ETH zürich

Reply to: Plant traits alone are good predictors of ecosystem properties when used carefully

Other Journal Item

Author(s):

van der Plas, Fons; Schröder-Georgi, Thomas; Weigelt, Alexandra; Barry, Kathryn; Meyer, Sebastian; Alzate, Adriana; Barnard, Romain L.; <u>Buchmann, Nina</u>; de Kroon, Hans; Ebeling, Anne; Eisenhauer, Nico; Engels, Christof; Fischer, Markus; Gleixner, Gerd; Hildebrandt, Anke; Koller-France, Eva; Leimer, Sophia; Milcu, Alexandru; Mommer, Liesje; Niklaus, Pascal A.; et al.

Publication date:

2023-03

Permanent link: https://doi.org/10.3929/ethz-b-000595453

Rights / license: In Copyright - Non-Commercial Use Permitted

Originally published in: Nature Ecology & Evolution 7(3), <u>https://doi.org/10.1038/s41559-022-01957-y</u> 1 Reply to: Plant traits alone are good predictors of ecosystem properties when used

2 carefully

- 3
- 4 **AUTHORS:** Fons van der Plas^{17,*}, Thomas Schröder-Georgi^{1,*}, Alexandra Weigelt^{1,2},
- 5 Kathryn Barry^{1,2}, Sebastian Meyer³, Adriana Alzate², Romain L. Barnard⁴, Nina Buchmann⁵,
- ⁶ Hans de Kroon⁶, Anne Ebeling⁷, Nico Eisenhauer^{2,8}, Christof Engels⁹, Markus Fischer¹⁰, Gerd

7 Gleixner¹¹, Anke Hildebrandt^{2,12,13}, Eva Koller-France¹⁹, Sophia Leimer¹⁴, Alexandru

- 8 Milcu^{15,16}, Liesje Mommer¹, Pascal A. Niklaus¹⁸, Yvonne Oelmann¹⁹, Christiane Roscher^{2,20},
- 9 Christoph Scherber^{21,22}, Michael Scherer-Lorenzen²³, Stefan Scheu^{24,25}, Bernhard Schmid^{26,27},
- ¹⁰ Ernst-Detlef Schulze¹¹, Vicky Temperton²⁸, Teja Tscharntke²⁹, Winfried Voigt⁷, Wolfgang
- 11 Weisser³, Wolfgang Wilcke¹⁴ & Christian Wirth^{1,2,11}.
- 12

13 AUTHOR AFFILIATIONS

- 14 ¹Systematic Botany and Functional Biodiversity, Life science, Leipzig University, Germany
- ¹⁵ ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- ³Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of Munich,
 Germany
- ⁴Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon,
- 19 France
- 20 ⁵ETH Zurich, Switzerland
- ⁶Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University
- 22 Nijmegen, The Netherlands
- ²³⁷Institute of Ecology and Evolution, University Jena, Germany
- 24 ⁸Institute of Biology, Leipzig University, Germany
- 25 ⁹Humboldt-Universität zu Berlin
- 26 ¹⁰Institute of Plant Sciences, University of Bern, Switzerland
- 27 ¹¹Max Planck Institute for Biogeochemistry, Jena, Germany
- 28 ¹²Helmholtz Centre for Environmental Research UFZ, Germany
- 29 ¹³Friedrich-Schiller-University Jena, Germany
- ¹⁴Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- 31 ¹⁵Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montferrier-sur-
- 32 Lez
- 33 ¹⁶Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS—Université de Montpellier—Université
- 34 Paul-Valéry Montpellier—EPHE), Montpellier, France
- ¹⁷Plant Ecology and Nature Conservation group, Wageningen University, PO box 47, 6700 AA Wageningen,
 The Netherlands
- ¹⁸Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
- 38 ¹⁹Geoecology, University of Tübingen, Rümelinstr. 19-23, 72070 Tübingen, Germany
- ²⁰UFZ, Helmholtz Centre for Environmental Research, Department Physiological Diversity
- 40 ²¹Institute of Landscape Ecology, University of Münster, Germany
- 41 ²²Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160,
- 42 53113 Bonn, Germany

- 43 ²³Geobotany, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- ²⁴Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Germany.
- ⁴⁵ ²⁵J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Germany.
- 46 ²⁶Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- 47 ²⁷Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
- ²⁸Leuphana University Lüneburg, Institute of Ecology, Universitätsallee 1, 21335 Lüneburg, Germany
- 49 ²⁹Agroecology, Dept. of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen
- ^{*}These authors contributed equally
- 51 **Corresponding author
- 52
- In a recent publication¹, we analyzed a long-term experiment to show that despite 53 moderately strong links between traits and ecosystem properties within years, these links 54 could not be used to accurately explain long-term variation in ecosystem properties. Hagan et 55 al.² agree that "functional traits are not necessarily the panacea they are often considered to 56 be". However, they also have concerns on our study, claiming that i) there is a mismatch 57 between the functional traits and the ecosystem properties that we analysed and ii) that due to 58 59 our study design, trait variation was limited in some plots. Below, we respond to both 60 critiques. 61 First, Hagan et al. argue that when plant functional traits and ecosystem properties 62 have mechanistic links, then plant traits should also be able to *predict* ecosystem properties². While we agree that mechanistic links can help with predicting ecosystem properties, 63 mechanistic links must not *always* lead to an adequate ability to predict ecosystem properties. 64 Fluctuating environmental conditions (e.g. different weather patterns across years) in 65 combination with context-dependencies can strongly hamper our predictive ability over 66 longer time scales despite much stronger links between traits and ecosystem properties within 67
- years, as we also discussed in our original article¹. Hagan et al. then argue that mismatches
- 69 between the traits and the ecosystem properties we studied limited our capacity to predict
- rates of most ecosystem properties². Their argument was that i) we analysed various
- ecosystem properties that are not well covered by other studies, and that ii) for those
- ⁷² underrepresented ecosystem properties, we analysed different traits than should have been
- considered. While we agree with the first point, we believe that comprehensively studying

multiple ecosystem properties is a strength. We disagree with the notion that we should have 74 analysed a very different set of traits. By contrast and as outlined in our original article¹, we 75 deliberately analysed a very broad set of traits, covering many plant parts typically 76 underrepresented in other studies such as roots, stems, flowers and seeds, because of their 77 hypothesized importance to various ecosystem properties. For example, based on other 78 studies³, we expected that pollinator abundance would be related to flowering duration, which 79 is a trait rarely measured by other studies. However, we did not expect that each ecosystem 80 property should be linked to each analyzed trait, even if we tested exhaustively for all possible 81 82 relationships. While this might be problematic when one aims to increase a *mechanistic* 83 understanding, the aim of our study was to maximize predictive capacity. In such cases, more pragmatic, explorative approaches are both effective⁵, as well as widely used in ecology, 84 including for remote sensing⁶ and species identification⁷. Hagan et al. also mention additional 85 traits we could have studied, such as the chemical properties of litter (as we also mentioned 86 ourselves¹). However, chemical litter properties are tightly correlated with the chemical 87 properties of living plant tissues⁸, so that such traits would likely not strongly complement the 88 already existing set of traits we analysed. This is also supported by the asymptotic relationship 89 between the number of traits analysed, and the proportion of explained variance that we 90 found¹. Hagan et al. interpret the finding that some (although certainly not all) of the 91 aboveground, often plant-based ecosystem properties could be better explained by plant traits 92 than most belowground properties as an indication that we studied aboveground plant 93 94 properties more carefully². We respectfully disagree and reiterate our original argument¹ that 95 it is more likely that plant traits are inherently more strongly related to plant-based ecosystem 96 properties than to the belowground ecosystem properties we analysed, which mostly reflected properties of higher trophic levels or abiotic conditions. 97

98	Hagan et al. also argue that the CWM and FD metrics that we analysed could not
99	explain much variation in ecosystem properties in 40% of our plots ² . Their argumentation is
100	based on two points, namely that i) CWMs and FD cannot change over time in monoculture
101	plots, and that ii) within (but not across) two-species plots, CWM and FD metrics of the same
102	trait are perfectly correlated. While these are valid points, that could have been overcome by
103	measuring traits for each species in each plot across each year, it is unlikely that such a
104	massive undertaking would have strongly improved our predictive capacity, given that (as
105	mentioned in our original article ¹) intraspecific trait variation in our experimental field is
106	much smaller than interspecific trait variation ⁹ .
107	To summarize, we agree that the selection of traits when studying their links with
108	ecosystem properties should be done with care, although hypotheses based on mechanistic
109	links are not crucial when a study aims at <i>predicting</i> , rather than understanding. Despite
110	limitations in how plant compositions can change over time in biodiversity experiments, the
111	ability to create even wider gradients in functional biodiversity than found in nature ¹⁰ makes
112	them ideal to study the links between traits and ecosystem properties.
113	
114	AUTHOR CONTRIBUTIONS

¹¹⁵ FvdP wrote an initial draft of the manuscript. All other authors (TS-G, AW, KB, SM, AA,

116 RLB, NB, HdK, AE, NE, CE, MF, GG, AH, EK-F, SL, AM, LM, PAN, YO, CR, CS, MS-L,

117 SS, BS, E-DS, VT, TT, WV, WWe, WWi & CW) helped editing the manuscript.

118

119 COMPETING INTERESTS

120 The authors declare no competing interests.

REFERENCES

122	1.	van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and
123		long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602-1611 (2020).
124	2.	Hagan, J. G., Henn, J. J. & Osterman, W. H. A. Plant traits alone are good predictors
125		of ecosystem properties when used carefully. Submitted to Nat. Ecol. Evol.
126	3.	Ogilvie, J. E., Griffib, S. R., Gezon, Z., Inouye, B. D., Underwood, N., Inouye, D. &
127		Irwin, R. Interannual bumble bee abundance is driven by indirect climate effects on
128		floral resource phenology. Ecol. Lett. 20, 1507-1515 (2017).
129	4.	Vasquez-Valderrama, M., González-M, R., López-Camacho, R., Baptiste, M. P. &
130		Salgado-Negret, B. Impact of invasive species on soil hydraulic properties: importance
131		of functional traits. Biol. Inv. 22, 1849-1863 (2020).
132	5.	Shmueli, G. To explain or to predict? Stat. Sci. 25, 289-310 (2010).
133	6.	Yuan, Q. et al. Deep learning in environmental remote sensing: Achievements and
134		challenges. Remote Sens. Env. 241, 111716 (2020).
135	7.	Wäldchen, J. & Mäder, P. Machine learning for image based species identification.
136		Methods Ecol. Evol. 9, 2216-2225 (2018).
137	8.	Wang, Z. & Zheng, F. Impact of vegetation succession on leaf-litter-soil C:N:P
138		stoichiometry and their intrinsic relationship in the Ziwuling Area of China's Loess
139		Plateau. J. For. Sci. 32, 697-711 (2021).
140	9.	Roscher, C. et al. Interspecific trait differences rather than intraspecific trait variation
141		increase the extent and filling of plant community space with increasing plant
142		diversity in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 42-50
143		(2018).
144	10.	Jochum, M. et al. The results of biodiversity-ecosystem functioning experiments are
145		realistic. Nat. Ecol. Evol. 4, 1485-1494 (2020).