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Abstract. Recent physiological findings have revealed that
long-term adaptation of the synaptic strengths between
cortical pyramidal neurons depends on the temporal order
of presynaptic and postsynaptic spikes, which is called
spike-timing-dependent plasticity (STDP) or temporally
asymmetric Hebbian (TAH) learning. Here I prove by ana-
lytical means that a physiologically plausible variant of
STDP adapts synaptic strengths such that the presynaptic
spikes predict the postsynaptic spikes with minimal error.
This prediction error model of STDP implies a mechanism
for cortical memory: cortical tissue learns temporal spike
patterns if these spike patterns are repeatedly elicited in
a set of pyramidal neurons. The trained network finishes
these patterns if their beginnings are presented, thereby
recalling the memory. Implementations of the proposed
algorithms may be useful for applications in voice recog-
nition and computer vision.

1 Introduction

Animal learning psychologists, engineers, and philoso-
phers have long been speculating that basic aspects of
cognition may be explained with the hypothesis that the
brain learns and uses internal models (Sutton and Barto
(1981); Wolpert et al. (1995); Suri (2002)). A correct inter-
nal model emulates the experience of an agent in the real
world by providing the sensory experience to the agent
that would have resulted from his actions without really
executing them. This enables the agent to evaluate the con-
sequences of potential actions and to select the action with
the best predicted outcome. Internal models have wide-
spread applications in engineering sciences for the control
of physical systems (Ljung and Soderstrom (1983)). Inter-
nal models are often represented by a set of linear differen-
tial equations. Several methods have been developed that
compute the correct model parameter values for a set of
linear differential equations by using previous experience,
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which are usually called system identification methods.
One of these methods is correlation analysis, which uses
temporal correlations between the inputs and the outputs
to compute the values of the model parameters that min-
imize the difference between the predicted and the actual
outputs.

Recent theoretical and experimental studies have
demonstrated long-term potentiation (LTP) of synaptic
strengths between cortical pyramidal neurons if the pre-
synaptic spike precedes the postysynaptic spike, and long-
term depression (LTD) if the temporal order is reversed,
which is called spike-timing-dependent plasticity (STDP)
(Gerstner et al. (1996); Markram et al. (1997); Bi and Poo
(1998); Debanne et al. (1998); Feldman (2000); Sjostrom et
al. (2001); Froemke and Dan (2002)). Several simulation
studies have suggested that STDP adapts synaptic strength
such that spike sequences can be learned by chains of neu-
rons (Levy (1996); Gerstner and Abbott (1997); August
and Levy (1999); Rao and Sejnowski (2001)). As learning
of temporal sequences is a salient feature of internal mod-
els, these studies raise the question whether STDP serves
to learn internal models.

In the current study, I derive a physiologically plausi-
ble version of STDP assuming that STDP minimizes the
errors between the actual postsynaptic spikes and the post-
synaptic spikes predicted by the presynaptic spikes. Such
a model neuron, or a network of such model neurons, per-
forms system identification and thus learns an internal
model.

2 Derivation of STDP rule

A spiking pyramidal neuron is modeled according to the
simple spike response model SRM0 (Gerstner and van
Hemmen (1992, 1994); Gerstner and Kistler (2002)). Neu-
ronal inputs are transmitted by M excitatory synapses of
synaptic strengths wi . Presynaptic spikes at synapse i cause
excitatory postsynaptic potentials (EPSPs) that are super-
imposed to generate the signal wiεi(t). Starting with the
reset potential after the previous spike occurring at time
t̂ , the signals wiεi(t) of all activated synapses are superim-
posed until the membrane potential reaches a spike thresh-
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old. A nonlinear function f generates a spike by adding
a spike-shaped function to the membrane potential, and
the spike time t̂ is updated to the time of the new spike.
After the spike, the nonlinear function f resets the mem-
brane potential to a reset potential, and the integration of
upcoming EPSPs starts with this reset value. The mem-
brane potential y(t) can thus be written as (Gerstner and
van Hemmen 1992, 1994; Gerstner and Kistler 2002)

y(t)=f

(
t̂ ,

M∑
i=1

wiεi(t)

)
. (1)

The principal analytical result of the current paper is that
system identification can be achieved if the change in syn-
aptic strength �wi is computed using the cross correlation
between the membrane potential y(t) and the derivative of
the normalized and superimposed EPSPs xi(t)≡dεi(t)/dt
according to

�wi
∼= ci

N∑
t=1

y(t)xi(t) , (2)

where ci is a scalar constant that depends on the aver-
age firing rates of the presynaptic and the postsynaptic
neuron. Equation (2) is derived by using correlation anal-
ysis (Appendix) and by assuming that synchronous EPSP
arrivals are infrequent.

2.1 Proof of Eq. (2)

To derive (2), the level of the membrane potential just
before the arrival of the presynaptic spike is treated as
a pseudorandom variable. The spiking neuron is thus
treated as a probabilistic unit, although the used neu-
ron model is deterministic. It may be surprising that a
deterministic process is treated as a pseudorandom pro-
cess, but this is actually quite common: many neural net-
works use pseudorandom numbers for search processes
(such as “simulated annealing”), although the pseudoran-
dom numbers are computed by deterministic algorithms.
The pseudorandom numbers can be treated as if they were
random numbers because the deterministic process that
generates the pseudorandom numbers is independent of
the processes in the neural network. For the same reason,
the level of the membrane potential just before arrival of a
spike can be treated as a pseudorandom variable because
it is assumed that the arrival times of the presynaptic
spikes are not correlated with the values of the postsynap-
tic membrane potential (the direct influence of the synap-
tic activation on the membrane potential is not taken into
account). To treat the spiking neuron as a probabilistic
unit, function f is separated in a term that represents a
linear estimate of the membrane potential and in an error
term e

(
t̂ , t
)

(a correction for nonlinearity is described in
the last paragraph in Sect. 4.1)

f

(
t̂ ,

M∑
i=1

wiεi(t)

)
=
[

M∑
i=1

wi

ϑ̃
xi(t)

]
+ e

(
t̂ , t
)

. (3)

The term in the square brackets serves as an estimate of
the membrane potential change that may be caused by an

upcoming postsynaptic spike, assuming that the current
membrane potential is an unknown pseudorandom vari-
able. The value of the scalar ϑ̃ is estimated such that the
normalization of the synaptic strengths wi on the right
side of (3) corresponds to that on the left side. The error
term e

(
t̂ , t
)

is not small, as it corresponds to the value of
the membrane potential at the beginning of a given time
step and represents the unpredicted portion of spikes. It
is assumed that the error term e

(
t̂ , t
)

is independent of
the correct synaptic strengths wi . In Sect. 4.1, I will show
that this approximation leads to small relative errors of
the estimated synaptic strengths (1.7%), as the probability
that a presynaptic spike will elicit a postsynaptic spike is
not exactly proportional to the synaptic strength. I will
propose a method that would avoid these inaccuracies.
The functions representing presynaptic spikes by xi(t) are
chosen with zero mean and such that they can be com-
puted from the normalized and superimposed EPSPs εi(t).
There is considerable freedom in choosing the representa-
tion of presynaptic spikes by xi(t). As explained after (8), I
choose to represent spikes by the derivatives of the normal-
ized and superimposed EPSP by setting xi(t)≡dεi(t)/dt .
Thus, each function xi(t) consists of a train of brief bumps
of equal shape and amplitude that indicate the arrival of
presynaptic spikes at synapse i.

The relationship between (3) and the description of
the neuron according to (1) can also be described in the
terms of system identification. The methods for the iden-
tification of dynamic systems can be used to mimic the
input–output relationship of a nonlinear physical system
by treating the nonlinearity as a random disturbance. The
model structure, which is the functional form of the model,
has to be chosen appropriately for the modeled system.
Once the correct model parameters are determined, the
model can be used to predict the average output for a
given input. The description of the neuron according to
(1) corresponds to the nonlinear physical system, and (3)
corresponds to its model. The model structure is chosen
by defining xi(t) and by assuming a linear relationship
between the synaptic strengths wi and their influence on
the membrane potential y(t). The correct model para-
meters wi minimize the error e

(
t̂ , t
)

between the neuron’s
membrane potential y(t) and the predicted membrane
potential

∑M
i=1 wixi(t)/ϑ̃ . Since the error e

(
t̂ , t
)

is domi-
nated by the contributions of the postsynaptic spikes, the
correct model parameters wi reflect the probability that
a presynaptic spike at synapse i will elicit a postsynaptic
spike. In contrast to traditional system identification, the
time course of the spike prediction does not need to match
the shape of the actual spike since the model only needs to
predict whether or not a postsynaptic spike occurs. There-
fore it is sufficient to choose xi(t) such that xi(t) is corre-
lated with the membrane potential y(t) for nonzero values
of the synaptic strength wi (see also Sect. 2.1.1).

By using the definition of y(t) according to (1), (3) can
be written as

y (t)= xT(t)w

ϑ̃
+ e(t̂, t) . (4)
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The vector signal xT(t) denotes the transpose of
the column vector x(t) ≡ (x1(t), x2(t), . . . , xM(t)), the
synaptic strengths are written as the column vector w(t)≡
(w1(t),w2(t), . . . ,wM(t)), and xT(t)w denotes the scalar
product. To derive the following two equations, I follow
the derivation of correlation analysis as described in the
appendix. The squared error term in (4) is minimized with
respect to the synaptic strengths w by setting the gradient
to zero, leading to

w

ϑ̃
=
[

1
N

N∑
t=1

x(t)xT (t)

]−1
1
N

N∑
t=1

x(t)y(t) . (5)

The term in the square brackets is a matrix whose elements
are the correlations between the inputs xi(t) and xk(t) on
synapses i and k. Only the spike representations that are
aligned within a few milliseconds substantially contribute
to these correlations, as the width of the EPSP deriva-
tives in xi(t) is only a few milliseconds. Since the number
of EPSPs from different synapses that are not aligned to
each other is much larger than the number of those that
are aligned, the cross correlations are much smaller than
the autocorrelations

N∑
t=1

xi(t)xk(t)<<

N∑
t=1

xi(t)xi(t) . (6)

Due to (6), the M × M matrix in the square brackets in (5)
is approximately diagonal (M is the number of synapses).
For a synapse with number i, (5) can thus be written as

wi
∼=w∗

i ≡ ci

N∑
t=1

y(t)xi(t) , (7)

with ci = ϑ̃∑N
t=1 xi (t)xi (t)

. For the shown simulations, ci is set
to the same constant value ci = c for all synapses, as all
presynaptic firing rates are assumed to be equal. If the
synapse is retrained during the time interval [t ’,N ] with
1<t ’<N , the change �wi =wi(N)−wi(t

′) of the synaptic
strength is

�wi
∼= ci

N∑
t=t ′

y(t)xi(t) , (8)

which is equivalent to (2, 3). Equation (7) is the explicit
solution for the synaptic strengths wi that minimize the
least square prediction error. Therefore, (8) guarantees
that the synaptic strengths wi minimize the prediction
error if the approximations of (3, 6) are accurate.

2.1.1 Choice of the spike representations. Since it is
assumed that all information provided by a spike is
given by the time of its occurrence and not by its shape,
there is considerable freedom in choosing functions that
represent spikes. This leads to a wide range of poten-
tial functions for the Hebbian learning window. Let us
assume that the shapes of the spike representations in the

input and the output signals are modified by linear or
nonlinear operators U and O with x̃i (t) = U(xi(t)) and
ỹ(t)=U(y(t)) such that (6) is satisfied for x̃i (t)=U(xi(t)).
According to (7), it is sufficient to require that the corre-
lation of x̃i (t) with ỹ(t) be proportional to the synaptic
strength wi (or that there be a monotonous relationship
using the modification explained in Sect. 4.1). Therefore,
it seems that a sufficient condition for the operators U
and O is that for synaptic strengths wi �= 0 the corre-
lation between the transformed representations is non-
zero, i.e.,

∑N
t=1 O(y(t))U(xi(t))=∑N

t=1 ỹ(t)x̃i(t) �=0. For
simplicity, it is assumed that ỹ(t)=y(t).

One may suggest representing the input spikes in xi(t)
by spike-shaped functions. This method is not optimal
as only synaptic strengths would get adapted whose
presynaptic spikes predict the postsynaptic spike with a
temporal precision in the order of the spike duration.
The spiking mechanism of the assumed neuron makes
it unlikely that such a high temporal precision can be
achieved, as an EPSP can elicit a postsynaptic spike dur-
ing a much longer time period. Therefore, the functions
in xi(t) that represent presynaptic spike arrivals should be
broader, such that they are more tolerant to the temporal
inaccuracy of the spike prediction. Their values should be
large when presynaptic EPSPs are likely to elicit postsyn-
aptic spikes. If the membrane potential remains approx-
imately constant during the EPSP, as in the simulations
shown here, the probability that an EPSP will elicit a post-
synaptic spike (also called cross correlation) is roughly
proportional to the derivative of the EPSP (Gerstner
(2001)). Thus, each EPSP contributes to the spike proba-
bility at a certain time t with a term roughly proportional
to wi(dεi(t)/dt). A postsynaptic spike becomes certain if
the amplitude of the EPSP is equal to the difference ϑ
between the spike threshold and the reset potential, sug-
gesting that the spike probability is approximately equal
to wi(dεi(t)/dt)/ϑ̃ . The parameter ϑ̃ would be equal to ϑ
if the subthreshold membrane potential had been exactly
uniformly distributed between the reset potential and the
firing threshold. Since this was not the case in our simula-
tions, the parameter ϑ̃ was estimated in preliminary simu-
lations. (A more accurate fit would use ϑ̃(wi), as described
in the last paragraph of Sect. 4.1). For the sum of all incom-
ing EPSPs, the spike probability is thus roughly equal
to
∑M

i=1
wi

ϑ̃

dεi (t)

dt
. Since the spike amplitude is normalized

to the value of one, this term corresponds to the term in
the square brackets in (3). Therefore, xi(t) is defined as the
derivative of the normalized and superimposed EPSPs by
setting xi(t)≡dεi(t)/dt .

3 Comparison with STDP

Typical EPSPs and spike trajectories are simulated to com-
pute the change in the synaptic strength �wi . The time
course of the EPSP is simulated with [exp(−t/50 ms) −
exp(−t/2 ms)] to approximate EPSPs shown by Bi and Poo
(1998). The EPSP is normalized such that the maximum
is 0.1 (Fig. 1a, top), and its derivative xi(t) is computed
(Fig. 1a, middle). To simulate a spike, the membrane
potential y(t) is linearly increased to the value of one
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Fig. 1a–c. Comparison between change in synaptic strength pro-
posed by the model and long-term adaptation of synaptic strength
by spike-timing-dependent plasticity (STDP). a A simulated signal
εi(t), representing an EPSP (top line), and its derivative xi(t) (middle
line) are shown for a presynaptic spike at synapse i. The signal y(t)

represents the postsynaptic membrane potential with a spike (bottom
line). The EPSP and the spike are shown in the temporal relationship
that leads to the maximal weight change. b The change in synaptic
strengths �wi is shown for different intervals between the presyn-
aptic EPSP onset and the postsynaptic spike according to (8). The

change �wi becomes maximal if the presynaptic spike arrives just
in time to cause the postsynaptic spike and negative if the presyn-
aptic spike arrives later. c Experimental studies have demonstrated
that long-term changes of the synaptic strengths between pyrami-
dal neurons depend on the time difference between the presynaptic
EPSP and the postsynaptic spike (figure adapted with permission of
Nature from Froemke RC, Dan Y (2002) Nature 416 (6879):433–438;
the time scale was inverted; one vertical unit corresponds to a 50%
change in the normalized EPSP slope)

during 2 ms and then linearly decreased during 2 ms to
a reset value of zero. After this reset, y(t) recovers with a
time constant of 60 ms to the baseline value, which is set
to 0.1 (Fig. 1a, bottom). This shape approximately repro-
duces the measured membrane potential if spikes are elic-
ited by brief input currents (see Fig. 5d in Feldman 2000
or Fig. 3a in Markram et al. 1997).

The change in synaptic strength �wi as a function of
the interval between the presynaptic EPSP onset and the
postsynaptic spike is computed according to (8) (Fig. 1b,
time steps of 0.1 ms). The change in synaptic strength is
strikingly similar to that of the experimentally established
adaptation of synaptic strength due to STDP (Fig. 1c).
STDP is characterized by LTP if a presynaptic spike pre-
cedes a postsynaptic spike and by LTD if the temporal
order of the spikes is reversed (Markram et al. 1997; Bi and
Poo 1998; Debanne et al. 1998; Feldman 2000; Froemke
and Dan 2002). Strong LTP occurs if the presynaptic spike
occurs just in time to elicit the postsynaptic spike (Bi and
Poo 1998). Note that according to (8) the synaptic strength
can become negative. Since pyramidal neurons are excit-
atory, connections between pyramidal neurons are not
able to represent associations that would require such neg-

ative synaptic strengths, such as a presynaptic spike follow-
ing a postsynaptic spike. This suggests that such negative
cross correlations are likely to be mediated by inhibitory
neurons. The presence of inhibitory neurons may reduce
the chances that a correct representation of the long-term
experience of a pyramidal neuron would require negative
synaptic strengths.

4 Simulations

Equation (8) can be used to identify the parameters of an
internal model. Let us assume that only the input signals
εi(t) (or their EPSP onsets) and the resulting output signal
y(t) of a physical process are known, and we would like
to use the model neuron according to (1) to emulate this
physical process. Equation (8) can be used to determine the
parameters wi from the observed input signals εi(t) and
the observed output signal y(t) of the physical process.
For the input signals εi(t) and the desired output signal
y(t), (8) computes the values of the synaptic strengths wi

such that the input signals εi(t) elicit the desired output
signal y(t).
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4.1 Accuracy of analytical result (offline learning)

The accuracy of (8) was investigated in computer sim-
ulations of one SRM0 neuron with 500 synapses [(1)].
The presynaptic inputs were Poisson distributed with aver-
age firing rates of 10 Hz. EPSPs were simulated as shown
in Fig. 1a. Time courses of typical signals are shown in
Fig. 2a. The values of the synaptic strengths wi were uni-
formly distributed between 0 and 0.07. When the mem-
brane potential reached a spike threshold of 0.1 at time t,
it was set to the value of one at time t and reset to the value
of zero at time t + 1 (2 ms per time step). Furthermore, all
the EPSPs that started before the spike were reset to zero,
which mimics reduced excitability after spikes (Troyer and
Miller 1997; Hausser et al. 2001). For each run, the mem-
brane potential y(t) was computed during 10,000 s of sim-
ulated time (5,000,000 time steps per run, 10.6 Hz output
firing rate). The value of ϑ̃ = 0.0649 was estimated in ten
preliminary runs by using linear regression between the
true synaptic strengths wi and the values computed with
(7). In each of ten further runs the synaptic strengths w∗

i

were computed according to (7). Eight synapses of the
true strengths 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07
were estimated (Fig. 2b) (mean of ten runs ± standard
error of the mean). The mean relative error was defined
as the mean absolute difference between the true synaptic
strengths wi and the estimated synaptic strengths w∗

i rela-
tive to the maximal synaptic strength of 0.07. This relative
error was 1.7 ± 1.1% (mean ± standard deviation). The
accuracy did not improve if (5) was explicitly solved for
w (2.2% relative error), indicating that the approximation
proposed in (6) is sufficiently accurate.

Note that the small nonzero synaptic strengths were
consistently underestimated whereas the large synaptic
strengths were consistently overestimated (Fig. 2). For the
present simulations the subthreshold values of the mem-
brane potential were not uniformly distributed between
the reset potential and the firing threshold. Therefore,
the chances for EPSPs to elicit action potentials were not
exactly proportional to the synaptic strengths. Such linear-
ity is assumed in (3) by requiring that the error term e(t̂, t)
be independent of the synaptic strengths wi . This linear
approximation caused these small systematic errors. One
could avoid these inaccuracies by replacing in (7) the con-
stant parameter ϑ̃ by a monotonously increasing function
ϑ̃(wi), which depends on the synaptic strength. The func-
tion ϑ̃(wi) can be fitted from Fig. 2. To derive a learning
rule without using this linear approximation, one would
minimize the squared error

∑N
t=1 (e(t))2 with respect

to w̃i = wi/ϑ̃(wi), estimate �w̃i
∼= ci

∑N
t=1 y(t)xi(t), and

compute the synaptic strengths with wi = w̃i ϑ̃(wi). In the
current paper, this correction with ϑ̃(wi) was not used,
since the errors were already small (1.7%).

4.2 Illustration using online learning

To illustrate the information processing capability of one
neuron trained with a physiologically plausible version of
STDP, a model neuron is simulated that learns to predict

its own postsynaptic spike. Five nonadaptive synapses
are initialized with the strengths of 0.8, and 495 adap-
tive weights are initialized with small random strengths
(uniformly distributed between 0 and 0.03). Poisson dis-
tributed presynaptic firing rates are set to 5 Hz. When the
membrane potential reached a spike threshold of 0.1, it
was set to the value of one at time t and reset to the reset
potential of value zero at time t + 1 (2 ms per time step).
Based on experimental evidence, several update rules
for spike-timing-dependent learning have been proposed
(Rubin et al. 2001; Gutig et al. 2003). To avoid negative
synaptic strengths, I used the rule wi =wi +η(w∗

i −wi)wi ,
with a desired value w∗

i set according to (7), and a learn-
ing rate η = 0.3. (To achieve rapid learning, the learning
rate η was set to a value that was much larger than what
is physiologically plausible.) This learning rule is consis-
tent with empirical evidence, suggesting that the synaptic
adaptation is proportional to the synaptic strength and
that there is an upper limit for the synaptic strengths (Bi
and Poo 1998).

During learning the neuron is forced to produce post-
synaptic spikes by presynaptic spikes arriving at a set of
nonadaptive and strong synapses. These strong synapses
define the external process the neuron is supposed to learn
and thus determine the desired neuronal output signal.
These strong synapses are assumed to be driven by salient
sensory stimuli. A second set of synapses is initially weak
and learns to predict the postsynaptic spikes if their acti-
vation provides sufficient predictive information. These
weak synapses may be activated by internal information
arriving from higher cortical areas or by neighboring neu-
rons in the same area. These weak synapses learn with
the proposed version of STDP (Fig. 3a). In each of four
simulated trials, all synapses are activated with the same
temporal spike pattern, except that the strong synapses are
not activated in trial four. In each of the first three trials,
simultaneous activation of the sensory synapses elicits a
postsynaptic spike, and the synaptic strengths of the inter-
nal synapses are adapted with the proposed learning rule.
In trial four, the internal synapses elicit the postsynaptic
spike, although the sensory synapses are not activated.
The internal synapses learned to predict the occurrence
of the postsynaptic spike (Fig. 3b), as the learning rule
had increased the synaptic strengths of the few synapses
that were consistently activated just before the output
spike. In other words, the synaptic strengths of the inter-
nal synapses are adapted such that they are suitable to
emulate the sensory experience driving the neuron in the
first three trials. The postsynaptic spike elicited via the
strong synapses thus serves as a teaching signal to adapt
the synaptic strengths of the internal synapses. (The Mat-
lab source code for the results of this paper is available at
www.cnl.salk.edu/∼suri/hebb.)

Note that this simulation serves only as an illustration
due to two limitations. First, the synaptic strengths would
only be guaranteed to converge to the desired values wi* if
the adaptive synapses did not themselves influence the out-
put of the neuron. Second, the learning rule ensures that
the synaptic strengths remain positive, although strictly
positive correlations are not guaranteed.
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Fig. 2a, b. Accuracy of analytical result. a Typical
time courses of the normalized and superimposed
EPSP εi(t) (line 1) and its derivative xi(t) (line 2)
are shown for a synapse with number i. A typical
time course of the membrane potential y(t) is
shown whereby the spike threshold is indicated by
a dashed line (line 3, spikes truncated). b Correct
synaptic strengths vs. error in estimated strengths.
For a neuron with 500 synapses, the synaptic
strengths were estimated with (7). Mean synaptic
strengths were computed by averaging over ten
runs. The errors of the mean synaptic strengths
were defined as the differences between the
correct synaptic strengths and the estimated
synaptic strengths. These errors are shown for
eight synapses of the correct strengths 0, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, and 0.07. The error
bars indicate the standard error of the mean

5 Generalization to a network of neurons

These equations for one neuron generalize to a recur-
rent neural network. Therefore, the neurons of the “higher
areas” (Fig. 3a) become a component of the modeled sys-
tem. According to (3, 4), the membrane potential yk(t) of
a neuron k can be written as the sum of the input signals
xki(t) weighted with the synaptic strengths wki

yk (t)= 1

ϑ̃k

∑
i

wkixki(t)+ ek(t) , (9)

where ek(t) is an error term and ϑ̃k is a scalar parame-
ter. During learning the neural output signals yk(t) are
assumed to be determined by a set of nonadaptive strong
synapses. Since this assumption ensures that the neurons
are independent during learning, adaptation of the syn-
apses according to the proposed learning rule (2, 7, 8)
minimizes the total error.

To achieve recurrent interactions, an operator Dki is
defined, which transforms output spikes to EPSPs and
delays the signal to reflect delays due to the axonal spike
propagation. Each input signal xki(t +1) of a neuron k is
computed from an output signal yi(t) of a neuron i with

xki(t +1)=Dkiyi (t) . (10)

The time step is assumed to be sufficiently brief to ensure
that the discrete-time representation corresponds to the
continuous-time representation. It follows from (9, 10)
that

yk (t +1)= 1

ϑ̃k

∑
i

wkiDkiyi (t)+ ek(t +1) . (11)

This equation describes the evolution of the network once
the strong nonadaptive inputs are omitted. Assuming that
the used approximations are accurate [(3) and (6)], (11) is a
special case of the ARX model. Since the ARX model has
been extensively analyzed (Ljung and Soderstrom 1983),
I only briefly outline its most relevant properties. Equa-
tion (10) can be successively applied to estimate the future
values of yk(t). Due to the delays in the linear operator
Dki , the neuronal output signals yk(t) depend on spikes
that happened in the past. Let us assume that the values
of yk(t) are determined by strong nonadaptive synapses
during the beginning of a learned spike pattern over a time
period that corresponds to the longest delay in the linear
operator Dki . Once these strong nonadaptive inputs are
omitted, the network finishes the learned spike pattern,
thereby recalling the memorized sequence.

Several conditions have to be fulfilled to guarantee cor-
rect learning of high-dimensional spike sequences by a net-
work of neurons. (a) If the unsupervised evolution of the
network is computed with (11), the proposed learning rule
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Fig. 3a, b. Model neuron learns to predict its own output spike with
the proposed learning rule. a The neuron learns a model of its sensory
experience. During learning, presynaptic spikes coding for salient
sensory experience elicit postsynaptic spikes via strong synapses.
Higher areas project via initially weak synapses to the same neuron.
The appropriate internal synapses are adapted such that they learn to
associate presynaptic spikes with postsynaptic spikes. After learning,
the presynaptic spikes arriving from higher areas replace postsynap-
tic spikes if sensory inputs are omitted. The neuron thus learns an
internal model of the relationship between presynaptic spikes cod-
ing for sensory input and postsynaptic spikes. b In trials 1, 2, and
3, the model neuron is driven by five EPSPs simultaneously arriv-
ing at five strong synapses (lines 1 and 2). In all four trials also 495

initially weak and adaptive synapses are excited by an internally gen-
erated spike pattern that is identical for each trial. For each time step
of 2 ms, the number of EPSP onsets for these internal synapses is
shown in line 3. The superposition of the internal EPSPs is shown in
line 4. In the course of learning, the superposition of all the EPSPs
generated by the internal synapses progressively increases before the
postsynaptic spike (line 4, arrows). Although the sensory synapses
are not activated in trial four, the internal synapses elicit a spike (line
5 and spikes are truncated at the value of 0.2; the firing threshold is
indicated by the horizontal line). As shown by circles that mark the
same time within each trial, the spikes occur for each trial at almost
the same time

is insufficient for the adaptation of the synaptic strengths,
as correct adaptation of synaptic strengths would depend
on other synaptic strengths [the gradient computed for
(5) would become more complicated]. Therefore, learn-
ing may have to be avoided in this unsupervised mode.
(b) The error term ek(t) is typically large. Large errors
ek(t) cannot be avoided if a modeled system is probabilis-
tic (Sect. 4.1). If the modeled system is not probabilistic but
deterministic, these errors ek(t) become small if the synap-
tic strengths, or a synchronously activated set of synaptic
strengths, are sufficiently large to reliably elicit postsynap-
tic spikes. However, in the case of small synaptic strengths
and unsynchronized input spikes, the neuronal output sig-
nals yk(t) are only accurate predictions of a learned deter-
ministic pattern if they are averaged over many trials or
over a neuron population. (c) It is assumed that the spike
probability is approximately proportional to the synap-
tic strength [(3), Sect. 4.1]. Although the linearity is cur-
rently needed to guarantee that a network minimizes the
total error after training, slightly nonlinear neurons may
be able to solve a much richer range of nonlinear system
identification problems.

6 Discussion

These findings demonstrate for the first time that the
information processing properties of neurons trained with
a physiologically plausible version of spike-timing-depen-
dent learning closely corresponds to those of correla-
tion analysis, which is an established system identifica-
tion method. A spike-timing-dependent learning rule is
derived by assuming that the desired synaptic strengths
minimize the errors between the actually occurring output
spikes and the postsynaptic spikes predicted by the pre-
synaptic spikes. According to this prediction error model
of STDP, the synaptic strengths of neurons are adapted
such that they predict their output spikes. The compar-
ison of this prediction error model with system identifi-
cation methods indicates that a temporal spike pattern is
learned if a spike pattern is repeatedly elicited in a set of
pyramidal neurons and recalled by presenting the begin-
ning of the spike pattern. In these conditions, the same
neurons serve as the input neurons during learning and as
the output neurons during recall. The proposed prediction
error model offers a mathematical foundation for previous
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simulation studies that demonstrated that spike-timing-
dependent learning can be used for the learning of spike
sequences (Levy 1996; Gerstner and Abbott 1997; August
and Levy 1999; Rao and Sejnowski 2001).

In the current study the spike-timing-dependent learn-
ing rule is represented as the cross correlation between
representations of the neuron’s input and output spikes.
Without hampering the capability of the neurons for
system identification, there is considerable flexibility on
the functional form of spike representations for this
cross-correlation rule, which influences the learning win-
dow. This robust performance is a direct consequence of
spike coding: since the information is only coded by the
time a spike occurs, a spike can be represented by any brief
functionthatreliably indicates thetimeofspikeoccurrence.

In an independent study by Saudargiene et al. (2004),
spike-timing-dependent learning was also represented by
a cross-correlation rule. Their model suggests that spike-
timing-dependent learning is proportional to the corre-
lation between the NMDA conductance of the synapse
and the temporal derivative of the membrane potential.
According to the current findings, their model is likely
to have the same system identification properties as the
model proposed here. The proposed mathematical analy-
sis can be applied to their model by defining the synaptic
input xi(t) as the NMDA conductance and the neuro-
nal output signal y(t) as the derivative of the membrane
potential.

Several experimental findings support the proposed
cross-correlation hypothesis for adapting the synaptic
strengths [(2)]. It was suggested that the adaptation of the
synaptic strengths due to spike-timing-dependent learn-
ing may be mediated by the action potential that propa-
gates back to the synapses (Watanabe et al. 2002). Such
a backpropagating action potential would be particu-
larly suitable to adapt the synaptic strengths according
to a cross-correlation rule. Furthermore, the proposed
cross-correlation hypothesis implies that long-term adap-
tation should be diminished proportionally to the amount
of short-term depression, as synaptic short-term depres-
sion reduces the amplitude of the EPSP. This is consistent
with experimental findings suggesting that the ampli-
tudes of LTP and LTD are diminished proportionally
to the amount of short-term depression (Froemke and
Dan 2002). The integral of the LTP window appears to
be smaller than that of the LTD window (Feldman 2000;
Sjostrom et al. 2001), which seems to explain the finding
that low-frequency pre-/postpairings with random delays
induce LTD (Feldman 2000). This is consistent with the
proposed cross-correlation rule because the correct syn-
aptic strengths become zero if the presynaptic inputs are
uncorrelated with the postsynaptic spikes.

The learning window of spike-timing-dependent
learning is reproduced by representing presynaptic and
postsynaptic spikes in the cross-correlation rule by the
derivative of the normalized EPSP and the membrane
potential, respectively. If this is taken as an exact
description of spike-timing-dependent learning, elevated
postsynaptic membrane potentials should boost its cor-
relation with the EPSP derivative and thus enhance LTP

(Fig. 1a). Indeed, LTP induction was found to be more
effective if pairings are repeated at high frequencies such
that the postsynaptic membrane potential does not repo-
larize back to rest between spikes (Markram et al. 1997;
Sjostrom et al. 2001). Furthermore, LTP is also enhanced
if the postsynaptic spike is preceded by a moderate depo-
larization, which can be provided by concurrent synaptic
inputs or by current injection (Sjostrom et al. 2001). How-
ever, there is evidence suggesting that the chosen spike rep-
resentations in the learning rule do not provide an exact
description of spike-timing-dependent learning. For some
pyramidal neurons the membrane potential remains ele-
vated after spikes (Bi and Poo 1998), which would drasti-
cally change the learning window. Furthermore, the shape
of the spike propagated back into the dendrite substan-
tially differs from that in the cell body (Watanabe et al.
2002), suggesting that the representation of the postsyn-
aptic spike, and thus the learning window, may depend on
the location of the synapse (Saudargiene et al. 2004).

Previous studies have already attempted to demonstrate
relationships of spike-timing-dependent learning with the-
oretical models of learning without reaching a consen-
sus. Pfister et al. (2003) derived a spike-timing-dependent
learning rule from an optimization criterion for a neuron
with a noisy membrane potential that receives input by
a single synapse. They assumed that the desired synap-
tic strengths maximize the likelihood of observing a post-
synaptic spike train with a desired timing, given the fir-
ing rate. Like the current study, their results suggest that
the LTD part of the learning window is a consequence
of the hyperpolarization that often follows spikes. Unfor-
tunately, their learning rule is not fully consistent with
experimentally observed spike-timing-dependent learn-
ing, since their learning rule predicts LTD for unpaired
spikes, and their learning window is wider than the exper-
imentally established learning window. The latter seems to
be a consequence of representing the input spikes by their
EPSPs. Roberts (1999) demonstrated that a signal resem-
bling the prediction signal of temporal difference (TD)
learning can be acquired with spike-timing-dependent
learning. Spike-timing-dependent learning was also re-
lated to TD learning because both use the time differ-
ence between the presynaptic spike and the postsynaptic
spike (Rao and Sejnowski (2001)). However, the temporal
difference learning rule proposed by Rao and Sejnowski
(2001) is different from the TD learning rule if the pre-
synaptic EPSP onset follows the occurrence of the post-
synaptic spike: whereas this situation causes no change
in the synaptic strength using TD learning, the tempo-
ral difference learning rule proposed by Rao and Sejnow-
ski reduces the synaptic strengths. Indeed, these authors
did not claim that any signal that is typical for TD learn-
ing can be learned with spike-timing-dependent learning.
Simulation studies suggested various further functions
of spike-timing-dependent learning including learning of
precise temporal coding (Gerstner et al. 1996), spike syn-
chronization (Suri and Sejnowski 2002), input correla-
tions (Gutig et al. 2003), and spike sequences (Levy 1996;
Gerstner and Abbott 1997; August and Levy 1999; Rao
and Sejnowski 2001).
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Assuming the accuracy of the used approximations (3,
6), the proposed neural network is mathematically equiv-
alent to methods that estimate the parameters of systems
of linear differential equations (Sect. 5, Appendix). Such
algorithms have been used for computer vision, voice rec-
ognition, and image recognition and for learning internal
models of temporal processes (Godfrey 1980; Ljung and
Soderstrom 1983; Wolpert et al. 1995). Neural networks
trained with such algorithms remove noise from famil-
iar pictures and learn receptive fields resembling those of
neurons in the visual cortex (Rao and Ballard 1997). How
could such neural networks be used for computing predic-
tions even though the temporal evolution of the signals of
the internal model is only as fast as that of the obser-
vation? A possible solution is to train the model with a
temporally compressed observation sequence. The finding
that hippocampal spike patterns reflect temporally com-
pressed representations of the animal’s sensory experience
(Skaggs et al. 1996) suggests that the cortex may use a sim-
ilar strategy (August and Levy 1999).
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Appendix

Correlation analysis

I briefly describe the derivation of the well-established pre-
diction error method correlation analysis used for system
identification by following Ljung and Soderstrom (1983).
This derivation is similar to that used for the proof of (2).
Given a linear dynamic system

y (t)=xT(t)w + e(t) ,

where the system output y(t) is a scalar signal, xT(t)w is
the scalar product between the system input signals xi(t)
and system parameters wi , and a scalar signal e(t) is a
noise term that does not need to be Gaussian distributed.
The squared error term e(t) is minimized with respect to
the system parameters wi with

d
dw

1
N

N∑
t=1

e(t)e(t)= d
dw

1
N

N∑
t=1

[
y (t)−xT(t)w

]2 =0 .

Computing the derivative of the middle term and resolv-
ing for w leads to

w =
[

1
N

N∑
t=1

x(t)xT(t)

]−1
1
N

N∑
t=1

x(t)y (t) .

This solution for the model parameters w minimizes the
least square prediction error

∑N
t=1 (e(t))2 and can be seen

as a special case of the maximum likelihood method.
Correlation analysis can be used if the cross correlation
between the input signals xi(t) is much smaller than their
autocorrelation, i.e.,

∑N
t=1 xi(t)xk(t) <<

∑N
t=1 xi(t)xi(t).

In this case, wi can be approximated with

wi
∼=

N∑
t=1

xi(t)y(t)

N∑
t=1

(xi(t))
2

.

Correlation analysis uses this equation to compute the sys-
tem parameters wi from the input signals xi(t) and output
signal y(t). This equation estimates the system parameters
wi as the slope of the linear regression computed for the
N points (xi(t), y(t)).
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