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Abstract: Compared to peripheral late-stage transformations, mainly focusing on C–H 10 

functionalizations, reliable strategies to directly edit the core skeleton of pharmaceutical lead 

compounds still remain scarce, despite the recent flurry of activity in this area. Herein, we report 

the skeletal editing of indoles through nitrogen atom insertion, accessing the corresponding 

quinazoline or quinoxaline bioisosteres via trapping of an electrophilic nitrene species generated 

from ammonium carbamate and hypervalent iodine. This reactivity relies on the strategic use of a 15 

silyl group as a labile protecting group that can suppress the inherent nucleophilicity of the nitrogen 

in indoles while allowing for subsequent product release. The utility of this highly functional 

group-compatible methodology in the context of late-stage skeletal editing of several commercial 

drugs is demonstrated.  

One-Sentence Summary: Development of a late-stage indole editing strategy enabled by nitrogen 20 

atom insertion to access the bioisosteric quinazolines and quinoxalines. 
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Main Text:  

Major advances in the field of late-stage functionalization have recently unlocked extraordinary 

structural diversity from common synthetic scaffolds, obviating the resource and time-consuming 

de novo synthesis of a library of derivatives (1). The development of numerous, versatile late-stage 

C–H functionalization strategies to modify target molecules has been a core tenet of this paradigm 5 

shift (2, 3), allowing the introduction of key peripheral modifications. In contrast, complementary 

approaches that can directly modify the underlying core skeleton of a molecule are less common, 

despite their potential to expand the accessible chemical space (4–11). Formal single atom 

insertion reactions to modify aromatic moieties have proven to be especially challenging given the 

inherent inertness of aromatic carbon-based skeleton towards cleavage of a carbon-carbon bond 10 

(12). Despite this formidable challenge, a limited number of carbon (13–16) or oxygen (17, 18) 

insertion or deletion reactions to reshape molecular architectures has been developed. Given the 

prevalence of nitrogen atoms in biologically active molecules, the direct modification of valuable 

core structures through single nitrogen atom manipulation is of particular significance (19) and 

especially interesting in the context of evaluating structure-activity relationships in medicinal 15 

chemistry settings. Although broad-scope methods to delete a nitrogen atom in molecular scaffolds 

have been recently disclosed (20–23), methods to insert a single nitrogen atom have remained 

limited, despite their immense potential for the synthesis of ubiquitous N-heterocycles. Apart from 

the classical Beckmann rearrangement of carbonyl derivatives (24), these methods are currently 

either restricted to structural motifs that are not commonly found in nature (e.g. indene, 2-20 

arylindoles) or do not exhibit broad functional group compatibility, preventing their application to 

late-stage functionalization (25–32). 

Indoles are among the most widespread nitrogen-containing heterocycles in medicinal chemistry 

compounds and natural products (33) and thus represent an ideal substrate class for the 
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development of late-stage skeletal editing reactions (6). Such an approach is particularly attractive 

if less naturally abundant, yet pharmaceutically interesting scaffolds, could be rapidly accessed 

(Fig. 1A). Direct insertion of a nitrogen atom into the indole scaffold would enable straightforward 

access to N,N-heterocycles without changing the substitution pattern on the starting indole. This 

transformation of the indole core into such bioisosteric motifs (34, 35), which are not commonly 5 

found as building blocks in medicinal chemistry libraries (36) yet are widely recognized as 

privileged pharmacophores in modern drug discovery (33, 37), could have a transformative impact 

on the field of late-stage diversification, facilitating the discovery and optimization of drug 

candidates.  

Here we introduce a method for the insertion of a nitrogen atom into indoles affording N,N-10 

heterocycles. Depending on the substitution pattern of the parent indole structure, either 

quinazolines or quinoxalines can be selectively accessed. This practical reaction tolerates a broad 

range of functional groups so that a wide set of natural products and commercial drugs can be 

transformed into their corresponding bioisosteric analogues. 

 15 
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Fig. 1. Core derivatization of indoles. (A) Diversification of indoles to access pharmaceutically 

interesting quinazoline motifs. (B) Mechanistic design for the transformation of indole skeletons 

into the corresponding quinazoline scaffold.  

 5 

To transform indole scaffolds into the corresponding quinazoline motifs, we needed to identify a 

suitable reagent to act as an electrophilic nitrogen atom donor. We chose to investigate in-situ 

generated electrophilic iodonitrenes, accessed by combining commercially available hypervalent 

iodine with nitrogen sources (Fig. 1B). In the context of skeletal editing, these reagents have 

already been harnessed in nitrogen deletion rather than insertion reactions (22), besides exhibiting 10 

other unique reactivity patterns (38–40). In our design, a stepwise (2+1) cycloaddition would 

initially provide an aziridine intermediate. Subsequent elimination of iodobenzene, followed by 

aromatization of the reaction intermediate, would facilitate the desired ring expansion reactions 

towards the quinazoline product (15).  
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A key challenge in the overall design is the inherent nucleophilicity of the unprotected indole 

nitrogen which could directly react with the electrophilic iodonitrene species. This would lead to 

the generation of a labile isodiazene intermediate, which would ultimately promote the degradation 

of the underlying carbon skeleton by the formation of unstable carbon-centered radicals after the 

release of gaseous nitrogen (Fig. 2A) (22). Our design overcomes this intrinsic challenge through 5 

the strategic use of a protecting group, which is capable of both suppressing the inherent 

nucleophilicity of the nitrogen and acting as a sufficiently labile electrofuge to release the product. 

We investigated silyl-based groups due to their aptitude for stabilizing positively charged 

intermediates and their potency as electrofuges (41). Additionally, the silyl group’s susceptibility 

to hydrolysis can be appropriately adjusted by changing the substituents on the silicon atom (42). 10 

Indoles bearing silyl-based as well as other commonly used protecting groups, such as tert-

butyloxycarbonyl (Boc), acetyl (Ac) and methyl, were evaluated under the initial reaction 

conditions. As might be expected based on the proposed mechanism, only silyl groups were 

effective in providing the desired quinazoline product 8a (Fig. 2B), with tert-butyldimethyl (TBS) 

protected indoles undergoing the desired transformation most efficiently. 15 
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Fig. 2. Reaction development. (A) Inherent challenge associated with the nucleophilicity of the 

nitrogen in indole substrates. (B) Control by labile protecting group to enable product formation. 

(C) Optimization of the nitrogen atom insertion reaction. Reactions were performed on 0.1-mmol 

scale. *Yield and conversion were determined by GC analysis of the crude reaction mixture using 5 

n-dodecane as an internal standard. ǂYield of the isolated product 8a of a 1.0-mmol scale reaction. 

PIFA = [bis(trifluoroacetoxy)iodo]benzene, PIDA = (diacetoxyiodo)benzene. 

Besides the choice of labile protecting group, the reaction conditions were further optimized by 

investigating the effect of the other reaction parameters (Fig. 2C). Commercially available [bis-

(trifluoroacetoxy)iodo]benzene (PIFA) in methanol in combination with ammonium carbamate as 10 

the nitrogen source proved to be the preferred reagent mixture to suppress undesired oxidative 

decomposition of the indole core and obtain the product in high yield. With the optimized reaction 

conditions in hand, the scope of the iodonitrene-enabled skeletal ring expansion was explored 

using this operationally simple protocol (Fig. 3). The compatibility of the nitrogen atom insertion 

method with diverse substitution patterns as well as common functional groups on the TBS-15 

protected indole precursors was evaluated. Quinazoline products featuring electron-withdrawing 



Submitted Manuscript: Confidential 

Template revised February 2021 

8 

 

substituents, such as halogens (8b–8f), esters (8g, 8h), nitriles (8i, 8j), and sulfones (8k), as well 

as electron-donating groups, such as ethers (8m–8o) and silyl ethers (8p), were obtained in 

moderate to good yields from the corresponding TBS-protected indole precursors. In most cases, 

except for nitrile-bearing indole precursors, full conversion of the starting materials was observed. 

Likewise, carboxylic acids (8l), alkenes (8q) and alkynes (8r) were compatible under the 5 

optimized reaction conditions. An unprotected piperidine-substituted indole could be transformed 

into the corresponding product (8s), although in lower yield likely due to the propensity of the 

secondary amine to form isodiazenes leading to degradations. Indole substrates bearing acetals, as 

well as primary, secondary or tertiary alcohol groups, performed comparably well under the 

reaction conditions leading to the desired quinazoline products 8t–8w. This strategy also accessed 10 

the 1,3,8-triazanaphthaline core (8x) from the TBS-protected aza-indole in moderate yield (for 

more details see Supplementary Material). Additionally, indoles bearing adjacent pyridine and 

benzofuran motifs, common heterocyclic handles, were efficiently transformed into the 

corresponding quinazoline moieties (8y, 8z). Despite their structural simplicity, synthetic 

protocols to access most of these quinazolines are unreported, as existing methods do not allow 15 

easy access to the 2-H quinazoline products (43). TBS-protected indoles featuring substituents on 

the 2-, 3- or 7-position (8ab, 8ac, 8ad), as well as 2,3-disubstituted indoles (8ae), were successfully 

converted to the corresponding quinazoline motifs in good yields showing the reaction’s 

compatibility with proximal substituents (Fig. 3B). The identity of product 8ab was further 

confirmed by X-ray analysis. This is an important result, as most biologically active indole 20 

derivatives are substituted at the 2 and/or 3 position of the indole scaffold (33).  

Evaluation of a diverse set of indole cores revealed pathways to either quinazoline or quinoxaline 

scaffolds, depending on the reactant’s substituents (Fig. 3C). 2,3-Disubstituted TBS-protected 

indoles bearing five or six-membered fused rings (9a, 9b) exclusively afforded the corresponding 
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quinoxaline products (10a, 10b) in good to excellent yields. This result further extends the utility 

of the protocol since five- and six-membered polycyclic indole scaffolds are prevalent in nature. 

Thus, straightforward access to less naturally abundant quinoxaline motifs could be streamlined 

synthetically. To gain deeper insight into the parameters influencing the selectivity, a seven-

membered ring fused indole substrate (9c) was also tested, which rearranged to the quinazoline-5 

like scaffold. However, due to the inherent ring strain, the reactive intermediate was attacked by 

the nucleophilic solvent, leading to the corresponding methoxy analogue (10c), as confirmed by 

single-crystal X-ray analysis, preventing rearrangement towards the aromatic quinazoline product. 

The regioselectivity for the fused five-membered 2,3-disubstituted indole scaffold (9a) was further 

rationalized by DFT calculations, suggesting that a rearrangement to the quinoxaline product is 10 

most likely explained by thermodynamic considerations, as the transformation into the 

corresponding quinazoline would result in the formation of a highly strained, energetically 

unfavored product (computational details can be found fig. S14) (44). 
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Fig. 3. Substrate scope for the single nitrogen atom insertion. Yields are given for isolated 

products. Reaction conditions: TBS-indole (1 mmol, 67 mM), ammonium carbamate (6 equiv) and 
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PIFA (4 equiv) in MeOH at 0 °C for 10 minutes, then at room temperature (rt) for up to 4 hours. 

(A) Investigation of the functional group compatibility of the reaction.  (B) Effect of proximal 

substitutions on the reaction outcome. (C) Investigating the dependence of the reaction outcome 

on sterically constrained substrates. DFT calculations for the regioselective preference of substrate 

9a. Gibbs free energies are indicated in kcal/mol at 0 °C. *Yield determined by 1H NMR analysis 5 

of the crude reaction mixture using 1,1,2,2-tetrachloroethane or mesitylene as an internal standard. 

ǂThe reaction was performed on 0.2-mmol scale and the product was co-isolated with a side 

product in an approx. 1:1 ratio (for more details see Supplementary Material).  

 

To illustrate the reaction’s potential for expanding accessible chemical space, we applied it to 10 

naturally occurring amino acids and commercially available drug molecules (45). Protected 

tryptophan (11a) was transformed into the corresponding quinazoline product (12a) in good yields. 

Moreover, the reaction could be performed on 8-mmol scale, demonstrating the scalability of this 

process. The synthesis of this previously unexplored unnatural amino acid (12a) allows for the 

investigation of its effect on protein and peptide properties (46). The skeletal cores of both 15 

melatonin (11b), a widely encountered neurohormone (47), and pindolol (11c), a -adrenoceptor 

antagonist used for high blood pressure treatments (48), were remodeled to afford the 

corresponding quinazolines 12b and 12c, demonstrating the functional compatibility with 

secondary amines and amides. Similarly, the molecular scaffold of N-feruloyl serotonin (11d), 

bearing an ,-unsaturated amide, was transformed into the quinazoline derivative (12d) in 20 

excellent yield. Pimprinine-derived substrate (11e) as well as analogues of Brevianamide F (11f), 

which both exhibited diverse biological activities, such as fungicidal activities (49, 50), were 

transformed into the corresponding quinazoline products 12e and 12f. Alongside natural products 
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featuring variable functional handles attached to the core indole scaffold, widely encountered 

polycyclic indole derivatives have also been shown to possess diverse biological activities and 

interesting pharmaceutically relevant properties (51). Tricyclic tryptoline-3-carboxylic acid (11g) 

was successfully transformed into Lycoperodine-1-derived quinoxaline 12g. Similarly, 1,2,3,4-

tetrahydro-7-methoxycyclopent[b]indole-3-acetic acid (11h), a key intermediate in the synthesis 5 

of APD334, a drug candidate for the treatment of autoimmune diseases (52), was transformed into 

the corresponding quinoxaline core structure 12h. 
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Fig. 4. Late-stage skeletal editing to access quinazoline and quinoxaline scaffolds. 

Enantiomeric enrichment was not determined. Reactions were performed on 1.0-mmol scale unless 

otherwise stated. Standard reaction conditions: TBS-indole (1 equiv, 67 mM), H2NCO2NH4 (6 

equiv) and PIFA (4 equiv) in MeOH at 0 °C for 10 min, then at room temperature for up to 4 hours. 5 
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*The reaction was performed on 8.0-mmol scale. ǂDiastereoisomeric ratio 7:3. TBAF = tetra-n-

butylammonium fluoride, TFA = trifluoroacetic acid. 

As indoles are widely encountered, pharmaceutically relevant substrates, we believe that this 

highly efficient protocol will enable the adoption of more skeletal editing steps in late-stage 

diversification strategies.  5 
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