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ARTICLE

Phylogenetically and functionally diverse
microorganisms reside under the Ross Ice Shelf
Clara Martínez-Pérez 1,2,17, Chris Greening 3,4, Sean K. Bay 3,4, Rachael J. Lappan 3, Zihao Zhao 1,

Daniele De Corte5, Christina Hulbe 6, Christian Ohneiser 7, Craig Stevens 8,9, Blair Thomson10,

Ramunas Stepanauskas 11, José M. González 12, Ramiro Logares 13, Gerhard J. Herndl 1,14,15,

Sergio E. Morales 16✉ & Federico Baltar 1,10✉

Throughout coastal Antarctica, ice shelves separate oceanic waters from sunlight by hun-

dreds of meters of ice. Historical studies have detected activity of nitrifying microorganisms

in oceanic cavities below permanent ice shelves. However, little is known about the microbial

composition and pathways that mediate these activities. In this study, we profiled the

microbial communities beneath the Ross Ice Shelf using a multi-omics approach. Overall,

beneath-shelf microorganisms are of comparable abundance and diversity, though distinct

composition, relative to those in the open meso- and bathypelagic ocean. Production of new

organic carbon is likely driven by aerobic lithoautotrophic archaea and bacteria that can use

ammonium, nitrite, and sulfur compounds as electron donors. Also enriched were aerobic

organoheterotrophic bacteria capable of degrading complex organic carbon substrates, likely

derived from in situ fixed carbon and potentially refractory organic matter laterally advected

by the below-shelf waters. Altogether, these findings uncover a taxonomically distinct

microbial community potentially adapted to a highly oligotrophic marine environment and

suggest that ocean cavity waters are primarily chemosynthetically-driven systems.
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Ice shelves are permanent floating extensions of grounded
sheets of ice that connect to a landmass. The Ross Ice Shelf, by
area the largest ice shelf in the world, floats atop an

~54,000 km3 ocean cavity that covers about half of the Ross Sea
and hugs the coast of Antarctica (Fig. 1a). Generally over 300 m
thick1, the ice shelf creates a “lid” that isolates the underlying
ocean from the atmosphere and from sunlight, and exerts a direct
effect on the chemical composition of the water column beneath
it (in general ~700 m deep2). Waters under the permanent ice
shelves are influenced by continental ice-sheet melting and are
thus an important intermediary between subglacial outflow from
the Antarctic continent and the open Ross Sea, and ultimately the
Southern Ocean. Despite their oceanographic significance, sub-ice
shelf habitats are among the least-studied ecosystems in the
world’s oceans.

Oceanographic and biogeochemical observations of the water
cavity beneath the Ross Ice Shelf have been largely concentrated
on the shelf margins, in particular at the McMurdo Ice Shelf
(northwestern portion of the Ross Ice Shelf). Here, nutrient- and
biomass-rich water advected from eastern McMurdo Sound likely
plays an important role in sub-ice biogeochemistry of the dark
ecosystem beneath the shelf front3,4. Direct observations in the
grounding area have also confirmed a stratified and quiescent
ocean setting5. As a result, water below the Ross Ice Shelf is
reported to be exchanged with the Ross Sea with an estimated
residence time of 0.9–5.4 years6,7. This allows transport of
nutrients and organisms from the sea into the cavity. However,
unlike other well-ventilated shelves (e.g., Amery shelf8), the
proximity to open water is likely a major factor controlling bio-
geochemical process in the central basin of the Ross Ice Shelf
cavity.

Opportunities to directly access the central sub-ice shelf
cavity have been greatly limited by logistical constraints and
only one expedition to date has sampled the seawater beneath
the center of the Ross Ice Shelf. Sampling of the sub-ice water
column took place through borehole J9, during the Ross Ice
Shelf Project of 19779. The environment beneath the Ross Ice
Shelf was described as “similar to the abyssal ocean in being cold
and aphotic”. Within these waters, “sparse” populations of
bacteria, microbial eukaryotes, and animals were observed10,11.
The microbial populations were proven to be heterotrophically
active and incorporated radiolabeled organic carbon molecules
at very low rates comparable to the abyssal ocean10. Autotrophic
activity of these microbial communities was subsequently
reported and attributed to “nitrifying bacteria”12. In these
aphotic ecosystems lacking photosynthetic primary production,
dark carbon fixation by nitrifying microorganisms may be suf-
ficient to sustain observed microbial and macrofaunal
populations12. Lateral inputs of organic carbon from the Ross
Sea may also support these populations. However, given these
studies preceded the advent of molecular techniques, the com-
position of the microbial communities, their relatedness to open
ocean communities, and their possible links to ecosystem
function remained unexplored.

In this study we accessed the waters beneath the Ross Ice Shelf
to uncover the phylogenetic and functional diversity of the
microbial communities under the Antarctic ice shelf. We com-
bined multi-omics techniques (metagenomics, metatran-
scriptomics, single-cell genomics) with supporting biogeochemical
measurements (nutrient measurements and heterotrophic bac-
terial production). We show that the waters below the shelf harbor
a diverse microbial community with a taxonomic composition
distinct from other open ocean environments. In addition, we
observed the transcription of various genes associated with
lithoautotrophic and organoheterotrophic growth, uncovering the
basis for previous activities reported in below-shelf waters.

Results
The water column under the Ross Ice Shelf is characterized by
a steep vertical ammonium gradient. During the Ross Ice Shelf
Program in December 2017, an access borehole was created by hot
water drilling at site HWD-2 (latitude 80.6577 S, longitude

Fig. 1 Sampling location. aMap showing the sampling location of this study
(HWD-2) and the borehole study site J9 drilled in 197710. Bathymetry and
ice thickness are based on the Bedmap-2 data set1. The transparent ice
surface image was sourced from the MOA2009 image map119. b (left)
Thermohaline structure of the water column at station HWD-2 and defined
regions. IBL, Ice basal boundary layer. V-IL, variable intermediate layer,
likely modulated by tides and resulting in patches of water with variable
temperature and salinity. S-IL, stratified intermediate layer. BBL, benthic
boundary layer. (right) Schematic of HWD-2 drilling site depicts the
sampling location of seawater samples (red circles) at 30, 180, and 330m
below the ice shelf base.
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174.4626W), approximately 300 km from the Ross Sea and 330 km
northwest of borehole J9 (Fig. 1a). The shelf ice was 370m thick,
and the underlying waters extended to 750m below the shelf sur-
face (Fig. 1b). Triplicate samples were collected at three depths: 30,
180, and 330m below the bottom of the shelf (i.e., the ice-water
interface). These depths correspond to three regions based on the
thermohaline structure of the water column: a basal boundary layer
just beneath the ice (IBL), the upper part of an intermediate layer
characterized by highly variable temperature and salinity (V-IL),
and the lower part of the intermediate layer characterized by linear
stratification (S-IL). A homogeneous benthic layer was observed
(BBL) but not sampled (Fig. 1b; see13 for a detailed physical
oceanographic description of the study site). This structure con-
firmed that the cavity is filled southward by thermohaline convec-
tion in which dense, high salinity shelf water (HSSW) evolves into
very cold (~−2 °C) but relatively fresh Ice Shelf Water (ISW). The
temperature and salinity conditions suggest that, other than the
boundary layer regions, water properties conform to Deep Ice Shelf
Water, a mixture of high and low salinity shelf water and Antarctic
Surface Water (AASW)13. Contrary to what previous studies
detected at the shelf front3,4, other regional water masses were not
present at borehole HWD2. The flow of waters beneath the drilling
site was 2 cm s−1 towards the open ocean, suggesting a residence
time for these waters of ca. 4 years13. This estimate is within the
range of 1–6 years from previous ocean measurements6 and
modeling studies2,14.

Nutrient concentrations beneath the center of the Ross Ice
Shelf were generally lower than those measured at the edge of the
of the ice shelf3,4 and in deep waters of the Ross Sea15.
Concentrations of SiO2 (165–166 µM), NOx (7.32–7.37 µM) and
PO4

3− (0.71–0.72 µM) were relatively constant across the water
column (Table 1) and two- to fourfold lower than in the oceanic
cavity of the McMurdo Ice Shelf at the edge of the Ross Ice
Shelf3,4. In contrast, we observed a steep gradient of ammonium,
with concentrations tenfold higher at the basal layer (440 nM)
than in deeper waters (40–50 nM). Such high ammonium
concentrations, while lower than those in open waters of the
Ross Sea (which peak in summer with values >2 µM;15), were in
the same range as deep (400 m) high-salinity shelf waters (HSSW)
entering the front of the cavity (~500 nm;4). A similar nutrient
profile was reported beneath borehole J912, where ammonium
concentrations were higher beneath the ice shelf base and
decreased with depth, whereas values of NO3

− and NO2
−

remained constant throughout the water column. However,
concentrations of ammonium and NOx were 10- and 4-times
higher at the J9 borehole than we reported for the HWD-2
borehole (PO4

3− and SiO2 were not reported)13,16,17.
Microbial cell abundance ranged from 0.9 to 1.2 × 105 cells mL−1

(Table 1), which is typical for mesopelagic and upper bathypelagic
open ocean environments18 and comparable to deep waters at the
margin of the McMurdo Ice Shelf4. In contrast, prokaryotic
heterotrophic production (PHP, a proxy for growth of hetero-
trophic organisms) ranged from 0.3 to 0.6 µmol C m−3 d−1

(Table 1), which is one to two orders of magnitude lower than at
the margins of the Ross Ice Shelf (~40 µmol C m−3 d−1;4) and the
average global PHP rates in the mesopelagic (24 µmol C m−3 d−1)
and bathypelagic (4 µmol C m−3 d−1) open ocean18. Based on these
PHP rates, the turnover time of the microbial community in our
study ranged between 339 and 461 days, within the same order of
magnitude as the approximately 400 days reported previously at
borehole J910.

Below-shelf microbial communities are distinct from open
ocean communities. Microbial community composition beneath
the Ross Ice Shelf was determined using a combination of 16ST
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rRNA gene amplicon sequencing and shotgun metagenomic
sequencing. The microbial community was dominated by six
phyla: Proteobacteria, SAR324, Crenarchaeota (mostly Nitroso-
sphaerales), Marinisomatota (formerly Marinimicrobia, SAR406
clade), Chloroflexota (mostly SAR202), and Planctomycetota
(Fig. 2b). Consistent with a dark oligotrophic environment, the
eukaryotic community was largely comprised of taxa typically
found in the meso- and bathypelagic open ocean, including
Alveolata, Dinoflagellata, and Rhizaria lineages (Supplementary
Fig. 1a, Supplementary Data 1). With respect to viruses, most
bacteriophages detected in the metagenomic assemblies (~50%)
belonged to uncultured or unclassified taxa (Supplementary
Fig. 1b, Supplementary Data 2), with the most abundant classified
viruses affiliating with the family Myoviridae (~30%).

We used 16S rRNA gene sequences extracted from metage-
nomic reads (miTags;19) to profile the relatedness of microbial
communities beneath the Ross Ice Shelf to those of marine
ecosystems globally (Fig. 2a, c20–23,). This approach enabled
comparison of microbial communities from available marine
metagenomic datasets, while circumventing potential biases from
inter-study community composition comparisons based on
amplicon analyses24. In agreement with previous global metage-
nomic analyses20, beta diversity analysis (Bray-Curtis dissim-
ilarity) showed oceanic microbial communities cluster by depth,

though this was less pronounced in polar regions (Fig. 2c, d). In
this global context, the communities beneath the Ross Ice Shelf
form a cluster that is related to, but distinct from, those of
mesopelagic polar open ocean waters (Fig. 2c, d). When
compared to deep (>200 m) open ocean communities worldwide,
compositional differences between open-ocean and below-shelf
microbial communities are evident even at the phylum level
(Fig. 2d). For example, the relative abundances of Chloroflexota,
Gemmatimonadota, Marinisomatota, Myxococcota, Planctomy-
cetota, and SAR324 were significantly higher under the Ross Ice
Shelf, especially in deeper layers (Kruskal-Wallis test,
p= 9.4 × 10−7− 1.9 × 10−5, full p values shown in Supplemen-
tary Data 3). The phyla Halobacterota, Anck6 and PAUC34f,
while typically rare in the open dark oceans, showed a tenfold
increase in relative abundance in the cavity beneath the Ross Ice
Shelf. Analyses restricted to polar environments using MGLM-
ANOVA confirmed significant compositional differences between
the ocean cavity and deep (>200 m) open-water polar environ-
ments (LRT= 17333, p= 0.001, Supplementary Data 3). In
addition, Indicator Species Analysis (Indval) congruently identi-
fied ‘signature species’ of the ocean cavity (with respect to deep
open-water polar communities) belonging to the phyla PAUC34f,
Planctomycetota, and SAR324, as well as the classes Lenti-
sphaeria, and SAR202 (p= 0.001–0.002, full p values shown in
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Supplementary Data 3). These ‘signature species’ (with IndVal
p < 0.05, test statistic >0.5, Supplementary Data 3) represented on
average ~10% of the community beneath the Ross Ice Shelf,
reaching up to 17% in the mid water column, in comparison to an
average abundance of 0.75% in deep polar open waters.

Amplicon sequencing analysis provided additional taxonomic
resolution of the communities under the ice shelf and confirmed
the depth differentiation anticipated from oceanographic and
chemical data. Significant differences in community alpha and
beta diversity below the Ross Ice Shelf were observed between the
basal boundary layer below the ice (30 m) and the deep water
column (330 m) (p= 0.028, Supplementary Data 3, Supplemen-
tary Figs. 2 and 3). The species driving these differences are
described in the Supplementary Notes.

Nitrifying archaea and bacteria dominate transcription under
the shelf. We used a multi-omics approach to uncover the
functional capacity of the microbial community beneath the Ross

Ice Shelf, integrating genome-resolved metagenomics, single-cell
genomics, and metatranscriptomics. We assembled 235 derepli-
cated partial genomes (Fig. 3, Supplementary Figs. 4 and 5;
Supplementary Data 4). These comprised 67 SAGs (single-
amplified genomes) and 168 manually curated MAGs (meta-
genome-assembled genomes), all with completeness >50% and
contamination <5%25 (Fig. 3; Supplementary Data 4). These
represent on average 50–60% of each sample’s metagenomic and
metatranscriptomic reads, including all phyla with relative
abundance above 0.5% (Fig. 2) and the top four most abundant
genera (Supplementary Fig. 2b). Their phylogenetic diversity,
metabolic traits, and relative abundances are depicted in Fig. 3.

The presence and transcription of key metabolic genes in
assembled and unassembled reads was used to identify prevailing
metabolic pathways in the cavity under the Ross Ice Shelf. By far the
most highly transcribed genes involved in autotrophic energy
conservation pathways were those for oxidation of ammonium
(ammonia monoxygenase, amoA) and nitrite (nitrite oxidoreductase,
nxrA) (Fig. 4b). Accordingly, ammonium transporters and amoA

Fig. 3 Phylogeny of reconstructed genomes under the Ross Ice Shelf. Phylogenetic genome tree of the 235 metagenome-assembled genomes (MAGs)
and single-amplified genomes (SAGs) retrieved from this study. The genomes are labeled by order, shaded by phylum, and numbered as per
Supplementary Data 4. Genome characteristics (inner-to-outer circular heatmap): average genome completeness (%) at phylum level, relative abundance
expressed as counts per million (CPM) and relative transcriptional activity as transcripts per million (TPM, Log10+ 1 transformed), and presence of marker
genes for key metabolic pathways discussed in the main text.
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were the most transcribed genes overall (Supplementary Fig. 6).
Transcription patterns correlated with ammonium concentrations
(Table 1) and relative abundance of the archaeal order Nitrosophaer-
ales (Supplementary Figs. 2b, 4 and 5). Phylogenetic analysis
corroborated that the most numerous amoA genes and transcripts
were affiliated with Nitrosopumilus spp. (Fig. 4c, Supplementary
Fig. 7), the most abundant and active archaeal lineage beneath the ice
shelf (Supplementary Figs. 2b, 4 and 5), with some gammaproteo-
bacterial amoA reads also detected (Fig. 4a, Supplementary Fig. 7).
The metagenomic and metatranscriptomic reads of the marker gene
for nitrite oxidation, nxrA, affiliated with the phyla Nitrospinota and,
to a lesser extent Nitrospirota (Supplementary Data 5, Supplementary
Fig. 8). In line with an autotrophic lifestyle, we identified the
determinants of ammonium- or nitrite-dependent carbon fixation via
the archaeal 4-hydroxybutyrate cycle (hbsC, hbsT genes) and
Nitrospina reductive tricarboxylic acid cycle (aclB gene) (Fig. 4,
Supplementary Figs. 9, 10 and 11; Supplementary Data 3).

Consistent with these results, reconstructed genomes from the
genera Nitrosopumilus and Nitrospina were among those with
highest relative transcriptional activity in our dataset (S4, S5).

These groups express a small fraction of their genomes (i.e., ~25%
of total genes at 30 m) compared to other community members
(Supplementary Fig. 4d–f), devoting most of their transcriptional
effort to the key processes of carbon fixation and ammonia and
nitrite oxidation, respectively. Despite being well-represented in
the metatranscriptomic dataset, the relative abundance of the
genus Nitrospina was low in the metagenomic dataset. For
instance, the Nitrospina lineage represented by SAG_5 was
among the least abundant genomes, but was highly active on the
transcriptional level (RNA/DNA ~270; Supplementary Fig. 5)
(Supplementary Data 4). These discrepant findings are in line
with recent single-cell analyses showing Nitrospinota have high
activity despite low abundance;26 it is proposed that the large cell
size or high mortality rates of these nitrite oxidizers are
responsible for their low abundance in metagenomes and
amplicon datasets compared to ammonium oxidizers26,27.

Various inorganic and organic energy sources likely support
below-shelf bacteria. Many members of the microbial community
are capable of supporting or surviving beneath the shelf through a

Fig. 4 Energy conservation and carbon fixation strategies of communities beneath the Ross Ice Shelf. a Dot plot showing the metabolic potential of the
235 metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs). The size class of each point represents the number of genomes in
each class that encode the gene of interest and the shading represents the average genome completeness. b Heatmaps showing the relative abundance of
these genes in the three metagenomic and metatranscriptomic unassembled short reads datasets. For metagenome reads, the heatmap shows the
abundance of each pathway, expressed as average gene copies per organism (across all genes listed in the pathway) calculated relative to the abundance
of 14 universal single-copy ribosomal genes, with scales capped at 1. For metatranscriptome reads, the heatmap shows log10-transformed reads per
kilobase million (RPKM). Where genes within the same pathway are collapsed together, the values (community percentage or RPKM) are summed. c
Phylogenetic tree of protein sequences of the highly transcribed ammonia monooxygenase subunit A (amoA) gene from archaeal single-amplified genomes
and unbinned metagenomic contigs shown in bold compared to reference sequences. See Supplementary Fig. 7 for a detailed version of this tree.
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chemoautotrophic or mixotrophic lifestyle. These include gamma-
proteobacterial lineages, such as the Thioglobaceae (SUP05 and
ARCTIC96BD-19) and UBA10353, which co-encode genes for the
Calvin-Benson-Bassham cycle and heterotrophic metabolism. Con-
sistently, RuBisCO genes (rbcL) affiliated to sulfur-oxidizing taxa
(Supplementary Fig. 10) were transcribed at high levels throughout
the water column (Supplementary Fig. 6). The potential of these
lineages to fuel chemoautotrophy using reduced sulfur compounds as
electron donors is supported by the presence and transcription of
marker genes for sulfide oxidation (sqr, r-dsrA) and thiosulfate oxi-
dation (soxB) (Fig. 4a, Supplementary Figs. 12, 13 and 14); (Sup-
plementary Data 5 and 6). Abundant heterotrophic lineages, such as
Marinisomatota and SAR324 (Fig. 2a, Supplementary Fig. 4), also
encoded carbon monoxide dehydrogenases (Fig. 4a, Supplementary
Fig. 15, Supplementary Data 6); carbon monoxide may serve as an
energy source supporting persistence of this community, as we have
recently described for other aerobic heterotrophic bacteria28,29. Genes
for formate oxidation were also widespread and highly transcribed
(Fig. 4b, Supplementary Fig. 6, Supplementary Data 6), whereas few
community members are predicted to use H2 (Supplementary
Fig. 16, Supplementary Data 6).

Metabolic annotations of the derived genomes suggests that
many identified taxa in this ecosystem adopt an organohetero-
trophic lifestyle. Highly transcribed genes include a wide range of
carbohydrate-active enzymes (CAZymes, Fig. 5,30), as well as the
substrate-binding protein of the oligopeptide transporter (OppA;
Supplementary Fig. 6). The highest enrichment (genes/Mbp),

diversity (number of different families), and transcripts of
CAZymes were detected in reconstructed genomes of the phyla
Hydrogenedentota, Latescibacterota, Myxococcota, Planctomyce-
tota, and Verrucomicrobia. The CAZyme-rich genomes were
among the most abundant (i.e., with highest coverage) in our
study (Supplementary Fig. 4) and belong to the phyla enriched
under the Ross Ice Shelf with respect to deep ocean environments
(Fig. 2d). These genomes contained glycoside hydrolases,
polysaccharide lyases, and glycosyltransferase families required
for the utilization of heterogeneous polysaccharide chains, such as
alginate, rhamnose, and xylan (Supplementary Data 7). These
genomic features are consistent with previous studies describing
the capability of these phyla to metabolize recalcitrant organic
polymers31–33. Thus, the proportion of the community differen-
tially enriched in this ecosystem could be adapted to degrade
refractory organic compounds persisting in the advected waters
beneath the Ross Ice Shelf. In contrast to their autotrophic
counterparts, these heterotrophic populations transcribed a large
percentage of their genome (~80%), especially in deeper waters
(Supplementary Fig. 4d–f), with transcriptional effort spreading
across a variety of substrate-utilization processes.

The metatranscriptome also revealed various other processes
supporting life beneath the shelf. The heterotrophic majority in
this system transcribed genes involved in the acquisition of
inorganic and organic nitrogen and phosphorus compounds (e.g.,
urea, isocyanates, phosphonates, polyphosphonates; Supplemen-
tary Fig. 6). Genes encoding for cold adaptation processes (e.g.,
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cold-shock proteins), osmoregulation (e.g., glycine betaine
transporters), and motility (i.e., flagellar apparatus) were highly
transcribed (Supplementary Fig. 6). The constitutive expression of
cold-shock chaperones can protect against cold-induced protein
misfolding34 and is likely an adaptive response to maintain
protein homeostasis at the very low water temperatures below the
shelf. Furthermore, transport of compatible solutes protects the
cell against freezing, hyper-osmolality, and desiccation35. Glycine
betaine transporters may provide an additional advantage given
these transporters were recently shown to be multifunctional, as
they transport multiple substrates in addition to the key
osmoregulatory compound glycine betaine36.

Discussion
Collectively, our results provide a detailed insight on the ecolo-
gical strategies adopted by communities living in the world’s most
extensive sub-ice shelf system. Oceanic cavities below ice shelf
systems are uniquely different from open ocean environments in
their dependence on in situ chemosynthesis and on lateral
advection of food sources from open-water areas, rather than on
vertical fluxes of phytoplankton-derived detrital matter37. We

estimate that the waters sampled at the borehole location have
been in the cavity for as much as four years prior to sampling; this
is up to 10-20-fold longer than the time predicted for marine
snow from the ocean surface to reach the abyss (~6000 m38,).
Likewise, the heterotrophic production rates measured in this
study and at borehole J910 were among the lowest measured in
marine ecosystems, including environments with similar
temperatures39. It has been suggested that production rates are
highly influenced by the supply and concentration of labile dis-
solved organic material39, and thus the water column beneath the
ice shelf is predicted to be highly oligotrophic with respect to
labile organic matter.

Based on these heterotrophic rates and assuming a heterotrophic
prokaryotic growth efficiency of ~5% (typical of deep oceanic
waters, e.g.,40.), we estimate a total organic carbon demand (i.e., the
combined carbon incorporation into biomass and respiration) of
~6–12 µmol C m−3 d−1. This total carbon demand is in the same
range as the carbon fixation rates reported from the environment
beneath the J9 borehole (8.3 µmol C m−3 d−112). While the con-
tribution of exogenous organic matter remains to be quantified, the
close coupling between in situ dark carbon fixation and organic
carbon demand suggests that the ecosystem beneath the Ross Ice
Shelf is largely sustained by dark carbon fixation. This would differ
from deep open ocean environments, where heterotrophic carbon
demand significantly relies on the vertical fluxes of particulate
organic carbon generated in the euphotic layer41,42.

Our multi-omic results support this hypothesis, while unco-
vering the mediators and pathways responsible for the auto-
trophic and heterotrophic activities under the Ross Ice Shelf
(Fig. 6). Among the lineages represented by MAGs and SAGs
with the highest transcriptional activity are those originating from
the chemolithoautotrophic genera Nitrosopumilus and Nitros-
pina. Overall, this agrees with previous reports that aerobic
ammonium-oxidizing microorganisms are widespread in Ant-
arctic marine environments (e.g.,43) and that ammonium oxida-
tion occurs beneath Antarctic shelves and sea ice12,44. These and
other inferred facultative chemolithoautotrophs (such as facul-
tative sulfur-oxidizing bacteria) are likely to be responsible for
dark carbon fixation rates previously observed beneath borehole
J912 and thus provide a supply of organic carbon to an ecosystem
shielded from sunlight.

The importance of dark carbon fixation has been recognized in
various oceanic regions during the polar winter. Microbial
lineages (e.g., Nitrospina, Nitrosopumilus, SAR324, and
Marinisomatota45–47) and enzymes (such as those mediating
ammonium, nitrite, and sulfur oxidation48) that mediate che-
molithoautotrophy have been observed to increase in Antarctic
waters during the transition to the winter season. Likewise,
comparable lineages and genes capable of sulfur compound oxi-
dation have been detected in winter open waters and the central
basin under the Ross Ice Shelf. Together with mounting evidence
that sulfur compound oxidizers sustain carbon fixation in the
wide dark open ocean (e.g.,49) and the diverse sources of reduced
sulfur compounds in marine oxic environments (e.g.,50), it is
plausible that these clades can also contribute to chemoauto-
trophy in the oceanic cavity beneath the Ross Ice Shelf.

It is likely that ammonium is a primary energy source sustaining
primary production in aphotic Antarctic waters. Consistent with
this idea, ammonium oxidation rates have been reported to be
higher in Antarctic coastal waters during the austral winter and to
significantly support the heterotrophic demand43. In the absence of
direct rate measurements in this study, we estimated the ammo-
nium oxidation rates potentially supported by the standing
ammonium concentrations in the water column. Our estimates for
the basal layer (~90 nM NH4

+ d−1) are in accordance to rates
measured in the Southern Ocean (62 nM NH4

+ d−1) with
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Fig. 6 Schematic illustration of the dominant bacterial and archaeal
groups in the water column under the Ross Ice Shelf. Dotted lines
represent the three depths sampled below the sea ice in this study (not to
scale; for a scaled representation, see Fig. 1). At the lower fringe of the ice
basal boundary layer (IBL), high concentrations of ammonium (from a yet
unknown source) are likely to drive high relative abundance and
transcriptional activity of ammonium oxidizing archaea (Nitrosopumilus
ssp.) and nitrite oxidizing bacteria (Nitrospina ssp.). These, together with
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comparable ammonium concentrations (0.7 µM NH4
+;43), and

could support the heterotrophic demand in the oceanic cavity
under the shelf (Supplementary Notes). These estimates suggests
that the microbial communities beneath the Ross Ice Shelf can
sustain ammonium oxidation at similar rates to those in the winter
Antarctic Ocean and have the potential to be significant primary
producers.

The ammonium profile beneath the Ross Ice Shelf is intriguing.
Contrary to other nutrient concentrations measured (which do
not vary significantly through the water column), ammonium
concentrations are significantly higher in the ice basal boundary
layer compared to the deeper water samples, but comparable to
those in the periphery of the shelf4. This profile (exclusive for
ammonium with respect to other nitrogen species) is consistent
with the reports beneath borehole J912. The proposed circulation
model beneath the shelf13, by which the cavity is filled southward
by dense water masses that reach its interior via deep cavity
circulation, renders it unlikely that the high ammonium con-
centrations detected in the fresh, northward flowing waters
beneath borehole HW2D or J9 originate from the open Ross Sea.

If externally sourced, nutrient concentrations would be
expected to be highest in deeper waters, or else be homogenized
in the water column as water masses evolve and mix in the cavity.
The latter appears to be the case for the other nutrients measured
in this and the J9 expedition. The exception observed in the
ammonium profile suggests that this compound could be sourced
beneath the ice shelf. In particular, terrestrial-origin sediments in
the basal ice layer may be a significant source of ammonium to
the seawater circulating beneath. Deployment of cameras at
HWD2 revealed sedimentary englacial debris in the lower 20
meters of the ice shelf13. While ice melting and freezing can
plausibly result in the rainout of the pellets in a sub-ice-shelf
cavity, we did not witness this effect; no sediments were retrieved
from the pumping samples and the microbial communities
sequenced from the englacial debris and the water column were
unrelated (Supplementary Fig. 2). However, temperature and
salinity data from our study site (Fig. 1b,13) clearly showed ice-
shelf basal melting and a supply of freshwater to the upper region
of the water column, a phenomenon that could result in the
observed replenishment of ammonium concentrations in this
system. In free-floating sea ice, as well as in subglacial lakes,
ammonium enrichments have been traditionally attributed to wet
and dry atmospheric deposition, as well as in situ organic matter
regeneration in brine channels, especially within older and thicker
ice51–53. The latter may be also a mechanism for ammonium
accumulation in deep layers of the ice shelf54, subject to solubi-
lization and transport by fresh melt water. If such is the case, the
ammonium transported by the ice basal boundary layer could be
sourced locally (at borehole HWD2) or elsewhere upstream.
Dissolved nutrients in the ice sheet or englacial debris are even-
tually diluted as they circulate the interior of the shelf54, which
could explain the observed higher concentrations in the water
column from borehole J912, 330 km upstream from our study site.
While the driving factors of the nutrient profile in the water
column remain unclear, the tenfold decrease in ammonium
concentrations correlate with changes in relative transcriptional
activity of the ammonium-oxidizing genus Nitrosopumilus
(Supplementary Fig. 4). As described in Supplementary Notes, we
observed depth-related differences in microbial community
composition, metabolic capabilities, and gene expression, though
additional depth profiles would be required to confirm this.

The community members with highest relative abundance and
transcriptional activity throughout the water column included
nitrifying autotrophic taxa and organoheterotrophic bacteria
(Supplementary Figs. 4, 5 and 6). It is likely that the genomes with
highest relative transcriptional activity represent two opposite

adaptative strategies to the conditions beneath the Ross Ice Shelf.
Based on the proportion of their genome expressed, nitrifiers are
likely to effectively exploit the surrounding environment by
expressing a reduced set of genes encoding a few metabolic
pathways. The opposite is observed in the highly expressed het-
erotrophic clades (Supplementary Fig. 4). By expressing up to
95% of their genome (e.g., in members of Latescibacterota and
Verrucomicrobiota), the transcriptional effort of the latter is
spread across a variety of process and in particular, to the
exploitation of multiple substrates. These observations are con-
sistent with previous studies combining expression and genomic
datasets, which suggest that activity levels, substrate utilization
and transcriptome diversity may be linked in defining ecological
niches of microbial communities55,56.

In particular, our results suggest that the most active hetero-
trophic organisms are adapted to degrade complex organic com-
pounds, including most of the enriched phyla in this environment,
such as Myxococcota and Planctomycetota. Their capacity to
degrade complex organic material from a range of sources,
including potentially of both autochthonous and allochthonous
origin, likely confers a major selective advantage in this highly
oligotrophic ecosystem. Heterotrophy based on the consumption of
recalcitrant dissolved organic carbon has been considered as one
possibility for sustaining the oceanic Antarctic winter food web57,
and could also be an additional support for life under the Ross Ice
Shelf. Unlike organic carbon in Antarctic winter waters, which may
have accumulated during the highly productive summer season,
organic substrates beneath the Ross Ice Shelf potentially consist of
vertically transported exudates and necromass derived from
lithoautotrophic primary producers, but also recalcitrant complex
organic compounds laterally transported from the Ross Sea into the
shelf cavity. Decomposition of phytoplankton entering the shelf
cavity is estimated at a scale of ~10 years4. Together with previous
reports of diatoms in below-shelf waters9, this indicates that some
photoautotrophically-derived organic matter can reach the center of
the oceanic cavity. However, the metagenomes suggest that pho-
tosynthetic eukaryotes (i.e., class Bacillariophyceae) make a small
fraction of the eukaryotic community (0.05 %); this finding is also
consistent with undetectable concentrations of chlorophyll a
beneath borehole J912. Despite potentially serving as a substrate for
organoheterotrophs beneath the ice shelf, phytoplankton are
therefore unlikely contributors to the dissolved organic matter pool,
whereas detrital sources of bacterial substrates may be more
important. Further work is now needed to discriminate organic
matter sources and nutrient exchange processes within the shelf.

Overall, microorganisms under Antarctica’s ice shelves can
thrive in some of the coldest and possibly carbon-limited marine
waters, while playing a crucial role in the remineralization of
nutrients to the Southern Ocean. Our results not only suggest that
the waters below the Ross Ice Shelf are driven by chemo-
lithoautotrophic processes, but also uncover the mechanisms
responsible for sustaining that activity58. Alongside other recent
reports of oceanic dark carbon fixation,27,49,59, this study also
emphasizes the importance of inorganic energy sources in driving
marine communities in the absence of photosynthesis. Finally,
our results suggest that ammonium associated with fresh melt
waters at the base of the ice is an important supply of inorganic
electron donors supporting chemolithoautotrophy, and thus has a
significant influence in the composition and activity of the
microbial community. Ocean-driven basal melting, a source of
freshwater and thus potentially of ammonium in the sub-ice
cavity, may increase in a warming climate scenario60. Assuming
that our observations are representative of the central region of
the cavity under the Ross Ice Shelf, increased basal ice melting
could result in an increased vulnerability of communities sup-
ported by sub-ice shelf processes61, potentially leading to shifts in
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the relative biogeochemical importance of chemolithoautotrophic
processes in this extensive ecosystem. These insights emphasize
the importance of baseline data from existing sub-ice shelf eco-
systems, such as the Ross Ice Shelf, to inform the prediction of
biogeochemical impacts of climate change in the Southern Ocean.

Methods
Site selection and description. Sampling took place in December 2017 and was
conducted by members of the Aotearoa New Zealand Ross Ice Shelf Program.
Samples were collected from the sub-shelf water column at a site in the central
region of the ice shelf, borehole HWD-2 (Latitude -80.6577 N, Longitude
174.4626W), ~300 km from the shelf front and 330 km northwest of borehole J9
(Fig. 1a). The sampling site is near the glaciological boundary between ice origi-
nating from the West Antarctic Ice Sheet and ice flowing from East Antarctica
through Transantarctic Mountain glaciers (Fig. 1a). Sediment of terrestrial origin
was observed in the lowermost ~60 m of the ice.

Hot water drilling and sampling. A hot water drilling system built and operated
by the Victoria University of Wellington Drilling Office was used to bore through
the ice shelf, creating an access borehole with a maximum diameter of 30 cm. The
borehole was used for direct sampling of water and sea floor sediments, and to
conduct in situ measurements in the water column. These activities were con-
ducted inside a custom-built tent that facilitated 24-h operations in any weather
conditions. Seawater samples were obtained from three depths (400 m, 550 m, and
700 m from the top of the shelf, which correspond to 30 m, 180 m, and 330 m deep
from the bottom of the ice shelf, respectively). These were chosen to characterize
the water column under the Ross Ice Shelf while keeping the sampler ca. 40–50 m
away from the seafloor and from ice crystals and sediment in the ice-shelf basal
layer. The drilling water was fresh (<15 psu) and relatively warm (between −1 and
+1 °C), so it remained stably floating in the borehole and did not sink into deeper
layers. This, together with the advection of seawater below the ice shelf, precluded
any contamination of collected seawater with the drilling water (Supplementary
Fig. 2a, b). The lack of intrusion of the freshwater used for the drilling was rou-
tinely checked by salinity and temperature-depth profiles.

Samples were collected by in situ filtration using a McLane WTS-LV-Bore Hole
filter pump fitted with a 142 mm diameter, 0.22 μm pore-size filter (Supor
membrane filters, Pall Corporation). Before and after deployment, the filter holder
was thoroughly cleaned to avoid sample cross-contamination. The pump head
interior was also flushed after every deployment with fresh water to prevent salt
crystal formation and sample contamination. This sampling approach was aimed at
obtaining the most realistic representation of the microbial community’s
composition and activity with the minimum possible sampling biases.
Approximately 200 L of water were filtered at each depth within ca. 2 h. Thereafter,
filters were placed in sterile Petri dishes and divided into seven sections using
sterile scalpels and transferred to cryovials. The filtered, frozen samples were
directly stored in zip lock bags in a 3 m deep borehole drilled into the cold surface
snow layer until transported to Scott Base (and further airplane transport to New
Zealand). The temperature of the samples deposited in the storage borehole
remained stable ranging mostly between –27 °C and –28 °C (Supplementary
Fig. 17). These samples were used for 16S rRNA amplicon sequencing,
metagenomics, and metatranscriptomics.

Water samples (150–300 mL) were also collected at the same three depths using
the McLane WTS-LV-Bore Hole pump without a filter-holder in order to further
minimize contamination. Once the pump was brought up, it was run in reverse to
collect the water, but excluding the first 30–60 mL of water (used for rinsing).
Water samples for inorganic nutrient analyses were filtered through combusted
Whatman GF/F filters, collected in acid-cleaned HDPE bottles, and stored frozen
until analysis in the home laboratory, following procedures recommended by the
Joint Global Ocean Flux Study (JGOFS62). The liquid samples for the
determination of microbial cell abundance, prokaryotic heterotrophic production,
and the generation of single-cell amplified genomes (SAGs) were collected in acid-
cleaned Nalgene™ opaque amber HDPE bottles, stored at 2 °C, and transported
within 48 h to Scott Base to perform further laboratory analyses. The samples were
imported to New Zealand under Ministry for Primary Industry permit number
2017063583 (Permit to import Restricted Biological Products of Animal Origin)
issued to the University of Otago Department of Marine Science.

To check for potential contamination, samples were also collected from the
following sites: freshly melted snow nearby the camp area, drilling water from a
reservoir tank, and sediments dislodged from the ice shelf (identified as englacial
debris) and collected with the reaming tool. Water samples were filtered onto
0.22 µm polycarbonate filters (47 mm filter diameter, Millipore), and all samples
were stored in cryovials and frozen.

Physicochemical measurements. A SBE 19plusV2 SeaCAT Profiler CTD (Seabird
Electronics, Inc.) was used to measure temperature, salinity and depth within the
borehole and in the water under the Ross Ice Shelf for a detailed characterization of
the water column. Furthermore, a self-contained single channel logger (RBR Solo)
was attached to the frame of the WTS-LV-Bore Hole pump (at the opposite side of

the water intake) for an accurate determination of the temperature and depth of the
sampling casts. Samples for determining the concentrations of nitrate, dissolved
reactive phosphorus (phosphate), ammonium and SiO2

62 were colorimetrically
analyzed using flow-injection analysis on a Lachat Auto-analyzer according to
methods described elsewhere63. Measurements of nutrient concentrations were
routinely corrected with reference blank solutions in each sample run. No
anomalies were detected in the blanks, indicating no source of detectable con-
tamination during the measurements.

Prokaryotic abundances and heterotrophic production. Prokaryotic abundance
was determined by flow cytometry. Samples (1.6 mL) were preserved with glutar-
aldehyde (2% final concentration), left at 4 °C in the dark for 15 min, flash-frozen
in liquid nitrogen, and stored at −80 °C until analysis. Prior to analysis, the fixed
samples were thawed, stained in the dark with a DMS-diluted SYTO-13 dye
(Molecular Probes Inc., 2.5 µM final concentration) for 5 min, and run on a BD
AccuriTM flow cytometer with a laser emitting at 488 nm wavelength. Samples
were run at low or medium speed until 10,000 events were captured. A suspension
of yellow–green 1 µm latex beads (105–106 beads mL−1) was added as an internal
standard (Polysciences, Inc.).

Prokaryotic heterotrophic activity was estimated via the incorporation of
3H-leucine using the centrifugation method64. 3H-leucine (Perkin-Elmer, specific
activity 169 Ci mmol−1) was added at saturating concentration (40 nmol L−1) to
triplicate 1.2 mL subsamples. Controls were established by adding 120 µL of 50%
trichloroacetic acid (TCA) to triplicate control tubes 10 min prior to radioisotope
addition. The microcentrifuge tubes were incubated in the dark at 4 °C for 48 h.
Incorporation of leucine in the quadruplicate tubes per sample was terminated by
adding 120 µL ice-cold 50% TCA. Subsequently, the samples and the controls were
kept at –20 °C until centrifugation (at ca. 12,000 × g) for 20 min followed by
aspiration of the water. Finally, 1 mL of scintillation cocktail was added to the
microcentrifuge tubes before determining the incorporated radioactivity after
24–48 h on a Tri-Carb 2000® Liquid Scintillation Counters scintillation counter
(Perkin-Elmer) with quenching correction. The blank-corrected leucine
incorporation rates were converted into prokaryotic heterotrophic production
(PHP) using the theoretical conversion of 1.55 kg mol−1 leucine incorporated65–67.
The rates of leucine incorporation obtained at the incubation temperature (4 °C)
were converted to the in situ temperature of -2 °C using an activation energy of
72 kJ mol−1[ 67.

Single cell genomics. Sample collection and analyses were performed as described
previously27, see Supplementary Methods for full description. Briefly, triplicate
seawater samples (1 mL) were transferred to a sterile cryovial containing 100 µL of
glyTE (20 mL of 100 × TE buffer pH 8.0, 60 mL Milli-Q water and 100 mL of
molecular-grade glycerol), and samples were stored at –80 °C until analysis. SAG
generation was performed at the Single Cell Genomic Center at Bigelow Laboratory
for Ocean Sciences (SCGC) using fluorescence-activated cell sorting and WGA-X
genomic DNA amplification. Paired-end Illumina libraries were created with
Nextera XT (Illumina), sequenced with NextSeq 500 (Illumina) and de novo
assembled using a workflow based on SPAdes68 as previously described69. The
quality of the sequencing reads was assessed using FastQC v0.11.7 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and the quality of the
assembled genomes was determined using CheckM v.1.0.770 and tetramer fre-
quency analysis71. This workflow was evaluated for assembly errors using three
bacterial benchmark cultures with diverse genome complexity and %GC, indicating
no non-target and undefined bases in the assemblies and average frequencies of
mis-assemblies, indels and mismatches per 100 kbp: 1.5, 3.0 and 5.069. Functional
annotation was first performed using Prokka72 with default Swiss-Prot databases
supplied by the software. Prokka was run a second time with a custom protein
annotation database built from compiling Swiss-Prot73 entries for Archaea and
Bacteria.

DNA extraction, 16S rRNA gene amplicon and metagenomic sequencing. DNA
was extracted using a PowerSoil® DNA Isolation Kit (MoBio, Carlsbad, CA, USA).
The manufacturer’s protocol was modified to use a Geno/Grinder for 2 × 15 s
instead of vortexing for 10 min and a final elution of 50 µL solution C6 (sterile
elution buffer, 10 mM Tris) was used. DNA concentration was measured using a
Nanodrop spectrophotometer (Thermo Fisher). The median 260/280 nm wave-
length ratio was 1.5 with a lower quartile of 1.4 and an upper quartile of 1.7.
Extractions were performed in triplicate for each depth under the Ross Ice Shelf
(total of 9 samples) for subsequent amplicon and metagenomic sequencing.

16S rRNA gene amplicon sequencing was carried out using the Earth
Microbiome Project74 protocols and standards (http://earthmicrobiome.org/
protocols-and-standards/16s/), which include the following modifications to the
original 515F–806 R primer pair75 (the updated sequences, 5′- 3′, are as follows:
515 F: GTGYCAGCMGCCGCGGTAA; 806 R: GGACTACNVGGGTWTCTAAT).
In brief, degeneracy was added to both the forward and reverse primers to remove
known biases against Crenarachaeota/Thaumarchaeota (515 F, also called 515F-
Y76) and the marine and freshwater Alphaproteobacterial clade SAR11 (806 R77,).
All amplicons (independent replicates) were run on an Illumina (Foster City, CA,
USA) MiSeq 250 bp × 2 run. For metagenomic sequencing, Thruplex DNA libraries

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27769-5

10 NATURE COMMUNICATIONS |          (2022) 13:117 | https://doi.org/10.1038/s41467-021-27769-5 | www.nature.com/naturecommunications

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://earthmicrobiome.org/protocols-and-standards/16s/
http://earthmicrobiome.org/protocols-and-standards/16s/
www.nature.com/naturecommunications


(~300 bp inserts) were created from each individual DNA extraction and
sequenced in an Illumina HiSeq 2500 platform (2 × 125 bp).

RNA extraction and metatranscriptomic sequencing. RNA was extracted fol-
lowing the RNeasy mini kit (Qiagen, Hilden, Germany) procedure and the ethanol
precipitation protocol. The remaining DNA was removed with TurboDNase
(Invitrogen, Carlsbad, CA, USA) and the efficiency of removal was tested with
PCR. Enrichment of RNA was performed with 20 μL of sample RNA following the
procedures of the MICROBEnrich (Ambion, Austin, TX, USA) and MICROBEx-
press (Ambion, Austin, TX, USA) kits. Thereafter, the MessageAmp II-Bacteria kit
(Invitrogen) was used to improve the subsequent amplification and purification:
enriched RNA was reverse transcribed to cDNA, which was in vitro transcribed
back to amplified RNA (aRNA) using the mentioned kit. Quantifications were
simultaneously run with a Nanodrop spectrophotometer (Thermo Fisher) and a
Qubit fluorometer (Invitrogen, Carlsbad, CA, USA) using the RNA HS Assay kit
and an RNA profile generated with a Bioanalyzer 2100 (Agilent Technologies,
Böblingen, Germany). aRNA was shotgun sequenced directly in an Illumina
HiSeq4000 platform (CNAG, Barcelona, Spain), generating between 28–35 Gb of
2 × 101 bp reads per sample.

16S rRNA gene amplicon profiling. Paired-end 16S rRNA gene amplicon
sequences were processed on the QIIME2 platform using the DADA2 pipeline to
resolve exact amplicon sequence variants78,79. Raw reads were demultiplexed,
yielding 302,585 reads across 16 samples. Quality plots were generated and
sequences failing to pass an average base call accuracy of 99% (Phred score 20)
were excluded. Low quality regions of each sequence were removed by trimming
the first 13 bases of the forward and reverse reads and truncating at 150 base pairs
before de-noising with DADA2 using the function qiime dada2 denoise-paired with
default parameters. The final dataset contained 1228 amplicon sequence variants
(ASVs) with a total frequency of 271,736. Taxonomic assignment was performed
by using a Genome Taxonomy Database classifier built for the QIIME2 platform,
using the SSU sequence files from GTDB ssu_r86.1_20180911 (https://osf.io/25djp/
wiki/home/). The classifier was first spliced to the 515 F/806 R primer pair using
the qiime feature-classifier extract-reads, and trained using the qiime feature-
classifier fit-classifier-naive-bayes command in QIIME279. The trained classifier was
then used to assign the taxonomy to the ASV features using our representative
reads via the function feature-classifier classify-sklearn. No sequence overlap was
observed between below-shelf waters with those of control samples (e.g., drilling
fluid, sediment recovered from basal ice on the shelf, snow at the camp site)
(Supplementary Fig. 2), confirming absence of contamination in the water column
samples.

Metagenomic community profiling. Raw metagenomic and metatranscriptomic
paired-end reads were quality-assessed with FastQC v0.11.7 and MultiQC v1.080.
BBDuk v38.51 from the BBTools suite (https://sourceforge.net/projects/bbmap/)
was used to trim adapter sequences, remove reads corresponding to Illumina’s
PhiX sequencing control, trim low-quality bases (minimum quality score 20), and
discard short sequences (minimum length 50 bp). The metatranscriptome reads
were further processed with SortMeRNA v2.1b81 to remove reads corresponding to
prokaryotic and eukaryotic ribosomal RNA, followed by BBDuk to filter low-
complexity reads (entropy threshold 0.05).
In addition, taxonomic profiling of bacteria, archaeal, and eukaryotic communities
was performed with 16S rRNA gene sequences extracted from metagenomic reads
(miTags) using a previously described protocol19. miTags were also extracted from
bathypelagic samples from the Malaspina Circumnavigation expedition23,
metagenomic surveys in the Arctic and Southern Ocean21, as well as metagenomic
datasets from polar regions obtained from the TARA Ocean Expedition22. This
allowed comparing these datasets to available miTags from epipelagic and
mesopelagic samples from the TARA Ocean Expedition20. Extracted 16S and 18S
rRNA gene reads were mapped to the SILVA non-redundant SSU Ref database
(v.138)82 and assigned to an approximate taxonomic affiliation (nearest taxonomic
unit, NTU) using PhyloFlash v3.083 (http://github.com/HRGV/phyloFlash).

Bacteriophage prediction was based on identifying viral signals in the
metagenomic-assembled contigs (described below) using VirSorter84. In brief,
viral-like genes were identified against a curated virome database84 and a set of
single-amplified viral genomes85. Abundance of viral contigs was estimated by
recruitment of metagenomic reads to viral contigs and calculation of contig
coverage. Open reading frames (ORFs) were detected and translated with Prodigal
v.2.6.386. Taxonomic classification of the translated sequences was based on
sequence homology search87 against the Uniref 100 viral database (http://
virome.dbi.udel.edu; e-value < 10−5) and used to obtain taxonomy classification of
viral contigs with the anvi-import-taxonomy function from Anvi’o v.5.288. The
metagenomic reads were mapped to the obtained viral contigs using Bowtie 289

(local alignment, sensitive setting). Coverage of viral contigs was calculated by
metagenomic read recruitment using Anvi’o.

Alpha- and beta-diversity analyses of 16S rRNA amplicons and extracted
miTAGs. All statistical analyses were carried out in R v3.5.3. Data manipulation
was performed using the R package tidyverse and all visualizations were made

using ggplot2. Community richness and beta-diversity was calculated using the R
packages Phyloseq90 and Vegan v2.5-691. In total, nine samples representing a
triplicate of depth profiles were used for downstream diversity analysis of ASVs
(Supplementary Fig. 3, Supplementary Data 3). Rarefaction curves were con-
structed to confirm that sequencing depth adequately captured richness in each
sample and rarefied using the Phyloseq rarefy_even_depth function with a sample
size of 15,400, which represented the minimum sequencing depth to retain 100% of
samples used for downstream analysis. Observed richness (counts) and estimated
richness (Chao1) was calculated using the estimate richness function in Phyloseq.
Normality of the distribution of alpha-diversity estimates was confirmed using a
Shapiro-Wilk test and a one-way analysis of variance (ANOVA) to test for sig-
nificant differences in richness across depth profiles. As a post-hoc, a Tukey
multiple comparison of means was used to confirm which pairs of sites showed
significant differences. For beta-diversity analysis on amplicon and miTag data,
Bray Curtis distance matrices were calculated in Vegan and visualized using a
principal coordinate analysis (PcoA). Independent permutational analysis of var-
iance (PERMANOVA) based on the Bray-Curtis dissimilarities values were cal-
culated with the adonis function in Vegan (999 random permutations), to test for
significant differences in community structure between depth profiles. Finally, a
beta-dispersion test (PERMDISP) was applied to confirm that observed differences
were not influenced due to dispersion. As a post-hoc evaluation of taxa responsible
for differences in microbial community structure, we performed an indicator
species analysis. We used the indicator value method92 to calculate indicator values
using the R package indicspecies. An individual ASV was considered a valid
indicator species if the p value was < 0.05 and the Test statistic (the indicator value)
was 0.5 or greater, based on 1000 random permutations93. IndVals were compared
between two groups, basal layer (30 m) and mid-column samples (180 m and
330 m), with the multipatt function in the R Indicspecies package (with the option
control = how(nperm= 999)). This function uses an extension of the original
Indicator Value method: it looks for indicator species of both individual site groups
and combinations of site groups94.

Counts per NTU (at species-level resolution) of extracted miTAGs were used
for comparative analyses between communities under the Ross Ice Shelf and other
oceanic samples. Only bacterial and archaeal species with >4 reads per sample were
included in the analyses. Samples were divided into four groups, according to
sampling depth or location: below-shelf ocean cavity (depth 30–330 m, n= 9),
epipelagic (depth <200 m, n= 169), mesopelagic (depth ~200–1000 m, n= 60),
and bathypelagic (depth 1000–4000 m, n= 54). The Vegan function vegdist was
used to calculate a Bray-Curtis dissimilarity matrix between all samples, which was
visualized by hierarchical cluster analysis (average linkage method, function hclust
in Vegan). Significant differences (p < 0.05) between relative abundances of taxa
from deep (>200 m) open ocean communities worldwide and below-shelf
communities were confirmed using a non-parametric one-way analysis of variance
(Kruskal-Wallis test, function kruskal.test() in R base).

The following comparisons were restricted to two groups from deep, polar
environments: samples from mesopelagic and bathypelagic polar environments
(n= 42) and samples from the below-shelf cavity (n= 9). As distance-based
multivariate methods can confound the within- and between-group effect size and
fail to account for the mean variance relationship95, a generalized linear model
(GLM) approach was used via the R package mvabund96. A multivariate model was
fitted using the manyglm function and negative binominal distribution. To test the
multivariate hypothesis of whether species composition varied across sub-ice and
open water, the anova function was used which performed an analysis of deviance
using likelihood ratio tests (LRT) and PIT-trap resampling of p values using 1000
iterations. To further examine which taxa contribute to compositional changes, a
series of univariate tests were performed on each taxon using the p.uni= “adjusted”
argument in the anova function. IndVal values were also calculated, using the same
parameters described above, to identify which species contributed most to the
differences between sub-ice environments and deep open ocean waters, Further, an
additional post hoc test for between-group differences was performed with analysis
of similarity percentages (simper97,) on a Bray-Curtis dissimilarity matrix
calculated as described above.

Metagenomic assembly and binning. For assembly, metagenome paired-end
reads were error corrected using Bayes Hammer implemented in SPAdes v.3.0.068,
merged with BBmerge v.36.3298 and normalized to a kmer depth of 42 with
BBnorm v.36.32, from the BBtools program suite. Co-assembly of metagenomes
was performed with MEGAHIT v.1.1.199 with merged and unmerged reads.
Metagenomic reads were mapped back to the co-assembly (min. length 1 kb) using
BBmap v.36.32100 to calculate differential coverage across all samples.

Contigs were binned with MetaWatt v.3.5.3101, MaxBin v.2.2.7102 and
MetaBAT v.2.12.1103. Bins were automatically de-replicated and aggregated with
DasTool104, then manually inspected and refined with Anvi’o v.5.288. Bins
classified as Archaea, Gammaproteobacteria, Deltaproteobacteria,
Gemmatimonadota, Actinobacteriota, and Chloroflexota were selected from the
bulk co-assembly and used for read recruitment with a minimum identity of 70%
using BBmap v.36.32. This led to less complex subsets of reads for subsequent re-
assembly with a more thorough assembler (SPAdes). For each taxonomic group a
separate re-assembly with SPAdes v.3.0.0 was performed followed by a new round
of binning as described above and manual refinement in Anvi’o. This procedure
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improves assembly (i.e., number of scaffolds reduced) and consequently bin
metrics such as contig length and purity of bins105. Completeness and quality of
final assemblies were assessed by CheckM v.1.0.770, with bins with >50%
completeness and <5% contamination (i.e., high and medium quality bins) retained
for further analysis25.

Genome de-replication, classification, and phylogenetic analysis. Metagenomic
bins and single-cell-assembled genomes with >50% completeness were defined as
MAGs and SAGs, respectively, and collectively as ‘genomes’ for simplicity. Com-
parison and de-replication of genomes were performed with dRep pipeline106. In
brief, genomes were grouped at an average nucleotide identity (ANI) of 99%.
Representative genomes from each cluster were selected based on the highest
‘genome score’106. This analysis provided a de-replicated genomic database of
population genomes. BBmap and samtools were used to recruit reads from the
metagenomes (97% identity), and Anvi’o was used to calculate the interquartile
(Q2Q3) mean coverage of the de-replicated genomes across samples. On average,
50–60% of each sample’s metagenomic reads mapped to the metagenomic and
SAG contigs.

MAGs and SAGs were taxonomically assigned using the tool GTDBTk v.0.0.6
(release 80, www.github.com/Ecogenomics/GtdbTk) in accordance to the Genome
Taxonomy Database107 (Supplementary Data 4). Phylogenetic tree construction for all
235 MAGS/SAGS was performed using ribosomal protein sequences retrieved from
CheckM v.1.0.770 (Fig. 3). The concatenated marker sequence for each genome was
aligned using MAFFT108 and an approximate maximum-likelihood phylogenetic tree
was generated using FastTree 2109 with default parameters. The tree was then visualized
and annotated using the web-based tool iTOL v.6 (https://itol.embl.de).

Metabolic profiling of MAGs, SAGs, and assembled unbinned reads. ORFs in
binned and unbinned contigs were predicted using Prodigal v.2.6.3.86, with default
noise-cut-offs followed by manual filtering using HMM cut-off scores previously
described110. The predicted ORFs were automatically annotated with the standard
RAST annotation pipeline111, and against the Pfam (release 32.0)112 and TIGRfam
(release 15.0)113 HMM models using Interproscan 5114.

Phylogenetic trees were constructed to validate findings and to determine
which protein classes / lineages were present in the Ross Ice Shelf (Supplementary
Figs. 7–16). Trees were constructed for AmoA, NxrA, HbsT, RbcL, AclB, DsrA, Sqr,
SoxB, CoxL, and the group 1 h [NiFe]-hydrogenase (HhyL). In all cases, protein
sequences retrieved from the MAGs, SAGs, and metagenomic assembled reads by
homology-based searches were aligned against a subset of reference sequences from
a custom database containing 51 proteins (available at https://doi.org/10.26180/
c.5230745) using ClustalW in MEGA7115. Evolutionary relationships were
visualized by constructing maximum-likelihood phylogenetic trees. Specifically,
initial trees for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated
using a JTT model, and then selecting the topology with superior log likelihood
value. All residues were used, and trees were bootstrapped with 50 replicates.

Annotation of carbohydrate active enzymes (CAZymes) was performed by
protein search against the CAZyme HMM database (dbCAN HMMdb release 8.0)
following the dbCAN2 CAZyme annotation pipeline116, with stringent parameters
for all CAZyme classes (E-value <1e−15 and coverage >0.35). We quantified the
number of genes in each genome encoding for different glycosyl hydrolases (GH),
glycosyl transferases (GT) and containing carbohydrate binding domains (CBD)
(Supplementary Data 7). Heatmaps for the 50 genomes with highest GH diversity
were generated in R with ggplot2 (Fig. 6), representing their abundance in the
metagenome and the metatranscriptome (as described in the section below).

Comparison of abundance and expression of assembled reads. To analyze the
expression of annotated ORFs, pre-processed metatranscriptomic paired reads
were merged with BBmerge98. Merged and unmerged non-rRNA sequences were
mapped to the metagenomic and SAG contigs (99% id) with BBmap (on average,
60% of each sample’s reads were successfully assigned). Quantification of mapped
reads per identified gene was performed with the function featureCounts of the R
Subread package117. The transcript abundance of each ORF was converted to
transcript per million (TPM) (Eq. (1)) for each sampled depth.

TPM ¼ A � 1=ΣA � 106 ð1Þ
where A= reads mapped to gene/gene length (kbp).

To minimize systematic variability of individual gene abundance, the genome
interquartile (Q2Q3) mean coverage (or, for unbinned contigs, the contig’s coverage)
was used to define gene abundance in the metagenome. Gene coverage was then
converted to counts per million (CPM), to allow for direct comparison with TPM.

CPM ¼ B � 1=ΣB � 106 ð2Þ
where B= gene coverage.

Data from sample replicates were combined for the above calculations.

Metabolic profiling of unassembled metagenome and metatranscriptome
reads. The abundance of particular metabolic functions independent of assembly
was calculated as previously described118. Briefly, pre-processed metagenomic and

metatranscriptomic reads were aligned using DIAMOND v0.9.24 to the 1 manually
curated protein databases described above and to the predicted ORFs that matched
the additional 10 HMMs described above (Supplementary Data 6). DIAMOND
mapping was performed with a query coverage threshold of >80% and a gene
specific threshold of 40% (RHO), 60% (AtpA, AmoA, MmoA, CoxL, NxrA, NuoF
and RbcL), 75% (HbsT), 70% (PsbA, YgfK, ARO, IsoA), (80%) PsaA, or 50% (all
other databases), with data further parsed to retain only group 1 and 2 [NiFe]-
hydrogenase hits. For the metagenomic data, forward reads with at least 124 bp in
length were used. For the metatranscriptomic data, paired-end reads were merged
with BBMerge v38.51 and merged reads of at least 124 bp in length were used. Data
from sample replicates were combined for this analysis. The abundance of each
gene was converted to reads per kilobase million (RPKM).

RPKM ¼ X=total sample reads � 106 ð3Þ
where X= reads aligned to a gene/ gene length (kbp).

The gene abundances in RPKM from the metagenomic data were further used
to estimate the proportion of the community encoding these functions. The
processed metagenomic reads were aligned to each of the 14 universal single-copy
ribosomal marker genes available in SingleM (https://github.com/wwood/singlem)
with DIAMOND using a query coverage threshold of 80%. Alignments with a
bitscore below 40 were removed; the alignment counts were converted to RPKM as
described above and averaged across the 14 genes to represent the abundance of a
universal single-copy gene. Metabolic gene RPKM values were divided by this value
to obtain the average gene copies per organism in each sample (abundance relative
to a single-copy gene). Heatmaps representing the community percentage
(metagenomic data) and RPKM abundance (metatranscriptomic data) were
generated in R with ggplot2 (Fig. 4b). Where genes within the same pathway are
collapsed together, the values (community percentage or RPKM) are summed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data and code underlying Fig. 2a, c, d are provided in the github repository https://
github.com/ClaMtnez/Ocean_tags. The data underlying Figs. 3, 4 & 5 and
Supplementary Figs. 1, 4 & 5 are provided as a Supplementary Data Files. The sequence
data generated in this study have been deposited in the EMBL Nucleotide Sequence
Database (ENA) database under Bioproject PRJEB35712 (metagenomic and
metatranscriptomic raw reads, metagenomic and metatranscriptomic assemblies,
metagenomic assembled genomes, and single-cell amplified genomes) and in the NCBI
Sequence Read Archive (SRA) under Bioproject PRJNA593264 (16S rRNA gene
amplicon reads). The following public databases were used in this study: Swiss-Prot
database, https://www.uniprot.org/, release-2018_10; Genome Taxonomy Database,
https://gtdb.ecogenomic.org/, release 80; SILVA non-redundant SSU Ref database,
https://www.arb-silva.de/, v.138; UniRef 100 VIROME database, http://
virome.dbi.udel.edu; Greening lab metabolic marker gene database, https://doi.org/
10.26180/c.5230745; CAZyme HMM database, https://bcb.unl.edu/dbCAN2/, v.8.0; Pfam
HMM database, http://pfam.xfam.org/, release 32.0; and TIGRFAM HMM database,
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/tigrfams/, release 15.0
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