (trained on real learning data, hybrid learning data, or
hybrid learning data together with thresholding) with a manual segmentation of one of the
pristine electrode samples.
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data which are labeled, we begin by generating a basic electrode
structure (Fig. 5a, b). This can be done with dedicated tools (e.g.,
Math2Market) or with MATLAB as in the present case with
details found in Supplementary Note 3. Particle volume fractions,
particle sizes, shapes, and orientations are defined for the gra-
phite, silicon, and the carbon black-binder domain phases. One
could additionally implement physics-based approaches52,53. In
order to serve as training data, these basic electrode structures
have to be further refined to include the characteristic shapes and
typical small-scale heterogeneity of the carbon black-binder
domain. This is achieved by applying a style transfer computed by
the CycleGAN algorithm43–45 with the real segmented structures
serving as templates (Supplementary Note 3). The resulting
computationally generated electrode structures are referred to
as synthetic structures (Fig. 5c, d).

To form a complete training dataset, the labeled synthetic
structures need corresponding volumetric images that must
resemble the collected tomographic projections (i.e., intensity
images). This can be done with the ASTRA toolbox in
MATLAB46, which allows 2D projections to be calculated from
arbitrary structures. Literature values of the refractive indexes are
assigned to the respective material phases of the synthetic
structures and projections are calculated (see Supplementary
Note 4) and afterwards reconstructed the same way that the real
tomography data are reconstructed. While simulating the x-ray
tomography, special care is taken to include a locally varying
background illumination and a spatially changing amount of
edge-enhancement, as can be seen in Fig. 5e. The resulting
simulated tomography images (Fig. 5f) together with the labeled
synthetic structures form the artificial learning datasets.

Deep learning segmentation with synthetic and real learning
data. Using 21 artificial learning datasets (20 μm× 20 μm
× 20 μm in size) in addition to the two real datasets (cylinders of
40 μm diameter and 20 μm height), the neural network models
are again trained. The procedure for training is kept the same as
before, except that, this time, 500 volume pairs are sampled from

real learning datasets and 500 volume pairs from artificial
learning datasets. We refer to this as hybrid learning data.

The benefits of adding artificial datasets to the learning data are
evident in the quality of the segmentation shown visually in Fig. 4
as well as the quantification (Table 1 and Supplementary Table 2).
All metrics show the same trend, highlighting how the
segmentation quality improves if the neural network is trained
on a mix of hybrid datasets instead of a limited amount of real
datasets.

For segmentation of pore space, training with hybrid learning
data instead of real data leads to improvement of the Dice
coefficients from 0.63 to 0.69. For segmentation of graphite, the
improvement is from 0.69 and 0.77. These improvements are due
to the fact that, by training with the hybrid datasets, the network
no longer mistakes the inside of a graphite particle for pore space
(compare Fig. 4d and f). We believe that this occurs because
artificial datasets are designed to be representative of the volume
percents of each phase and the particle size distributions and
contain more large graphite particles than the real datasets, which
are often randomly cut in the sample preparation prior to
imaging. Nonetheless, segmentation of the graphite and pore
phases remains a challenge because of the low contrast between
the graphite and pore space, the lack of distinguishing features
within bulk graphite, and imaging artefacts around the edges of
small graphite particles. Furthermore, the size of the receptive
field54 (i.e., the subset of the input image that influences the
prediction for a certain voxel), is at times smaller than a graphite
particle.

Training with hybrid learning data also allows the carbon
black-binder domain clusters at the edges of silicon particles to be
more accurately distinguished (compare Fig. 4d and f), with the
Dice coefficient for the carbon black-binder domain improving
from 0.38 (training of the model with real data only) to 0.58
(training with hybrid data) and the Dice score for silicon
improving from 0.69 (only real training data) to 0.82 (hybrid
learning data). This improvement can be attributed to the
inclusion of different illuminations and edge enhancements in the
artificial datasets that are reflective of the variations present at the

Fig. 5 Generation of artificial learning data. An initial basic structure is generated based on polygon shapes as shown in 2D (a) and 3D (b). Using a style
transfer algorithm, a synthetic structure is achieved (c, d). Tomography simulations of the synthetic structure (f), the cross-section shown in (e), complete
the generation of artificial learning data. The scale bar for (a, c), and (e) is 5 μm.
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beamline but that are not fully captured in the limited amount of
real training data.

To further improve the accuracy of the carbon black-binder
domain and pore space segmentation, we can add basic
thresholding on top of the neural network prediction. For each
of the twelve tomograms, we determine an intensity threshold
from the gray value histogram corresponding to the boundary
between what is identified as graphite and silicon particles, as
determined by a k-means approach requiring no manual
interaction (see for example Fig. 2d). We then apply this
threshold to all voxels identified as carbon black-binder domain
and pore space by the neural network. Since the carbon black-
binder domain contains copper nanoparticles as a staining
element that has higher x-ray absorption than silicon, we assign
voxels with a gray value above the threshold to the carbon
black-binder domain and voxels below the threshold to the pore
space. This procedure improves the segmentation of the smaller
structural features of the carbon black-binder domain (Fig. 4h)
and leads to a Dice coefficient of 0.72. While the shape of
carbon black-binder domain clusters is now segmented, FIB-
SEM imaging indicates that the carbon black-binder domain

has an internal porosity of 27 ± 3%55. However, this nanoscale
porosity internal to the carbon black-binder domain is below
the image resolution (119 nm) and therefore is not visible or
segmentable.

There are no previous Dice scores reported for the segmenta-
tion of battery electrodes so the values achieved here cannot be
compared to other segmentation approaches. Although a detailed
comparison is difficult as four-phase segmentations on this scale
with similar complexity and image quality are hard to find, the
achieved Dice scores lie in the range of comparable medical
studies56.

Segmentation of electrode microstructures. We thus apply a
neural network model trained on the hybrid learning data with
subsequent thresholding to segment all twelve XTM datasets (see
Fig. 1). The tomographic reconstructions are binned by a factor of
2.22, resulting in a voxel size of 61 nm. Cubes of 47 µm edge
length (768 voxels) are cut from the cylindrical volumes for
segmentation and analysis. Because of memory limitations, the
volumes cannot be segmented at once but have to be divided into

Fig. 6 Deep Learning Segmentation. Illustration highlighting that for each sample, the deep learning approach is applied to 775 subvolumes (a), which,
once segmented, are reassembled. The multiphase segmentation (b) for pristine samples and samples cycled twice, five times, and eight times enable a
number of different microstructural analysis.

Fig. 7 Analysis of the segmented electrodes. Volume fractions (a) occupied by pore space (black), graphite particles (gray), carbon black-binder domain
(CBD) (yellow), and silicon particles (blue) for the three pristine (pr.) and the three samples cycled two, five, or eight times. The dashed red line indicates
the average volume fraction expected for each phase based on the electrode manufacturing. Surface coverage (b) of the graphite particles (lower) and
silicon particles (upper) with pore space (gray) and CBD (orange) over the different cycle states. The shaded regions indicate the standard deviations.
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subvolumes of 48 × 256 × 256 voxels that are then processed by
the neural network. Due to the anisotropy in processing volume
dimensions, each tomographic dataset is processed independently
in x (subsampling with 48 × 256 × 256 voxel volumes), y (sub-
sampling with 256 × 48 × 256 voxel volumes), and z (subsampling
with 256 × 256 × 48 voxel volumes) direction. Figure 6a sche-
matically illustrates the process for reassembling the entire z
direction. The subvolumes are sampled to overlap by half their
edge length, which results in 775 patches per sampling direction
to be processed. For each subvolume, a softmax representation is
created, which corresponds to a map, where each voxel contains
the probability of it belonging to each material phase (pore space,
graphite, silicon, or carbon black-binder domain). As described in
Supplementary Note 6, the softmax representations from each
sampling are then combined to obtain the final segmentation
(Fig. 6b).

Based on the electrode fabrication protocol, we expect
electrodes to consist on average of 51% pore space, 35% graphite,

6% silicon, and 8% carbon black-binder domain (dashed red lines
in Fig. 7a). Considering the limited sample size used for imaging,
which leads to variations in the phase compositions over different
samples, the volume fractions determined from the segmentation
(49% pore space, 36% graphite, 7% silicon, and 8% carbon black-
binder domain) match well with respect to the reference values.

Microstructural analysis and changes with cycling. The seg-
mentation achieved here provides new opportunities for analyz-
ing the microstructure of the graphite-silicon composite
electrodes and its morphological evolution during electrochemical
cycling. We note that because this is an ex-situ study, we are not
tracking the microstructural changes of the same sub-section of
electrode with cycling. Furthermore, given the small sample size
and the resulting compositional variations across the three sam-
ples (Fig. 7a), we, therefore, focus on trends that hold for all three
samples and detailed analysis of changes around phases (e.g., the

Fig. 8 Evolution of microstructure with cycling. Reconstruction of a subvolume (a) of a pristine electrode showing how the carbon black-binder domain
(CBD) (gold) clusters in pores, particularly around silicon particles (blue). Illustration showing how concentric shells around the graphite (b) and silicon
phases (c) are defined. The CBD content in shells emanating around graphite (d) and silicon (e) particles for the pristine sample (black) and for samples
cycled two, five and eight times. The shading represents the standard deviation of the three samples. Near silicon particles, the positioning of CBD changes
indicating detachment and gap formation (dashed lines) upon electrode cycling. Scale bar is 2 μm.
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changes in the carbon black-binder domain around graphite or
silicon active particles).

An interface between an active particle and the carbon black-
binder domain facilitates electronic connectivity to the particle,
while an interface to pore space (which is infilled with electrolyte)
will see the largest mass (i.e., lithium-ion) transport. The location
and extent of the different interfaces play an important role in the
lithiation behavior, particularly at fast C-rates57. The evolution of
the surface coverage of the graphite and silicon particles with
carbon black-binder domain over repeated cycling is shown in
Fig. 7b. The lower panel of Fig. 7b shows that 97% of the surface
of graphite particles is in contact with the pore phase, while only
3% is in contact with the carbon black-binder domain. This value
may be an underestimate since the identification of graphite
particles during segmentation is based on edge-enhancement of
the tomography data (Fig. 2a), making it difficult to distinguish
bright graphite edges and the bright carbon-black and binder
domain signal. At the same time, even in regions where graphite
surface is in contact with the carbon black-binder domain, there
is internal porosity to the carbon black-binder domain that is not
resolved with this imaging. Importantly, however, these values do
not change after cycling, highlighting that cycling does not induce
a permanent change in the morphology of the carbon black-
binder domain in the vicinity of a graphite particle. In contrast,
the surface of pristine silicon particles is 53% in contact with pore
space and 46% is covered by the carbon black-binder domain
(Fig. 7b, top panel). Even within the first two cycles at the slow
rate of C/20, the silicon surface in contact with pore space
increases to 65%, suggesting that the carbon black-binder domain
detaches from the silicon particles, which is consistent with the
previous work22. During the first cycle (formation cycle), a solid
electrolyte interface (SEI) forms on the surface of the silicon
particles58. Then, due to the large volumetric changes of silicon
upon lithiation and delithiation, the carbon black-binder domain
connected to the silicon experiences stress and detaches at those
locations where adhesive forces are insufficient.

Another important parameter linking electrode microstructure
to battery performance is the effective transport coefficient, δ,
which is defined as the ratio of the diffusivity in the electrolyte-
filled electrode, Deff, to the diffusivity in the bulk electrolyte, D

ðδ ¼ Deff

D Þ. The effective transport coefficient can also be linked to
the tortuosity τ and the porosity ε of the electrode ðδ ¼ ϵ

τÞ2. We
perform numerical diffusion simulations on the electrode
structures and find that the effective transport coefficient is
0.14. However, given the relatively small field of view, this value
should be considered with caution, as uncertainty due to lack of
representativity is expected to be high.

The small electrode subvolume in Fig. 8a visually highlights the
importance of the carbon black-binder domain morphology on
the lithium transport in the pore space, and we can use the

multiphase segmentation to determine to what extent the carbon
black-binder domain contributes to the low effective transport.
The effective transport coefficient neglecting the carbon black-
binder domain (i.e. considering the carbon black-binder domain
as part of the pore phase), is 0.19. This means that the carbon
black-binder domain decreases the effective transport by an
additional 27% (i.e., the diffusivity of lithium in the pore is
decreased from 19% to 14%). As listed in Table 2, this decrease in
effective transport is caused by both a decrease in porosity and an
increase in tortuosity. This is in agreement with previous studies,
which found up to 1.5 times higher effective transport values
measured via electrochemical impedance spectroscopy (EIS)
compared to values calculated numerically on electrode structures
acquired with x-ray tomography that only resolved the active
particle phase59. While the impact of the carbon black-binder
domain on transport is clear, when using segmented 3D images to
compute the effective transport coefficient, it is important to keep
in mind discrepancies between numerical diffusion simulations
and EIS measurements60 as well as incomplete pore infilling61.
Nonetheless, quantification of the morphology of the carbon
black-binder domain is one step towards understanding ionic and
electronic performance of the electrode and it can be used to form
the basis of computer-generated carbon black-binder
domains22,52,55,57,62,63; however, the specific transport properties
of ionic and electronic transport of the carbon black-binder
domain must also be better understood.

Interestingly, the calculated effective transport coefficient stays
constant as a function of cycling (Table 2), suggesting that the
morphology of the carbon black-binder domain within the pore
space does not change significantly despite the fact that we know
there are dynamic changes happening to the pore space of the
electrode during cycling16 and our segmented images show that
the carbon black-binder domain detaches from the silicon
particles. To confirm this surprising lack of change in the
effective transport coefficient, we consider other morphological
descriptors (e.g., distribution of pore radius size, distribution of
the size of the carbon black-binder domain features) as described
in Supplementary Note 7. To eliminate the possibility that the
different volume fractions of the phases in the different samples
make sample-to-sample comparison difficult, we look for trends
with cycling in sub-volumes of the electrodes with similar volume
fraction of the different phases. Again, trends in the morphology
of the carbon black-binder domain are not observed at the
electrode level (Supplementary Fig. 8b). However, the volume
fraction of silicon in the electrode is small (6%), meaning that the
detachment of the carbon black-binder domain from the silicon
particle, which likely leads to the greatest change in carbon black-
binder domain morphology, is found only in small regions of
every sample. Trends induced by the cycling behavior of the
silicon can easily be hidden within the statistical variation found

Table 2 Parameters pertaining to lithium transport in pore space.

Number of cycles

Pristine 2 5 8

Effective transport coefficient [-] Including CBD 0.1492 ± 0.0369 0.1277 ± 0.0287 0.1351 ± 0.0292 0.1435 ± 0.0224
Neglecting CBD 0.2098 ± 0.0445 0.1853 ± 0.0316 0.1810 ± 0.0308 0.2004 ± 0.0307

Porosity [%] Including CBD 50.52 ± 7.57 46.58 ± 4.86 47.52 ± 4.67 50.04 ± 4.09
Neglecting CBD 58.47 ± 8.25 54.58 ± 4.46 54.00 ± 4.05 57.88 ± 4.62

Tortuosity in through plane
direction [-]

Including CBD 3.3465 ± 0.3656 3.6076 ± 0.5970 3.4711 ± 0.4273 3.4092 ± 0.2334

Neglecting CBD 2.7651 ± 0.2209 2.9287 ± 0.4523 2.9587 ± 0.3465 2.8558 ± 0.2261

Mean effective transport coefficients, porosity, and tortuosity values for the three different samples per cycling state under consideration and negligence of the carbon black-binder domain (CBD) in the
pore space.
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sample to sample, and would require a more and/or larger
volumes to be analyzed in order to account for the variability.

We, therefore, use our segmented reconstructions to perform
location-specific structural analysis. We define volume shells
(each 61 nm wide) radially around the graphite particle phase and
the silicon particle phase (shaded regions in Fig. 8b, c). Volumes
formed by overlapping shells around graphite and shells around
silicon are not considered (gray shaded area in Fig. 8c) since
effects in such a region cannot be robustly assigned to either
graphite or silicon. Finally, regions that are further away than
600 nm since effects occurring in such regions again are difficult
to assign due to the influence of graphite or silicon.

We analyze the volume fraction of carbon black-binder domain
within each shell around graphite (Fig. 8d) and around silicon
(Fig. 8e) for pristine (black) and cycled samples (dark red to
orange with increasing cycling). The x-axis indicates the distance
from the graphite or silicon surface, where the median pore
radius in the electrode (360 nm) is indicated. As expected, in the
volume shell at the graphite surface, the carbon black-binder
domain content matches the surface coverage of graphite of 3%
(Fig. 7b). The increase in the amount of carbon black-binder
domain in subsequent volume shells (Fig. 8d) can be explained by
the clusters of carbon black-binder in the pore space that bridge
between active particles, which also becomes apparent during
visual inspection. Electrochemical cycling of the samples does not
influence the distribution near the surface as seen by the overlap
of the lines within the error (shaded regions), but does tend to
compress the carbon black-binder domain closer to the middle of
the pore space.

Analysis of the carbon black-binder domain around silicon
(Fig. 8e) shows that the silicon surface is initially up to 50% covered
by the carbon black-binder domain and this amount decreases to
40% upon cycling, consistent with the analysis in Fig. 7b. For the
pristine sample, the carbon black-binder domain content decreases
with increasing distance to the silicon phase until it converges to
around 20% (the average percentage of carbon black-binder domain
in the pore space is 17%). In the cycled samples, the carbon black-
binder domain content reaches a minimum at a distance of roughly
300 nm from the particles before increasing again. This is indicative
of regions of the carbon black-binder domain that have detached
from the silicon particle having moved into the middle of the pore,
and is consistent with previous reports finding a gap between the
silicon and carbon black of ~250 nm22.

The statistical analysis of structure enabled by our segmented
reconstructions leads to several findings. First, the distribution of
the carbon black-binder around graphite particles and around
silicon particles differs, perhaps due to differences in the adhesion
of the carbon black-binder to the two-particle types or the local
differences in the slurry mixing (e.g., shear forces). Such different
distributions certainly impact the mechanical and electrochemical
properties of the electrode, and this serves as an important
reminder when computationally generating carbon black-binder
structures for simulation purposes that, in composite electrodes,
the carbon black-binder domain may look structurally different in
sub-regions. Second, for our electrode, the structural changes in
the carbon black-binder during electrochemical cycling do not
lead to a resolvable change in the pore size distribution or
tortuosity on the characteristic length scale of the electrode (~µm
range); however, we do find local changes, particularly around the
silicon active particles. These changes do not involve a break or
large distortion of the carbon black-binder network (which would
be visible as a change in pore size and a change in tortuosity), but
rather lead to partial detachment of the carbon-black binder
domain from active particles and repositioning of the carbon
black-binder within electrode pores. Such detachment and
repositioning may cause changes to the pore structure (e.g.,

shape and tortuosity) internal to the carbon black-binder domain
but such changes are not visible with the resolution of 119 nm of
this experiment. Finally, we should recall that these findings on
the structure and structural evolution are unique to each electrode
composition and its cycling protocol. More dramatic morpholo-
gical changes might be observed in other types of electrodes or at
other cycling rates. Also, since our analysis looks at the electrodes
between cycling steps, our conclusions are about permanent
deformation and not temporary fluctuations to the microstruc-
ture that occur during cycling. With the help of more accurate
representations of the microstructure, the dynamical changes due
to mass transfer can now hopefully be better structured.

Discussion
Even state-of-the-art volumetric imaging of lithium-ion battery
electrodes only provides suboptimal image quality due to tech-
nical limitations or practical constraints (e.g., time or system
availability). Accurate segmentation of volumetric datasets is
difficult, and while deep learning-based segmentation can help, its
effectiveness is dependent on the availability of high-quality
learning data that is in many cases not readily available.

Our investigation of the carbon black-binder domain in a
graphite-silicon composite anode after cycling shows the feasi-
bility and value of synthetic data. Indeed, our work highlights
how lithium-ion battery electrodes present an interesting use case
for deep learning-based segmentation on synthetic generated
datasets. In contrast to medical imaging64, for example, where
significant unknowns exist in the type of features that may be
found in volumetric image data, a LIB cell manufacturer knows
the volume fractions of the different material phases, the particle
size, and shape distributions. Post-mortem analysis65 can be
carried out on cells to provide information on the type of features
to be expected following cycling. Together with understanding of
the imaging process, this ground truth information can be used to
create synthetic structures and simulate the image data. By
populating databases with real and synthetic training data, the
community will be able to improve the applicability of deep
learning-based algorithms to semantic segment battery electrodes.

Furthermore, in addition to semantic segmentation, tools to
make higher-level assignments without segmentation such as
directly extracting certain material phases (e.g., carbon black-
binder domain network identification), finding regions with
defective structure properties (e.g., fractured particles or areas
with unusually high or low porosity), or assessing the state of
health based on the microstructural morphology should also be
pursued.

This work highlights that in addition to the potential usage of
machine learning in batteries for materials discovery66 and pre-
diction of failure67, there is significant potential to capitalize on
algorithms developed in the computer vision space to analyze the
chemistry and structure within batteries and its time-dependent
evolution during cycling. The ability to gather and quantify large
datasets with a well-defined error in their analysis are key to
moving past trial-and-error based materials and cell design and
assessment, and to enabling higher-level battery model and
simulation verification.

Methods
Electrode preparation. The electrode slurry is prepared by mixing 75 wt.% gra-
phite (SLP 30 Timcal) with 10 wt.% silicon (BASF, SiOx, x ≈ 1), 10 wt.% poly-
vinyldiene difluoride (PVDF) binder (Kynar Flex® HSV900), and 5 wt.% carbon
black (Timcal Super C60, Imerys). To improve the imaging contrast, 50 vol.% of
the carbon black in the carbon black-binder domain is replaced by copper nano-
particles (US Research Nanomaterials, Inc.)8,22. The slurry is coated on copper foil
with a doctor blade (150 μm blade gap), and dried overnight at 80 °C with nitrogen
flow. 13-mm disk-shaped electrodes are punched out and compressed with 1 t.
Further processing takes place in an Argon-filled glovebox.
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Electrochemical cycling. A half-cell containing electrode, a 250 μm thick glass fiber
separator (Whatman® glass microfiber filter), 500 μL standard LP50 electrolyte
(BASF, 1M LiPF6 in ethylene carbonate: ethyl methyl carbonate= 1:1 by weight) and
lithium metal as a counter electrode (Alfa Aesar, lithium foil, 99.9%) is assembled in
an Argon-filled glovebox. The cells are cycled galvanostatically in a potential range of
10mV–1.5 V at a rate of C/20 for 2, 5, and 8 cycles with VMP3 battery cycling system
(Biologic). Each protocol ends with a 20 h period of constant voltage (3 V).

Sample preparation for imaging. Samples with a diameter of 1 mm are punched
out of the electrode and glued to a custom-made invar sample holder. Laser milling
reduces the sample diameter to below 70 μm.

XTM measurements. All XTM measurements are recorded at the 32-ID-C
beamline of the Advanced Photon Source at the Argonne National Laboratory at a
beam energy of 8.4 keV. 1210 projections per tomographic scan are acquired with
an exposure time of 2 s resulting in a measurement time of ∼40 min. The
2448 × 2448 pixel detector leads to a voxel size of 27.5 nm.

Reconstruction. The ASTRA toolbox46 in MATLAB is used to filter and recon-
struct the acquired projections with the Filter Back Projection (FBP) algorithm.
Paganin phase retrieval68 was performed with a ratio of the refractive index
parameters δ/β= 0.028 and δ/β= 0.28.

Manual segmentation. Manual Segmentation is performed using the Dragonfly
software. More details can be found in Supplementary Note 5.

Generation of artificial learning data. Artificial learning data are generated using
MATLAB, the style transfer algorithm CycleGAN and the ASTRA toolbox to
simulate the tomography. Details are described in Supplementary Note 3 and
Note 4.

Renderings. Images and renderings are produced with Arivis, ImageJ, and
Inkscape.

Structural analysis. The analysis of the 12 segmented datasets is performed in
MATLAB using code from Legland et al.69. The diffusivity in the through-plane
direction was calculated on volumes scaled by a factor of 0.5 (384 × 384 × 384
voxel) using the DiffuDict toolbox of the GeoDict2020 Software (Math2Market
GmbH, Kaiserslauten, Germany) applying symmetric boundary conditions
(Dirichlet). Both border planes (along the through-plane direction) are set to have
a constant concentration which decreases edge effects. Symmetric boundary con-
ditions are also applied in all tangential directions and the Neumann (zero flux)
condition is used at the domain boundaries. The concentration drop across the
through-plane direction was set to 1 and the (dimensionless) Laplace equation is
solved in an iterative process by finite volume-based solver (EJ) and stops if the
process becomes stationary (tolerance of 0.001).

Data availability
The acquired x-ray tomography (XTM) data along with their respective labeled data have
been deposited in the ETH Zürich Research Collection and are available under https://
doi.org/10.3929/ethz-b-000505935. The ptychographic x-ray computed tomography
(PXCT) and XTM data acquired in a previous study39 are available under https://doi.org/
10.3929/ethz-b-000505938.
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