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OPEN Caravan - A global community
DATA DESCRIPTOR dataset for Iarge-sample hydrology

Frederik Kratzert(®'>, Grey Nearing?, Nans Addor®*, Tyler Erickson®, Martin Gauch(®§,
Oren Gilon’, Lukas Gudmundsson®?2, Avinatan Hassidim’, Daniel Klotz®, Sella Nevo?,
Guy Shalev’ & Yossi Matias(®’

High-quality datasets are essential to support hydrological science and modeling. Several CAMELS
(Catchment Attributes and Meteorology for Large-sample Studies) datasets exist for specific countries
or regions, however these datasets lack standardization, which makes global studies difficult. This
paper introduces a dataset called Caravan (a series of CAMELS) that standardizes and aggregates
seven existing large-sample hydrology datasets. Caravan includes meteorological forcing data,
streamflow data, and static catchment attributes (e.g., geophysical, sociological, climatological) for
6830 catchments. Most importantly, Caravan is both a dataset and open-source software that allows
members of the hydrology community to extend the dataset to new locations by extracting forcing
data and catchment attributes in the cloud. Our vision is for Caravan to democratize the creation and
use of globally-standardized large-sample hydrology datasets. Caravan is a truly global open-source
community resource.

Background & Summary
Data underpin our understanding of the storage and transport of water at the Earth’s surface. Hydrological pro-
cesses (e.g., streamflow generation) are governed by hydroclimatic variables (e.g., rainfall, temperature, humidity)
and landscape characteristics (e.g., soils, landcover, human intervention). These interactions govern the
availability of water resources and the occurrence of extreme events like floods and droughts.
: Detailed datasets combining hydroclimatic time series, landscape attributes, and/or hydrological response
© variables like streamflow exist for many experimental catchments, in many cases spanning decades' . However,
© it is not possible to capture the diversity of hydrological behavior from any individual watershed. In parallel,
. there also exist tens of thousands of gauges monitoring rivers across the world. Although data available from
. these gauges are limited in that they do not describe all of the hydrological processes in a given watershed, the
© large number of gauges means that they cover a wide of range of hydrological regimes and extreme events*~”.
. Gupta et al.® argued that large sample sizes allow for assessment of the generality of hydrological models and
research findings. Large sample sizes also allow for large-scale research like detecting and attributing systematic
shifts in terrestrial water availability at regional®!” to global scales!'2. Moreover, large sample datasets are nec-
essary for developing generalizable data-driven models'*-*¢.

Recognizing this has led to the development of a sub-discipline in the hydrological sciences called
large-sample hydrology (LSH), which relies on data from hundreds to thousands of catchments!”. There are an
increasing number of publicly available LSH datasets. Arguably, the first open LSH dataset was from the Model

* Parameter Estimation Experiment (MOPEX)!$, which contains data from 431 basins within the United States
. through 2003. Later datasets were developed for specific countries or regions, including Australia'®, Austria®,
© Brazil?", North-America®?, China®, Chile?, Europe?, Great Britain®®, Thailand http://hydro.iis.u-tokyo.ac.jp/
GAME-T/GAIN-T/routine/rid-river/index.html, the United States?”?%, and the Arctic https://www.r-arcticnet.
. sr.unh.edu/v4.0/index.html. Many of these are referred to as Catchment Attributes and MEteorology for
. Large-sample Studies (CAMELS) datasets!*?!2426:28,
Although none of the existing CAMELS datasets are global, there are global collections of streamflow data
. like the Global Streamflow Indices and Metadata Archive (GSIM)***, which provides monthly and seasonal
. streamflow indices for 35,000+ locations, and the Global Runoff Data Base https://www.bafg.de/ GRDC, which
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. “Geography, University of Exeter, Exeter, UK. °Google, Mountain View, CA, USA. ®Institute for Machine Learning,
. Johannes Kepler University, Linz, Austria. ’Google Research, Tel Aviv, Israel. 8Institute for Atmospheric and Climate
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provides river discharge estimates at 10,000+ locations. Both of these collections, however, are not coupled with
catchment attributes or meteorological forcing data. Critically, GSIM does not provide daily streamflow data
(only indices), and GRDC does not allow for redistribution of raw data, which makes it difficult to standardize
with other datasets. Furthermore, although data from 10,000+ stations are available through GRDC, both the
quality of the available records and the period of record for individual basins varies significantly®®. On the other
hand, HydroATLAS?! provides global catchment attributes, but does not include meteorological or stream-
flow data. There are also proprietary or non-public hydrological datasets that have been used for hydrological
research—for example, datasets used by Beck et al.*»*, for global model calibration or by Bloschl et al.** for
extrapolating climate change impacts on flooding (less than a third of one percent of the daily time series used
in the latter study are publicly available, last access 20th March 2022). There are many reasons why proprietary
datasets exist in today’s research landscape. These often encompass causes that lie outside the domain of influ-
ences of individual research groups. However, from a scientific perspective, proprietary datasets are a roadblock
to open, collaborative, reproducible, and extensible research.

Aside from the fact that no comprehensive, global LSH dataset exists, Addor et al.'” identified four major
limitations of many of the existing region-specific datasets: (i) lack of common standards to allow for intercom-
parison, (ii) lack of metadata and uncertainty estimates to assess data reliability, (iii) lack of information about
human interventions, and (iv) limited accessibility. Addor et al.'” also outlined desiderata for standardizing
and automating the development of LSH datasets, including (i) basic data requirements, (ii) naming conven-
tions for hydrologically-relevant variables, (iii) publicly available data processing code, (iv) uncertainty esti-
mates, (v) anthropogenic descriptors, and (vi) adhering to FAIR data standards®. They propose that community,
cloud-based infrastructure could help overcome these limitations, by allowing for the use and development of
standardized practices and codebases.

The Caravan dataset presented here is a step toward realizing this vision. The basis for Caravan is a collection
of region-specific datasets, which are merged and standardized in a way that is designed with the following
characteristics:

1. Standardized: Data are standardized globally meaning that the same meteorological and landscape varia-
bles exist for all catchments, and are derived using the same procedures from the same source datasets.

2. Open: All data are publicly available with an open license.

3. Extensible: All software tools and source datasets used to produce Caravan are open and accessible through
a cloud platform (Google Earth Engine) to enable others to extend (i.e., add catchments to) the dataset.

The third point is especially important. Most streamflow gauges are maintained by local or national organ-
izations, and the data from these gauges are rarely FAIR (Findable, Accessible, Interoperable and Re-usable).
Caravan is designed to be extensible, so that anyone can easily derive meteorological forcings and landscape
attributes for additional catchments using a standardized procedure. This allows new catchments to be used in
the context of this larger dataset (e.g., for training models, assessing relative climate impacts, etc.), and it allows
organizations with streamflow data from any number of catchments (from one to thousands) to quickly and
easily add their data to the larger public Caravan dataset in a way that is standardized with all other catchment
data. Our vision is for Caravan to be the platform for a larger community data resource-we see this as perhaps
the most direct path to developing a truly open global hydrological dataset. The current Caravan dataset that
we introduce here includes streamflow observations from 6830 basins, spanning most Global Environmental
Stratification (GEnS) climate zones*, with the exception of arctic, extreme cold, and arid zones (Fig. 1). Caravan
includes daily data from almost four decades (1981-2020), including catchments that experienced significant
climate trends (Fig. 2).

Methods
Basin selection & streamflow data. Daily streamflow observations for the 6830 basins currently in
Caravan were aggregated from several existing open datasets:

o 482 basins from CAMELS (US)*

o 150 basins from CAMELS-AUS"

« 376 basins from CAMELS-BR?!

« 314 basins from CAMELS-CL (using an updated Version from January 2022)*
o 408 basins from CAMELS-GB?*

o 4621 basins from HYSETS*

o 479 basins from LamaH-CE?

These datasets were selected because (i) they include catchment boundaries for each streamflow gauge, and
(ii) because their licenses allow redistribution. Furthermore, we currently only include basins equal or larger
than 100 km? and smaller than 2000 km?. Streamflow data is normalized by catchment area to units of mm/day.
All data are reported in the local time zone (non-daylight saving time for the entire year) of the gauge station,
which is included in metadata.

Time periods of available streamflow observations varies between basins, however we did not include any
streamflow data prior to 1981 because this is the beginning of the ERA5-Land reanalysis, which was used to
derive meteorological forcing data. Figure 3 shows density of streamflow records through time (left) and the
distribution of lengths of daily streamflow records (right), emphasizing that comparatively long flow time series
are available for the Caravan catchments (the median length is 31 years).
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Distributions of catchments over GEnS climate zones
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Fig. 1 Top: Global distribution of catchments included in Caravan. Bottom: Distribution of the 6830 Caravan
catchments among the Global Environmental Stratification (GEnS) climate zones. The bottom part of the plots
shows the fraction of a particular climate zone on the total land mass.
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Fig. 2 Number of catchments in Caravan (6830 basins over ~40 years of data) with statistically significant
(a¢=0.05) trends in three variables: mean temperature, precipitation, and discharge, assessed by an unmodified
Mann-Kendall test. All data were averaged monthly before computing statistical trends.

Meteorological forcing data. Caravan includes meteorological forcing data from ERA5-Land®. This
choice was made for the following reasons:

o Global coverage and spatial consistency: Although ERA5-Land data products are often lower-accuracy
(i.e., more uncertain) than local, high-resolution meteorological data sets, only globally available data sets
allow for comparative studies at a global scale.
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Fig. 3 Density of active Caravan gauge records through time (left) and distribution of water-years worth of data
from each of 6830 basins in Caravan (right).

Feature (ERA5-Land variable name) Aggregation Unit
Precipitation (total_precipitation) Daily sum mm/day
Potential evaporation (potential_evaporation)i Daily sum mm/day
Air temperature (temperature_2m) Daily min/max and mean | °C

Dew point temperature (dewpoint_temperature_2m) Daily min/max and mean | °C
Shortwave radiation (surface_net_solar_radiation) Daily min/max and mean | Wm—2

Net thermal radiation at the surface (surface_net_thermal_radiation) | Daily min/max and mean | Wm™2

Surface pressure (surface_pressure) Daily min/max and mean | kPa
Eastward wind component (u_component_of_wind_10m) Daily min/max and mean | ms™!
Northward wind component (v_component_of_wind_10m) Daily min/max and mean | ms™!

Table 1. ERA5-Land meteorological variables. Daily aggregates are computed in local time of each basin. i: Be
cautious with these values as they include unrealistically high values, see also®.

+ Sub-daily (e.g., hourly) resolution: All daily average streamflow observations in the source datasets are
reported in the corresponding local time of the gauge station. In contrast, global meteorological data products
are usually provided in GMT + 0. To be able to calculate the matching daily average meteorological forcing
data for the daily averaged streamflow observation, it is therefore necessary to have sub-daily meteorological
data, so that we can shift the meteorological data according to the local time zone of the gauge station, before
computing daily aggregates.

 Availability in the cloud: one of our goals was to do all heavy computing tasks in the cloud (here: Google
Earth Engine). ERA5-Land provides hourly data on Google Earth Engine.

o Permissive license: A core principle of Caravan is to democratize LSH datasets and dataset development.
ERA5-Land has a permissive license that allows free distribution.

ERA5-Land meteorological variables used in Caravan are listed in Table 1-these are typical variables
used as forcing data (or boundary conditions) for hydrology and land surface models. We first computed the
area-weighted spatial average for each variable in each catchment area from hourly spatial data (~9km spatial
resolution) and shifted the hourly time series (natively at GMT + 0) to the local time of each gauge. We then
computed different daily statistics for each variable according to the Aggregation column in Table 1.

Reference model states. In addition to meteorological forcing data, Caravan includes time series of mod-
eled soil moisture and snow states from ERA5-Land (Table 2). These time series are included to provide reference
values or benchmark values for studies that analyze or model hydrological states. These time series data were
processed in the same way as meteorological forcing data.

Catchment attributes. Caravan includes two sets of catchment attributes: (i) attributes derived from
HydroATLAS*"*® and (ii) climate attributes derived from the daily ERA5-Land time series included in Caravan.
The latter are similar to the climate attributes provided in CAMELS-US?,. The reasons for choosing HydroATLAS
as the source for the former are similar to the reasons for choosing ERA5-Land for time series data: HydroATLAS
has global coverage with a license that allows for redistribution.

The catchment attributes derived from HydroATLAS use the highest resolution shape file available in that
dataset (level 12). The level 12 HydroATLAS polygons are, for the vast majority of basins, smaller than the
catchment boundaries for each gauge station provided by the respective CAMELS datasets-i.e., a single polygon
representing the drainage area for a specific gauge include multiple HydroATLAS polygons. Therefore, we first
computed the spatial join of the HydroATLAS polygons and the catchment boundaries and then derived the
catchment attributes as an area-weighted aggregate (see the Aggregation column in Tables 3, 4). Catchment
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Feature (ERA5-Land variable name) Aggregation Unit
Snow water equivalent (snow_depth_water_equivalent) Daily min/max and mean | mm
Soil water volume 0-7 cm (volumetric_soil_water_layer_1) Daily min/max and mean | m*/m?
Soil water volume 7-28 cm (volumetric_soil_water_layer_2) Daily min/max and mean | m*/m?
Soil water volume 28-100 cm (volumetric_soil_water_layer_3) | Daily min/max and mean | m*/m?
Soil water volume 100-289 cm (volumetric_soil_water_layer_4) | Daily min/max and mean | m*/m?

Table 2. ERA5-Land model state variables. Daily aggregates are computed in local time of each basin.

Group Description (HydroATLAS name) Aggregation Unit
Natural discharge (dis_m3_p[mn, mx,yr]) annual min/max/mean m?s!
Land surface runoff (run_mm_syr) spatial mean of sub-basin runoft mm
Inundation extent (inu_pc_s[mn, mx, It]) annual min/mean and long-term max | %
Limnicity - percent lake area (lka_pc_sse) spatial extent %
Lake Volume (lkv_mc_usu) at reach pour point 10¢ m?
Hydrology
Reservoir volume (rev_mc_usu) at reach pour point 106 m?
Degree of regulation (dor_pc_pva) index at reach pour point
River area (ria_ha_ssu) at reach pour point hectares
River volume (ria_tc_ssu) at reach pour point 103 m?
Groundwater table depth (gwt_cm_sav) spatial mean cm
Elevation (ele_mt_s[av, mn, mx]) spatial mean/min/max m above sea level
Physiography | Terrain slope (slp_dg_sav) spatial mean °(x10)
Stream gradient (sgr_dk_sav) mean of reach segments dm/km
Climate zones from GEnS (clz_cl_smj) spatial majority classes (n=18)
Climate strata from GeNS (cls_cl_smj) spatial majority classes (n=125)
Air temperature (tmp_dc_s[01-12, mn, mx, yr]) monthly mean, annual mean/min/max | °C (x10)
Precipitation (pre_mm_s[01-2, yr]) monthly mean, annual mean mm
Climate Potential evapotranspiration (pet_mm_s[01-12, yr]) | monthly mean, annual mean mm
Actual evapotranspiration (aet_mm_s[01-12, yr]) monthly mean, annual mean mm
Global aridity index (ari_ix_sav) spatial mean index value (x10)
Climate moisture index (cmi_ix_s[01-12, yr]) monthly mean, annual mean index value (x10)
Snow cover extent (snw_pc_s[01-12, mx, yr]) monthly mean, annual max/mean % cover

Table 3. First set of catchment attributes derived from HydroATLAS that are included in Caravan from the
groups Hydrology, Physiography, and Climate.

attributes included in Caravan can be loosely grouped into the following categories: hydrology, physiography,
climatology, soils & geology, land cover characteristics, and anthropogenic influences. A full list of all catchment
attributes derived from HydroATLAS is given in Tables 3-5 contains a list of attributes that were derived from
ERA5-Land time series. Lastly, Table 6 lists additional attributes that are also included in Caravan, such as the
latitude and longitude coordinates of each gauge station, the station name, the country of the gauge station
location and the catchment area.

Data processing in the cloud. The major computational challenge for developing LSH datasets is pro-
cessing gridded meteorological and attributes data. To make the development and augmentation of Caravan as
democratic as possible (i.e., to make it as easy as possible for anyone to add new watersheds or new data layers to
the dataset), all of our data processing scripts use Google Earth Engine via Python APIs. Google Earth Engine® is
a free-to-use cloud service with a large catalogue of geospatial data, including all of the datasets described above.
The Caravan data processing scripts interact with Earth Engine directly through APIs, so that there is no need for
individuals to download data from Earth Engine outside of these scripts. This has two benefits: it is not necessary
for users to download and store large amounts of gridded meteorological data, and does not require any specific
hardware. Any individual hydrologist, modeler, researcher, or student should be able to process even large num-
bers of new watersheds with minimal effort or expense. All that is necessary to add a new gauge to the Caravan
dataset is a shapefile representing the drainage area of the catchment, plus a timeseries of daily or subdaily stream-
flow (discharge) values from that gauge in local time. Instructions about how to add new catchments to Caravan
are provided in a Readme file in the dataset repository.

SCIENTIFIC DATA | (2023) 10:61 | https://doi.org/10.1038/s41597-023-01975-w 5


https://doi.org/10.1038/s41597-023-01975-w

www.nature.com/scientificdata/

Group Description (HydroATLAS name) Aggregation Unit
Land cover classes (glc_cl_smyj) spatial majority classes (n=22)
Land cover extent (glc_pc_s[01-22]) spatial mean % cover
Potential natural vegetation classes (pnv_cl_smj) spatial majority classes (n=15)
Potential natural vegetation extent (pnv_pc_s[01-15]) | spatial mean % cover
Wetland classes (wet_cl_smj) spatial majority classes (n=12)
Wetland extent (wet_pc_s[01-09, g1, g2]) spatial mean % cover & grouping
Forest cover extent (for_pc_sse) spatial mean % cover
Cropland extent (crp_pc_sse) spatial mean % cover
Land Cover
Pasture extent (pst_pc_sse) spatial mean % cover
Irrigated area extent (equipped) (ire_pc_sse) spatial mean % cover
Permafrost extent (prm_pc_sse) spatial mean % cover
Protected area extent (pac_pc_sse) spatial mean % cover
Terrestrial biomes (tbi_cl_smj) spatial majority classes (n=14)
Terrestrial ecoregions (tec_cl_smj) spatial majority classes (n = 846)
Freshwater major habitat types (fmh_cl_smyj) spatial majority classes (n=13)
Freshwater ecoregions (fec_cl_smj) spatial majority classes (n =426)
Clay fraction in soil (cly_pc_sav) spatial mean %
Silt fraction in soil (slt_pc_sav) spatial mean %
Sand fraction in soil (snd_pc_sav) spatial mean %
Organic carbon content in soil (soc_th_sav) spatial mean tonnes/hectare
Soils & Geology
Soil water content (swc_pc_s[01-12, yr]) monthly mean, annual mean | %
Lithological classes (lit_cl_smj) spatial majority classes (n=16)
Karst area extent (kar_pc_sse) spatial mean % cover
Soil erosion (ero_kh_sav) spatial mean kglhectare/yr
Population count (pop_ct_usu) at reach pour point count (thousands)
Population density (ppd_pk_sav) spatial mean people per km?*
Urban extent (urb_pc_sse) spatial mean % cover
Nighttime lights (nli_ix_sav) spatial mean index value (x100)
Anthropogenic
Road density (rdd_mk_sav) spatial mean m/km?
Human footprint (hft_ix_s[93,09]) spatial mean for 1993 & 2009 | index value (x100)
Gross domestic product (gdp_ud_sav) spatial mean USsD ($)
Human development index (hdi_ix_sav) spatial mean index value (x1000)

Table 4. Second set of catchment attributes derived from HydroATLAS that are included in Caravan from the
groups Land Cover, Soils & Geology, and Anthropogenic.

Attribute Description Unit Reference
p_mean Mean daily precipitation mm/day

pet_mean Mean daily potential evaporation mm/day

aridity Aridity index, ratio of mean PET and mean precipitation —

frac_snow Fraction of precipitation falling as snow — B

Mean annual moisture index in range [—1, 1], where —1 indicates water-limited conditions and 1 59

moisture_index o L
- energy-limited conditions

seasonalit Moisture index seasonality in range [0, 2], where 0 indicates no changes in the water/energy o 59
Y budget throughout the year and 2 indicates a change from fully arid to fully humid.

high_prec_freq | Frequency of high precipitation days, where precipitation >5 times mean daily precipitation —

Average duration of high precipitation events (number of consecutive days where precipitation

3 28
high_prec_dur >5 times mean daily precipitation days
low_prec_freq | Frequency of low precipitation days, where precipitation <1 mmday-1 — 28
Jow_prec_dur Average duration of low precipitation events (number of consecutive days where precipitation days 2

<1 mmday-1

Table 5. Climate attributes derived from ERA5-Land time series.

Data Records

The current version of the Caravan dataset (6830 watersheds)* is available at https://doi.org/10.5281/
zenodo.7540792. A project homepage is available at https://github.com/kratzert/Caravan/, including all code
and where news and updates are announced.
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Attribute Description Unit
gauge_lat Latitude coordinate of the gauge | —
gauge_lon Longitude coordinate of the gauge | —
gauge_name Station name —
country Country of the gauge location —
area Catchment area km?

Table 6. Metadata and other attributes.

The dataset is organized into the following subfolders:

o The attributes folder contains one subfolder per source dataset, which each contain two csv (comma separated
values) files. One file (‘attributes_hydroatlas_{source}.csv’) contains attributes derived from HydroATLAS
and the other file (‘attributes_caravan_{source}.csv’) contains limate indices derived from ERA5-Land, where
{source} indicates the corresponding source data set (e.g. camelsgb for CAMELS-GB, camelscl for CAM-
ELS-CL, and so on). The first column in all attributes file is called ‘gauge_id’ and contains a unique basin
identifier of the form ‘{source}_{id}, where {source} again is the abbreviation of the corresponding source
dataset, and {id} is the basin id as defined in the original source dataset.

o The shapefiles folder contains one subfolder per source dataset. Each of these subfolders contains a shapefile
with the catchment boundaries of each basin within that dataset. These are the shapefiles that were used to
derive the catchment attributes and ERA5-Land time series data. Each polygon in a given shapefile has a field
‘gauge_id’ that contains the unique basin identifier.

o The timeseries folder contains two subfolders, csv and netcdf, that both share the same structure and contain
the same data, once as csv-files and once as netCDF files. Each of these two subfolders contains one sub-
folder per source dataset. Within these source dataset specific subdirectories, there is one file (either csv or
netCDF) per basin, containing all time series data (meteorological forcings, state variables, and streamflow).
The netCDF files also contain metadata information, including physical units, timezones, and information
on the data sources.

o The code folder contains all scripts and Jupyter notebooks that were used to derive the data set. These scripts
can be used to extend the data set to any new basin in the world. Instructions are included in the README.
md file contained in this folder.

o The licenses folder contains license information of all data included in Caravan and for Caravan itself. General
license information are listed in the README.md file in this directory, source dataset specific information
are listed in the files located in the source dataset specific subdirectories.

« The README.md file in the main directory includes a description of the dataset structure, information on the
units of time series data, and time zones.

All time series data except streamflow are aggregated (daily and spatially over basins) from ERA5-Land.
ERA5-Land is available directly from*!, however we used the Google Earth Engine repository. HydroATLAS
attributes were derived from the HydroATLAS dataset*?. Streamflow time series are collected from the respec-
tive region-specific repositories: Australia®’, Brazil*, Canada?, Chile**, Great Britain*®, LamaH-CE (Austrian
territory and Danube catchment up to Bratislava)?’, and the United States:*.

Technical Validation

Aggregating HydroATLAS attributes. The majority of catchment attributes are derived from
HydroATLAS. The key challenge in extracting data from HydroAtlas is to define which HydroATLAS polygons
are within a given gauge’s drainage area. The primary complication is that all datasets—i.e., the various CAMELS
datasets and HydroATLAS use shapefiles derived from different digital elevation maps (DEM) at different spatial
resolution. This means that catchment boundaries from the source datasets do not perfectly align with the poly-
gons in HydroATLAS. An example of this is shown in Fig. 4. This figure shows the drainage area for a particular
gauge, as specified by the shapefile in the CAMELS dataset (first subpanel), the collocated HydroATLAS subbasin
polygons (second panel), and the mismatch between the two due to different datasets deriving catchment bound-
aries from different DEMs (third panel).

Because of this mismatch along catchment boundaries between different watershed delineations in different
datasets, we chose to only include gauges with total drainage areas of at least 100 km?. In smaller catchments,
this boundary effect can represent a significant fraction of the total area of the catchment-an example of this is
illustrated in Fig. 5. To quantify this area mismatch, we included a static feature called area_fraction_used_for_
aggregation, which is the fraction of the area used for the aggregation and the total catchment area. In Fig. 4c,
this would be the fraction of the green area by the sum of the green and orange areas. The distribution of these
values across all basins is shown in Fig. 6.

Validating meteorological time series. Like most data about the natural environment, hydrological
data is typically associated with significant uncertainty. Quantifying uncertainty is a central part of hydrologi-
cal research**°, and usually involves intensive field campaigns®"*?, statistical comparison between several data
products®*-°, or modeling studies®**”-all of which are outside the scope of the current project. We can, however,

SCIENTIFIC DATA|

(2023) 10:61 | https://doi.org/10.1038/s41597-023-01975-w 7


https://doi.org/10.1038/s41597-023-01975-w

www.nature.com/scientificdata/

o s 10 15 20 25km
— — —

Fig. 4 Visualization of the process of selecting HydroATLAS polygons for deriving catchment attributes for one
randomly selected catchment. (a) The orange polygon (bold outline) is the catchment of interest, as represented
by a shapefile from one of the CAMELS datasets. Grey polygons (thin outlines) are HydroATLAS (level 12)
polygons of the surrounding area. The white dot denotes the catchment outlet (gauge location) and blue lines
denote the river network. (b) Shows all HydroATLAS polygons or subsections of HydroATLAS polygons

that intersect with the catchment polygon. Note that due to different underlying digital elevation maps, the
boundaries of the polygons do not match perfectly. This leads to small intersection artifacts at catchment
boundary. To alleviate this problem we excluded small polygons (smaller than 5km2) when deriving the area
weighted catchment attributes from HydroATLAS. c¢) Shows the excluded (orange) intersecting polygons and
the area used for deriving attributes (green).

0 5 10 15 20 km
B |

Fig. 5 Example of small basin that was excluded from the dataset. (a) The orange polygon (bold outline)
denotes the catchment, the two grey polygons (thin outlines) are the surrounding HydroATLAS polygons, and
the white dot denotes the catchment outlet. (b) Shows the two intersecting areas of the HydroATLAS polygons
with the catchment area. Both areas are a) smaller the minimum intersection area explained in Fig. 4b) from
looking at the gauge location, it can be seen that the larger of the two intersections (blue) is in the neighboring
HydroATLAS polygon that should not contribute when deriving the catchment attributes.

statistically verify the processing tools that were used to develop the Caravan data from existing datasets. We
did this verification by comparing Caravan-derived meteorological forcings (from ERA5-Land) with forcings
from CAMELS-US. CAMELS-US was chosen because it includes three independent meteorological data sources
(NLDAS, Maurer, DayMet), which allows us to contextualize the variability between CAMELS-US forcings and
Caravan forcings. There will always be some amount of variability between any two meteorological datasets, and
having three meteorological data products allows us to contextualize any variability between Caravan features
and CAMELS-US features.

We calculated the correlation (Pearson r) between each pair of forcing data products (NLDAS, Maurer,
DayMet, ERA5-Land) separately in each basin (n=482) for three meteorological variables: total daily precip-
itation and daily maximum and minimum temperatures. We then used a set of one-tailed, paired t-tests to
test hypotheses that for each of the three meteorological variables, correlations between Caravan and any indi-
vidual CAMELS-US data product were significantly (ov=0.90) lower than correlations between each pair of
CAMELS-US forcing products. Figure 7 shows the results of these tests. Although certain forcings are more
highly correlated than others (e.g., DayMet and Maurer are more highly correlated than DayMet and NLDAS),
correlations between Caravan and CAMELS-US data products were not consistently lower than correlations
between different CAMELS-US data products.
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Fig. 6 Histogram showing the fraction of the catchment area that is considered when aggregating the
HydroATLAS attributes across all basins. Considering Fig. 4c, this value is computed as the fraction of the green

area by the sum of the green and orange area.
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Fig. 7 Results of one-way, paired t-tests with the null hypothesis (HO) that per-basin correlation coefficients
between Caravan meteorological data and any given CAMELS-US meteorological data product (NLDAS,
DayMet, Maurer) are not significantly lower than per-basin correlation coeflicients between a given pair

of CAMELS-US meteorological data products. The null hypothesis for the test in each grid cell compares
correlations between Caravan and the CAMELS-US data product on the y-axis vs. correlations between the
CAMELS-US data products on the x- and y-axes. Rejecting the null hypothesis indicates that the Caravan-
related correlations are significantly lower than the correlations between the two CAMELS-US products
(=0.9).

Usage Notes

Our vision for Caravan is as the foundation of a dynamically growing community LSH dataset that anyone in the
hydrology community can access and augment. Currently, the spatial distribution of basins included in Caravan
is limited to a few regions in the world, see Fig. 1. We hope that some users will be willing (and allowed) to share
their data, so that Caravan, over time, will contain discharge data from most parts of the world. In fact, while this
manuscript was in review, a community extension was provided, adding 308 basins from Denmark>®. Detailed
instructions for adding new catchments to Caravan are provided in the dataset repository, as well as in the code
repository. This includes all code necessary to derive meteorological and attributes data on Google Earth Engine
for any new basin globally. All computation can be done for free using Google Earth Engine.

In the introduction, we noted that Addor et al.” listed six desiderata for LHS datasets. Caravan meets five of
those six criteria-the missing desideratum is to have uncertainty estimates on all data components. Assessing
uncertainty in hydrological data is difficult without relying on strong assumptions (often, some type of hydro-
logical model), and we expect that future work will apply various methods for quantifying the uncertainty in
global rainfall-runoff datasets. Perhaps that a comparison of the attributes and timeseries provided in Carvan,
and those from the LSH original datasets, could provide new insights into their uncertainty, and inform the
selection of datasets for hydrology.
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Code availability
The code that was used to produce the Caravan dataset is available at https://github.com/kratzert/Caravan/.
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