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Design and Calibration of Large Microphone
Arrays for Robotic Applications

Florian Perrodin⋆, Janosch Nikolic⋆, Joël Busset⋆ and Roland Siegwart⋆

Abstract—Hearing is amongst the most important senses
a modern robot must exhibit. Perceiving the acoustic world
enables capabilities such as natural interaction with humans,
interpreting spoken commands or the localization of victims
during search and rescue tasks. Real-world robotic operations
often take place in noisy, reverberant environments while
requiring features such as source separation, accurate direction
of arrival estimation or high performance noise suppression.
This work presents a methodology to design, calibrate and
operate large microphone arrays that enable such features.

Recent micro electro-mechanical microphones in conjunc-
tion with reconfigurable logic tackle the weight, size, power
consumption and cost constraints of robotic systems. A novel,
automatic array shape calibration algorithm is developed for
2D and 3D arrays to face common experimental problems such
as reverberation and poor signal-to-noise ratio when calibrating
the array. The special case of a 2D array calibrated using
sources moving in 3D is addressed. No prior information on
array geometry is required, the process is fully automated and
does not require any specific calibration equipment.

The example application of an acoustic camera is presented
as a proof of concept. High-quality acoustic images are com-
puted in real-time by generalized inverse beamforming. This
demonstrates the effectiveness of the proposed design and
illustrates the usefulness of such sensing capabilities for various
robotic applications.

I. I NTRODUCTION

This work presents the design, calibration and operation
of large microphone arrays for robotic applications. Size,
weight, cost and power consumption are often crucial factors
for any sensor in a robotic system. The proposed design is
therefore based on a new generation of digital micro electro-
mechanical (MEMS) microphones. A field-programmable
gate array (FPGA) interfaces up to 128 such microphones
and employs a cascade of filters to obtain samples repre-
senting the actual sound pressure and reducing the amount
of data that is transmitted to a host system. Section III
outlines the design of the array and the pre-processing stages
performed on the sensor itself.

Microphone array shape calibration is often a prerequisite
for array processing algorithms such as source localization
or beamforming. Inaccuracies in the relative position of the
elements severely degrades the performance of such methods
[1].

Often, accurate knowledge about array geometry is not
available and needs to be estimated. Section IV addresses
this problem of recovering the microphone positions without
any a priori knowledge on the array geometry or sound
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source locations. Calibration is fully automated, can be
performed in reverberant environments and does not rely on
specialized equipment. Using a continuously moving noise
source, such as e.g. a hand-held speaker, time difference of
arrival (TDOA) is estimated between each pair of micro-
phones in a robust manner at low SNR and in reverberant
conditions.

To give a final proof of concept and to illustrate the
benefit of having such hardware and sensing capabilities
at the robots disposal, Section VIII demonstrates real-time
operation of a state-of-the-art method to compute acoustic
images of the scene. Such and similar information can be
invaluable in e.g. search and rescue scenarios.

II. PREVIOUS WORK

Microphone arrays have been successfully employed on
robotic systems for human-machine interaction [2], speaker
detection and sound source localization [3], amongst many
other applications.

In [4], an uncalibrated eight element microphone array is
used in conjunction with a blind speech separation algorithm
for robot audition. Individual speakers are successfully sep-
arated without the need for array calibration as blind speech
separation algorithms do not require knowledge about the
shape of the array. However, the locations of the individuals
are not recovered.

In [5], a 64-channel microphone array is mounted on a
wall, while an eight channel microphone array is embedded
in the head of a robot. The system is able to detect,
localize and track sources using a particle filter. While
good performances are shown, the robot’s audition relies
on external devices that are hardly movable and need to be
installed beforehand.

In [6], a 32-channel circular array is used to localize sound
sources in 2D using a classical delay-and-sum beamformer.
The sampling rate is limited (11kHz) and the algorithms are
kept simple to allow real time sound source localization.

Shape calibration information for small arrays is often
extracted from computer aided design (CAD) models or by
manually measuring inter-element distances followed by e.g.
a dimension reduction method [7]. Numerous methods for
automatic microphone array shape calibration have been pro-
posed. Most of these methods require special infrastructure
[8] and tedious calibration processes. Others require a good
initial estimate of the microphone positions [9]. One notable
exception is the method recently proposed in [10], which
is able to recover the geometry of the array without any
loudspeaker nor a priori on the array geometry. However,



the diffuse noise field assumption is not easy to satisfy and
the final precision may remain limited.

Most of the existing work on microphone arrays related to
robotics focuses on arrays with few microphone elements.
While adapted for simple DOA estimation, these systems
are unable to provide acoustic images and are less sensitive.
Moreover, as under certain assumptions the signal to noise
ratio (SNR) of beamformers scales linearly with the number
of microphone elements, these systems remain limited in
their ability to reduce the background noise. Thus, large mi-
crophone arrays are of primary interest to perform acoustic
imaging as well as to amplify distant sound sources.

The algorithm proposed in this work aims at a calibration
process that is fully automated, requires no specialized
equipment and can be performed in the normal operating
(reverberant) environment of the robot.

III. M ICROPHONEARRAY DESIGN

One of the most important factors that prohibits the
employment of current large microphone arrays for real-
world robotic applications is their size and the complexity
of their (often analog) electronic front-ends. Recently, digital
MEMS microphones have been introduced and are nowadays
found in most cell-phones on the market. Their quality is
continuously improving, and pre-amplifier, signal condition-
ing and analog-to-digital conversion are often integratedon
a single chip. This results in very compact and lightweight
designs.

However, the problem of managing a high number of
input/outputs (IOs) as well as real-time signal decoding
remains: standard microcontrollers and digital signal proces-
sors (DSPs) have a limited number of IOs and converting
the digital output from the microphones (often encoded using
pulse density modulation (PDM)) to a more practical format
is computationally expensive: a standard implementation
[11] includes a four-stage process (a cascaded integrator-
comb (or CIC) filter followed by two half-band filters and
an FIR low-pass filter) that requires at least 616 processor
cycles per sample (with 8x vectorization), resulting in a
30MHz requirement only to process one single microphone
at 48kHz and 16-bit width. This limits the use of low-power
DSPs for large microphone arrays (40 to 100+ elements).

These two problems are solved by using programmable
logic: with an FPGA, numerous IOs are available and
massive parallelization makes the filtering process easy: with
the proposed design it is possible to handle up to 128
microphone elements with a fraction of the total resources
available on the low-cost XILINX Spartan-6 LX45 that was
employed.

At last the microphone array must be able to transmit
94Mbit/s for 128 microphones at 48kHz, 16bits. This is
achieved through a USB2 port which enables a maximum
throughput of up to 480Mbit/s while being an interface
commonly available on embedded computers employed in
robotic applications. The whole process is depicted in Fig.
1. An image of the arrays and one of a dual microphone
element are shown in Fig. 2.

CIC

Filter
FIR Stage

Host

Figure 1: MEMS microphone data acquisition, preprocessing
and transmission to a host system.

(a) Microphone array
and FPGA processing board.

(b) Dual microphone element out-
putting a digital differential signal
requiring no subsequent signal con-
ditioning or analog to digital conver-
sion.

Figure 2: Flexible 44 element microphone array prototype
for robotic applications.

IV. SHAPE CALIBRATION

The calibration process for small microphone arrays is of-
ten simplified: all microphones are soldered on a single PCB
resulting in sub-millimeter accurate knowledge of the geo-
metric shape calibration parameters beforehand. If required
these calibration parameters can be refined by employing
a batch smoother. For large microphone arrays however,
calibration is more difficult. The microphones are typically
not mounted on a single planar PCB but follow more
complex shapes to optimize performance. Also, thermal
stresses can lead to bending of larger PCBs, and available
a-priori knowledge of shape parameters is less accurate.
Thus automatic shape calibration is necessary to achieve
acceptable performance of e.g. beamforming algorithms.

We propose a shape calibration pipeline that can be
applied in almost any environment: we slowly move a sound
source from a distance of a few meters from the array (that is
in the far-field) assuming that we do not know the position of
the sounding source. Then we estimate both the geometry of
the array and the position of the sources. The starting pointis
to find the time-difference of arrival (TDOA) between each
pair of microphones and for each source position.

Shape calibration algorithms based on TDOA measure-
ments can usually be divided into two main parts. The
first part consists of estimating the TDOA between each
pair of microphones, using for example generalized cross-
correlation (see [12] for a comprehensive study) or adaptive
eigenvalue decomposition [13]. These TDOA measurements
serve as an input to the second part, where the positions of
the microphones are estimated by fitting a model on the
observed measurements. A classical approach consists of
finding by some means all inter-element distances and to
then apply the Multi-Dimensional Scaling (MDS) method to
get the bestp-dimensional explanation for the microphone



array geometry in a least square sense [7]. However, MDS
is very sensitive to erroneous data (outliers) and often fails
to recover the microphone positions in practice.

A. Affine structure from sound (ASFS)

An algebraic method to find the 2D microphone positions
knowing the TDOA was presented by Thrun [14]. It has
the advantage to fully exploit the structure of the problem
while being computationally tractable. Here, this algorithm
is presented and generalized to thep dimensional case where
p = 2 or 3.
M incoming sounds are emitted from unknown locations

∀j ∈ {1, 2, . . . ,M} , sj ∈ R
p and N microphones are

located in∀i ∈ {1, 2, . . . , N} , mi ∈ R
p. The origin is set

to m1, that ism1 = 0. An incoming soundj is recorded
at time ∆i,j by the microphonei. Note that for a given
source, only the relative arrival time between microphones
is used. Thus, one can arbitrarily set the time origin and
∀j, ∆1,j = 0.

If ui,j ∈ R
p is the unitary vector that uniquely defines

the direction of the incoming sound sourcej with respect
to the microphonei, the algebraic distance (denoted by|·|)
between this source and that microphone is:

∀i ∈ [2, N ] , ∀j ∈ [1,M ] , |mi − sj | = ui,j · (mi − sj)

In the far field approximation,∀i, ∀j, ui,j ≈ uj and

∀ (i, j) , ∆i,j = c−1
uj ·mi

wherec is the sound velocity in air. By defining

Γ = (u1 . . .uM ) ∈ Mp,M (R)

X = (m2 . . .mN )
⊤ ∈ MN−1,p (R)

∆ = (∆i,j)2≤i≤N, 1≤j≤M
∈ MN−1,M (R)

the previous equalities can be written in a matrix form:

c∆ = XΓ

Knowing ∆, the problem of findingX and Γ can be
summarized by the optimization program

〈X⋆,Γ⋆〉 = argmin
X,Γ

‖XΓ− c∆‖2 (1)

s.t diag
(

Γ⊤ · Γ
)

=
(

1 1 . . . 1
)

(2)

where∀Y ∈ M (R) , ‖Y ‖2 =
∑

i,j |yi,j |
2. The constraint

enforces that∀j, ‖uj‖22 = 1. This problem is solved by a
two-step minimization method. First,∆ is decomposed using
Singular Value Decomposition (SVD):

∆ = UΣV ⊤

where U ∈ MN−1 (R), Σ ∈ MN−1,M (R) and V ∈
MM (R), and one reduced this equation to itsp largest
components:∆r = UrΣrVr whereΣr ∈ Mp (R), Ur ∈
MN−1,p (R) and Vr ∈ Mp,M (R). We cannot yet set
X⋆ = UrΣr and Γ⋆ = V ⊤

r since there is no reason that
the constraint (2) is satisfied. Thus, in a second step, one

introduces an invertible matrixC ∈ GLp (R) and one can
write

∀C ∈ GLp (R) , ∆r = UrΣrC
−1CV T

r

whereC can be arbitrarily chosen (provided it is invertible).
Thus, using a non-linear optimization procedure, one can
find:

C⋆ = argmin
C∈GLp(R)

∥

∥

∥
diag

(

(

CV T
r

)⊤ ·
(

CV T
r

)

)

− 1

∥

∥

∥

2

2

TheC matrix that has to be found in the previous equation
is a full homography. Since we cannot recover the real
system coordinate, we can remove the rotations from the
set of candidate matrices by imposing thatC is upper
triangular. Thus, the optimization procedure involves only
p(p+1)

2 parameters. Then, the minimization can be performed
for C ∈ Tp (R). One has to check afterwards that the
solution is invertible or not close to singular. In the noise-
free case,C⋆ is invertible by construction.

One finally obtains

X⋆ = UrΣrC
⋆−1 andΓ⋆ = C⋆V ⊤

r

B. Extension for planar arrays with 3D source distribution

Two dimensional microphone arrays are very common
because they are easy to build, and they avoid to deal with
occlusion issues: a source emitting a sound is either heard
by all the microphones (if it lies in the front of the array)
or by none of them (if it lies in the back) whereas in a 3-
dimensional array, the structure, if not properly designed, can
prevent a source from being heard by all the microphones.

If the array is planar but the calibrating sources are moved
in 3D, the rank of∆r will be 2 and not 3 leading to
degeneracy.Σr = diag(λ1, λ2, 0) has only two non-zero
values. Thus, the 3rd line of Vr is arbitrary which leads to
an indetermination in the sources and microphones positions.
To overcome this issue, we propose an extension of the
previous algorithm by replacing the procedure to determine
C⋆.

First, this problem cannot be solved without additional
assumptions on the measurements: for example, a far field
source lying at positionS (α, β), whereα is the azimuth
and β is the altitude, produces exactly the same TDOAs
on the array as a source lying in positionS′ (α′, β′) where
α′ = α and β′ = arccos( cos(β)

k
) on the same array but

scaled by a factork. Thus, if the source distribution does
not include positions with altitude underβmin, there is an
under-determined scale factor in the range[cos(βmin), +∞].
In other words, one can always explain the same measured
TDOAs with a smaller array sliding the estimations of the
source positions toward the horizon (ie. the plan of the
array). More generally, the calibration of the array can be
solved up to a linear transform represented by a 2D matrix :
two scale factors along two orthogonal axis, a shearing factor
and a rotation. The recovery of the rotation is unnecessary
in the case we are not searching for the orientation of the
array. Thus three parameters are missing.



To overcome these ambiguities, one has to add some
hypothesis on the placement of the sources. LetV2D ∈
M2,M (R) be the first two rows ofVr . If Γ was known, then
the 2D column vectors ofV2D would lie on the projection
of the unit sphere onto thexOy plane, that is a disc centered
in 0 and of radius 1. In the case whereΓ is known up to a
matrixC3D ∈ GL3 (R), the column vectors ofV2D lie in an
ellipse centered in zero. Finding this ellipse allows to find
the 2D transformationC⋆

2D that is needed to recover the 2D
position of the microphones. Without further assumptions,
this ellipse cannot be recovered, because the column vectors
of V2D are not enforced to touch the border of the ellipse.

A simple hypothesis to add is that some sources where
positioned on the plane of the array at least in two different
directions (ie. there are sources with zero-altitude for differ-
ent azimuths). This ensures that at least two column vectors
of V2D touch the border of the ellipse at two different points.
Since the ellipse is centered, this is sufficient to fit it.

This fit can be done by searching the ellipse centered at
the origin, with minimal area such that all the 2D column
vectors ofV2D lie inside it. This can be done by classical
minimization techniques.

Once the ellipse is found, one wants to find the ma-
trix C⋆

2D – that one constrains to be upper triangular
C⋆

2D ∈ T2 (R) since the rotational part is not needed –
that transforms the ellipseE into a unit circle C. E can
be represented as a matrixE ∈ M2 (R) such that∀x ∈
E ,x⊤Ex = 1, and each pointy on C verifies y⊤y = 1.
ThusC⋆

2D is such that∀x ∈ E , (C⋆
2Dx)

⊤
(C⋆

2Dx) = 1, that
is ∀x ∈ E ,x⊤C⋆⊤

2D C⋆
2D x = 1. If E is not degenerated, this

meansE = C⋆⊤
2DC⋆

2D. One can show that ifE is of the
following form, C⋆ can be computed as follows.

E =

(

α β
2

β
2 δ

)

C⋆
2D =

(

ε1
√
α ε2

β

2
√
α

0 ε1

√

δ − β2

4α

)

whereε1,2 = ±1 corresponding to the two reflections across
Ox andOy.

C. TDOA estimation in reverberant environments

The method described in the previous section assumes that
all TDOAs are known. In outdoor or in low reverberant con-
ditions, this can be achieved relatively easy using maxima
detection in generalized cross-correlation (GCC). However,
in highly reverberant rooms this estimation can be plagued
by false peaks in GCC that have a higher amplitude than the
one due to the direct path. This is illustrated in an experiment
(Fig. 3) where a pair of microphones (sampling frequency:
16kHz) is rotated slowly while a speaker emits white noise.
Cross-correlation between a pair of microphones is com-
puted for each window of 1024 samples and the maxima
of this function are represented as a function of time. The
color of the points corresponds to the maxima height. The
red circles indicate the global maximum at each time, which
is commonly used to compute the TDOA.

In a highly reverberant environment (Fig. 3a), the global
maximum is not always the direct path TDOA even for large

(a) In a highly reverberant envi-
ronment.

(b) At low SNR.

Figure 3: Maxima of the cross-correlation with respect to
time. The vertical axis represents the position of the peaks
in meters (time multiplied byc, the sound velocity). The
color shows how high a maxima is (red is the highest). The
red circles highlight the highest peak at a given time.

periods of time (seet = 10s). To explain the other peaks,
one can write at the first order:

∀t, yi (t) = s (t− τi,1) + αs (t− τi,2)

whereyi is the signal received by the microphonei, s is the
signal output by the speaker,αs is the signal due to the main
reflection (0 ≤ α < 1), τi,1 andτi,2 are the propagation time
between emission and reception (τi,2 > τi,1 sinceτi,1 is the
direct path). When computing the cross-correlation of a pair
of microphones(i, j) (denoted by⋆), one obtains:

yi ⋆ yj = f (τi,1 − τj,1) + αf (τi,1 − τj,2) (3)

+ αf (τi,2 − τj,1) + α2f (τi,2 − τj,2)

where∀t, f (τa − τb) (t) = s (t− τa) ⋆ s (t− τb).
Equation 3 consists of two types of terms: terms one

and four that correlate two signals coming from the same
spatial source (the reflection can be replaced by a coherent
source symmetrical to the original source with respect to the
reverberating plane). When turning the pair of microphones,
the TDOA τa − τb corresponding to this type of terms
should cross zero (when the vector formed by the pair of
microphones is orthogonal to the direction of the source). In
particular TDOA of term one and four can cross each other.

The second type of terms (terms two and three) correlate
signals coming from different coherent spatial sources. One
term comes from the direct path while the other comes from
the indirect path. We have∀j, τj,2 > τj,1, which implies
∀ (i, j) , τi,1 − τj,1 < τi,1 − τj,2. Therefore the peak coming
from term two is always strictly above the one coming from
term one. Similarly, the one coming from term three is
always strictly below the one coming from term one. Thus,
this peaks coming from this type of terms can never cross
the one coming from term one.

The explanation of Fig 3a is the following: the main curve
of peaks corresponds to term one of 3 because it has overall
the highest amplitude and it is continuous. The curve apart
from the main one correspond to term 2 and 3: they never
cross the main curve.

If the SNR is smaller as in Fig. 3b, the true maxima
becomes smaller and results in false TDOA estimation.



D. Using continuity for TDOA estimation

To overcome the problems of the previous Section, a
framework where a sound source is moving slowly is pro-
posed. Thus, the continuity of the TDOA with respect to
time is exploited to obtain robust estimates.

A sound source is considered slowly moving if its move-
ment is not discernible within a same window of the cross-
correlation. If TS is the sampling frequency andNW the
number of samples per windowTW = NWTS . Givenva the
angular speed of the sound source,vaTW ≪ 1 is desired.
For TS = 1/16000s, NW = 1024 and a moving source at
a distance ofD = 3m from the array, the linear speedv
of the source should be negligible compared to46m · s−1,
for example |v| < 50cm · s−1 which is not restrictive.
Equivalently, one can use a fixed source while moving array
slowly (|va| ≪ 16rad· s−1).

Additionally, the sound source is supposed to be moved all
around the array. This is especially important in degenerate
cases (e.g. a planar array in a 3D space).

The method is the following: first, cross-correlations are
computed and local peaks extracted. Then Dijkstra’s al-
gorithm ([15]) is applied and TDOAs are estimated. An
optional dimension reduction step can be performed. Finally,
the geometry of the microphone array is recovered using the
ASFS algorithm.

V. CONTINUITY ENFORCEMENT

The idea of using continuity comes from the fact that
peaks due to reverberation do not lead to a continuous
line because the reverberating material has a limited spatial
extent: to receive the reverberated signal, the array should
be in a cone whose vertex is the virtual source and whose
base is the surface of the material.

The shortest path algorithm proposed by Dijkstra is de-
scribed in [15]. It finds the shortest path between two given
vertices of a connected graph. Here, the vertices are the
maxima of the cross-correlation and the edges are defined
as shown in Fig. 4a: For each time-step, a directed edge
is added between each peak of the current time and each
peak of the next time-step. The weight of this edge depends
on the difference between the two TDOAsτt,i − τt+TW ,j.
The squared value of this difference can for example be
used. Edges can be added to allow to skip one time-step:
in very low SNR conditions, some peaks due to the direct
path could disappear and the algorithm would fail. Note that
the amplitude of the maxima is not used here, but could be
taken into account. Figure 4b shows the result of Dijkstra’s
algorithm in the reverberant case.

VI. D IMENSION REDUCTION

For each pair of microphones(i, j) a time-

sequence
(

∆̃i,j,t

)

1≤t≤M
of TDOAs is recovered. Thus,

more information is available than required by the ASFS
method which requires a two dimensional array of
measurements. However, the information in∆̃ is redundant.
At each time-stept, the ASFS algorithm needsN − 1

0

0

0

0

0.1

0.8
0

01.2

time

(a) Input graph of the algorithm.(b) Result of the Dijkstra algorithm.

Figure 4: The Dijkstra’s algorithm can be used to enforce
continuity on the TDOAs.
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Figure 5: Microphone element positions after automatic
calibration (ground truth and output of the algorithm). The
mean error is 1.6mm

TDOAs relative to the first microphone while the full
computation provides theN − 1 required TDOAs and the
linear combination of these TDOAs. It is either possible
to compute onlyN − 1 TDOAs (e.g for all microphone
pairs(1, j)) to save computational power, or one can process
all pairs and apply a dimension reduction algorithm.

For a finite cross-correlation window lengthTW , all
measurements̃∆i,j have a limited precision, thus it can
be worth to combine them to reduce the error. MDS is a
classical method to infer relative positions given a distance
matrix like ∆̃i,j . Since we are looking for the time sequence,
the final dimension will be one.

VII. C ALIBRATION EXPERIMENTS

Experiments were conducted on a 44 element planar
microphone array sampled at16kHz in a room where
RT60 = 0.5s. The number of samples per cross-correlation
window isNW = 1024 with an overlap of512 samples. The
sound source is fixed in the far-field while the array is rotated
slowly in all directions. It is ensured that the sound source
crosses the plane of the array twice in two approximately
orthogonal directions. Results are shown in Fig. 5. The mean
error is under 2mm.

VIII. E XAMPLE : REAL-TIME ACOUSTIC IMAGING

Sound can be a very rich source of information and
may aid robots to accomplish their goals in a wide variety
of tasks. Victims in a search and rescue operation might
for instance be invisible to normal cameras, while acoustic
sensor arrays are able to detect and accurately localize
individuals. To demonstrate the effectiveness of the proposed
design we implemented a real-time acoustic camera based
on generalized inverse beamforming [16] as an example.



Figure 6: Thread overview of the real-time acoustic camera
application: whenever a block of sound samples is received,
an FFT is computed for each microphone and the spatial
covariance matrix is computed. Then generalized inverse
beamformers are computed at the desired set of frequencies.
Acoustic images are generated with rates exceeding 60fps.

Figure 7: Acoustic image superimposed on camera image.
Color indicates sound pressure level (red is maximum,
transparent indicates pressure is below a fixed threshold).
The person shouting behind the tree can be easily detected.

Using L2 norm minimization, our implementation of the
generalized inverse beamformer reaches 60fps on a standard
laptop computer. The program is multi-threaded to enable
simultaneous imaging of multiple acoustic frequency bands.
An overview of the threading is shown in Fig. 6.

The setup was tested under real conditions to search for
a person hidden behind a tree in a forest shouting for
help. A video camera was mounted in the center of the
microphone array and its pose with respect to the output of
the generalized inverse beamformer calibrated. Figure 7 as
well as the included supplementary video show an acoustic
image superimposed on the camera image. Color indicates
sound pressure level and clearly marks the person shouting
for help.

IX. CONCLUSION

The microphone array design presented in this work
fulfills the specific requirements that arise for large arrays

in robotic applications. Lightweight and low-cost MEMS
digital microphones in conjunction with pre-processing per-
formed on an FPGA enables real-time operation of different
array processing algorithms.

An automatic shape calibration method was presented that
allows for quick array calibration on-site and without the
need for special equipment. This gives the robot designer
more flexibility in microphone placement and allows to
seamlessly integrate the array. The calibration algorithmwas
tested on a 44 element array and gives good results.

A real-time acoustic camera algorithm was implemented
as a case study of the large microphone array on robotic plat-
forms and demonstrated the feasibility of running complex
sound processing algorithms on embedded platforms.
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